
Practical state recovery attacks
against legacy RNG implementations

Shaanan N. Cohney

University of Pennsylvania

shaanan@cohney.info

Matthew D. Green

Johns Hopkins University

mgreen@cs.jhu.edu

Nadia Heninger

University of Pennsylvania

nadiah@cis.upenn.edu

ABSTRACT

The ANSI X9.17/X9.31 pseudorandom number generator designwas

first standardized in 1985, with variants incorporated into numerous

cryptographic standards over the next three decades. The design

uses timestamps together with a statically keyed block cipher to

produce pseudo-random output. It has been known since 1998 that

the key must remain secret in order for the output to be secure.

However, neither the FIPS 140-2 standardization process nor NIST’s

later descriptions of the algorithm specified any process for key

generation.

We performed a systematic study of publicly available FIPS 140-

2 certifications for hundreds of products that implemented the

ANSI X9.31 random number generator, and found twelve whose

certification documents use of static, hard-coded keys in source

code, leaving the implementation vulnerable to an attacker who

can learn this key from the source code or binary. In order to

demonstrate the practicality of such an attack, we develop a full

passive decryption attack against FortiGate VPN gateway products

using FortiOS v4 that recovers the private key in seconds. We

measure the prevalence of this vulnerability on the visible Internet

using active scans, and demonstrate state recovery and full private

key recovery in the wild. Our work highlights the extent to which

the validation and certification process has failed to provide even

modest security guarantees.

CCS CONCEPTS

• Security and privacy → Cryptanalysis and other attacks;
Embedded systems security; Security protocols;

ACM Reference Format:

Shaanan N. Cohney, Matthew D. Green, and Nadia Heninger. 2018. Prac-

tical state recovery attacks against legacy RNG implementations. In 2018
ACM SIGSAC Conference on Computer and Communications Security (CCS
’18), October 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3243734.3243756

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243756

1 INTRODUCTION

Random number generation is a vital component of any crypto-

graphic system. While systems may survive subtle flaws in crypto-

graphic algorithm implementation, the ability to predict the output

of a (pseudo)random number generator typically leads to the cata-

strophic failure of any protocol built on top of it. In recent years

a number of cryptographic systems have been found to include

flawed random and pseudorandom number generation subsystems.

These flaws range from subtle weaknesses, e.g. biases that admit

sophisticated attacks against the protocol [49]; to catastrophic vul-

nerabilities that allow for adversarial recovery of all random coins

used in a protocol execution [16, 59]. In a particularly ominous

development, some of these flaws appear to have been deliberately

engineered. For example, leaks by Edward Snowden indicate that

the NIST Dual EC DRBG standard may have been designed with

a backdoor [53]. While there is no way to empirically verify this

allegation, we know for certain that the Dual EC algorithm has
been successfully exploited: in 2015 Juniper Networks revealed that

their ScreenOS line of VPN devices had been modified to include a

malicious set of Dual EC parameters, which likely enabled passive

decryption of VPN sessions [16].

The problem of constructing random and pseudorandom number

generators has been extensively explored by industry [8, 41, 48] and

in the academic literature [20, 21, 42, 55, 57]. Despite the abundant

results of this effort, the industry has consistently relied on a small

number of common pseudorandom number generation algorithms.

To a large extent this can be attributed to standards bodies. For ex-

ample, until 2007 there were only two algorithms for pseudorandom

number generation approved for U.S. FIPS 140 certification, and

prior to 1998 only one such algorithm was approved. Recent dis-

coveries surrounding the inclusion of flawed generators motivate a

more thorough examination of these generators — and particularly,

their use in products.

The ANSI X9.17/31 standards. The ANSI X9.17 “Financial In-

stitution Key Management (Wholesale)” standard, first published

in 1985, defined a voluntary interoperability standard for crypto-

graphic key generation and distribution for the financial industry.

This standard included a pseudorandom number generator (PRG)

in Appendix C as a suggested method to generate key material.

This generator uses a block cipher (in the original description, DES)

to produce output from the current state, and to update the state

using the current time.

The same PRG design appeared in US government cryptographic

standards for the next three decades, occasionally updated with

https://doi.org/10.1145/3243734.3243756
https://doi.org/10.1145/3243734.3243756

new block ciphers. A subset of the ANSI X9.17-1985 standard was

adopted as a FIPS standard, FIPS-171, in 1992. FIPS-171 specified that

“only NIST-approved key generation algorithms (e.g., the technique

defined in Appendix C of ANSI X9.17) shall be used”. FIPS 140-1,

adopted in 1994, specified that modules should use a FIPS approved

key generation algorithm; FIPS 186-1, the original version of the

DSA standard adopted in 1998, lists the X9.17 PRG as an approved

method to generate private keys. The ANSI X9.31 standard from

1998 specified a variant of the X9.17 PRG using two-key 3DES as

the block cipher; this variant was included as an approved random

number generator in further standards such as FIPS 186-2, from 2004.

NIST published extensions of this design using three-key 3DES and

AES as the block cipher [40] that were officially included on the

FIPS 140-2 list of approved random number generation algorithms

in 2005.

A critical design element of the ANSI X9.17/X9.31 PRG is that the

cipher key used with the block cipher remains fixed through each

iteration. In order to remain secure, the key must never be revealed

to external attackers. If an attacker learns this key, they can recover

all future and past states of the PRG from its output by brute forcing

the timestamps [42]. Perhaps due to this knownweakness, the ANSI

X9.17/X9.31 design was deprecated in 2011 and removed from the

FIPS list of approved PRG designs in January 2016. NIST SP 800-

131A, the document announcing the deprecation of this algorithm,

also deprecated a number of smaller cryptographic key sizes along

with a rationale for doing so; no rationale appears to have been

given for the transition away from X9.31.

Despite this significant flaw, which was identified by Kelsey et al.
in 1998 [42], the NIST documents specifying the ANSI X9.31 PRG

design fail to specify how the cipher key should be generated [40].

This raises the possibility that even FIPS-validated deployed systems

could contain vulnerabilities that admit practical PRG state recovery.

To evaluate this possibility, we performed a systematic study of

publicly available FIPS 140-2 certification for hundreds of products

that implemented the ANSI X9.31 random number generator.

Our results show that a number of vendors use static hard-coded

keys in source code, leaving them vulnerable to an attacker who

can learn this key from the source code or binary. In order to

demonstrate the practicality of this attack, we reverse-engineered

the binaries for a Fortigate VPN gateway using FortiOS version 4.

We discovered that the ANSI X9.31 PRG implementation used for

IPsec encryption uses a hard-coded key, which is a test value given

in the NIST RNGVS specification [44], published as a validation

suite alongside their standardization of the generator. We perform

full state recovery in under a second from randomnumber generator

output. We observe that a passive adversary observing the IKEv2

handshake used to set up an IPsec connection can carry out a state

recovery attack using the plaintext nonce values in the handshake,

and then derive the secret key generated during the cryptographic

key exchange. We demonstrate a full attack that learns the session

keys for a Fortigate IPsec VPN using FortiOS version 4 in seconds.

Furthermore, we demonstrate that this vulnerability exists in the
wild by performing state recovery, key recovery, and decryption

on handshakes we collected using internet-wide scanning of VPN

hosts.

This is not a “NOBUS” backdoor: it is symmetric, and thus an at-

tacker with access to the source code or device can recover the

secrets needed to compromise the PRG. However, the failure mode

of static, discoverable keys we exploit was not ruled out by stan-

dards. The PRG appears to have been independently implemented

in this fashion by a variety of vendors. This is a failure of the stan-

dardization process that has led to real and ongoing vulnerabilities.

We note that this failure mode is more subtle than simply using a

hard-coded key for encrypted communications. There are many

cryptographically secure PRG constructions using only public pa-

rameters and entropy unknown to the attacker, for example con-

structions based on modular exponentiation [11] or hash func-

tions [8]. In addition, as we discuss in Section 7, the vulnerability

could have been rendered practically unexploitable by using suffi-

ciently high resolution timestamps.

1.1 Our Contributions

In this work we extend a growing line of research into weak-

ened/backdoored random number generation in deployed prod-

ucts [9, 15, 16, 18, 19, 56]. Specifically, we demonstrate the existence

of widespread and passively exploitable vulnerabilities in imple-

mentations of one of the most widely-deployed standard PRGs. Our

contributions are as follows:

• We perform a systematic study of FIPS 140 security policy

documentation and discover several independently vulnerable

RNG implementations from different vendors, and discover

critical failures in the standardization process.

• Based on this work, we develop an efficient passive X9.31 state

recovery attack for the FortiOS v4 IPsec implementation and

demonstrate full IPsec VPN decryption.

• We use Internet-wide measurements to measure the scope of

this vulnerability among publicly-visible hosts, and demon-

strate it against hosts in the wild, uncovering more than 25,000

vulnerable hosts. These numbers likely represent a small frac-

tion of the true number of vulnerable hosts.

• We discuss the impact of these findings on other standardized

PRG designs, and demonstrate that these vulnerabilities could

affect other symmetric PRG implementations as well.

A critical differentiator between this work and previous work is that

our work is the first to exploit flaws in a widely-used symmetric-key
RNG at large scale, rather than a specialized (and rare) public-key

design such as Dual_EC_DRBG [16]. Moreover, we note that our

findings are tied to our analysis approach: they would not have

been detectable through black-box external testing methods.
1
To

our knowledge, this work is the first to identify exploitable flaws

in cryptographic devices by analyzing the output of cryptographic

module validation procedures. This demonstrates that the existing

standards validation procedures may need to be revisited.

1
Unlike many previous RNG weaknesses, e.g., [35, 59] the PRG flaws in this work are

undetectable to an attacker who interacts with the device as a black box; they can only

be found through careful analysis of the PRG internals.

Purpose of this work. Over the past several years, a valuable

line of research has considered the impact of weakened number

generators on cryptographic devices. This research comprises three

categories of work: (1) discovery of novel cryptographic attacks [42,

56], (2) measurement and impact studies of known (theoretical)

algorithm flaws [15, 16] and (3) development of countermeasures

and new theoretical models [9, 18, 19].

We stress that these categories are mutually interdependent. With-

out knowledge of flaws, there can be no analysis of impact. Without

knowledge of practical impact (in deployed protocols and devices),

there is little impetus for theoretical analysis or countermeasure

development. Finally, without academic research in each of these

areas, it is difficult for industry and standards bodies to design or

motivate analysis of new algorithms.

This work is an example of category (2). Our goal is to evaluate the

impact of a specific flaw on real, deployed cryptographic systems.

Our results in this work demonstrate that these flaws are present

and exploitable at scale in widely used implementations of real

Internet protocols. Our findings do not flow inevitably from previ-

ous results on ANSI X9.31 [42], as we note above and in Section 7.

Moreover, this analysis is critical given that X9.31 is one of the most

widely-deployed standard PRG algorithms in existence.

Finally, this work has impact in motivating countermeasure re-

search and formal modeling. In particular, we note in Section 7 that

more recent designs (CTR_DRBG from SP800-90A) may also be

vulnerable to similar attacks if implementations include (minor)

flaws. Since CTR_DRBG is enormously popular – e.g., it is included

in every Intel processor – we believe our work motivates further

analysis of implementations, as well as consideration of symmetric

RNG design principles that improve robustness.

1.2 Disclosure

We disclosed the X9.31 and privilege escalation vulnerabilities to

Fortinet in October 2016. Fortinet responded by releasing a patch

for affected versions of FortiOS [24, 25]. FortiOS version 5 did not

implement the X9.31 PRG and is not vulnerable.

We disclosed the potential for a flaw in Cisco Aironet devices to

Cisco in June 2017. After an internal investigation, Cisco determined

that the affected software versions had all reached end-of-support

status. They were unable to find the source code to validate the

flaw.

We notified the remaining vendors listed in Table 2 in October 2017.

BeCrypt pointed us to version 3.0 of their library, which has been

FIPS certified and no longer includes the X9.31 random number

generator. They told us that the only fixed key inside the FIPS

module is for self-test purposes. ViaSat USA had no record of the

product indicated in the security documentation and ViaSat UK

failed to respond to our disclosure. We did not receive substantive

responses from any other vendors.

NIST has decertified the ANSI X9.31 RNG for FIPS compliant uses

independently of our work. Despite this, we detected many vul-

nerable devices active on the open Internet, and additional devices

may reside within enterprise networks. In personal communication

in response to our work, NIST noted several issues with crypto-

graphic validation that they are planning to improve; we discuss

these in detail in Section 7. NIST informed us that they introduced

a five-year sunsetting policy for FIPS 140-2 validations in 2016 in

order to weed out old validations and encourage upgrades. There

is an effort currently underway to transition to automated testing

for all modules, and to change the liability model so that vendors

carry full responsibility for the security of their products [50].

1.3 Ethics

While we demonstrate key recovery and decryption against live

hosts we do not own on the Internet, the traffic we decrypt in our

proof-of-concept is a handshake we initiated with this host. We did

not collect traffic or attempt decryption for connections in which

we were not a party. We followed community best practices for

network scans, including limiting scan rates, respecting hosts who

wished to be blacklisted, and working with vendors and end users

to minimize effects to their networks.

2 BACKGROUND

2.1 Pseudorandom generators

We adopt the notation of Dodis et al. [19].

Definition 1 (Pseudorandom generator). A pseudorandom gen-

erator (PRG) is a pair of algorithms (I,G). The seeding algorithm
I(λ) takes a security parameter λ and probabilistically generates an

initial state s ∈ S, typically some fixed-length bit string. The gener-

ation algorithm G : n × S → {0, 1}n × S maps the current state to

an n-bit output and a new state. For any λ, integer q ≥ 1, initial seed

s0 ∈ I(λ), and any list of non-negative integers (n1,n2, . . . ,nq) we
let outq(G, s0) denote the set of bit strings (r1, r2, . . . , rq) produced
by computing (ri , si) ← G(ni , si−1) for i = 1 to q. A PRG is secure

when no adversary can distinguish between the outputs outq and

a set of random bits.

The PRG discussed in this work extends this basic definition slightly,

as the generate function G also takes (and may return) additional
input, namely a counter or timer value that is used as a partial input

to the generator. We require that pseudorandomness hold even

when this auxiliary data is predictable or adversarially chosen.

2.2 ANSI X9.31

The ANSI X9.31 random number generator is an algorithm that

was included in some form on the list of approved random number

generators for FIPS and NIST standards between 1992 and 2016. The

design first appeared in the ANSI X9.17 standard on cryptography

for the financial industry, published in 1985, using DES for the

block cipher. The X9.31 variant uses two-key 3DES for the block

cipher, and NIST published three-key 3DES and AES versions in

2005. [40] While this design has appeared under various names, we

will refer to it as the X9.31 PRG for the rest of this paper, to use the

terminology in modern implementations and standards.

Ti AESK

Vi−1 ⊕ AESK

⊕ AESK Vi

Ri

Figure 1: Each iteration of the ANSI X9.31 PRG generation
function (G) inputs a timestamp Ti and a seed Vi−1 and pro-
duces an output block Ri and a new seed Vi .

The PRG is based on a block cipher with block size ℓ bits. We

will specialize to AES, and define ℓ = 128. EK (Y) represents the
encipherment of Y under key K .

The seeding algorithm I selects an initial seed s = (K ,V) where V
is generated randomly and K is a pre-generated fixed key K for

the block cipher. The exact language used to describe the key in

the NIST specification [40] for the AES-based variant is “For AES

128-bit key, let *K be a 128 bit key.” and similarly for 192 and 256

bits. It continues “This *K is reserved only for the generation of

pseudo-random numbers.”

The jth call to the generate algorithm G takes as input a desired

output length in bits n, the current state s = (K ,V) and a series of

timestamps (T1, . . . ,TN) where N = ⌈n/ℓ⌉. Let V0 = V at the start

of the generate call. For i = 1 to N the state is updated using the

current timestamp Ti as follows. First, generate an intermediate

value Ii = EK (Ti). Then one block of output is generated as

Ri = EK (Ii ⊕ Vi−1) (1)

and the state for the next iteration is Vi = EK (Ri ⊕ Ii).

The output ofG is truncaten (R1∥R2∥ . . . ∥Rb)where truncaten out-

puts the leftmost n bits, as well as the updated state s ′ = (K ,Vb). A
diagram of the generation algorithm appears in Figure 1.

2.3 State Recovery Attack with a Known Key

We are not aware of a formal proof showing that ANSI X9.31 is

pseudorandom, though this is likely to be the case if the block

cipher is a pseudorandom permutation.

Kelsey et al. [42] observed that the generator is clearly vulnerable

when K is not secret. An attacker who learns K can recover the

current state using two consecutive blocks of output together with

guesses for their timestamps. (A single block of output will not

uniquely identify the state, but two blocks almost surely will.) LetR0
be a block of output generated atT0, R1 a block of output generated
at T1, and D(Y) the decryption of Y using key K . We can relate

these quantities as:

D(D(R1) ⊕ E(T1)) = R0 ⊕ E(T0) (2)

If the timestamps are only known approximately, we can brute force

them within some range until we find a pair that yields equality, or

apply a meet-in-the-middle attack [42]. If one block is not known

completely, we can rearrange the encryptions and decryptions

and verify equality of the known portion of the block. Once the

timestamps T1 and T2 are known, the next seed is

V2 = E(R1 ⊕ E(T1))

A guess for the output from the next iteration is then uniquely

defined by a guess for the timestamp T2:

R2 = E(E(T2) ⊕ V2) (3)

The above attack allows an attacker who has access to raw X9.31

output to recover the state. The attacker can then predict future

output by running the generation algorithm with a guess for each

subsequent timestamp. Alternatively, she can recover previous out-
put blocks by “winding the generator backwards” and guessing

earlier timestamps. Both attacks require the same effort.

In order to understand the impact on real cryptographic usage, we

will describe how this attack works in theory in the context of

popular cryptographic protocols.

2.4 Attacking X9.31 in TLS

Checkoway et al. [16] performed an in-depth analysis of the vul-

nerability of the TLS protocol to a compromised random number

generator in the context of the Dual EC DRBG. The attack surface

is similar for a vulnerable X9.31 implementation, with two key

differences. First, the Dual EC backdoor is asymmetric, and thus

only a party who generates the curve points used with Dual EC can

detect the presence of the backdoor or exploit it, while the X9.31

vulnerability is symmetric, and any implementation that stores a

fixed secret key is vulnerable to passive exploitation by an attacker

who can recover this key. Second, the Dual EC attack requires at

least 28 bytes of contiguous PRG output for an efficient attack,

while the X9.31 attack can be conducted with fewer bytes.
2
This

second restriction plays a major role in the cost of an attack on a

protocol such as TLS or IPsec.

2.4.1 TLS Background. A TLS 1.0, 1.1, or 1.2 handshake begins

with a client hello message containing a 32-byte random nonce and

a list of supported cipher suites. The server hello message contains

a 32-byte random nonce, the server’s choice of cipher suite, and

the server’s certificate with a long-term public key. The server

and client then negotiate shared secret keying material using the

chosen asymmetric cipher. For RSA, the client encrypts a secret

to the server’s public key; for (elliptic curve) Diffie-Hellman, the

server and client exchange key exchange messages. The client and

server then derive symmetric keys from the negotiated shared secret

and nonces, authenticate the handshake, and switch to symmetric

encryption.

2
In practice, given (256−n) bits of contiguous generator output, Dual EC state recovery

involves a guessing phase consisting of 2
n
elliptic curve operations. This becomes

costly for values of n ≥ 32. By contrast, the ANSI attack requires only 128 bits of

contiguous generator output for initial state recovery and a small portion of a second

block to test for correctness. Given (256−n) total bits the probability of recovering the
wrong state is generally small (≈ M ∗ 2−(128−n) when brute forcing over a timestamp

space of size M) even when n is large.

2.4.2 State and key recovery in TLS. If the X9.31 PRG is used

to generate both the random nonce and the cryptographic secrets

used for the key exchange, then an attacker could use the raw PRG

output in the nonce to carry out the state recovery attack, and then

use knowledge of the state to derive the secret keys. The 256-bit

client or server random is exactly two blocks of AES output. Some

TLS implementations include a 32-bit timestamp in the first 4 bytes

of the nonce; in this case the attacker would have fewer than two

full blocks, but the attacker will likely still recover a unique state.

For a Diffie-Hellman key exchange, this attack would work if either

the client or server uses the vulnerable PRG; for RSA key exchange,

the key exchange would only be compromised if the client uses the

vulnerable PRG.

2.5 Attacking X9.31 in IPsec

Checkoway et al. [16] describe the impact of a compromised random

number generator on the IKE key exchange used in IPsec in the

context of the Dual EC PRG. Our case is similar. We describe the

protocols in detail, since we target IPsec for our proof-of-concept.

2.5.1 IPSec/IKEv2 background. IPSec is a Layer-3 protocol suite
for end-to-end IP packet encryption, authentication and access

control, widely used for Virtual Private Networks (VPNs). The IKE

(Internet Key Exchange) protocols allow two hosts, denoted the

Initiator and Responder, to establish an authenticated “Security

Association”, a secure communication channel. Two versions of

IKE exist, IKEv1 and IKEv2. Both use Diffie-Hellman key exchange.

IKEv1. The original IKE specification [31] defines two phases, an

initial key exchange phase (Phase 1) and a second phase (Phase 2)

that uses keying material from the first phase to establish an IPSec

SA. In Phase 1, authenticated key exchange can be performed using

two handshake types: Main Mode or Aggressive Mode.

We focus our attention on the Phase 1 handshake in main mode.

First, initiator and responder exchange Security Association (SA)

payloads, with the initiator offering proposals for combinations

of cipher suites and parameters and the responder accepting one.

The parties then exchange Key Exchange (KE) messages, each con-

taining a Diffie-Hellman key exchange payload. The format differs

based on the authentication method. When using digital signatures

or a pre-shared key to authenticate, the initiator and responder

send their key exchange message together with a cleartext nonce of

length between 8 and 256 bytes [31]. Each packet includes an 8-byte

connection identifier called a cookie.
3
The ISAKMP specification

(RFC 2408) [17] suggests that the cookie be generated by applying

the MD5 hash function to the participant IPs, ports, and a local

random secret.

Both parties then derive symmetric key material from the Diffie-

Hellman shared secret, the nonces, the cookies, and optionally

the PSK if using PSK authentication. All messages following this

point are encrypted with the newly derived keys. Both sides then

exchange certificates and identities, and authenticates the key ex-

change using the negotiated authentication method.

3
The ISAKMP specification (RFC 2408) [17] suggests generating the cookie by applying

the MD5 hash function to the participant IPs, ports, and a local random secret.

SPIi, SAi, KEi, Ni

SPIr, SAr, KEr, Nr

SPIi, AUTH

AUTHSPIr,

Figure 2: Randomness and the IKEv2Handshake. The IKEv2
handshake establishes an authenticated, encrypted connec-
tion using a Diffie-Hellman key exchange. In our target
implementation, both the SPI and nonce N are raw, unen-
crypted outputs from the PRG. The key exchange message
KE is generated from the PRG immediately afterward. The
encrypted portions of the handshake are inside of a gray
box.

In Aggressive Mode, the initiator sends the SA and KE payloads to-

gether and the responder replies with its SA, KE and authentication

messages together. IKEv1 Aggressive mode using pre-shared key

authentication is widely considered to be a security risk because

the authentication hash is sent unencrypted, which could allow an

attacker to brute force the PSK.

In Phase 2, participants can negotiate additional keying material

and exchange parameters using another Diffie-Hellman exchange,

with messages encrypted using the key established in Phase 1.

After negotiating this further material, the parties can exchange

encrypted data.

IKEv2. The IKEv2 protocol was standardized in 2005 [14]. We show

an abbreviated version of the IKEv2 handshake in Figure 2. First the

initiator sends an IKE_SA_INIT message, with proposals similar to

IKEv1, including a Diffie-Hellman public key generated using its

best guess for the proposal parameters that will be accepted by the

responder. Every message includes a connection identifier called

the SPI.
4

If the responder accepts the initiator’s proposal, it replies with

its own IKE_SA_INIT messages containing its key exchange. The

two parties then authenticate each other and create an IPsec SA

using IKE_AUTH messages, which are encrypted and integrity-

protected using keys derived from the Diffie-Hellman shared secret,

the nonces, and the SPI values. The analogue of Phase 2 in IKEv2

is the encrypted CREATE_CHILD_SA exchange, which admits an

optional a second key exchange.

2.5.2 State recovery in IPsec. An attack on the IKE handshake

exploiting a vulnerable X9.31 implementation proceeds much as

described in [16]. The attacker requires that both the victim’s nonce

and Diffie-Hellman key exchange secret be composed of raw X9.31

4
In IKEv2 the cookie field from IKEv1 is renamed to the ‘Security Parameter Index’

(SPI). This is not to be confused with the IPSec SPI that identifies a particular SA, nor

the IKEv2 COOKIE SA payload, which is a countermeasure against resource exhaustion

attacks. The latter is called the IPSec SPI in IKEv1.

output, and additionally, that the nonce be longer than one block

in length. In an ideal attack scenario the Diffie-Hellman secret

and nonce are generated in quick succession. The attacker then

recovers the PRG state by guessing the timestamps used to generate

the nonce, and checking for equality in Equation 2. The attacker

then guesses the two timestamps used for the next two blocks of

output using Equation 3, and confirms her guess using the public

Diffie-Hellman exchange.

Full symmetric key recovery for IKEv1 depends on the authentica-

tion method used in the exchange. The attacker can validate state

recovery and Diffie-Hellman secret compromise against a single

key exchange packet from one side of the connection, but for some

authentication methods may need additional information to gener-

ate the session keys. For signature authentication, the attacker does

not need to learn any information beyond the nonces and cookies

that appear in the clear in the handshake. For PSK authentication,

the attacker would need to learn the PSK. For public key encryption

authentication, the nonces are encrypted, so the attacker would

need to learn the private keys for both sides of the connection in

order to learn the nonces and derive the session keys.

For IKEv2, the IKE_SA_INIT messages contain all of the fields nec-

essary to perform state recovery and derive the Diffie-Hellman

secret: timestamps, nonces, the SPI nonce, and both key exchange

values. We note that in IKEv2, the PSK is used only for authentica-

tion, and not to derive encryption keys. A passive attacker would

need to collect both sides of the handshake in order to derive the

session keys necessary to decrypt content, but state recovery and

Diffie-Hellman secret compromise can be validated against a single

packet from the vulnerable side of the connection.

3 FIPS AND HARDCODED X9.31 KEYS

As discussed in Section 2.2, the NIST design description for the

X9.31 random number generator [40] does not specify how the

block cipher key should be generated or stored. However, vendors

who wish to obtain FIPS certification are required to produce a

detailed public “security policy” document describing their cryp-

tographic implementations and key management procedures. We

performed a systematic study of the security policies for prod-

ucts certified for the X9.31 PRG to understand how many vendors

publicly documented a potential hard-coded key vulnerability. We

obtained the list of certified devices from the NIST web site [52].

Certificate Type 2006-2008 2008-2016 To date

SP 800-90 0 1073 2053

X9.31/FIPS 186-2 310 952 1411

Table 1: Certificate issuances for X9.31 continued even af-
ter the publication of SP800-90 in 2006. The first SP800-90
CMVP certifications were issued in 2008, yet 47% of FIPS cer-
tificates issued 2008-2016 were for X9.31.

3.1 Background on FIPS certification

FIPS 140-2 [51] defines requirements for cryptographic devices and

software. This standard is used by the Cryptographic Module Vali-

dation Program (CMVP) to certify products used in US government

applications. Compliant devices are eligible for certification under

the CMVP jointly administered by NIST and the Communications

Security Establishment (CSE) of Canada.

Once a device has been certified under the CMVP, it is added to a list

of approved devices that US federal agencies and other regulated

bodies may use.

FIPS 140-2 Annex C: Approved Random Number Generators listed

the ANSI X9.31 Random Number Generator with AES and three-

key 3DES between January 31, 2005 and the most recent revision

on January 4, 2016; variants of the X9.17/X9.31 PRG using different

block ciphers have been listed as approved random number genera-

tors in FIPS and NIST standards since at least 1992. In January 2011,

NIST deprecated the X9.31 PRG in a transition away from smaller

key lengths and weaker cryptographic algorithms [7]. Currently,

the only approved PRGs are from NIST SP 800-90A, which was

updated in June 2015 to remove Dual EC DRBG.

3.2 Certified unsafe usage of the X9.31 PRG

We examined the security policy documents of all devices certified

under the CMVP that documented previous or current use of the

X9.31 PRG. NIST provides a historical list of implementations cer-

tified for random number generators [1]. A single FIPS validation

certificate may cover multiple products and versions. The scope

of these certificates varied: in some cases they validated a crypto-

graphic module or a single product and version, and in others they

covered entire product lines and operating systems. According to

this list, FIPS has issued 2,516 certificates in total for products that

implemented X9.31. Of these, on July 13, 2017, 997 listed current

support for X9.31 despite its official deprecation in January 2016.

The remaining certificates were only available in updated versions

that had removed details of historical X9.31 implementations. Of

the 997 that indicated support for X9.31, 682 certificates from 288

vendors were validated for random number generation.

The security policy documents each contain a list of Critical Se-

curity Parameters (CSPs), which includes access control, key and

parameter generation, and zeroization policies. We also looked for

discussion elsewhere in the documentation of seed key generation.

127 of the vendors did not mention the AES key in the list of CSPs

or elsewhere in the documentation. Since we are unable to deter-

mine whether the key was generated securely, we exclude these

from further study. This left 161 vendors who mention seed key

generation in some capacity.

We counted an X9.31 implementation as secure if the documen-

tation stated that the key and the seed were user-generated, the

output of another random number generator, contained any discus-

sion of specifying sufficient entropy for the seed key, or a strategy

to generate keys uniquely per device or per boot. In the case of

a user-generated key, the onus would fall on the user to ensure

that the key is securely generated and rotated as necessary. We

Vendor Product Line Language Used

BeCrypt Ltd. BeCrypt Cryptographic Library “Compiled into binary”

Cisco Systems Inc Aironet “statically stored in the code”

Deltacrypt Technologies Inc DeltaCrypt FIPS Module “Hard Coded’

Fortinet Inc FortiOS v4 “generated external to the module”

MRV Communications LX-4000T/LX-8020S “Stored in flash”

Neoscale Systems Inc CryptoStor “Static key, Stored in the firmware”

Neopost Technologies Postal Security Devices “Entered in factory (in tamper protected memory)”

Renesas Technology America AE57C1 “With the exception of DHSK and the

RNG seed, all CSPs are loaded at factory.”

TechGuard Security PoliWall-CCF “Generation: NA/Static”

Tendyron Corporation OnKey193 “Embedded in FLASH”

ViaSat Inc FlagStone Core “Injected During Manufacture”

Vocera Communications Inc. Vocera Cryptographic Module “Hard-coded in the module”

Table 2: FIPS 140-2 Security Policies Documenting Potential X9.31 State Recovery Vulnerabilities. Since the X9.31 RNG was
removed from FIPS 140-2 in January 2016, many vendors have published software updates to remove X9.31 and updated their
security policies accordingly.

did not study these cases further. The largest class of devices we

evaluated as safe, generated the AES key on boot by seeding from

a non-FIPS approved random number generator, most commonly

the Linux random number generator. As an example of language

indicating what we considered to be safe X9.31 key generation, the

InZero Gateway security policy states that the “PRNG is seeded

from /dev/urandom. . . this provides the PRNG with 256 bits of en-

tropy for the seed key” [2]. The text includes additional commentary

on the risk involved in using a weak random number generator for

the purpose of FIPS validation. While urandom has had known vul-

nerabilities stemming from failure to properly seed on first boot of

some classes of devices [35], we considered such usage safe for the

purposes of this analysis. As another example, the 2012 FIPS 140-2

security policy for the Juniper SSG 140 [38], which was certified for

the X9.31 generator, states that for the “PRNG Seed and Seed Key”

“Initial generation via entropy gathered from a variety of internal

sources.” There were 149 certificates (93% of the 161) in this class.

We counted an implementation as potentially vulnerable to a state

recovery attack if the documentation stated that a single key was

used for the lifetime of a device, particularly in cases where an

external attacker would be able to learn this key. Unsafe devices

had documentation indicating that the AES keywas stored statically

in the firmware or flash memory and loaded at runtime into the

PRG. There were 12 vendors in this class, covering 40 product lines.

We list these products together with the language used to describe

seed key generation in Table 2.

3.3 Device-specific analysis

We were only able to gain access to the binary image for one of

the products we identified as potentially vulnerable, a Fortinet

operating system. We give more details on our investigation in the

next section.

Cisco confirmed to us that X9.31 was used in Aironet 12.4-based

branches for access points, Wireless Service Modules (WiSMs) and

4400 controllers using version 7.0. They were unable to locate the

source code or confirm use of a hardcoded key, although they agreed

with our interpretation of the certification language. They informed

us that the 4400 controllers reached end of support in 2016, the

WiSM modules reached end of support in 2017, and the 12.4-based

branch of Cisco IOS software that supported X9.31 reached end

of support at an unknown date. Another family of access points

used the 15.3 branch of IOS, which uses NIST 800-90 and not X9.31.

Cisco informed us that they no longer ship products using X9.31.

The BeCrypt Cryptographic Library Version 2.0 documentation

states that the “RNG seed key” is “pre-loaded during the manufac-

turing process” and stored as “compiled in the binary”. Version 3.0

of the BeCrypt library no longer includes the X9.31 PRG. BeCrypt

stated to us that “Except in one case when we use the RNG key

creation routine we do not recycle the strong entropy output from

one usage to be the input to the next usage. Instead, we use fresh

entropy. In the one case where we recycle the strong entropy input,

the weak entropy input is actually strong entropy and the key is

generated programmatically at startup” and additionally that the

fixed RNG key inside the FIPS module is for self-test purposes.

0 50 100 150 200 250 300

12149127

No information | Not vulnerable | Vulnerable

Figure 3: Counting vulnerable implementations. We exam-
ined the security policy documents from 288 vendors who
had been FIPS 140-2 certified for the X9.31 PRG for informa-
tion on how the seed key for the random number generator
was generated. 12 vendors, or 4% of the total, documented a
hard-coded key vulnerability.

Table 3: Affected Implementation Versions

Product Line Version X9.31 Removed

BeCrypt Cryptographic Library 2.0 3.0

Aironet 7.2.115.2 v8.0

DeltaCrypt FIPS Module N/A

FortiOS v4 4.3.17 4.3.18

LX-4000T/LX-8020S v5.3.8 v5.3.9

CryptoStor 2.6

Postal Security Devices v28.0 v30.0

AE57C1 v2.1012

PoliWall-CCF v2.02.3101

OnKey193 v122.102

FlagStone Core v2.0.5.5

Vocera Cryptographic Module v1.0 v2.0

The ViaSat’s FlagStone Core documentation states that the key

was “injected during manufacture”. The documentation does not

specify whether this key is device specific, although it recommends

that “RNG Keys and Seeds that are imported into the FlagStone

Core are generated or established using a FIPS 140-2 approved or a

FIPS 140-2 allowed method.” A device-specific key would require a

targeted attack.

The certification documentation for Neopost devices specifies that

the hardcoded key is entered in the factory and stored in tamper

proof memory. A device-specific hardcoded key stored in tamper-

proof memory would be quite difficult to attack.

3.4 Open source implementations

We also examined the X9.31 implementations in OpenSSL and the

Linux kernel, but did not find evidence of hard-coded keys other

than for testing.

4 DECRYPTING VPN TRAFFIC ON FORTIOS
V4.3

The FIPS certification for FortiOS 4.3 states that the X9.31 key is

“generated external to the module”. We reverse engineered two

versions of FortiOS and found that they used the same hard-coded

key for their X9.31 implementation, which was then used as the

system-wide random number generator.

We demonstrate that knowledge of this key allows an attacker

to passively decrypt IPsec traffic from FortiOS v4. An PRG state

recovery attack is feasible using only the IKE or TLS handshake

nonces, and typically takes less than a second of computation time

on our hardware, after which the attacker is able to guess the

secret keys used to generate encryption keys. We performed an

Internet-wide scan for affected hosts, and were able to carry out

state recovery and private key recovery on handshakes from our

scan data.

4.1 History of FortiOS 4.x

FortiOS is a network operating system created by Fortinet Inc. for

their network security hardware devices and virtual appliances. In

2016, Fortinet was the fourth largest vendor by market share [3].

Fortigate primarily specializes in firewalls, intrusion detection sys-

tems and VPN gateways. FortiOS is used widely across their product

suite.

FortiOS 4.0, released on February 20, 2009, included the X9.31 PRG.

It was also included in the final major FortiOS v4 version, 4.3,

released onMarch 18, 2011. It was not included in FortiOS 5, released

in November 2012. Prior to our disclosure of the PPRG vulnerability

in October 2016, the last release of FortiOS v4 was 4.3.18, released

August 6, 2014, with an end of support date of March 19, 2014 for

devices compatible with FortiOS v5. In response to our disclosure of

the random number generation vulnerability [5], Fortigate released

version 4.3.19 of FortiOS in November 2016.

4.1.1 Vulnerabilities in FortiOS. On January 15, 2016, theMITRE

corporation posted CVE-2016-1909 [4] revealing the presence of a

hardcoded passphrase present in FortiOS 4.1.x and FortiOS 5.x as of

October 2009, and all subsequent releases. This passphrase gave a

remote attacker SSH access to the Fortimanager_Access account for

remote administration. In a blog post in January 2016 [26], Fortinet

stated that “This was not a ‘backdoor’ vulnerability issue but rather

a management authentication issue... After careful analysis and

investigation, we were able to verify this issue was not due to any

malicious activity by any party, internal or external” and that the

vulnerability had been patched in July 2014.

In August of 2016, a group calling themselves “The Shadow Bro-

kers” released a collection of malware tools and documentation pur-

portedly from an actor they termed“The Equation Group”. Among

other things, the leak contained a remote code execution exploit

for FortiOS v3 and v4 titled EGREGIOUSBLUNDER. The exploit

included code to identify FortiOS versions using HTTP response

headers. The collection also included a malware payload for For-

tiOS (codename BLATSTING), containing a module ‘tadaqueous’

that disables random number generation by hooking the function

get_random_bytes, the entry point to FortiOS’s X9.31 implementa-

tion [58]. We did not find any evidence in the Shadow Brokers leak

that The Equation Group was aware of the vulnerability we found

in the PRG.

4.2 Static Analysis

We analyzed two implementations of FortiOS v4, the embedded

operating system for Fortigate’s network devices. The first was a

firmware dump from a FortiGate 100D Firewall, and the second was

a ‘virtual appliance’ (VM) running a different build of the operating

system. The two firmware images were nearly identical, with minor

variations due to the lack of hardware in the virtual appliance, and

minor variations in supported TLS cipher suites. These differences

would not have affected the measurements described in Section 5.

FortiOS is a GNU/Linux variant, with a customized shell that has

kernel modules implementing hardware interfaces and crypto-

graphic functions. The kernel is Linux 2.4.37, the last release of the

2.4.x series released in December 2008, which reached end of life in

December 2011. FortiOS v5 still uses the Linux 2.4.37 kernel.

4.3 The X9.31 Implementation

The X9.31 random number generator is implemented within a ker-

nel module that exports a Linux character device. At boot time, the

init process loads the module and replaces /dev/urandom with a

filesystem node corresponding to the X9.31 character device.

We reverse engineered the kernel module providing the X9.31 imple-

mentation and found the hard-coded AES key used for the PRG. (See

Appendix A for the reverse engineered code.) The same key was

used in both the firmware dump and virtual appliance. Although the

documentation stated that the key was “generated external to the

module”, the key is the same one used for the NIST test vectors [?].

The PRG implementation generates timestamps using a call to

do_gettimeofday() and produces a struct timeval containing the 64-

bit time to the nearest microsecond. This struct is copied twice into

a buffer to form a full 128-bit timestamp for the X9.31 generator.

4.4 The HTTPS Implementation

We also reverse engineered the implementations of the HTTPS

server for the administration panel and the IKE/IKEv2 daemon

used for VPNs. FortiOS v4 uses OpenSSL for TLS. When initializing

the library, it sets the random number generation method to the

system PRG, which is the X9.31 implementation.

The TLS server hello random consists of a four-byte timestamp

followed by two raw blocks of X9.31 PRG output truncated to

28 bytes, which permits a state recovery attack. However, the TLS

implementation does not seem to be vulnerable to a straightforward

key recovery attack for Diffie-Hellman cipher suites via the server

random because it uses ephemeral-static Diffie-Hellman. The secret

exponent is generated when the server is launched and reused until

shut down. In the case of RSA cipher suites, the client generates the

encrypted pre-master secret for each session. The PRG vulnerability

on the server does however affect initial RSA key generation.

4.4.1 RSA Key Generation. FortiOS generates the RSA keys used

in its TLS certificates using OpenSSL’s FIPS compliant routines

calling the system X9.31 PRG for randomness. The primes it gener-

ates conform to FIPS 186, Appendix B.3.6, “Generation of probable

primes with conditions based on auxiliary probable primes” [23].

For a 1024-bit modulus, each 512-bit prime factor p is generated

using additional primes p1 and p2 so that p1 |(p − 1) and p2 |(p + 1)|.
This is intended to protect against Pollard’s p − 1 and Williams’s

p + 1 factoring algorithms. This means that the primes that are

generated have the form p = rp + p0 where p0 is a 202-bit value
derived from p2 and p1, and rp , p1, and p2 are raw outputs from the

PRG.

We generated a certificate on our VM and verified that the most sig-

nificant bits of the RSA factors are related by Equation 2. However,

this does not seem to lead to an feasible state recovery attack from

the public modulus, since the attack requires raw PRG outputs. The

only other call to the PRG during certificate generation produces a

4-byte serial number, insufficient for state recovery.

4.5 The IKE Implementation

The IKE daemon appears to be a modified variant of the raccoon2

project, compiled with the GNU MP library. All randomness used

by the daemon is obtained by reading from /dev/urandom, and
thus uses the X9.31 module. We analyzed both the IKEv1 and IKEv2

implementations to see if any fields in the handshake packets con-

tained enough raw PRG output to permit state recovery.

In the IKEv1 implementation, the first block of PRG output is used to

generate the IKEv1 cookie by hashing it together with IP addresses,

ports, memory addresses, and the time since epoch, in seconds
5
.

In the IKEv2 implementation, the SPI field, the equivalent of the

IKEv1 cookie, is eight raw bytes of PRG output. In both IKEv1

and IKEv2, the next block of PRG output was used to generate the

handshake nonce, which was 16 bytes long. This was generated

immediately before the PRG output blocks that are fed into the

Diffie-Hellman exponentiation.

For the case of Diffie-Hellman key exchange with the 1024-bit Oak-

ley Group 2 prime, FortiOS v4 generates an exponent using two

consecutive blocks from the PRG. In the virtual appliance’s imple-

mentation, random bytes are read directly into the Diffie-Hellman

exponent without modification. In the case of hardware devices

with a dedicated cryptographic processor, the raw bytes of PRG

output are fed along with the prime and the generator into a sys-

tem call that invokes the cryptographic processor. This processor

deterministically transforms the exponent in a way we were un-

able to reverse engineer, and outputs the result of the modular

exponentiation.

We were able to invoke this system call ourselves on our hardware

device to generate the Diffie-Hellman public key exchange values

and shared secrets from candidate PRG blocks.

4.6 State recovery in IKEv1

The state recovery attack outlined in Section 2.3 requires two blocks

of PRG output and the AES key to recover the state. The IKEv1 im-

plementation gives us one full block of output in the nonce, and one

block that is hashed together with a timestamp and nondeterminis-

tic pointers to create the cookie. The timestamp has a resolution of

a second, so we assume it is known. However, the heap-allocated

pointer provides approximately 13 bits of entropy [36]. Rearranging

5
The IKEv1 cookie was SHA1(0x2020 | |mpz_d | |src | |dst | |timestamp | |nonce16). We

note the choice of SHA1 here over MD5 recommended in the RFC. Here mpz_d
represents a pointer to the buffer used by the linked gmp implementation that stores

the remainder of the data to be hashed. This appears to be a quirk of using gmp types

to store data, and not an intentional security measure on the part of the system imple-

menter. The address itself is heap allocated, and was inconsistent across connections

and restarts. The timestamp is seconds since epoch.

Equation 2, the first block of PRG output R0 that is fed into the hash
function to produce the cookie is D(D(R1) ⊕ E(T1)) ⊕ E(T0) where
the second block of PRG output R1 is known, and we estimate we

need to brute force 29 bits of timestamps T0 and T1, as described in

the next section. Thus an IKEv1 state recovery attack based on the

cookie would take around 2
42

hashes; which is feasible. However,

we found that IKEv2 state recovery was cheaper, and focused our

efforts on IKEv2 as described below.

The two blocks after the cookie and nonce are used to generate

the Diffie-Hellman private key, which ensures that following state

recovery, key recovery is straightforward.

4.7 State recovery in IKEv2

As discussed in Section 2.5.2, in order to recover the PRG state, we

need two consecutive blocks of the PRG output, an approximation

to the two timestamps used for the intermediate vectors, and the

AES key. The FortiOS IKEv2 implementation yields 1.5 consecutive

blocks of raw PRG output in the IKEv2 handshake: half a block in

the SPI field, and a full block in the nonce. We learned the static

key as described above by reverse-engineering the source code. We

use the capture time of an incoming handshake to approximate

the timestamps. From these, we use the approach described in

Section 2.3 to recover the PRG state. We found that searching within

a one-second window, or about 2
21

guesses for the first timestamp,

worked well on our hardware as well as scanned machines in the

wild.
6

We used our instrumented logging system to measure the time

difference between successive calls to the PRG for the SPI and

nonce fields that we needed to carry out state recovery on the

FortiGate 100D. We found an average difference of 145µs with a

standard deviation of 3.52µs.

Using a 1 second window for the first block (2
21

guesses), and

bounding the search space for the second timestamp to within 3σ
of our observed mean (2

5
guesses), yields a total state recovery

complexity of about 2
21 · 25 = 2

26
timestamp guesses, .

Experimentally, this can be completed for either the virtual appli-

ance or our hardware appliance in under one second on 12 cores of

an Intel Xeon E5-2699 with parameters as above. For an expanded

search space of 100 microseconds for the second timestamp as de-

scribed in Section 5, successful runs completed in an average of 15

core minutes. Although we are verifying against only half a block of

raw output from the first block, the reduced size of our timestamp

search means that the expected number of false positive matches

in Equation 2 is small, with probability at most 2
26/264 = 2

−38
.

6
The difference between the receive time of the first handshake packet received and the

timestamp generated by gettimeofday() in the PRG when it was called to generate

the SPI cookie is dependent on the time to execute the remainder of the packet creation

and sending routine after the call to generate the timestamp, the time taken along the

network to reach the attacking machine, the time taken by the attacking machine to

process and report the packet, and clock drift.

4.8 State recovery in TLS

State recovery for TLS uses the 28 random bytes of the server

random as 1.75 consecutive raw output blocks from the PRG. The

first four bytes of the server random are a timestamp that help

us fix a starting point for our search. Although we are verifying

Equation 2 with 1.75 blocks of raw output, the reduced size of

the timestamp search results means that false positives are very

unlikely. For a timestamp search space of 2
26
, we expect a false

positive with probability 2
26/296 = 2

−70
.

4.9 Recovering the IKEv2 Keys

Once we have recovered the PRG state from the SPI (block R0 of
output) and nonce (block R1 of output), we can then wind forward

the PRG, successively guessing the two following timestamps and

applying Equation 1 to recover two more blocks R2 and R3 that will
be used to generate the Diffie-Hellman secret.

We calculate дR2 | |R3
mod p (where | | denotes concatenation) and

check this value against the Diffie-Hellman public value in the

IKE_SA_INIT packet until we find a match.

Wemeasured the time difference between the nonce PRG timestamp

and the first key block PRG timestamp and found a mean difference

of 154.4µs with a standard deviation of 32.2µs. We search 3σ out

from the average to find the timestamp, requiring a search over 2
8

timestamps.

We also measured the average difference between the first and

second calls to the PRG at 18.3µs with a standard deviation of

4.53µs for the Fortigate 100D and 1141µs for the virtual appliance.
Measurements were taken using 10 pairs of consecutive calls to the

PRG. Since the two key blocks are generated with a single read()

system call, we set our search space for each ‘second’ key PRG

block to begin 18 microseconds after the first, searching outwards

to a maximum of 32 microseconds after, corresponding to 3σ , or
2
5
timestamps. Combining the simultaneous search for the two

timestamps, the key recovery stage requires a search space of 2
8 ·

2
5 = 2

13
timestamps.

Since the FortiGate 100D hardware device offloads modular expo-

nentiation to a proprietary Fortigate ASIC (FortiASIC CP8) that uses

a transformation we weren’t able to reverse-engineer, our brute

force code makes a system call to the ASIC to test each candidate

pair of PRG outputs. Over 30 trials, the average time to carry out

this part of the attack was 3.88s on the hardware.

4.10 Recovering Traffic Keys

Once we have recovered the victim device’s public key value, we

can make another call to the ASIC with our recovered PRG inputs

and the other side’s public key exchange value to recover the IKEv2

Phase 1 Diffie-Hellman shared secret. For IKEv2, once the Diffie-

Hellman shared secret has been computed, all of the information

needed to compute the SKEYSEED value and derive the symmetric

encryption keys is present in the clear in the IKE_SA_INITmessages

exchanged by both the initiator and responder. We computed the

SKEYSEED as described in Section 2.5.2 and verified full passive

decryption against traffic to our FortiGate 100D.

5 MEASUREMENTS

We used ZMap to perform Internet-wide scans on port 443 (HTTPS)

and port 500 (IKEv2) to measure the population of vulnerable

Fortinet devices. Active scanning is an imperfect measure of the

scope of this type of vulnerability. It does not reflect the amount of

traffic vulnerable hosts receive. In addition, well-configured hosts

would be unlikely to expose either port on a public IP address.

5.1 HTTPS

We used several types of HTTP and HTTPS metadata to identify

affected hosts in the wild. Our scans targeted hosts exposing the

device’s admin panel on a public IPv4 address on port 443.

TLS version and cipher suites. In April 2017 we probed the full

public IPv4 address space on port 443 for publicly accessible HTTPS

hosts. With each host we performed a TLSv1.0 handshake, the

version supported by the vulnerable devices, and offered the cipher

suites listed in Table 5 in Appendix B. Our scan completed a full

handshake with 29,709,242 hosts.
7

Server certificate common name. In its default configuration,

FortiOS v4 serves a self-signed certificate with the model and serial

numbers for the common name and ‘Fortinet’ for the organization.

This does not identify the firmware or build number. We found

114,172 hosts with a matching certificate organization field; their

common names indentified 3,379 unique model numbers.

State recovery. Our state recovery attack was successful against

23,517 hosts, or 20.6% of hosts with default Fortinet certificates.

We attempted state recovery using a 1s window around the time

encoded in the server random. Figure 5 shows the distribution of

the number of timestamps guessed for successful state recoveries.

In Figure 6, we plot the distribution of the timestamp for the first

block of PRG output relative to the timestamp encoded in the TLS

server random. The near-uniform distribution may be due to the

fact that the server random has second granularity and the PRG

uses µsecond granularity.

Figure 4 shows the distribution of the gap between the timestamps

for the first and second PRG blocks in the TLS server random. We

brute forced up to an offset of 100 µs after the first timestamp, but

all our observed state recoveries had a gap of no more than 40 µs
between the first and second timestamps.

Specific HTTP files. Our hardware device’s administration panel

contained an image file located at /images/logon.gif. In our

HTTPS scan, we sent a GET request for this file. 605,950 hosts

responded with HTTP OK, and a corresponding image. The others

returned a 404 error. We were unable to automatically validate

these images, so we used the techniques below to further narrow

candidates.

7
This is lower than the 4̃0 million HTTPS hosts seen in scans offering a wider variety

of SSL/TLS versions and cipher suites.

Table 4: X9.31 state and key recovery in the wild

HTTPS hosts (TLS 1.0/port 443) 29,709,242

. . .with default Fortinet certificate 114,172

. . . and successful state recovery 23,517

. . .with known FortiOSv4 ETag 2,336

. . . and successful state recovery 2,265

IKEv2 hosts (port 500) 7,743,876

. . .with 128-bit nonces 50,285

. . . and private key recovery 7

. . .with TLS nonce state recovery 152

. . . and non-static IKE parameters 17

. . . and private key recovery 7

ETag headers. The HTTP ETag header uniquely identifies HTTP

server resources, and is used for web cache validation along with

conditional requests [27]. The RFC specifies that the value of the

header “is data known only to the server". In order to fingerprint

devices running vulnerable firmware versions, we matched headers

from our scan against known ETags for FortiOS v4.

The Equation Group leak [28] contained a list of 440 ETag suffixes

for some FortiOS device and firmware-build pairs, including 168

entries corresponding to 9 models and 26 builds of FortiOS v4. The

leak also contained a memory address for each entry, used for the

Egregious Blunder exploit with which it was packaged. The ETag

for our FortiGate 100D (5192dbfd) was not included in the database,
so we added it to our search.

Of 655,878 HTTP hosts responding with an ETag, 2,336 gave a

known FortiOS v4 ETag. The state recovery attack was successful

Figure 4: Subsesquent timestamp offset. We calculated the
difference between the first and second timestamps used to
generate the RNG blocks for the TLS nonce. This value was
brute forced from within a range of between zero and one
hundred microseconds. The average difference is 19.2 mi-
croseconds with a standard deviation of 10.1 microseconds.

Figure 5: Brute force work for TLS state recovery. The av-
erage number of timestamp guesses required for each host
was 222.9 with a standard deviation of 223.1.

for 2,265 (97%) of these. 1,535 of these hosts presented non-default

HTTPS certificates. State recovery was successful for every device

matching the ETag for our hardware device.

RSA public keys. Fortigate devices were already known to gen-

erate RSA moduli that share common factors [32, 35]. We ran a

batch GCD computation against the HTTPS certificate RSA public

keys from fingerprinted Fortigate devices together with identi-

fied Fortigate public keys from historical scans obtained from the

authors of [32]. This gave us prime factors for 3,163 keys from

our scan. However, the X9.31 state recovery attack described in

Section 4.4.1, conducted with the certificate timestamps, was not

successful against the most significant bits of the prime factors.

None of the hosts with factored keys matched the HTTP or IKE fin-

gerprints, suggesting that certificates were generated by a software

Figure 6: Initial timestamp offset. The average offset be-
tween the timestamp encoded in the TLS server random (at
1s resolution) and the timestamp used to seed the first PRG
block for our successful state recovery trials (at µs resolu-
tion) was 510µs.

version other than FortiOS v4 with a different underlying random

number generation vulnerability.

Limitations. The devices that responded to our HTTPS scans ex-

posed the administration panel on a public IPv4 address, which

is not the default configuration for FortiOS. Our scans therefore

identified only those devices that were misconfigured. A correct

(and default) configuration prevents our scanning but does not

mitigate the vulnerability. The total population of vulnerable hosts

is therefore likely significantly higher than the population visible

to our scan. A well-equipped adversary could have constructed a

larger database of ETags. This technique can also be used for other

manufacturers, a number of whom also insert a model-firmware

identifier in header.

5.2 IKEv2

We used UDP scans on port 500 to initiate IKEv2 handshakes for

the full IPv4 space. However, the metadata available in IKEv2 con-

nections is more limited than for HTTPS.

HTTPS Admin Panel. Of the 23,554 HTTPS hosts in the previous

section against which state recovery from the TLS nonce on port

443 was successful, 152 responded to IKEv2 handshake requests

on port 500. Of these hosts, 135 always returned a single, identical,

static common nonce and key exchange for every connection. These

devices were located within the Chinanet AS and their SSL/TLS

certificates suggested a variety of Fortinet model numbers. From

the remaining 17 hosts whose nonces and key exchanges were

generated on new connections, our key recovery attack succeeded

against 7.

Cipher support. We sent handshake requests with cipher propos-

als that were supported in FortiOS v4, listed in Table 7 in Appen-

dix B. We received 7,743,876 responses.

Nonce size. FortiOS v4’s IKEv2 implementation uses 128-bit nonces.

From our successful IKEv2 handshakes above, 50,285 had 128-bit

nonces. We attempted state and key recovery from our handshakes

with all of these hosts, and were able to successfully recover the

Diffie-Hellman shared secret in the handshake we negotiated for

7 hosts using the key recovery attack we describe above. This in-

cluded 4 hosts that weren’t seen in the population of vulnerable

HTTPS hosts. We hypothesize that most of the publicly visible

IKEv2 responders with 128-bit nonces are not vulnerable Fortigate

products, and that most VPNs are configured as site-to-site tunnels

that would not be visible in our scans.

Limitations. The number of IKE responses we receive should be

treated as a lower bound, since many VPNs are configured as site-

to-site tunnels, or filter based on source IP and are invisible to scans

from unknown hosts.

6 RELATEDWORK

Cryptanalysis of RNG designs. There is a long history of crypt-

analysis of practical pseudorandom number generator designs in

the literature. Kelsey, Schneier, Wagner, and Hall [42] enumerate

classes of attacks on PRNGs, and note several design flaws and

vulnerabilities against PRNG designs, including the key compro-

mise vulnerability in X9.17/X9.31 RNG that we consider in this

paper. Gutterman, Pinkas, and Reinman [30] analyzed the Linux

random number generator in 2006, and Dorrendorf, Gutterman,

and Pinkas [22] analyzed the Windows random number generator

in 2009. Dodis et al. [20] defined a notion of recovery from state

compromise for a PRNG, showed that the Linux random number

generator did not satisfy this definition, and showed that there

were inputs that would cause it to fail to recover from state compro-

mise and would mislead the entropy estimation function. Michaelis,

Meyer, and Schwenk [47] analyzed Java random number genera-

tion implementations and noted several vulnerabilities, including a

vulnerability in Android.

Green [29] notes the dangers of using X9.31. He additionally high-

lights the danger and usage of a global X9.31 key for the RNG in an

early draft of AACS, the digital rights management specification

for HD-DVD and Bluray distributions.

Randomnumber generation failures.Multiple types of random

number generation failures have been observed in the wild.

One category of RNG failures appears to be due to failure to prop-

erly seed a random number generator before use, or seeding with

poor-quality inputs. Famously, between 2006 and 2008, the De-

bian OpenSSL random number generator incorporated almost no

entropy into its state. [59] In 2012, Heninger et al. discovered a boot-
time failure of the Linux random number generator to properly

incorporate entropy sources on embedded and headless systems;

this flaw resulted in them being able to compute RSA private keys

for 0.5% of TLS hosts and DSA private keys for 1.06% of SSH hosts

in 2012 [35]. Lenstra et al. [45] performed a similar study of public

keys collected from the internet in 2012, and were able to compute

RSA private keys for 0.3% of HTTPS hosts and a pair of PGP users.

In 2016, Hastings, Fried, and Heninger [33] performed a follow-up

study that found low to nonexistent software patching rates for

systems affected by the 2012 RNG flaws. Bernstein et al. [10] were

able to factor 184 keys from a sample of approximately 2 million

smartcard-generated RSA keys from the Taiwanese “Citizen Digital

Certificate" smartcard ID system. They hypothesized that the fail-

ures were due to a flawed hardware random number generator on

some smartcards combined with a failure to whiten raw hardware

RNG outputs. Kadianakis et al. [39] performed a similar analysis on

the 3.7 million RSA public keys of Tor relays, finding 10 relays with

shared RSA moduli and 3,557 relays with shared prime factors.

Other types of system failures can result in repeated states or out-

puts in RNG implementations. Ristenpart and Yilek [54] show that

virtual machine snapshots can result in cryptographic failure due

to implementation flaws in random number generators. A 2013

vulnerability in the Android SecureRandom resulted in a number

of Bitcoins stolen from Android-based wallets due to repeated DSA

signature nonces [43].

Intentional RNG backdoors. A further category of failures are

due to intentionally weakened designs. Young and Yung [60] in-

troduced the concept of kleptography, the design of cryptographic

schemes with hidden backdoors. They later described a scheme

for introducing such a backdoor into discrete log-based cryptosys-

tems [61].

In a 2013 article published on the Snowden leaks, the NY Times

and Pro Publica pointed to the NIST-standardized Dual EC DRBG

as a cryptographic standard that had been subverted by the NSA as

part of a general program to influence standardization processes,

although the original source document naming Dual EC has not

been published. In the wake of these accusations, NIST removed

support for the Dual EC DRBG algorithm from its standards. How-

ever, this was not the first time that the possibility of a backdoor in

the Dual EC DRBG had been raised. In 2006, Brown [13] noted that

the indistinguishability proof for the NIST-standardized Dual EC

DRBG relies on a randomQ parameter. Shumow and Ferguson [56]

noted that the design of the Dual_EC DRBG admits a kleptographic

backdoor. By generating parameters such that there exists an inte-

ger d where dQ = P , the kleptographer can recover the state of the

DRBG by observing 32 consecutive bytes of output. Checkoway et

al. [16] analyze how an unknown attacker inserted code into Ju-

niper ScreenOS to exploit the presence of the backdoor in the Dual

EC DRBG that would allow passive decryption of IPsec connec-

tions. Dodis et al. [19] formally model backdoored random number

generators, design backdoored PRNGs with strong indistinguisha-

bility properties, and evaluate countermeasures against backdoors.

Degabrielle et al. [18] build on this by giving efficient constructions

such PRNGs and bounding the duration of the compromise in terms

of the state-size of the PRNG.

7 DISCUSSION

NSA decryption capabilities. Classified NSA documents leaked

by Edward Snowden and published by Der Spiegel [62] suggest that

the NSA has passive decryption capabilities against some fraction

of IPsec, TLS, and SSH traffic. Proposed explanations for these ca-

pabilities include the NSA performing 768-bit and 1024-bit discrete

log precomputations for widely used Diffie-Hellman primes [6]

(Boudot [12] points out that a 768-bit discrete log precomputation

may have been feasible for the NSA as early as the year 2000), back-

doored random number generation standards such as the Dual EC

DRBG [15, 16], and software exploits and malware (“implants”).

We suspect the reality is a combination of these techniques cus-

tomized to vendors’ vulnerabilities. Our paper explores another

feasibly exploitable cryptographic vulnerability that may explain

some decryption capabilities.

While a compromised random number generator design would

seem like an appealing avenue to inject or discover vulnerabilities

in cryptographic implementations, the Dual EC DRBG just does

not seem to have been implemented widely enough to explain

decryption capabilities in more than a small handful of products.

(The exceptions we are aware of are the RSA BSAFE library, and

Juniper ScreenOS.) By contrast, the X9.17/X9.31 PRG has been

ubiquitous for decades.

Ease of exploitation.Wenote that our attacks in this paper against

the X9.31 PRG were significantly less computationally expensive to

carry out thanmany of the attacks against Dual EC in TLSmeasured

by Checkoway et al. [16]. This is because the most efficient attacks

against Dual EC require 32 bytes of raw PRG output, and the effort

required to exploit the backdoor grows exponentially as the amount

of raw PRG output available to the attacker decreases. In contrast,

because successive timestamps do not have very much entropy, an

efficient attack against the X9.31 PRG with AES for the block cipher

that uniquely recovers the state would be possible with 20 bytes or

even fewer of raw output. Checkoway et al. [16] note that when

Juniper replaced the X9.31 PRG with Dual EC in their ScreenOS

implementation, they increased the length of the nonces used in the

IKE handshake from 20 bytes to 32 bytes, thus permitting efficient

passive exploitation of the Dual EC backdoor. Efficient Dual EC

exploitation would not have been possible without this increase.

NOBUS and symmetric backdoors. As we note in the introduc-

tion, the vulnerability we exploit in the X9.17/X9.31 PRG is by

definition not a “NOBUS” backdoor because it is symmetric, and

is thus both detectable and exploitable by any party who can gain

access to a static key used by some device for the PRG through

reverse-engineering or physical access. This is in contrast to the

case of the Dual EC PRG, where only the party who generated

the elliptic curve points used as parameters for the PRG knows

whether they contain a backdoor. However, an implementation of

the X9.17/X9.31 PRG that uses a vulnerable static key could still

increase the cost of exploitation to a chosen level of difficulty by

increasing the granularity of the timestamps. The Fortinet systems

we analyzed used gettimeofday which typically has at most µs
resolution. An implementation using RDTSC to obtain nanosecond

granularity instead, would likely have put the attack outside easy

reach of modest attackers.

Failure of the standardization process. The failure of the NIST
and FIPS standardization process to protect against a long-known

vulnerability in an approved random number generator is surpris-

ing. The observation that the seed key must remain secret in the

X9.17/X9.31 design was first noted almost two decades ago, and yet

none of the descriptions of the algorithm we could find mentioned

the importance of generating an unpredictable key. The security

policies documenting a known vulnerability should have been de-

tected by the testing labs; the fact that they were not illustrates

systemic issues with lab-based validation. NIST mentioned con-

flict of interest issues (the testing labs are paid by the vendors),

lab personnel skill, and workload in personal communication to

us. To address these issues, NIST is transitioning to an automated

validation program [50].

Eliminating obsolete cryptography. John Kelsey, one of the au-

thors of [42], told us in personal communication that removing

X9.17 key generation and FIPS 186’s RNGs from the standards that

ultimately became NIST SP 800-90A was one of the first things he

did when joining NIST, and that he was surprised to learn in 2016

that implementations using both remained in the field.

Removing obsolete cryptographic algorithms from standards and

implementations is difficult in practice. The MD5 and SHA1 hash

functions, RC4 stream cipher, and RSA PKCS#1v1.5 encryption

padding remained in use for decades after they were known to be

cryptographically flawed. For vendors, removing algorithms breaks

backwards compatibility and many devices have long lifespans.

Kelsey pointed to the difficulty of eliminating obsolete cryptography

as a contributing factor to the vulnerability; we hypothesize that

once the X9.31 PRG was en route to deprecation, there was little

incentive for NIST to update the standard, but vendors continued to

implement the algorithm as standardized for many years because

of the long, slow deprecation process. Standards such as FIPS may

also increase the cost of updating cryptography by necessitating

expensive new product certification.

Concerns about other PRG designs. In positive news, the re-

maining approved PRG designs in NIST SP 800-90A appear to be

based on sounder footing, both in practice and in theory. However,

this analysis assumes that implementations are sound. Cipher-based

PRGs appear specifically vulnerable to state recovery attacks when

the cipher key is obtained by an attacker. This raises the possibil-

ity that a careless or malicious implementation of a modern PRG

such as NIST’s CTR_DRBG [8] could be implemented in such a

way that the key is not routinely updated, which might allow state

recovery attacks. These attacks are problematic, as an observer

without knowledge of the key would see output that is statistically

indistinguishable from a correct implementation [37]. Moreover,

such vulnerabilities might not be visible in test modes due to im-

plementation differences [46].

ACKNOWLEDGEMENTS

We thank David McGrew and Dario Ciccarone for helpful discus-

sions and research into Cisco’s product lines, and Steve Checkoway

for reverse-engineering the Juniper ScreenOS implementation of

the X9.31 PRG. This work was supported by the National Science

Foundation under grants CNS-1651344, CNS-1505799, CNS-1408734,

CNS-1010928, CNS-1228443, CNS-1653110 and EFMA-1441209; the

Mozilla Foundation; and a gift from Cisco. We are grateful to Cisco

for donating the Cisco UCS servers we used for the computational

experiments.

REFERENCES

[1] Cryptographic Algorithm Validation Program - rng Validation List.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/

validation/validation-list/rng.

[2] FIPS 140-2 SECURITY POLICY FOR: INZERO GATEWAY. www.kmip.me/www3.

cryptsoft.com/fips140/unpdf/140sp1841-1.html.

[3] IDC Corporation. Worldwide Security Appliance Market Off to a Healthy

Start in 2016, Continuing Its Streak of Eleven Consecutive Quarters of Growth,

According to IDC.

[4] MITRE Corporation. Cve-2016-1909.

[5] MITRE Corporation. CVE-2016-8492.

[6] Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halder-

man, J. A., Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot,

B., Wustrow, E., Zanella-Béguelin, S., and Zimmermann, P. Imperfect for-

ward secrecy: How Diffie-Hellman fails in practice. In 22nd ACM Conference on
Computer and Communications Security (Oct. 2015).

[7] Barker, E., and Roginsky, A. Transitions: Recommendation for transitioning

the use of cryptographic algorithms and key lengths. NIST Special Publication
800 (2011), 131A.

[8] Barker, E. B., and Kelsey, J. M. Recommendation for random number generation
using deterministic random bit generators (revised). US Department of Commerce,

Technology Administration, National Institute of Standards and Technology,

Computer Security Division, Information Technology Laboratory, 2007.

[9] Bellare, M., Paterson, K. G., and Rogaway, P. Security of Symmetric Encryption
against Mass Surveillance. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/validation/validation-list/rng
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/validation/validation-list/rng
www.kmip.me/www3.cryptsoft.com/fips140/unpdf/140sp1841-1.html
www.kmip.me/www3.cryptsoft.com/fips140/unpdf/140sp1841-1.html

[10] Bernstein, D. J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange,

T., and Van Someren, N. Factoring RSA keys from certified smart cards: Cop-

persmith in the wild. In International Conference on the Theory and Application
of Cryptology and Information Security (2013), Springer, pp. 341–360.

[11] Blum, M., and Micali, S. How to generate cryptographically strong sequences

of pseudo-random bits. SIAM J. Comput. 13, 4 (Nov. 1984), 850–864.
[12] Boudot, F. On improving integer factorization and discrete logarithm compu-

tation using partial triangulation. Cryptology ePrint Archive, Report 2017/758,

2017. http://eprint.iacr.org/2017/758.

[13] Brown, D. R. Conjectured security of the ANSI-NIST elliptic curve RNG. IACR
Cryptology ePrint Archive 2006 (2006), 117.

[14] C. Kaufman, E. Internet Key Exchange (IKEv2) protocol. IETF RFC RFC4306,

2005.

[15] Checkoway, S., Fredrikson, M., Niederhagen, R., Everspaugh, A., Green, M.,

Lange, T., Ristenpart, T., Bernstein, D. J., Maskiewicz, J., and Shacham, H.

On the practical exploitability of Dual EC in TLS implementations. In Proceedings
of the 23rd USENIX Conference on Security Symposium (Berkeley, CA, USA, 2014),

SEC’14, USENIX Association, pp. 319–335.

[16] Checkoway, S., Maskiewicz, J., Garman, C., Fried, J., Cohney, S., Green, M.,

Heninger, N., Weinmann, R.-P., Rescorla, E., and Shacham, H. A systematic

analysis of the Juniper Dual EC incident. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (2016), ACM, pp. 468–479.

[17] D. Maughan, M. Schertler, M. S., and Turner, J. Internet Security Association

and Key Management Protocol. IETF RFC RFC2408, 1998.

[18] Degabriele, J. P., Paterson, K. G., Schuldt, J. C. N., andWoodage, J. Backdoors

in pseudorandom number generators: Possibility and impossibility results. In

Advances in Cryptology – CRYPTO 2016 (Berlin, Heidelberg, 2016), M. Robshaw

and J. Katz, Eds., Springer Berlin Heidelberg, pp. 403–432.

[19] Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., and Ristenpart, T. A Formal
Treatment of Backdoored Pseudorandom Generators. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2015, pp. 101–126.

[20] Dodis, Y., Pointcheval, D., Ruhault, S., Vergniaud, D., and Wichs, D. Secu-

rity analysis of pseudo-random number generators with input: /dev/random is

not robust. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security (2013), ACM, pp. 647–658.

[21] Dodis, Y., Shamir, A., Stephens-Davidowitz, N., and Wichs, D. How to eat

your entropy and have it too – optimal recovery strategies for compromised

RNGs. In CRYPTO ’14 (2014).
[22] Dorrendorf, L., Gutterman, Z., and Pinkas, B. Cryptanalysis of the random

number generator of the Windows operating system. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009), 10.

[23] (DSS), D. S. S. Generation of probable primes with conditions based on auxil-

iary probable primes. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf,

2013.

[24] Fortinet. Fg-ir-16-067: FortiOS local privilege escalation via malicious use of

USB storage devices. http://fortiguard.com/psirt/FG-IR-16-067.

[25] Fortinet. Fg-ir-17-245: DuhkAttack against Fortinet Products. https://fortiguard.

com/psirt/FG-IR-17-245.

[26] Fortinet. Brief statement regarding issues found with FortiOS.

https://web.archive.org/web/20160125202411/http://blog.fortinet.com:

80/post/brief-statement-regarding-issues-found-with-fortios, January 2016.

[27] Franks, J., Hallam-Baker, P. M., Hostetler, J. L., Lawrence, S. D., Leach,

P. J., Luotonen, A., and Stewart, L. C. HTTP Authentication: Basic and Digest

Access Authentication. RFC 2617, RFC Editor, June 1999. http://www.rfc-editor.

org/rfc/rfc2617.txt.

[28] Goodin, D. Group claims to hack NSA-tied hackers, posts exploits as proof, Aug

2016.

[29] Green, M. Random number generation: An illustrated primer, Aug 2016.

[30] Gutterman, Z., Pinkas, B., and Reinman, T. Analysis of the Linux random

number generator. In IEEE Symposium on Security and Privacy (2006), IEEE Press.

[31] Harkins, D., and Carrel, D. The Internet Key Exchange (IKE). IETF RFC

RFC2409, 1998.

[32] Hastings, M., Fried, J., and Heninger, N. Weak keys remain widespread in

network devices. In Proceedings of the 2016 Internet Measurement Conference
(2016), ACM.

[33] Hastings, M., Fried, J., and Heninger, N. Weak keys remain widespread

in network devices. In Proceedings of the 2016 ACM on Internet Measurement
Conference (2016), ACM, pp. 49–63.

[34] Heninger, N., Durumeric, Z., Wustrow, E., and Halderman, J. A. Mining

your Ps and Qs: Detection of Widespread Weak Keys in Network Devices. In

Proceedings of USENIX Security 2012 (Aug. 2012), T. Kohno, Ed., USENIX.
[35] Heninger, N., Durumeric, Z., Wustrow, E., and Halderman, J. A. Mining your

ps and qs: Detection of widespread weak keys in network devices. In USENIX
Security Symposium (2012).

[36] Herlands, W., Hobson, T., and Donovan, P. Effective Entropy for Memory Ran-

domization Defenses. In USENIX 7th Workshop on Cyber Security Experimentation
and Test (Aug. 2014), Lincoln Labratory.

[37] Joanne Woodage, D. S. An Analysis of the NIST SP 800-90A Standard, 2018.

[38] Juniper Networks, Inc. FIPS 140-2 SECURITY POLICY - SSG 140.

https://www.juniper.net/documentation/hardware/netscreen-certifications/

Security_Policy_SSG-140_ScreenOS_6_2.pdf.

[39] Kadianakis, G., Roberts, C. V., Roberts, L. M., and Winter, P. “Major key

alert!” Anomalous keys in Tor relays.

[40] Keller, S. S. NIST-recommended Random Number Generator Based on ANSI

X9.31 Appendix A.2.4 Using the 3-key Triple DES and AES Algorithms. National

Institute of Standards and Technology, 2005.

[41] Kelsey, J., Schneier, B., and Ferguson, N. Notes on the design and analysis of

the Yarrow cryptographic pseudorandom number generator. In SAC ’99 (1999).
[42] Kelsey, J., Schneier, B., Wagner, D., and Hall, C. Cryptanalytic attacks on

pseudorandom number generators. In Fast Software Encryption (1998), Springer,

pp. 168–188.

[43] Klyubin, A. Some securerandom thoughts. https://android-developers.

googleblog.com/2013/08/some-securerandom-thoughts.html, August 2013.

[44] Lawrence E. Bassham III, S. S. K. The Random Number Generator Validation

System (RNGVS). National Institute of Standards and Technology, 2005.

[45] Lenstra, A., Hughes, J. P., Augier, M., Bos, J. W., Kleinjung, T., and Wachter,

C. Public keys. In Proceedings of the 32nd Annual Cryptology Conference on
Advances in Cryptology — CRYPTO 2012 - Volume 7417 (2012), pp. 626–642.

[46] Marqess, S. Flaw in dual ec drbg (no, not that one), 2013. http://marc.info/?l=

openssl-announce&m=138747119822324&w=2.

[47] Michaelis, K., Meyer, C., and Schwenk, J. Randomly Failed! The State of

Randomness in Current Java Implementations. In CT-RSA (2013), vol. 7779,

Springer, pp. 129–144.

[48] Müller, S. Linux random number generator — a new approach. Available at

http://www.chronox.de/lrng/doc/lrng.html.

[49] Nguyen, P. Q., and Shparlinski, I. E. The insecurity of the Elliptic curve

Digital Signature Algorithm with partially known nonces. Designs, codes and
cryptography 30, 2 (2003), 201–217.

[50] NIST. Automated cryptographic validation testing. https://csrc.nist.gov/Projects/

Automated-Cryptographic-Validation-Testing.

[51] NIST. Security requirements for cryptographic modules. http://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.140-2.pdf, May 2001.

[52] NIST. Cmvp historical validation list. http://web.archive.org/web/

20170120035228/http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/

140val-historical.htm, January 2017.

[53] Perlroth, N. Government Announces Steps to Restore Confidence on Encryp-

tion Standards. The New York Times (2013).
[54] Ristenpart, T., and Yilek, S. When good randomness goes bad: Virtual machine

reset vulnerabilities and hedging deployed cryptography. In NDSS ’10 (2010).
[55] Ruhault, S. SoK: Security Models for Pseudo-Random Number Generators. In

IACR Transactions on Symmetric Cryptography (TOSC) (2017), vol. 1.
[56] Shumow, D., and Ferguson, N. On the possibility of a Back Door in the NIST

SP800-90 Dual EC PRNG.

[57] Strenzke, F. An analysis of OpenSSL’s random number generator. In EURO-
CRYPT ’16 (New York, NY, USA, 2016), Springer-Verlag New York, Inc., pp. 644–

669.

[58] van der Laan, W. J. Tadaqueous moments, Sep 2016.

[59] Yilek, S., Rescorla, E., Shacham, H., Enright, B., and Savage, S. When

private keys are public: Results from the 2008 Debian OpenSSL vulnerability. In

Proceedings of IMC 2009 (Nov. 2009), A. Feldmann and L. Mathy, Eds., ACM Press,

pp. 15–27.

[60] Young, A., and Yung, M. Kleptography: Using cryptography against cryptogra-

phy. In Eurocrypt (1997), vol. 97, Springer, pp. 62–74.
[61] Young, A., and Yung, M. The prevalence of kleptographic attacks on discrete-

log based cryptosystems. In Annual International Cryptology Conference (1997),
Springer, pp. 264–276.

[62] Intro to the VPN exploitation process. Media leak, Sept. 2010. http://www.spiegel.

de/media/media-35515.pdf.

http://eprint.iacr.org/2017/758
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://fortiguard.com/psirt/FG-IR-16-067
https://fortiguard.com/psirt/FG-IR-17-245
https://fortiguard.com/psirt/FG-IR-17-245
https://web.archive.org/web/20160125202411/http://blog.fortinet.com:80/post/brief-statement-regarding-issues-found-with-fortios
https://web.archive.org/web/20160125202411/http://blog.fortinet.com:80/post/brief-statement-regarding-issues-found-with-fortios
http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.rfc-editor.org/rfc/rfc2617.txt
https://www.juniper.net/documentation/hardware/netscreen-certifications/Security_Policy_SSG-140_ScreenOS_6_2.pdf
https://www.juniper.net/documentation/hardware/netscreen-certifications/Security_Policy_SSG-140_ScreenOS_6_2.pdf
https://android-developers.googleblog.com/2013/08/some-securerandom-thoughts.html
https://android-developers.googleblog.com/2013/08/some-securerandom-thoughts.html
http://marc.info/?l=openssl-announce&m=138747119822324&w=2
http://marc.info/?l=openssl-announce&m=138747119822324&w=2
http://www.chronox.de/lrng/doc/lrng.html
https://csrc.nist.gov/Projects/Automated-Cryptographic-Validation-Testing
https://csrc.nist.gov/Projects/Automated-Cryptographic-Validation-Testing
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
http://web.archive.org/web/20170120035228/http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm
http://web.archive.org/web/20170120035228/http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm
http://web.archive.org/web/20170120035228/http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm
http://www.spiegel.de/media/media-35515.pdf
http://www.spiegel.de/media/media-35515.pdf

A FORTIOS V4 X9.31 INITIALIZATION
ROUTINE

Listing 1: The X9.31 Initialization Routine.
1 int initialize_X931()

2 {

3 char rng_state[16];

4 char timestamp_buffer[16];

5 int aes_key[4];

6 int result = key_set;

7 aes_key[0] = 0x6D66B1F3;

8 aes_key[1] = 0x42726013;

9 aes_key[2] = 0xAB1C06ED;

10 aes_key[3] = 0x0262D4B8;

11 if (!key_set)

12 result = set_aeskey(aes_key);

13 if (!state_set)

14 {

15 /* initial state setting removed for

16 clarity */

17 save_state(rng_state);

18 fill_timestamp(timestamp_buffer);

19 result =

20 x931(×tamp_buffer, output_buffer,

21 rng_state, 16);

22 }

23 return result;

24 }

B SUPPORTED CIPHER SUITES IN
FORTIOSV4

Our hardware device supported the following cipher suites. Our

scanning client used in Section 5 offered all of these cipher suites.

Table 5: Supported TLS Cipher Suites in FortiOS v4

tls_dhe_rsa_with_aes_256_cbc_sha

tls_dhe_rsa_with_camellia_256_cbc_sha

tls_rsa_with_aes_256_cbc_sha

tls_rsa_with_camellia_256_cbc_sha

tls_rsa_with_3des_ede_cbc_sha

tls_dhe_rsa_with_aes_128_cbc_sha

tls_dhe_rsa_with_seed_cbc_sha

tls_dhe_rsa_with_camellia_128_cbc_sha

tls_rsa_with_aes_128_cbc_sha

tls_rsa_with_seed_cbc_sha

tls_rsa_with_camellia_128_cbc_sha

tls_rsa_with_rc4_128_sha

tls_rsa_with_rc4_128_md5

Table 6: Supported IKEv1 Parameters in FortiOS v4

Cipher PRF Group Authentication

des md5 dh_768 psk

3des sha1 dh_1024 rsa

aes-128 sha256 dh_1536

aes-192

aes-256

Table 7: Supported IKEv2 Parameters in FortiOS v4

Cipher PRF MAC Group

des sha256 sha256 dh_768

3des sha1 sha1 dh_1024

aes-128 md5 md5 dh_1536

aes-192 dh_2048

aes-256

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Disclosure
	1.3 Ethics

	2 Background
	2.1 Pseudorandom generators
	2.2 ANSI X9.31
	2.3 State Recovery Attack with a Known Key
	2.4 Attacking X9.31 in TLS
	2.5 Attacking X9.31 in IPsec

	3 FIPS and Hardcoded X9.31 Keys
	3.1 Background on FIPS certification
	3.2 Certified unsafe usage of the X9.31 PRG
	3.3 Device-specific analysis
	3.4 Open source implementations

	4 Decrypting VPN traffic on FortiOS v4.3
	4.1 History of FortiOS 4.x
	4.2 Static Analysis
	4.3 The X9.31 Implementation
	4.4 The HTTPS Implementation
	4.5 The IKE Implementation
	4.6 State recovery in IKEv1
	4.7 State recovery in IKEv2
	4.8 State recovery in TLS
	4.9 Recovering the IKEv2 Keys
	4.10 Recovering Traffic Keys

	5 Measurements
	5.1 HTTPS
	5.2 IKEv2

	6 Related Work
	7 Discussion
	References
	A FortiOS v4 X9.31 Initialization Routine
	B Supported Cipher Suites in FortiOSv4

