Practical state recovery attacks
against legacy RNG implementations

Shaanan N. Cohney
University of Pennsylvania

shaanan@cohney.info
ABSTRACT

The ANSIX9.17/X9.31 pseudorandom number generator design was
first standardized in 1985, with variants incorporated into numerous
cryptographic standards over the next three decades. The design
uses timestamps together with a statically keyed block cipher to
produce pseudo-random output. It has been known since 1998 that
the key must remain secret in order for the output to be secure.
However, neither the FIPS 140-2 standardization process nor NIST’s
later descriptions of the algorithm specified any process for key
generation.

We performed a systematic study of publicly available FIPS 140-
2 certifications for hundreds of products that implemented the
ANSI X9.31 random number generator, and found twelve whose
certification documents use of static, hard-coded keys in source
code, leaving the implementation vulnerable to an attacker who
can learn this key from the source code or binary. In order to
demonstrate the practicality of such an attack, we develop a full
passive decryption attack against FortiGate VPN gateway products
using FortiOS v4 that recovers the private key in seconds. We
measure the prevalence of this vulnerability on the visible Internet
using active scans, and demonstrate state recovery and full private
key recovery in the wild. Our work highlights the extent to which
the validation and certification process has failed to provide even
modest security guarantees.

CCS CONCEPTS

« Security and privacy — Cryptanalysis and other attacks;
Embedded systems security; Security protocols;

ACM Reference Format:

Shaanan N. Cohney, Matthew D. Green, and Nadia Heninger. 2018. Prac-
tical state recovery attacks against legacy RNG implementations. In 2018
ACM SIGSAC Conference on Computer and Communications Security (CCS
’18), October 15-19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3243734.3243756

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10...$15.00
https://doi.org/10.1145/3243734.3243756

Matthew D. Green
Johns Hopkins University

mgreen@cs.jhu.edu

Nadia Heninger
University of Pennsylvania

nadiah@cis.upenn.edu
1 INTRODUCTION

Random number generation is a vital component of any crypto-
graphic system. While systems may survive subtle flaws in crypto-
graphic algorithm implementation, the ability to predict the output
of a (pseudo)random number generator typically leads to the cata-
strophic failure of any protocol built on top of it. In recent years
a number of cryptographic systems have been found to include
flawed random and pseudorandom number generation subsystems.
These flaws range from subtle weaknesses, e.g. biases that admit
sophisticated attacks against the protocol [49]; to catastrophic vul-
nerabilities that allow for adversarial recovery of all random coins
used in a protocol execution [16, 59]. In a particularly ominous
development, some of these flaws appear to have been deliberately
engineered. For example, leaks by Edward Snowden indicate that
the NIST Dual EC DRBG standard may have been designed with
a backdoor [53]. While there is no way to empirically verify this
allegation, we know for certain that the Dual EC algorithm has
been successfully exploited: in 2015 Juniper Networks revealed that
their ScreenOS line of VPN devices had been modified to include a
malicious set of Dual EC parameters, which likely enabled passive
decryption of VPN sessions [16].

The problem of constructing random and pseudorandom number
generators has been extensively explored by industry [8, 41, 48] and
in the academic literature [20, 21, 42, 55, 57]. Despite the abundant
results of this effort, the industry has consistently relied on a small
number of common pseudorandom number generation algorithms.
To a large extent this can be attributed to standards bodies. For ex-
ample, until 2007 there were only two algorithms for pseudorandom
number generation approved for U.S. FIPS 140 certification, and
prior to 1998 only one such algorithm was approved. Recent dis-
coveries surrounding the inclusion of flawed generators motivate a
more thorough examination of these generators — and particularly,
their use in products.

The ANSI X9.17/31 standards. The ANSI X9.17 “Financial In-
stitution Key Management (Wholesale)” standard, first published
in 1985, defined a voluntary interoperability standard for crypto-
graphic key generation and distribution for the financial industry.
This standard included a pseudorandom number generator (PRG)
in Appendix C as a suggested method to generate key material.
This generator uses a block cipher (in the original description, DES)
to produce output from the current state, and to update the state
using the current time.

The same PRG design appeared in US government cryptographic
standards for the next three decades, occasionally updated with

https://doi.org/10.1145/3243734.3243756
https://doi.org/10.1145/3243734.3243756

new block ciphers. A subset of the ANSI X9.17-1985 standard was
adopted as a FIPS standard, FIPS-171, in 1992. FIPS-171 specified that
“only NIST-approved key generation algorithms (e.g., the technique
defined in Appendix C of ANSI X9.17) shall be used”. FIPS 140-1,
adopted in 1994, specified that modules should use a FIPS approved
key generation algorithm; FIPS 186-1, the original version of the
DSA standard adopted in 1998, lists the X9.17 PRG as an approved
method to generate private keys. The ANSI X9.31 standard from
1998 specified a variant of the X9.17 PRG using two-key 3DES as
the block cipher; this variant was included as an approved random
number generator in further standards such as FIPS 186-2, from 2004.
NIST published extensions of this design using three-key 3DES and
AES as the block cipher [40] that were officially included on the
FIPS 140-2 list of approved random number generation algorithms
in 2005.

A critical design element of the ANSI X9.17/X9.31 PRG is that the
cipher key used with the block cipher remains fixed through each
iteration. In order to remain secure, the key must never be revealed
to external attackers. If an attacker learns this key, they can recover
all future and past states of the PRG from its output by brute forcing
the timestamps [42]. Perhaps due to this known weakness, the ANSI
X9.17/X9.31 design was deprecated in 2011 and removed from the
FIPS list of approved PRG designs in January 2016. NIST SP 800-
131A, the document announcing the deprecation of this algorithm,
also deprecated a number of smaller cryptographic key sizes along
with a rationale for doing so; no rationale appears to have been
given for the transition away from X9.31.

Despite this significant flaw, which was identified by Kelsey et al.
in 1998 [42], the NIST documents specifying the ANSI X9.31 PRG
design fail to specify how the cipher key should be generated [40].
This raises the possibility that even FIPS-validated deployed systems
could contain vulnerabilities that admit practical PRG state recovery.
To evaluate this possibility, we performed a systematic study of
publicly available FIPS 140-2 certification for hundreds of products
that implemented the ANSI X9.31 random number generator.

Our results show that a number of vendors use static hard-coded
keys in source code, leaving them vulnerable to an attacker who
can learn this key from the source code or binary. In order to
demonstrate the practicality of this attack, we reverse-engineered
the binaries for a Fortigate VPN gateway using FortiOS version 4.
We discovered that the ANSI X9.31 PRG implementation used for
IPsec encryption uses a hard-coded key, which is a test value given
in the NIST RNGVS specification [44], published as a validation
suite alongside their standardization of the generator. We perform
full state recovery in under a second from random number generator
output. We observe that a passive adversary observing the IKEv2
handshake used to set up an IPsec connection can carry out a state
recovery attack using the plaintext nonce values in the handshake,
and then derive the secret key generated during the cryptographic
key exchange. We demonstrate a full attack that learns the session
keys for a Fortigate IPsec VPN using FortiOS version 4 in seconds.
Furthermore, we demonstrate that this vulnerability exists in the
wild by performing state recovery, key recovery, and decryption
on handshakes we collected using internet-wide scanning of VPN
hosts.

This is not a “NOBUS” backdoor: it is symmetric, and thus an at-
tacker with access to the source code or device can recover the
secrets needed to compromise the PRG. However, the failure mode
of static, discoverable keys we exploit was not ruled out by stan-
dards. The PRG appears to have been independently implemented
in this fashion by a variety of vendors. This is a failure of the stan-
dardization process that has led to real and ongoing vulnerabilities.

We note that this failure mode is more subtle than simply using a
hard-coded key for encrypted communications. There are many
cryptographically secure PRG constructions using only public pa-
rameters and entropy unknown to the attacker, for example con-
structions based on modular exponentiation [11] or hash func-
tions [8]. In addition, as we discuss in Section 7, the vulnerability
could have been rendered practically unexploitable by using suffi-
ciently high resolution timestamps.

1.1 Our Contributions

In this work we extend a growing line of research into weak-
ened/backdoored random number generation in deployed prod-
ucts [9, 15, 16, 18, 19, 56]. Specifically, we demonstrate the existence
of widespread and passively exploitable vulnerabilities in imple-
mentations of one of the most widely-deployed standard PRGs. Our
contributions are as follows:

e We perform a systematic study of FIPS 140 security policy
documentation and discover several independently vulnerable
RNG implementations from different vendors, and discover
critical failures in the standardization process.

o Based on this work, we develop an efficient passive X9.31 state
recovery attack for the FortiOS v4 IPsec implementation and
demonstrate full IPsec VPN decryption.

o We use Internet-wide measurements to measure the scope of
this vulnerability among publicly-visible hosts, and demon-
strate it against hosts in the wild, uncovering more than 25,000
vulnerable hosts. These numbers likely represent a small frac-
tion of the true number of vulnerable hosts.

o We discuss the impact of these findings on other standardized
PRG designs, and demonstrate that these vulnerabilities could
affect other symmetric PRG implementations as well.

A critical differentiator between this work and previous work is that
our work is the first to exploit flaws in a widely-used symmetric-key
RNG at large scale, rather than a specialized (and rare) public-key
design such as Dual_EC_DRBG [16]. Moreover, we note that our
findings are tied to our analysis approach: they would not have
been detectable through black-box external testing methods.! To
our knowledge, this work is the first to identify exploitable flaws
in cryptographic devices by analyzing the output of cryptographic
module validation procedures. This demonstrates that the existing
standards validation procedures may need to be revisited.

!Unlike many previous RNG weaknesses, e.g., [35, 59] the PRG flaws in this work are
undetectable to an attacker who interacts with the device as a black box; they can only
be found through careful analysis of the PRG internals.

Purpose of this work. Over the past several years, a valuable
line of research has considered the impact of weakened number
generators on cryptographic devices. This research comprises three
categories of work: (1) discovery of novel cryptographic attacks [42,
56], (2) measurement and impact studies of known (theoretical)
algorithm flaws [15, 16] and (3) development of countermeasures
and new theoretical models [9, 18, 19].

We stress that these categories are mutually interdependent. With-
out knowledge of flaws, there can be no analysis of impact. Without
knowledge of practical impact (in deployed protocols and devices),
there is little impetus for theoretical analysis or countermeasure
development. Finally, without academic research in each of these
areas, it is difficult for industry and standards bodies to design or
motivate analysis of new algorithms.

This work is an example of category (2). Our goal is to evaluate the
impact of a specific flaw on real, deployed cryptographic systems.
Our results in this work demonstrate that these flaws are present
and exploitable at scale in widely used implementations of real
Internet protocols. Our findings do not flow inevitably from previ-
ous results on ANSI X9.31 [42], as we note above and in Section 7.
Moreover, this analysis is critical given that X9.31 is one of the most
widely-deployed standard PRG algorithms in existence.

Finally, this work has impact in motivating countermeasure re-
search and formal modeling. In particular, we note in Section 7 that
more recent designs (CTR_DRBG from SP800-90A) may also be
vulnerable to similar attacks if implementations include (minor)
flaws. Since CTR_DRBG is enormously popular - e.g., it is included
in every Intel processor — we believe our work motivates further
analysis of implementations, as well as consideration of symmetric
RNG design principles that improve robustness.

1.2 Disclosure

We disclosed the X9.31 and privilege escalation vulnerabilities to
Fortinet in October 2016. Fortinet responded by releasing a patch
for affected versions of FortiOS [24, 25]. FortiOS version 5 did not
implement the X9.31 PRG and is not vulnerable.

We disclosed the potential for a flaw in Cisco Aironet devices to
Cisco in June 2017. After an internal investigation, Cisco determined
that the affected software versions had all reached end-of-support
status. They were unable to find the source code to validate the
flaw.

We notified the remaining vendors listed in Table 2 in October 2017.
BeCrypt pointed us to version 3.0 of their library, which has been
FIPS certified and no longer includes the X9.31 random number
generator. They told us that the only fixed key inside the FIPS
module is for self-test purposes. ViaSat USA had no record of the
product indicated in the security documentation and ViaSat UK
failed to respond to our disclosure. We did not receive substantive
responses from any other vendors.

NIST has decertified the ANSI X9.31 RNG for FIPS compliant uses
independently of our work. Despite this, we detected many vul-
nerable devices active on the open Internet, and additional devices

may reside within enterprise networks. In personal communication
in response to our work, NIST noted several issues with crypto-
graphic validation that they are planning to improve; we discuss
these in detail in Section 7. NIST informed us that they introduced
a five-year sunsetting policy for FIPS 140-2 validations in 2016 in
order to weed out old validations and encourage upgrades. There
is an effort currently underway to transition to automated testing
for all modules, and to change the liability model so that vendors
carry full responsibility for the security of their products [50].

1.3 Ethics

While we demonstrate key recovery and decryption against live
hosts we do not own on the Internet, the traffic we decrypt in our
proof-of-concept is a handshake we initiated with this host. We did
not collect traffic or attempt decryption for connections in which
we were not a party. We followed community best practices for
network scans, including limiting scan rates, respecting hosts who
wished to be blacklisted, and working with vendors and end users
to minimize effects to their networks.

2 BACKGROUND

2.1 Pseudorandom generators

We adopt the notation of Dodis et al. [19].

DEFINITION 1 (PSEUDORANDOM GENERATOR). A pseudorandom gen-
erator (PRG) is a pair of algorithms (I, G). The seeding algorithm
1(A) takes a security parameter A and probabilistically generates an
initial state s € S, typically some fixed-length bit string. The gener-
ation algorithm G : n X 8§ — {0,1}" x S maps the current state to
an n-bit output and a new state. For any A, integer g > 1, initial seed
so € I(4), and any list of non-negative integers (n1, nz, ..., nq) we
let out9(G, sp) denote the set of bit strings (r1,72, . . .,rq) produced
by computing (r;, s;) < G(n;,s;j—1) for i = 1 to q. A PRG is secure
when no adversary can distinguish between the outputs out9 and
a set of random bits.

The PRG discussed in this work extends this basic definition slightly,
as the generate function G also takes (and may return) additional
input, namely a counter or timer value that is used as a partial input
to the generator. We require that pseudorandomness hold even
when this auxiliary data is predictable or adversarially chosen.

2.2 ANSI X9.31

The ANSI X9.31 random number generator is an algorithm that
was included in some form on the list of approved random number
generators for FIPS and NIST standards between 1992 and 2016. The
design first appeared in the ANSI X9.17 standard on cryptography
for the financial industry, published in 1985, using DES for the
block cipher. The X9.31 variant uses two-key 3DES for the block
cipher, and NIST published three-key 3DES and AES versions in
2005. [40] While this design has appeared under various names, we
will refer to it as the X9.31 PRG for the rest of this paper, to use the
terminology in modern implementations and standards.

T, - AESK > 4AESK|—>V1-

Vi b~ AESk R;

Figure 1: Each iteration of the ANSI X9.31 PRG generation
function (G) inputs a timestamp T; and a seed V;_; and pro-
duces an output block R; and a new seed V;.

The PRG is based on a block cipher with block size ¢ bits. We
will specialize to AES, and define £ = 128. Ex(Y) represents the
encipherment of Y under key K.

The seeding algorithm | selects an initial seed s = (K, V) where V
is generated randomly and K is a pre-generated fixed key K for
the block cipher. The exact language used to describe the key in
the NIST specification [40] for the AES-based variant is “For AES
128-bit key, let *K be a 128 bit key.” and similarly for 192 and 256
bits. It continues “This *K is reserved only for the generation of
pseudo-random numbers.”

The j*" call to the generate algorithm G takes as input a desired
output length in bits n, the current state s = (K, V) and a series of
timestamps (71, ..., Tn) where N = [n/{]. Let Vj = V at the start
of the generate call. For i = 1 to N the state is updated using the
current timestamp T; as follows. First, generate an intermediate
value I; = Eg(T;). Then one block of output is generated as

R; = Ex(l; ® Vi—1) (1
and the state for the next iteration is V; = Eg(R; & I;).

The output of G is truncate, (R ||Rz]| . . . ||Rp) where truncate, out-
puts the leftmost n bits, as well as the updated state s’ = (K, V},). A
diagram of the generation algorithm appears in Figure 1.

2.3 State Recovery Attack with a Known Key

We are not aware of a formal proof showing that ANSI X9.31 is
pseudorandom, though this is likely to be the case if the block
cipher is a pseudorandom permutation.

Kelsey et al. [42] observed that the generator is clearly vulnerable
when K is not secret. An attacker who learns K can recover the
current state using two consecutive blocks of output together with
guesses for their timestamps. (A single block of output will not
uniquely identify the state, but two blocks almost surely will.) Let Ry
be a block of output generated at Ty, Ry a block of output generated
at T, and D(Y) the decryption of Y using key K. We can relate
these quantities as:

D(D(Ry) ® E(T1)) = Ro ® E(Tp) (2

If the timestamps are only known approximately, we can brute force
them within some range until we find a pair that yields equality, or
apply a meet-in-the-middle attack [42]. If one block is not known
completely, we can rearrange the encryptions and decryptions

and verify equality of the known portion of the block. Once the
timestamps T; and Tz are known, the next seed is

V2 = E(Ry @ E(T1))

A guess for the output from the next iteration is then uniquely
defined by a guess for the timestamp T5:

Ry = E(E(T2) ® V2) 3

The above attack allows an attacker who has access to raw X9.31
output to recover the state. The attacker can then predict future
output by running the generation algorithm with a guess for each
subsequent timestamp. Alternatively, she can recover previous out-
put blocks by “winding the generator backwards” and guessing
earlier timestamps. Both attacks require the same effort.

In order to understand the impact on real cryptographic usage, we
will describe how this attack works in theory in the context of
popular cryptographic protocols.

2.4 Attacking X9.31in TLS

Checkoway et al. [16] performed an in-depth analysis of the vul-
nerability of the TLS protocol to a compromised random number
generator in the context of the Dual EC DRBG. The attack surface
is similar for a vulnerable X9.31 implementation, with two key
differences. First, the Dual EC backdoor is asymmetric, and thus
only a party who generates the curve points used with Dual EC can
detect the presence of the backdoor or exploit it, while the X9.31
vulnerability is symmetric, and any implementation that stores a
fixed secret key is vulnerable to passive exploitation by an attacker
who can recover this key. Second, the Dual EC attack requires at
least 28 bytes of contiguous PRG output for an efficient attack,
while the X9.31 attack can be conducted with fewer bytes.? This
second restriction plays a major role in the cost of an attack on a
protocol such as TLS or IPsec.

24.1 TLS Background. A TLS 1.0, 1.1, or 1.2 handshake begins
with a client hello message containing a 32-byte random nonce and
a list of supported cipher suites. The server hello message contains
a 32-byte random nonce, the server’s choice of cipher suite, and
the server’s certificate with a long-term public key. The server
and client then negotiate shared secret keying material using the
chosen asymmetric cipher. For RSA, the client encrypts a secret
to the server’s public key; for (elliptic curve) Diffie-Hellman, the
server and client exchange key exchange messages. The client and
server then derive symmetric keys from the negotiated shared secret
and nonces, authenticate the handshake, and switch to symmetric
encryption.

%In practice, given (256 — 1) bits of contiguous generator output, Dual EC state recovery
involves a guessing phase consisting of 2" elliptic curve operations. This becomes
costly for values of n > 32. By contrast, the ANSI attack requires only 128 bits of
contiguous generator output for initial state recovery and a small portion of a second
block to test for correctness. Given (256 — n) total bits the probability of recovering the
wrong state is generally small (x M * 2-(128-1) when brute forcing over a timestamp
space of size M) even when n is large.

2.4.2 State and key recovery in TLS. If the X9.31 PRG is used
to generate both the random nonce and the cryptographic secrets
used for the key exchange, then an attacker could use the raw PRG
output in the nonce to carry out the state recovery attack, and then
use knowledge of the state to derive the secret keys. The 256-bit
client or server random is exactly two blocks of AES output. Some
TLS implementations include a 32-bit timestamp in the first 4 bytes
of the nonce; in this case the attacker would have fewer than two
full blocks, but the attacker will likely still recover a unique state.
For a Diffie-Hellman key exchange, this attack would work if either
the client or server uses the vulnerable PRG; for RSA key exchange,
the key exchange would only be compromised if the client uses the
vulnerable PRG.

2.5 Attacking X9.31 in IPsec

Checkoway et al. [16] describe the impact of a compromised random
number generator on the IKE key exchange used in IPsec in the
context of the Dual EC PRG. Our case is similar. We describe the
protocols in detail, since we target IPsec for our proof-of-concept.

2.5.1 IPSec/IKEv2 background. IPSec is a Layer-3 protocol suite
for end-to-end IP packet encryption, authentication and access
control, widely used for Virtual Private Networks (VPNs). The IKE
(Internet Key Exchange) protocols allow two hosts, denoted the
Initiator and Responder, to establish an authenticated “Security
Association”, a secure communication channel. Two versions of
IKE exist, IKEv1 and IKEv2. Both use Diffie-Hellman key exchange.

IKEv1. The original IKE specification [31] defines two phases, an
initial key exchange phase (Phase 1) and a second phase (Phase 2)
that uses keying material from the first phase to establish an IPSec
SA.In Phase 1, authenticated key exchange can be performed using
two handshake types: Main Mode or Aggressive Mode.

We focus our attention on the Phase 1 handshake in main mode.
First, initiator and responder exchange Security Association (SA)
payloads, with the initiator offering proposals for combinations
of cipher suites and parameters and the responder accepting one.
The parties then exchange Key Exchange (KE) messages, each con-
taining a Diffie-Hellman key exchange payload. The format differs
based on the authentication method. When using digital signatures
or a pre-shared key to authenticate, the initiator and responder
send their key exchange message together with a cleartext nonce of
length between 8 and 256 bytes [31]. Each packet includes an 8-byte
connection identifier called a cookie.® The ISAKMP specification
(RFC 2408) [17] suggests that the cookie be generated by applying
the MD5 hash function to the participant IPs, ports, and a local
random secret.

Both parties then derive symmetric key material from the Diffie-
Hellman shared secret, the nonces, the cookies, and optionally
the PSK if using PSK authentication. All messages following this
point are encrypted with the newly derived keys. Both sides then
exchange certificates and identities, and authenticates the key ex-
change using the negotiated authentication method.

3The ISAKMP specification (RFC 2408) [17] suggests generating the cookie by applying
the MD5 hash function to the participant IPs, ports, and a local random secret.

SPI;, SA;, KE;, N;

SPI,, SA,, KE,, N,

SPL;, [AUTH ——

AUTH

«~—— SPI,,

Figure 2: Randomness and the IKEv2 Handshake. The IKEv2
handshake establishes an authenticated, encrypted connec-
tion using a Diffie-Hellman key exchange. In our target
implementation, both the SPI and nonce N are raw, unen-
crypted outputs from the PRG. The key exchange message
KE is generated from the PRG immediately afterward. The
encrypted portions of the handshake are inside of a gray
box.

In Aggressive Mode, the initiator sends the SA and KE payloads to-
gether and the responder replies with its SA, KE and authentication
messages together. IKEv1 Aggressive mode using pre-shared key
authentication is widely considered to be a security risk because
the authentication hash is sent unencrypted, which could allow an
attacker to brute force the PSK.

In Phase 2, participants can negotiate additional keying material
and exchange parameters using another Diffie-Hellman exchange,
with messages encrypted using the key established in Phase 1.
After negotiating this further material, the parties can exchange
encrypted data.

IKEv2. The IKEv2 protocol was standardized in 2005 [14]. We show
an abbreviated version of the IKEv2 handshake in Figure 2. First the
initiator sends an IKE_SA_INIT message, with proposals similar to
IKEv1, including a Diffie-Hellman public key generated using its
best guess for the proposal parameters that will be accepted by the
responder. Every message includes a connection identifier called
the SPI. *

If the responder accepts the initiator’s proposal, it replies with
its own IKE_SA_INIT messages containing its key exchange. The
two parties then authenticate each other and create an IPsec SA
using IKE_AUTH messages, which are encrypted and integrity-
protected using keys derived from the Diffie-Hellman shared secret,
the nonces, and the SPI values. The analogue of Phase 2 in IKEv2
is the encrypted CREATE_CHILD_SA exchange, which admits an
optional a second key exchange.

2.5.2 State recovery in IPsec. An attack on the IKE handshake
exploiting a vulnerable X9.31 implementation proceeds much as
described in [16]. The attacker requires that both the victim’s nonce
and Diffie-Hellman key exchange secret be composed of raw X9.31

4In IKEv2 the cookie field from IKEv1 is renamed to the ‘Security Parameter Index’
(SPI). This is not to be confused with the IPSec SPI that identifies a particular SA, nor
the IKEv2 COOKIE SA payload, which is a countermeasure against resource exhaustion
attacks. The latter is called the IPSec SPI in IKEv1.

output, and additionally, that the nonce be longer than one block
in length. In an ideal attack scenario the Diffie-Hellman secret
and nonce are generated in quick succession. The attacker then
recovers the PRG state by guessing the timestamps used to generate
the nonce, and checking for equality in Equation 2. The attacker
then guesses the two timestamps used for the next two blocks of
output using Equation 3, and confirms her guess using the public
Diffie-Hellman exchange.

Full symmetric key recovery for IKEv1 depends on the authentica-
tion method used in the exchange. The attacker can validate state
recovery and Diffie-Hellman secret compromise against a single
key exchange packet from one side of the connection, but for some
authentication methods may need additional information to gener-
ate the session keys. For signature authentication, the attacker does
not need to learn any information beyond the nonces and cookies
that appear in the clear in the handshake. For PSK authentication,
the attacker would need to learn the PSK. For public key encryption
authentication, the nonces are encrypted, so the attacker would
need to learn the private keys for both sides of the connection in
order to learn the nonces and derive the session keys.

For IKEv2, the IKE_SA_INIT messages contain all of the fields nec-
essary to perform state recovery and derive the Diffie-Hellman
secret: timestamps, nonces, the SPI nonce, and both key exchange
values. We note that in IKEv2, the PSK is used only for authentica-
tion, and not to derive encryption keys. A passive attacker would
need to collect both sides of the handshake in order to derive the
session keys necessary to decrypt content, but state recovery and
Diffie-Hellman secret compromise can be validated against a single
packet from the vulnerable side of the connection.

3 FIPS AND HARDCODED X9.31 KEYS

As discussed in Section 2.2, the NIST design description for the
X9.31 random number generator [40] does not specify how the
block cipher key should be generated or stored. However, vendors
who wish to obtain FIPS certification are required to produce a
detailed public “security policy” document describing their cryp-
tographic implementations and key management procedures. We
performed a systematic study of the security policies for prod-
ucts certified for the X9.31 PRG to understand how many vendors
publicly documented a potential hard-coded key vulnerability. We
obtained the list of certified devices from the NIST web site [52].

Certificate Type 2006-2008 2008-2016 To date
SP 800-90 0 1073 2053
X9.31/FIPS 186-2 310 952 1411

Table 1: Certificate issuances for X9.31 continued even af-
ter the publication of SP800-90 in 2006. The first SP800-90
CMVP certifications were issued in 2008, yet 47% of FIPS cer-
tificates issued 2008-2016 were for X9.31.

3.1 Background on FIPS certification

FIPS 140-2 [51] defines requirements for cryptographic devices and
software. This standard is used by the Cryptographic Module Vali-
dation Program (CMVP) to certify products used in US government
applications. Compliant devices are eligible for certification under
the CMVP jointly administered by NIST and the Communications
Security Establishment (CSE) of Canada.

Once a device has been certified under the CMVP, it is added to a list
of approved devices that US federal agencies and other regulated
bodies may use.

FIPS 140-2 Annex C: Approved Random Number Generators listed
the ANSI X9.31 Random Number Generator with AES and three-
key 3DES between January 31, 2005 and the most recent revision
on January 4, 2016; variants of the X9.17/X9.31 PRG using different
block ciphers have been listed as approved random number genera-
tors in FIPS and NIST standards since at least 1992. In January 2011,
NIST deprecated the X9.31 PRG in a transition away from smaller
key lengths and weaker cryptographic algorithms [7]. Currently,
the only approved PRGs are from NIST SP 800-90A, which was
updated in June 2015 to remove Dual EC DRBG.

3.2 Certified unsafe usage of the X9.31 PRG

We examined the security policy documents of all devices certified
under the CMVP that documented previous or current use of the
X9.31 PRG. NIST provides a historical list of implementations cer-
tified for random number generators [1]. A single FIPS validation
certificate may cover multiple products and versions. The scope
of these certificates varied: in some cases they validated a crypto-
graphic module or a single product and version, and in others they
covered entire product lines and operating systems. According to
this list, FIPS has issued 2,516 certificates in total for products that
implemented X9.31. Of these, on July 13, 2017, 997 listed current
support for X9.31 despite its official deprecation in January 2016.
The remaining certificates were only available in updated versions
that had removed details of historical X9.31 implementations. Of
the 997 that indicated support for X9.31, 682 certificates from 288
vendors were validated for random number generation.

The security policy documents each contain a list of Critical Se-
curity Parameters (CSPs), which includes access control, key and
parameter generation, and zeroization policies. We also looked for
discussion elsewhere in the documentation of seed key generation.
127 of the vendors did not mention the AES key in the list of CSPs
or elsewhere in the documentation. Since we are unable to deter-
mine whether the key was generated securely, we exclude these
from further study. This left 161 vendors who mention seed key
generation in some capacity.

We counted an X9.31 implementation as secure if the documen-
tation stated that the key and the seed were user-generated, the
output of another random number generator, contained any discus-
sion of specifying sufficient entropy for the seed key, or a strategy
to generate keys uniquely per device or per boot. In the case of
a user-generated key, the onus would fall on the user to ensure
that the key is securely generated and rotated as necessary. We

Vendor Product Line

Language Used

BeCrypt Ltd.

Cisco Systems Inc Aironet

Deltacrypt Technologies Inc DeltaCrypt FIPS Module
Fortinet Inc FortiOS v4

MRV Communications LX-4000T/LX-8020S
Neoscale Systems Inc CryptoStor

Neopost Technologies Postal Security Devices
Renesas Technology America AE57C1

TechGuard Security PoliWall-CCF
Tendyron Corporation OnKey193
ViaSat Inc FlagStone Core

Vocera Communications Inc.

BeCrypt Cryptographic Library

Vocera Cryptographic Module

“Compiled into binary”

“statically stored in the code”

“Hard Coded’

“generated external to the module”
“Stored in flash”

“Static key, Stored in the firmware”
“Entered in factory (in tamper protected memory)
“With the exception of DHSK and the
RNG seed, all CSPs are loaded at factory”
“Generation: NA/Static”

“Embedded in FLASH”

“Injected During Manufacture”
“Hard-coded in the module”

»

Table 2: FIPS 140-2 Security Policies Documenting Potential X9.31 State Recovery Vulnerabilities. Since the X9.31 RNG was
removed from FIPS 140-2 in January 2016, many vendors have published software updates to remove X9.31 and updated their

security policies accordingly.

did not study these cases further. The largest class of devices we
evaluated as safe, generated the AES key on boot by seeding from
a non-FIPS approved random number generator, most commonly
the Linux random number generator. As an example of language
indicating what we considered to be safe X9.31 key generation, the
InZero Gateway security policy states that the “PRNG is seeded
from /dev/urandom...this provides the PRNG with 256 bits of en-
tropy for the seed key” [2]. The text includes additional commentary
on the risk involved in using a weak random number generator for
the purpose of FIPS validation. While urandom has had known vul-
nerabilities stemming from failure to properly seed on first boot of
some classes of devices [35], we considered such usage safe for the
purposes of this analysis. As another example, the 2012 FIPS 140-2
security policy for the Juniper SSG 140 [38], which was certified for
the X9.31 generator, states that for the “PRNG Seed and Seed Key”
“Initial generation via entropy gathered from a variety of internal
sources.” There were 149 certificates (93% of the 161) in this class.

We counted an implementation as potentially vulnerable to a state
recovery attack if the documentation stated that a single key was
used for the lifetime of a device, particularly in cases where an
external attacker would be able to learn this key. Unsafe devices
had documentation indicating that the AES key was stored statically
in the firmware or flash memory and loaded at runtime into the
PRG. There were 12 vendors in this class, covering 40 product lines.
We list these products together with the language used to describe
seed key generation in Table 2.

3.3 Device-specific analysis

We were only able to gain access to the binary image for one of
the products we identified as potentially vulnerable, a Fortinet
operating system. We give more details on our investigation in the
next section.

Cisco confirmed to us that X9.31 was used in Aironet 12.4-based
branches for access points, Wireless Service Modules (WiSMs) and

4400 controllers using version 7.0. They were unable to locate the
source code or confirm use of a hardcoded key, although they agreed
with our interpretation of the certification language. They informed
us that the 4400 controllers reached end of support in 2016, the
WiSM modules reached end of support in 2017, and the 12.4-based
branch of Cisco IOS software that supported X9.31 reached end
of support at an unknown date. Another family of access points
used the 15.3 branch of I0S, which uses NIST 800-90 and not X9.31.
Cisco informed us that they no longer ship products using X9.31.

The BeCrypt Cryptographic Library Version 2.0 documentation
states that the “RNG seed key” is “pre-loaded during the manufac-
turing process” and stored as “compiled in the binary”. Version 3.0
of the BeCrypt library no longer includes the X9.31 PRG. BeCrypt
stated to us that “Except in one case when we use the RNG key
creation routine we do not recycle the strong entropy output from
one usage to be the input to the next usage. Instead, we use fresh
entropy. In the one case where we recycle the strong entropy input,
the weak entropy input is actually strong entropy and the key is
generated programmatically at startup” and additionally that the
fixed RNG key inside the FIPS module is for self-test purposes.

\ 127 | 149 12
No information | Not vulnerable | Vulnerable
0 50 100 150 200 250 300

Figure 3: Counting vulnerable implementations. We exam-
ined the security policy documents from 288 vendors who
had been FIPS 140-2 certified for the X9.31 PRG for informa-
tion on how the seed key for the random number generator
was generated. 12 vendors, or 4% of the total, documented a
hard-coded key vulnerability.

Table 3: Affected Implementation Versions

Product Line Version X9.31 Removed
BeCrypt Cryptographic Library 2.0 3.0
Aironet 7.2.115.2 v8.0
DeltaCrypt FIPS Module N/A

FortiOS v4 4.3.17 4.3.18
LX-4000T/LX-8020S v5.3.8 v5.3.9
CryptoStor 2.6

Postal Security Devices v28.0 v30.0
AE57C1 v2.1012
PoliWall-CCF v2.02.3101
OnKey193 v122.102
FlagStone Core v2.0.5.5

Vocera Cryptographic Module ~ v1.0 v2.0

The ViaSat’s FlagStone Core documentation states that the key
was “injected during manufacture”. The documentation does not
specify whether this key is device specific, although it recommends
that “RNG Keys and Seeds that are imported into the FlagStone
Core are generated or established using a FIPS 140-2 approved or a
FIPS 140-2 allowed method.” A device-specific key would require a
targeted attack.

The certification documentation for Neopost devices specifies that
the hardcoded key is entered in the factory and stored in tamper
proof memory. A device-specific hardcoded key stored in tamper-
proof memory would be quite difficult to attack.

3.4 Open source implementations

We also examined the X9.31 implementations in OpenSSL and the
Linux kernel, but did not find evidence of hard-coded keys other
than for testing.

4 DECRYPTING VPN TRAFFIC ON FORTIOS
V4.3

The FIPS certification for FortiOS 4.3 states that the X9.31 key is
“generated external to the module”. We reverse engineered two
versions of FortiOS and found that they used the same hard-coded
key for their X9.31 implementation, which was then used as the
system-wide random number generator.

We demonstrate that knowledge of this key allows an attacker
to passively decrypt IPsec traffic from FortiOS v4. An PRG state
recovery attack is feasible using only the IKE or TLS handshake
nonces, and typically takes less than a second of computation time
on our hardware, after which the attacker is able to guess the
secret keys used to generate encryption keys. We performed an
Internet-wide scan for affected hosts, and were able to carry out
state recovery and private key recovery on handshakes from our
scan data.

4.1 History of FortiOS 4.x

FortiOS is a network operating system created by Fortinet Inc. for
their network security hardware devices and virtual appliances. In
2016, Fortinet was the fourth largest vendor by market share [3].
Fortigate primarily specializes in firewalls, intrusion detection sys-
tems and VPN gateways. FortiOS is used widely across their product
suite.

FortiOS 4.0, released on February 20, 2009, included the X9.31 PRG.
It was also included in the final major FortiOS v4 version, 4.3,
released on March 18, 2011. It was not included in FortiOS 5, released
in November 2012. Prior to our disclosure of the PPRG vulnerability
in October 2016, the last release of FortiOS v4 was 4.3.18, released
August 6, 2014, with an end of support date of March 19, 2014 for
devices compatible with FortiOS v5. In response to our disclosure of
the random number generation vulnerability [5], Fortigate released
version 4.3.19 of FortiOS in November 2016.

4.1.1 Vulnerabilities in FortiOS. On January 15, 2016, the MITRE
corporation posted CVE-2016-1909 [4] revealing the presence of a
hardcoded passphrase present in FortiOS 4.1.x and FortiOS 5.x as of
October 2009, and all subsequent releases. This passphrase gave a
remote attacker SSH access to the Fortimanager_Access account for
remote administration. In a blog post in January 2016 [26], Fortinet
stated that “This was not a ‘backdoor’ vulnerability issue but rather
a management authentication issue... After careful analysis and
investigation, we were able to verify this issue was not due to any
malicious activity by any party, internal or external” and that the
vulnerability had been patched in July 2014.

In August of 2016, a group calling themselves “The Shadow Bro-
kers” released a collection of malware tools and documentation pur-
portedly from an actor they termed“The Equation Group”. Among
other things, the leak contained a remote code execution exploit
for FortiOS v3 and v4 titled EGREGIOUSBLUNDER. The exploit
included code to identify FortiOS versions using HTTP response
headers. The collection also included a malware payload for For-
tiOS (codename BLATSTING), containing a module ‘tadaqueous’
that disables random number generation by hooking the function
get_random_bytes, the entry point to FortiOS’s X9.31 implementa-
tion [58]. We did not find any evidence in the Shadow Brokers leak
that The Equation Group was aware of the vulnerability we found
in the PRG.

4.2 Static Analysis

We analyzed two implementations of FortiOS v4, the embedded
operating system for Fortigate’s network devices. The first was a
firmware dump from a FortiGate 100D Firewall, and the second was
a ‘virtual appliance’ (VM) running a different build of the operating
system. The two firmware images were nearly identical, with minor
variations due to the lack of hardware in the virtual appliance, and
minor variations in supported TLS cipher suites. These differences
would not have affected the measurements described in Section 5.

FortiOS is a GNU/Linux variant, with a customized shell that has
kernel modules implementing hardware interfaces and crypto-
graphic functions. The kernel is Linux 2.4.37, the last release of the
2.4.x series released in December 2008, which reached end of life in
December 2011. FortiOS v5 still uses the Linux 2.4.37 kernel.

4.3 The X9.31 Implementation

The X9.31 random number generator is implemented within a ker-
nel module that exports a Linux character device. At boot time, the
init process loads the module and replaces /dev/urandom with a
filesystem node corresponding to the X9.31 character device.

We reverse engineered the kernel module providing the X9.31 imple-
mentation and found the hard-coded AES key used for the PRG. (See
Appendix A for the reverse engineered code.) The same key was
used in both the firmware dump and virtual appliance. Although the
documentation stated that the key was “generated external to the
module”, the key is the same one used for the NIST test vectors [?].

The PRG implementation generates timestamps using a call to
do_gettimeofday() and produces a struct timeval containing the 64-
bit time to the nearest microsecond. This struct is copied twice into
a buffer to form a full 128-bit timestamp for the X9.31 generator.

4.4 The HTTPS Implementation

We also reverse engineered the implementations of the HTTPS
server for the administration panel and the IKE/IKEv2 daemon
used for VPNs. FortiOS v4 uses OpenSSL for TLS. When initializing
the library, it sets the random number generation method to the
system PRG, which is the X9.31 implementation.

The TLS server hello random consists of a four-byte timestamp
followed by two raw blocks of X9.31 PRG output truncated to
28 bytes, which permits a state recovery attack. However, the TLS
implementation does not seem to be vulnerable to a straightforward
key recovery attack for Diffie-Hellman cipher suites via the server
random because it uses ephemeral-static Diffie-Hellman. The secret
exponent is generated when the server is launched and reused until
shut down. In the case of RSA cipher suites, the client generates the
encrypted pre-master secret for each session. The PRG vulnerability
on the server does however affect initial RSA key generation.

4.4.1 RSA Key Generation. FortiOS generates the RSA keys used
in its TLS certificates using OpenSSL’s FIPS compliant routines
calling the system X9.31 PRG for randomness. The primes it gener-
ates conform to FIPS 186, Appendix B.3.6, “Generation of probable
primes with conditions based on auxiliary probable primes” [23].
For a 1024-bit modulus, each 512-bit prime factor p is generated
using additional primes p; and pz so that p1|(p — 1) and p2|(p + 1)|.
This is intended to protect against Pollard’s p — 1 and Williams’s
p + 1 factoring algorithms. This means that the primes that are
generated have the form p = r, + po where pg is a 202-bit value
derived from p; and p;, and rp, p1, and p are raw outputs from the
PRG.

We generated a certificate on our VM and verified that the most sig-
nificant bits of the RSA factors are related by Equation 2. However,
this does not seem to lead to an feasible state recovery attack from
the public modulus, since the attack requires raw PRG outputs. The
only other call to the PRG during certificate generation produces a
4-byte serial number, insufficient for state recovery.

4.5 The IKE Implementation

The IKE daemon appears to be a modified variant of the raccoon2
project, compiled with the GNU MP library. All randomness used
by the daemon is obtained by reading from /dev/urandom, and
thus uses the X9.31 module. We analyzed both the IKEv1 and IKEv2
implementations to see if any fields in the handshake packets con-
tained enough raw PRG output to permit state recovery.

In the IKEv1 implementation, the first block of PRG output is used to
generate the IKEv1 cookie by hashing it together with IP addresses,
ports, memory addresses, and the time since epoch, in seconds 3,

In the IKEv2 implementation, the SPI field, the equivalent of the
IKEv1 cookie, is eight raw bytes of PRG output. In both IKEv1
and IKEv2, the next block of PRG output was used to generate the
handshake nonce, which was 16 bytes long. This was generated
immediately before the PRG output blocks that are fed into the
Diffie-Hellman exponentiation.

For the case of Diffie-Hellman key exchange with the 1024-bit Oak-
ley Group 2 prime, FortiOS v4 generates an exponent using two
consecutive blocks from the PRG. In the virtual appliance’s imple-
mentation, random bytes are read directly into the Diffie-Hellman
exponent without modification. In the case of hardware devices
with a dedicated cryptographic processor, the raw bytes of PRG
output are fed along with the prime and the generator into a sys-
tem call that invokes the cryptographic processor. This processor
deterministically transforms the exponent in a way we were un-
able to reverse engineer, and outputs the result of the modular
exponentiation.

We were able to invoke this system call ourselves on our hardware
device to generate the Diffie-Hellman public key exchange values
and shared secrets from candidate PRG blocks.

4.6 State recovery in IKEv1

The state recovery attack outlined in Section 2.3 requires two blocks
of PRG output and the AES key to recover the state. The IKEv1 im-
plementation gives us one full block of output in the nonce, and one
block that is hashed together with a timestamp and nondeterminis-
tic pointers to create the cookie. The timestamp has a resolution of
a second, so we assume it is known. However, the heap-allocated
pointer provides approximately 13 bits of entropy [36]. Rearranging

5The IKEv1 cookie was SHA1(0x2020||mpz_d||src||dst||timestamp||nonce;s). We
note the choice of SHA1 here over MD5 recommended in the RFC. Here mpz_d
represents a pointer to the buffer used by the linked gmp implementation that stores
the remainder of the data to be hashed. This appears to be a quirk of using gmp types
to store data, and not an intentional security measure on the part of the system imple-
menter. The address itself is heap allocated, and was inconsistent across connections
and restarts. The timestamp is seconds since epoch.

Equation 2, the first block of PRG output R that is fed into the hash
function to produce the cookie is D(D(R;) ® E(T1)) ® E(Tp) where
the second block of PRG output R; is known, and we estimate we
need to brute force 29 bits of timestamps Ty and T, as described in
the next section. Thus an IKEv1 state recovery attack based on the
cookie would take around 242 hashes; which is feasible. However,
we found that IKEv2 state recovery was cheaper, and focused our
efforts on IKEv2 as described below.

The two blocks after the cookie and nonce are used to generate
the Diffie-Hellman private key, which ensures that following state
recovery, key recovery is straightforward.

4.7 State recovery in IKEv2

As discussed in Section 2.5.2, in order to recover the PRG state, we
need two consecutive blocks of the PRG output, an approximation
to the two timestamps used for the intermediate vectors, and the
AES key. The FortiOS IKEv2 implementation yields 1.5 consecutive
blocks of raw PRG output in the IKEv2 handshake: half a block in
the SPI field, and a full block in the nonce. We learned the static
key as described above by reverse-engineering the source code. We
use the capture time of an incoming handshake to approximate
the timestamps. From these, we use the approach described in
Section 2.3 to recover the PRG state. We found that searching within
a one-second window, or about 221 guesses for the first timestamp,
worked well on our hardware as well as scanned machines in the
wild. ¢

We used our instrumented logging system to measure the time
difference between successive calls to the PRG for the SPI and
nonce fields that we needed to carry out state recovery on the
FortiGate 100D. We found an average difference of 145us with a
standard deviation of 3.52us.

Using a 1 second window for the first block (22! guesses), and
bounding the search space for the second timestamp to within 3¢
of our observed mean (2% guesses), yields a total state recovery
complexity of about 22! - 25 = 226 timestamp guesses, .

Experimentally, this can be completed for either the virtual appli-
ance or our hardware appliance in under one second on 12 cores of
an Intel Xeon E5-2699 with parameters as above. For an expanded
search space of 100 microseconds for the second timestamp as de-
scribed in Section 5, successful runs completed in an average of 15
core minutes. Although we are verifying against only half a block of
raw output from the first block, the reduced size of our timestamp
search means that the expected number of false positive matches
in Equation 2 is small, with probability at most 226/264 = 2738,

©The difference between the receive time of the first handshake packet received and the
timestamp generated by gettimeofday() in the PRG when it was called to generate
the SPI cookie is dependent on the time to execute the remainder of the packet creation
and sending routine after the call to generate the timestamp, the time taken along the
network to reach the attacking machine, the time taken by the attacking machine to
process and report the packet, and clock drift.

4.8 State recovery in TLS

State recovery for TLS uses the 28 random bytes of the server
random as 1.75 consecutive raw output blocks from the PRG. The
first four bytes of the server random are a timestamp that help
us fix a starting point for our search. Although we are verifying
Equation 2 with 1.75 blocks of raw output, the reduced size of
the timestamp search results means that false positives are very
unlikely. For a timestamp search space of 2%, we expect a false
positive with probability 226 /2% = 2770,

4.9 Recovering the IKEv2 Keys

Once we have recovered the PRG state from the SPI (block Ry of
output) and nonce (block Ry of output), we can then wind forward
the PRG, successively guessing the two following timestamps and
applying Equation 1 to recover two more blocks Ry and R3 that will
be used to generate the Diffie-Hellman secret.

We calculate gRZ IIRs mod p (where || denotes concatenation) and
check this value against the Diffie-Hellman public value in the
IKE_SA_INIT packet until we find a match.

We measured the time difference between the nonce PRG timestamp
and the first key block PRG timestamp and found a mean difference
of 154.4us with a standard deviation of 32.2us. We search 3¢ out
from the average to find the timestamp, requiring a search over 28
timestamps.

We also measured the average difference between the first and
second calls to the PRG at 18.3us with a standard deviation of
4.53ps for the Fortigate 100D and 1141us for the virtual appliance.
Measurements were taken using 10 pairs of consecutive calls to the
PRG. Since the two key blocks are generated with a single read()
system call, we set our search space for each ‘second’ key PRG
block to begin 18 microseconds after the first, searching outwards
to a maximum of 32 microseconds after, corresponding to 3o, or
2% timestamps. Combining the simultaneous search for the two
timestamps, the key recovery stage requires a search space of 28 -
2% = 213 timestamps.

Since the FortiGate 100D hardware device offloads modular expo-
nentiation to a proprietary Fortigate ASIC (FortiASIC CP8) that uses
a transformation we weren’t able to reverse-engineer, our brute
force code makes a system call to the ASIC to test each candidate
pair of PRG outputs. Over 30 trials, the average time to carry out
this part of the attack was 3.88s on the hardware.

4.10 Recovering Traffic Keys

Once we have recovered the victim device’s public key value, we
can make another call to the ASIC with our recovered PRG inputs
and the other side’s public key exchange value to recover the IKEv2
Phase 1 Diffie-Hellman shared secret. For IKEv2, once the Diffie-
Hellman shared secret has been computed, all of the information
needed to compute the SKEYSEED value and derive the symmetric
encryption keys is present in the clear in the IKE_SA_INIT messages
exchanged by both the initiator and responder. We computed the

SKEYSEED as described in Section 2.5.2 and verified full passive
decryption against traffic to our FortiGate 100D.

5 MEASUREMENTS

We used ZMap to perform Internet-wide scans on port 443 (HTTPS)
and port 500 (IKEv2) to measure the population of vulnerable
Fortinet devices. Active scanning is an imperfect measure of the
scope of this type of vulnerability. It does not reflect the amount of
traffic vulnerable hosts receive. In addition, well-configured hosts
would be unlikely to expose either port on a public IP address.

5.1 HTTPS

We used several types of HTTP and HTTPS metadata to identify
affected hosts in the wild. Our scans targeted hosts exposing the
device’s admin panel on a public IPv4 address on port 443.

TLS version and cipher suites. In April 2017 we probed the full
public IPv4 address space on port 443 for publicly accessible HTTPS
hosts. With each host we performed a TLSv1.0 handshake, the
version supported by the vulnerable devices, and offered the cipher
suites listed in Table 5 in Appendix B. Our scan completed a full
handshake with 29,709,242 hosts.

Server certificate common name. In its default configuration,
FortiOS v4 serves a self-signed certificate with the model and serial
numbers for the common name and ‘Fortinet’ for the organization.
This does not identify the firmware or build number. We found
114,172 hosts with a matching certificate organization field; their
common names indentified 3,379 unique model numbers.

State recovery. Our state recovery attack was successful against
23,517 hosts, or 20.6% of hosts with default Fortinet certificates.
We attempted state recovery using a 1s window around the time
encoded in the server random. Figure 5 shows the distribution of
the number of timestamps guessed for successful state recoveries.
In Figure 6, we plot the distribution of the timestamp for the first
block of PRG output relative to the timestamp encoded in the TLS
server random. The near-uniform distribution may be due to the
fact that the server random has second granularity and the PRG
uses psecond granularity.

Figure 4 shows the distribution of the gap between the timestamps
for the first and second PRG blocks in the TLS server random. We
brute forced up to an offset of 100 us after the first timestamp, but
all our observed state recoveries had a gap of no more than 40 us
between the first and second timestamps.

Specific HTTP files. Our hardware device’s administration panel
contained an image file located at /images/logon.gif. In our
HTTPS scan, we sent a GET request for this file. 605,950 hosts
responded with HTTP OK, and a corresponding image. The others
returned a 404 error. We were unable to automatically validate
these images, so we used the techniques below to further narrow
candidates.

7This is lower than the 40 million HTTPS hosts seen in scans offering a wider variety
of SSL/TLS versions and cipher suites.

Table 4: X9.31 state and key recovery in the wild

HTTPS hosts (TLS 1.0/port 443) 29,709,242
... with default Fortinet certificate 114,172
...and successful state recovery 23,517
...with known FortiOSv4 ETag 2,336
...and successful state recovery 2,265
IKEv2 hosts (port 500) 7,743,876
...with 128-bit nonces 50,285
...and private key recovery 7
...with TLS nonce state recovery 152
...and non-static IKE parameters 17
...and private key recovery 7

ETag headers. The HTTP ETag header uniquely identifies HTTP
server resources, and is used for web cache validation along with
conditional requests [27]. The RFC specifies that the value of the
header “is data known only to the server". In order to fingerprint
devices running vulnerable firmware versions, we matched headers
from our scan against known ETags for FortiOS v4.

The Equation Group leak [28] contained a list of 440 ETag suffixes
for some FortiOS device and firmware-build pairs, including 168
entries corresponding to 9 models and 26 builds of FortiOS v4. The
leak also contained a memory address for each entry, used for the
Egregious Blunder exploit with which it was packaged. The ETag
for our FortiGate 100D (5192dbfd) was not included in the database,
so we added it to our search.

Of 655,878 HTTP hosts responding with an ETag, 2,336 gave a
known FortiOS v4 ETag. The state recovery attack was successful

IoN
o
o
o
1

3000 A

Number of Hosts
— [\
(=) (=)
(=) ()
() ()
L L

NI ,.nm L
30

0 10 20
Time Difference in Microseconds

40

Figure 4: Subsesquent timestamp offset. We calculated the
difference between the first and second timestamps used to
generate the RNG blocks for the TLS nonce. This value was
brute forced from within a range of between zero and one
hundred microseconds. The average difference is 19.2 mi-
croseconds with a standard deviation of 10.1 microseconds.

300 4

200 4

100 A

Number of Hosts

215 217 219 221 223 225 227
Number of Timestamps Guessed

Figure 5: Brute force work for TLS state recovery. The av-
erage number of timestamp guesses required for each host

was 2229 with a standard deviation of 223-1,

for 2,265 (97%) of these. 1,535 of these hosts presented non-default
HTTPS certificates. State recovery was successful for every device
matching the ETag for our hardware device.

RSA public keys. Fortigate devices were already known to gen-
erate RSA moduli that share common factors [32, 35]. We ran a
batch GCD computation against the HTTPS certificate RSA public
keys from fingerprinted Fortigate devices together with identi-
fied Fortigate public keys from historical scans obtained from the
authors of [32]. This gave us prime factors for 3,163 keys from
our scan. However, the X9.31 state recovery attack described in
Section 4.4.1, conducted with the certificate timestamps, was not
successful against the most significant bits of the prime factors.
None of the hosts with factored keys matched the HTTP or IKE fin-
gerprints, suggesting that certificates were generated by a software

1000 -

500 -

Number of Hosts

0 -
—0.5 —0.3 —0.1 0.1 0.3 0.5
Time Difference in Seconds

Figure 6: Initial timestamp offset. The average offset be-
tween the timestamp encoded in the TLS server random (at
1s resolution) and the timestamp used to seed the first PRG
block for our successful state recovery trials (at ps resolu-
tion) was 510ps.

version other than FortiOS v4 with a different underlying random
number generation vulnerability.

Limitations. The devices that responded to our HTTPS scans ex-
posed the administration panel on a public IPv4 address, which
is not the default configuration for FortiOS. Our scans therefore
identified only those devices that were misconfigured. A correct
(and default) configuration prevents our scanning but does not
mitigate the vulnerability. The total population of vulnerable hosts
is therefore likely significantly higher than the population visible
to our scan. A well-equipped adversary could have constructed a
larger database of ETags. This technique can also be used for other
manufacturers, a number of whom also insert a model-firmware
identifier in header.

5.2 IKEv2

We used UDP scans on port 500 to initiate IKEv2 handshakes for
the full IPv4 space. However, the metadata available in IKEv2 con-
nections is more limited than for HTTPS.

HTTPS Admin Panel. Of the 23,554 HTTPS hosts in the previous
section against which state recovery from the TLS nonce on port
443 was successful, 152 responded to IKEv2 handshake requests
on port 500. Of these hosts, 135 always returned a single, identical,
static common nonce and key exchange for every connection. These
devices were located within the Chinanet AS and their SSL/TLS
certificates suggested a variety of Fortinet model numbers. From
the remaining 17 hosts whose nonces and key exchanges were
generated on new connections, our key recovery attack succeeded
against 7.

Cipher support. We sent handshake requests with cipher propos-
als that were supported in FortiOS v4, listed in Table 7 in Appen-
dix B. We received 7,743,876 responses.

Nonce size. FortiOS v4’s IKEv2 implementation uses 128-bit nonces.
From our successful IKEv2 handshakes above, 50,285 had 128-bit
nonces. We attempted state and key recovery from our handshakes
with all of these hosts, and were able to successfully recover the
Diffie-Hellman shared secret in the handshake we negotiated for
7 hosts using the key recovery attack we describe above. This in-
cluded 4 hosts that weren’t seen in the population of vulnerable
HTTPS hosts. We hypothesize that most of the publicly visible
IKEv2 responders with 128-bit nonces are not vulnerable Fortigate
products, and that most VPNs are configured as site-to-site tunnels
that would not be visible in our scans.

Limitations. The number of IKE responses we receive should be
treated as a lower bound, since many VPNs are configured as site-
to-site tunnels, or filter based on source IP and are invisible to scans
from unknown hosts.

6 RELATED WORK

Cryptanalysis of RNG designs. There is a long history of crypt-
analysis of practical pseudorandom number generator designs in
the literature. Kelsey, Schneier, Wagner, and Hall [42] enumerate
classes of attacks on PRNGs, and note several design flaws and

vulnerabilities against PRNG designs, including the key compro-
mise vulnerability in X9.17/X9.31 RNG that we consider in this
paper. Gutterman, Pinkas, and Reinman [30] analyzed the Linux
random number generator in 2006, and Dorrendorf, Gutterman,
and Pinkas [22] analyzed the Windows random number generator
in 2009. Dodis et al. [20] defined a notion of recovery from state
compromise for a PRNG, showed that the Linux random number
generator did not satisfy this definition, and showed that there
were inputs that would cause it to fail to recover from state compro-
mise and would mislead the entropy estimation function. Michaelis,
Meyer, and Schwenk [47] analyzed Java random number genera-
tion implementations and noted several vulnerabilities, including a
vulnerability in Android.

Green [29] notes the dangers of using X9.31. He additionally high-
lights the danger and usage of a global X9.31 key for the RNG in an
early draft of AACS, the digital rights management specification
for HD-DVD and Bluray distributions.

Random number generation failures. Multiple types of random
number generation failures have been observed in the wild.

One category of RNG failures appears to be due to failure to prop-
erly seed a random number generator before use, or seeding with
poor-quality inputs. Famously, between 2006 and 2008, the De-
bian OpenSSL random number generator incorporated almost no
entropy into its state. [59] In 2012, Heninger et al. discovered a boot-
time failure of the Linux random number generator to properly
incorporate entropy sources on embedded and headless systems;
this flaw resulted in them being able to compute RSA private keys
for 0.5% of TLS hosts and DSA private keys for 1.06% of SSH hosts
in 2012 [35]. Lenstra et al. [45] performed a similar study of public
keys collected from the internet in 2012, and were able to compute
RSA private keys for 0.3% of HTTPS hosts and a pair of PGP users.
In 2016, Hastings, Fried, and Heninger [33] performed a follow-up
study that found low to nonexistent software patching rates for
systems affected by the 2012 RNG flaws. Bernstein et al. [10] were
able to factor 184 keys from a sample of approximately 2 million
smartcard-generated RSA keys from the Taiwanese “Citizen Digital
Certificate" smartcard ID system. They hypothesized that the fail-
ures were due to a flawed hardware random number generator on
some smartcards combined with a failure to whiten raw hardware
RNG outputs. Kadianakis et al. [39] performed a similar analysis on
the 3.7 million RSA public keys of Tor relays, finding 10 relays with
shared RSA moduli and 3,557 relays with shared prime factors.

Other types of system failures can result in repeated states or out-
puts in RNG implementations. Ristenpart and Yilek [54] show that
virtual machine snapshots can result in cryptographic failure due
to implementation flaws in random number generators. A 2013
vulnerability in the Android SecureRandom resulted in a number
of Bitcoins stolen from Android-based wallets due to repeated DSA
signature nonces [43].

Intentional RNG backdoors. A further category of failures are
due to intentionally weakened designs. Young and Yung [60] in-
troduced the concept of kleptography, the design of cryptographic
schemes with hidden backdoors. They later described a scheme

for introducing such a backdoor into discrete log-based cryptosys-
tems [61].

In a 2013 article published on the Snowden leaks, the NY Times
and Pro Publica pointed to the NIST-standardized Dual EC DRBG
as a cryptographic standard that had been subverted by the NSA as
part of a general program to influence standardization processes,
although the original source document naming Dual EC has not
been published. In the wake of these accusations, NIST removed
support for the Dual EC DRBG algorithm from its standards. How-
ever, this was not the first time that the possibility of a backdoor in
the Dual EC DRBG had been raised. In 2006, Brown [13] noted that
the indistinguishability proof for the NIST-standardized Dual EC
DRBG relies on a random Q parameter. Shumow and Ferguson [56]
noted that the design of the Dual_EC DRBG admits a kleptographic
backdoor. By generating parameters such that there exists an inte-
ger d where dQ = P, the kleptographer can recover the state of the
DRBG by observing 32 consecutive bytes of output. Checkoway et
al. [16] analyze how an unknown attacker inserted code into Ju-
niper ScreenOS to exploit the presence of the backdoor in the Dual
EC DRBG that would allow passive decryption of IPsec connec-
tions. Dodis et al. [19] formally model backdoored random number
generators, design backdoored PRNGs with strong indistinguisha-
bility properties, and evaluate countermeasures against backdoors.
Degabrielle et al. [18] build on this by giving efficient constructions
such PRNGs and bounding the duration of the compromise in terms
of the state-size of the PRNG.

7 DISCUSSION

NSA decryption capabilities. Classified NSA documents leaked
by Edward Snowden and published by Der Spiegel [62] suggest that
the NSA has passive decryption capabilities against some fraction
of IPsec, TLS, and SSH traffic. Proposed explanations for these ca-
pabilities include the NSA performing 768-bit and 1024-bit discrete
log precomputations for widely used Diffie-Hellman primes [6]
(Boudot [12] points out that a 768-bit discrete log precomputation
may have been feasible for the NSA as early as the year 2000), back-
doored random number generation standards such as the Dual EC
DRBG [15, 16], and software exploits and malware (“implants”).

We suspect the reality is a combination of these techniques cus-
tomized to vendors’ vulnerabilities. Our paper explores another
feasibly exploitable cryptographic vulnerability that may explain
some decryption capabilities.

While a compromised random number generator design would
seem like an appealing avenue to inject or discover vulnerabilities
in cryptographic implementations, the Dual EC DRBG just does
not seem to have been implemented widely enough to explain
decryption capabilities in more than a small handful of products.
(The exceptions we are aware of are the RSA BSAFE library, and
Juniper ScreenOS.) By contrast, the X9.17/X9.31 PRG has been
ubiquitous for decades.

Ease of exploitation. We note that our attacks in this paper against
the X9.31 PRG were significantly less computationally expensive to
carry out than many of the attacks against Dual EC in TLS measured

by Checkoway et al. [16]. This is because the most efficient attacks
against Dual EC require 32 bytes of raw PRG output, and the effort
required to exploit the backdoor grows exponentially as the amount
of raw PRG output available to the attacker decreases. In contrast,
because successive timestamps do not have very much entropy, an
efficient attack against the X9.31 PRG with AES for the block cipher
that uniquely recovers the state would be possible with 20 bytes or
even fewer of raw output. Checkoway et al. [16] note that when
Juniper replaced the X9.31 PRG with Dual EC in their ScreenOS
implementation, they increased the length of the nonces used in the
IKE handshake from 20 bytes to 32 bytes, thus permitting efficient
passive exploitation of the Dual EC backdoor. Efficient Dual EC
exploitation would not have been possible without this increase.

NOBUS and symmetric backdoors. As we note in the introduc-
tion, the vulnerability we exploit in the X9.17/X9.31 PRG is by
definition not a “NOBUS” backdoor because it is symmetric, and
is thus both detectable and exploitable by any party who can gain
access to a static key used by some device for the PRG through
reverse-engineering or physical access. This is in contrast to the
case of the Dual EC PRG, where only the party who generated
the elliptic curve points used as parameters for the PRG knows
whether they contain a backdoor. However, an implementation of
the X9.17/X9.31 PRG that uses a vulnerable static key could still
increase the cost of exploitation to a chosen level of difficulty by
increasing the granularity of the timestamps. The Fortinet systems
we analyzed used gettimeofday which typically has at most s
resolution. An implementation using RDTSC to obtain nanosecond
granularity instead, would likely have put the attack outside easy
reach of modest attackers.

Failure of the standardization process. The failure of the NIST
and FIPS standardization process to protect against a long-known
vulnerability in an approved random number generator is surpris-
ing. The observation that the seed key must remain secret in the
X9.17/X9.31 design was first noted almost two decades ago, and yet
none of the descriptions of the algorithm we could find mentioned
the importance of generating an unpredictable key. The security
policies documenting a known vulnerability should have been de-
tected by the testing labs; the fact that they were not illustrates
systemic issues with lab-based validation. NIST mentioned con-
flict of interest issues (the testing labs are paid by the vendors),
lab personnel skill, and workload in personal communication to
us. To address these issues, NIST is transitioning to an automated
validation program [50].

Eliminating obsolete cryptography. John Kelsey, one of the au-
thors of [42], told us in personal communication that removing
X9.17 key generation and FIPS 186’s RNGs from the standards that
ultimately became NIST SP 800-90A was one of the first things he
did when joining NIST, and that he was surprised to learn in 2016
that implementations using both remained in the field.

Removing obsolete cryptographic algorithms from standards and
implementations is difficult in practice. The MD5 and SHA1 hash
functions, RC4 stream cipher, and RSA PKCS#1v1.5 encryption
padding remained in use for decades after they were known to be
cryptographically flawed. For vendors, removing algorithms breaks
backwards compatibility and many devices have long lifespans.

Kelsey pointed to the difficulty of eliminating obsolete cryptography
as a contributing factor to the vulnerability; we hypothesize that
once the X9.31 PRG was en route to deprecation, there was little
incentive for NIST to update the standard, but vendors continued to
implement the algorithm as standardized for many years because
of the long, slow deprecation process. Standards such as FIPS may
also increase the cost of updating cryptography by necessitating
expensive new product certification.

Concerns about other PRG designs. In positive news, the re-
maining approved PRG designs in NIST SP 800-90A appear to be
based on sounder footing, both in practice and in theory. However,
this analysis assumes that implementations are sound. Cipher-based
PRGs appear specifically vulnerable to state recovery attacks when
the cipher key is obtained by an attacker. This raises the possibil-
ity that a careless or malicious implementation of a modern PRG
such as NIST’s CTR_DRBG [8] could be implemented in such a
way that the key is not routinely updated, which might allow state
recovery attacks. These attacks are problematic, as an observer
without knowledge of the key would see output that is statistically
indistinguishable from a correct implementation [37]. Moreover,
such vulnerabilities might not be visible in test modes due to im-
plementation differences [46].

ACKNOWLEDGEMENTS

We thank David McGrew and Dario Ciccarone for helpful discus-
sions and research into Cisco’s product lines, and Steve Checkoway
for reverse-engineering the Juniper ScreenOS implementation of
the X9.31 PRG. This work was supported by the National Science
Foundation under grants CNS-1651344, CNS-1505799, CNS-1408734,
CNS-1010928, CNS-1228443, CNS-1653110 and EFMA-1441209; the
Mozilla Foundation; and a gift from Cisco. We are grateful to Cisco
for donating the Cisco UCS servers we used for the computational
experiments.

REFERENCES

I

Cryptographic Algorithm Validation Program - rng Validation List.

https://csre.nist.gov/projects/cryptographic-algorithm-validation-program/

validation/validation-list/rng.

FIPS 140-2 SECURITY POLICY FOR: INZERO GATEWAY. www.kmip.me/www3.

cryptsoft.com/fips140/unpdf/140sp1841-1.html.

[3] IDC CorroraTION. Worldwide Security Appliance Market Off to a Healthy

Start in 2016, Continuing Its Streak of Eleven Consecutive Quarters of Growth,

According to IDC.

MITRE CoORPORATION. Cve-2016-1909.

MITRE CorPORATION. CVE-2016-8492.

ADRIAN, D., BHARGAVAN, K., DURUMERIC, Z., GAUDRY, P., GREEN, M., HALDER-

MAN, J. A., HENINGER, N., SPRINGALL, D., THOME, E., VALENTA, L., VANDERSLOOT,

B., WusTROW, E., ZANELLA-BEGUELIN, S., AND ZIMMERMANN, P. Imperfect for-

ward secrecy: How Diffie-Hellman fails in practice. In 22nd ACM Conference on

Computer and Communications Security (Oct. 2015).

[7] BARKER, E., AND ROGINSKY, A. Transitions: Recommendation for transitioning
the use of cryptographic algorithms and key lengths. NIST Special Publication
800 (2011), 131A.

[8] BARKER, E. B., AND KELSEY, J. M. Recommendation for random number generation

using deterministic random bit generators (revised). US Department of Commerce,

Technology Administration, National Institute of Standards and Technology,

Computer Security Division, Information Technology Laboratory, 2007.

BELLARE, M., PATERSON, K. G., AND RoGaway, P. Security of Symmetric Encryption

against Mass Surveillance. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[2

[4

—
)

l6

[9

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/validation/validation-list/rng
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/validation/validation-list/rng
www.kmip.me/www3.cryptsoft.com/fips140/unpdf/140sp1841-1.html
www.kmip.me/www3.cryptsoft.com/fips140/unpdf/140sp1841-1.html

[10]

[11]
[12]

[13]
[14]

[15

[16]

[17]

[18]

[19

[20

[21]

[22]

[24]

[25

[26]

[27]

[28

[29]
[30]

[31

[32

[33]

[34]

[35]

[36]

[37]

BERNSTEIN, D. J., CHANG, Y.-A., CHENG, C.-M., CHOU, L.-P., HENINGER, N., LANGE,
T., AND VAN SOMEREN, N. Factoring RSA keys from certified smart cards: Cop-
persmith in the wild. In International Conference on the Theory and Application
of Cryptology and Information Security (2013), Springer, pp. 341-360.

Brum, M., AND MicALl S. How to generate cryptographically strong sequences
of pseudo-random bits. SIAM J. Comput. 13, 4 (Nov. 1984), 850-864.

Boupor, F. On improving integer factorization and discrete logarithm compu-
tation using partial triangulation. Cryptology ePrint Archive, Report 2017/758,
2017. http://eprint.iacr.org/2017/758.

Brown, D. R. Conjectured security of the ANSI-NIST elliptic curve RNG. IACR
Cryptology ePrint Archive 2006 (2006), 117.

C. KaurMaN, E. Internet Key Exchange (IKEv2) protocol. IETF RFC RFC4306,
2005.

CHECKOWAY, S., FREDRIKSON, M., NIEDERHAGEN, R., EVERSPAUGH, A., GREEN, M.,
LANGE, T., RISTENPART, T., BERNSTEIN, D. J., MASKIEWICZ, ., AND SHACHAM, H.
On the practical exploitability of Dual EC in TLS implementations. In Proceedings
of the 23rd USENIX Conference on Security Symposium (Berkeley, CA, USA, 2014),
SEC’14, USENIX Association, pp. 319-335.

CHECKOWAY, S., MASKIEWICZ, J., GARMAN, C., FRIED, ., COHNEY, S., GREEN, M.,
HENINGER, N., WEINMANN, R.-P., RESCORLA, E., AND SHACHAM, H. A systematic
analysis of the Juniper Dual EC incident. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (2016), ACM, pp. 468-479.
D. MAUGHAN, M. SCHERTLER, M. S., AND TURNER,]. Internet Security Association
and Key Management Protocol. IETF RFC RFC2408, 1998.

DEGABRIELE, J. P., PATERSON, K. G., ScuuLDT, J. C. N., AND WOODAGE, J. Backdoors
in pseudorandom number generators: Possibility and impossibility results. In
Advances in Cryptology — CRYPTO 2016 (Berlin, Heidelberg, 2016), M. Robshaw
and J. Katz, Eds., Springer Berlin Heidelberg, pp. 403-432.

Dopbrs, Y., GaNEsH, C., GOLOVNEV, A., JUELS, A., AND RISTENPART, T. A Formal
Treatment of Backdoored Pseudorandom Generators. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2015, pp. 101-126.

Donis, Y., POINTCHEVAL, D., RUHAULT, S., VERGNIAUD, D., AND WicHs, D. Secu-
rity analysis of pseudo-random number generators with input: /dev/random is
not robust. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security (2013), ACM, pp. 647-658.

Dopis, Y., SHAMIR, A., STEPHENS-DAVIDOWITZ, N., AND WicHs, D. How to eat
your entropy and have it too — optimal recovery strategies for compromised
RNGs. In CRYPTO ’14 (2014).

DORRENDORF, L., GUTTERMAN, Z., AND PINKAS, B. Cryptanalysis of the random
number generator of the Windows operating system. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009), 10.

(DSS), D. S. S. Generation of probable primes with conditions based on auxil-
iary probable primes. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf,
2013.

FORTINET. Fg-ir-16-067: FortiOS local privilege escalation via malicious use of
USB storage devices. http://fortiguard.com/psirt/FG-IR-16-067.

FORTINET. Fg-ir-17-245: Duhk Attack against Fortinet Products. https://fortiguard.
com/psirt/FG-IR-17-245.

FORTINET. Brief statement regarding issues found with FortiOS.
https://web.archive.org/web/20160125202411/http://blog fortinet.com:
80/post/brief- statement-regarding-issues-found-with-fortios, January 2016.
FRANKS, J., HALLAM-BAKER, P. M., HOSTETLER,]J. L., LAWRENCE, S. D., LEACH,
P.]., LUOTONEN, A., AND STEWART, L. C. HTTP Authentication: Basic and Digest
Access Authentication. RFC 2617, RFC Editor, June 1999. http://www.rfc-editor.
org/rfc/rfc2617.txt.

GoopIN, D. Group claims to hack NSA-tied hackers, posts exploits as proof, Aug
2016.

GREEN, M. Random number generation: An illustrated primer, Aug 2016.
GUTTERMAN, Z., PINKAS, B., AND REINMAN, T. Analysis of the Linux random
number generator. In IEEE Symposium on Security and Privacy (2006), IEEE Press.
HARKINS, D., AND CARREL, D. The Internet Key Exchange (IKE). IETF RFC
RFC2409, 1998.

HASTINGS, M., FRIED, J., AND HENINGER, N. Weak keys remain widespread in
network devices. In Proceedings of the 2016 Internet Measurement Conference
(2016), ACM.

HASTINGS, M., FRIED, J., AND HENINGER, N. Weak keys remain widespread
in network devices. In Proceedings of the 2016 ACM on Internet Measurement
Conference (2016), ACM, pp. 49-63.

HENINGER, N., DURUMERIC, Z., WUSTROW, E., AND HALDERMAN, J. A. Mining
your Ps and Qs: Detection of Widespread Weak Keys in Network Devices. In
Proceedings of USENIX Security 2012 (Aug. 2012), T. Kohno, Ed., USENIX.
HENINGER, N., DURUMERIC, Z., WUSTROW, E., AND HALDERMAN, J. A. Mining your
ps and gs: Detection of widespread weak keys in network devices. In USENIX
Security Symposium (2012).

HerLANDs, W., HoBsoN, T., AND DoNovaN, P. Effective Entropy for Memory Ran-
domization Defenses. In USENIX 7th Workshop on Cyber Security Experimentation
and Test (Aug. 2014), Lincoln Labratory.

JOANNE WOODAGE, D. S. An Analysis of the NIST SP 800-90A Standard, 2018.

(38]

[39]

[40

(41

[42

(43

[44]

[45

[46]

[47]

[48

[49

[50]
[51]

[52]

o
&,

JuNiPER NETWORKS, INC. FIPS 140-2 SECURITY POLICY - SSG 140.
https://www.juniper.net/documentation/hardware/netscreen-certifications/
Security_Policy_SSG-140_ScreenOS_6_2.pdf.

Kabp1aNAKis, G., ROBERTs, C. V., ROBERTs, L. M., AND WINTER, P. “Major key
alert!” Anomalous keys in Tor relays.

KELLER, S. S. NIST-recommended Random Number Generator Based on ANSI
X9.31 Appendix A.2.4 Using the 3-key Triple DES and AES Algorithms. National
Institute of Standards and Technology, 2005.

KELSEY, J., SCHNEIER, B., AND FERGUSON, N. Notes on the design and analysis of
the Yarrow cryptographic pseudorandom number generator. In SAC 99 (1999).
KELSEY, J., SCHNEIER, B., WAGNER, D., AND HaLL, C. Cryptanalytic attacks on
pseudorandom number generators. In Fast Software Encryption (1998), Springer,
pp. 168-188.

KrLyuBIN, A. Some securerandom thoughts. https://android-developers.
googleblog.com/2013/08/some-securerandom-thoughts.html, August 2013.
LawReNCE E. Bassuam II1, S. S. K. The Random Number Generator Validation
System (RNGVS). National Institute of Standards and Technology, 2005.
LENSTRA, A., HUGHES, J. P., AUGIER, M., Bos, J. W., KLEINJUNG, T., AND WACHTER,
C. Public keys. In Proceedings of the 32nd Annual Cryptology Conference on
Advances in Cryptology — CRYPTO 2012 - Volume 7417 (2012), pp. 626-642.
MARQUESS, S. Flaw in dual ec drbg (no, not that one), 2013. http://marc.info/?1=
openssl-announce&m=138747119822324&w=2.

MicHAELIS, K., MEYER, C., AND SCHWENK, J. Randomly Failed! The State of
Randomness in Current Java Implementations. In CT-RSA (2013), vol. 7779,
Springer, pp. 129-144.

MULLER, S. Linux random number generator — a new approach. Available at
http://www.chronox.de/lrng/doc/Irng html.

NGUYEN, P. Q., AND SHPARLINSKI, I. E. The insecurity of the Elliptic curve
Digital Signature Algorithm with partially known nonces. Designs, codes and
cryptography 30, 2 (2003), 201-217.

NIST. Automated cryptographic validation testing. https://csrc.nist.gov/Projects/
Automated-Cryptographic-Validation- Testing.

NIST. Security requirements for cryptographic modules. http://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.140-2.pdf, May 2001.

NIST. Cmvp historical validation list. http://web.archive.org/web/
20170120035228/http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/
140val-historical.htm, January 2017.

PERLROTH, N. Government Announces Steps to Restore Confidence on Encryp-
tion Standards. The New York Times (2013).

RISTENPART, T., AND YILEK, S. When good randomness goes bad: Virtual machine
reset vulnerabilities and hedging deployed cryptography. In NDSS ’10 (2010).
RUHAULT, S. SoK: Security Models for Pseudo-Random Number Generators. In
IACR Transactions on Symmetric Cryptography (TOSC) (2017), vol. 1.

SHuMow, D., AND FERGUSON, N. On the possibility of a Back Door in the NIST
SP800-90 Dual EC PRNG.

STRENZKE, F. An analysis of OpenSSL’s random number generator. In EURO-
CRYPT ’16 (New York, NY, USA, 2016), Springer-Verlag New York, Inc., pp. 644
669.

VAN DER LAAN, W. J. Tadaqueous moments, Sep 2016.

YILEK, S., REScORLA, E., SHACHAM, H., ENRIGHT, B., AND SAVAGE, S. When
private keys are public: Results from the 2008 Debian OpenSSL vulnerability. In
Proceedings of IMC 2009 (Nov. 2009), A. Feldmann and L. Mathy, Eds., ACM Press,
pp. 15-27.

YOUNG, A., AND YUNG, M. Kleptography: Using cryptography against cryptogra-
phy. In Eurocrypt (1997), vol. 97, Springer, pp. 62-74.

Young, A., AND YUNG, M. The prevalence of kleptographic attacks on discrete-
log based cryptosystems. In Annual International Cryptology Conference (1997),
Springer, pp. 264-276.

Intro to the VPN exploitation process. Media leak, Sept. 2010. http://www.spiegel.
de/media/media-35515.pdf.

http://eprint.iacr.org/2017/758
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://fortiguard.com/psirt/FG-IR-16-067
https://fortiguard.com/psirt/FG-IR-17-245
https://fortiguard.com/psirt/FG-IR-17-245
https://web.archive.org/web/20160125202411/http://blog.fortinet.com:80/post/brief-statement-regarding-issues-found-with-fortios
https://web.archive.org/web/20160125202411/http://blog.fortinet.com:80/post/brief-statement-regarding-issues-found-with-fortios
http://www.rfc-editor.org/rfc/rfc2617.txt
http://www.rfc-editor.org/rfc/rfc2617.txt
https://www.juniper.net/documentation/hardware/netscreen-certifications/Security_Policy_SSG-140_ScreenOS_6_2.pdf
https://www.juniper.net/documentation/hardware/netscreen-certifications/Security_Policy_SSG-140_ScreenOS_6_2.pdf
https://android-developers.googleblog.com/2013/08/some-securerandom-thoughts.html
https://android-developers.googleblog.com/2013/08/some-securerandom-thoughts.html
http://marc.info/?l=openssl-announce&m=138747119822324&w=2
http://marc.info/?l=openssl-announce&m=138747119822324&w=2
http://www.chronox.de/lrng/doc/lrng.html
https://csrc.nist.gov/Projects/Automated-Cryptographic-Validation-Testing
https://csrc.nist.gov/Projects/Automated-Cryptographic-Validation-Testing
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
http://web.archive.org/web/20170120035228/http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm
http://web.archive.org/web/20170120035228/http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm
http://web.archive.org/web/20170120035228/http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-historical.htm
http://www.spiegel.de/media/media-35515.pdf
http://www.spiegel.de/media/media-35515.pdf

N = N %, BT N SU R CR

FORTIOS V4 X9.31 INITTIALIZATION
ROUTINE

Listing 1: The X9.31 Initialization Routine.

int initialize_X931()

{
char rng_state[16];
char timestamp_buffer[16];
int aes_key[4];
int result = key_set;
aes_key[@] = 0x6D66B1F3;
aes_key[1] = 0x42726013;
aes_key[2] = 0xAB1COG6ED;
aes_key[3] = 0x0262D4BS8;
if ('key_set)

result = set_aeskey(aes_key);

if (!state_set)
{

/* initial state setting removed for

clarity */
save_state(rng_state);
fill_timestamp(timestamp_buffer);
result =
x931(×tamp_buffer, output_buffer,
rng_state, 16);
3

return result;

B SUPPORTED CIPHER SUITES IN
FORTIOSV4

Our hardware device supported the following cipher suites. Our
scanning client used in Section 5 offered all of these cipher suites.

Table 5: Supported TLS Cipher Suites in FortiOS v4

TLS_DHE_RSA_WITH_AES_256_CBC_SHA
TLS_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_CAMELLIA_256_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_DHE_RSA_WITH_AES_128_CBC_SHA
TLS_DHE_RSA_WITH_SEED_CBC_SHA
TLS_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_SEED_CBC_SHA
TLS_RSA_WITH_CAMELLIA_128_ CBC_SHA
TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_WITH_RC4_128_MD5

Table 6: Supported IKEv1 Parameters in FortiOS v4

Cipher PRF Group Authentication
DES MD5 DH_768 PSK

3DES SHA1 DH_1024 RSA

AES-128 SHA256 DH_1536

AES-192

AES-256

Table 7: Supported IKEv2 Parameters in FortiOS v4

Cipher PRF MAC Group
DES SHA256 SHA256 DH_768
3DES SHA1 SHA1 DH_1024
AES-128 MD5 MD5 DH_1536
AES-192 DH_2048

AES-256

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Disclosure
	1.3 Ethics

	2 Background
	2.1 Pseudorandom generators
	2.2 ANSI X9.31
	2.3 State Recovery Attack with a Known Key
	2.4 Attacking X9.31 in TLS
	2.5 Attacking X9.31 in IPsec

	3 FIPS and Hardcoded X9.31 Keys
	3.1 Background on FIPS certification
	3.2 Certified unsafe usage of the X9.31 PRG
	3.3 Device-specific analysis
	3.4 Open source implementations

	4 Decrypting VPN traffic on FortiOS v4.3
	4.1 History of FortiOS 4.x
	4.2 Static Analysis
	4.3 The X9.31 Implementation
	4.4 The HTTPS Implementation
	4.5 The IKE Implementation
	4.6 State recovery in IKEv1
	4.7 State recovery in IKEv2
	4.8 State recovery in TLS
	4.9 Recovering the IKEv2 Keys
	4.10 Recovering Traffic Keys

	5 Measurements
	5.1 HTTPS
	5.2 IKEv2

	6 Related Work
	7 Discussion
	References
	A FortiOS v4 X9.31 Initialization Routine
	B Supported Cipher Suites in FortiOSv4

