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Plasticity-led evolution occurs when a change in the environment triggers a
change in phenotype via phenotypic plasticity, and this pre-existing plas-
ticity is subsequently refined by selection into an adaptive phenotype.
A critical, but largely untested prediction of plasticity-led evolution (and
evolution by natural selection generally) is that the rate and magnitude of
evolutionary change should be positively associated with a phenotype’s
frequency of expression in a population. Essentially, the more often a pheno-
type is expressed and exposed to selection, the greater its opportunity for
adaptive refinement. We tested this prediction by competing against each
other spadefoot toad tadpoles from different natural populations that vary
in how frequently they express a novel, environmentally induced carnivore
ecomorph. As expected, laboratory-reared tadpoles whose parents were
derived from populations that express the carnivore ecomorph more fre-
quently were superior competitors for the resource for which this ecomorph
is specialized—fairy shrimp. These tadpoles were better at using this resource
both because they were more efficient at capturing and consuming shrimp
and because they produced more exaggerated carnivore traits. Moreover,
they exhibited these more carnivore-like features even without experiencing
the inducing cue, suggesting that this ecomorph has undergone an extreme
form of plasticity-led evolution—genetic assimilation. Thus, our findings pro-
vide evidence that the frequency of trait expression drives the magnitude of
adaptive refinement, thereby validating a key prediction of plasticity-led
evolution specifically and adaptive evolution generally.

1. Introduction

Phenotypic plasticity is commonplace [1,2], but whether and how it impacts
evolution is controversial [3-5]. An evolutionary process in which plasticity has
long been implicated is the origins of novel, complex phenotypes (e.g. [2,5-10]).

According to the ‘plasticity-led evolution” hypothesis (sometimes dubbed
‘plasticity-first evolution” [11,12]), a novel complex phenotype first appears in
a rudimentary form when the phenotype (or its components) is expressed via
plasticity following a change in environment. Such environmental change is
typically stressful, and organisms can mitigate this stress by using plasticity
to facultatively produce a phenotype better matched to the new environment.
If underlying genetic variation exists in either the tendency or manner in
which individuals respond to this environmental change (as is nearly always
the case [13]), then selection can act on these ‘reaction norms’ and improve
the phenotype’s functionality by altering the phenotype’s form. Moreover,
selection can also promote a change in the phenotype’s regulation. Specifically,
depending on whether or not plasticity is favoured [14,15], selection can favour
either increased environmental sensitivity—which might ultimately maintain
the new phenotype as part of a ‘polyphenism’ [1]—or decreased environmental
sensitivity—which might ultimately cause the plasticity to be lost and the phe-
notype to become canalized through ‘genetic assimilation” (sensu [16]).
Essentially, plasticity-led evolution occurs when selection promotes an
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adaptive change in an initially environmentally induced
phenotype’s form and/or regulation. Thus, plasticity itself
can evolve (as has been long recognized (e.g. [13,15,17—
19])), and, consequently, this evolution can facilitate the
origin of a novel, complex phenotype.

Although laboratory studies support these ideas [16,20],
and there are suggestive field studies (reviewed in [9,12]),
many researchers remain sceptical of whether plasticity can
facilitate evolution [3,4]. Such scepticism arises, in part,
because the key criteria and predictions of the plasticity-led
evolution hypothesis have not been made clear and evaluated
in natural populations [3,4]. To address this concern, we [12]
recently outlined four key criteria for testing this hypothesis,
one of which (criterion 4) is that the focal trait should exhibit
evidence of having undergone adaptive refinement as it is
induced and exposed to selection repeatedly. Although this
criterion is seldom validated, doing so is essential to rule
out alternative explanations [12].

Moreover, of the few studies that have tested criterion 4
(cited in [12]), none have tested its critical, underlying predic-
tion: that the rate and magnitude of phenotypic change
should be positively associated with a phenotype’s frequency
of expression or use in a population [2,12,21,22]. This predic-
tion is, in turn, rooted in two assumptions: (i) that individuals
in ancestral lineages (where a rudimentary version of the
focal trait is produced through plasticity) should express
the trait less frequently than individuals in derived lineages
(where the trait may be canalized); and (ii) that a trait in a
population in which it is expressed (and exposed to selection)
more frequently should evolve greater and more rapid refine-
ment [2]. Essentially, during plasticity-led evolution, as an
environmentally induced phenotype is recurrently produced
(e.g. by persistent selection pressure favouring that pheno-
type), it will be exposed to selection more frequently and
therefore have greater opportunity for adaptive refinement.

This notion that the frequency of trait expression drives the
magnitude of adaptive refinement is a critical prediction
not only of plasticity-led evolution, but also of evolution by
natural selection more generally. Yet, ‘frequency-dependent
adaptation” has rarely been demonstrated empirically (but see
[23-25]). (Note that frequency-dependent adaptation is a separ-
ate, albeit related, process from frequency-dependent selection,
which arises when the fitness of an individual phenotype
depends on its frequency in the population. Unlike frequency-
dependent adaptation, frequency-dependent selection has
been thoroughly studied; e.g. [26—-28]). However, indirect sup-
port for frequency-dependent adaptation comes from studies:
(i) using reciprocal transplants that demonstrate adaptation to
local (i.e. frequently experienced) conditions and maladaptation
to alternative conditions (e.g. [29—-31]); (ii) of clinal variation in
adaptation that have shown a pattern of changing phenotype
ratios (including environmentally induced phenotypes) along
the cline such that the greatest divergence occurs at the
clinal extremes (e.g. [32-34]); and (iii) exploring adaptive
radiation where generalist or plastic ancestors experience greater
specialization over time (e.g. [35-38]).

Here, we perform an explicit empirical test of frequency-
dependent adaptation. We do so by focusing on amphibian
populations that have diverged in production of a novel,
environmentally induced ecomorph. If the frequency of trait
expression does indeed determine the degree to which that
phenotype is refined by selection, then individuals from
populations that produce this ecomorph more frequently

should be superior competitors for the resource on which
this ecomorph specializes. As we describe below, our findings
are consistent with this expectation.

2. Material and methods
(a) Study subjects

We studied plains spadefoot toads, Spea bombifrons, from natural
populations in the western USA. In many parts of its range,
S. bombifrons has evolved a larval polyphenism in which it pro-
duces two, environmentally induced, resource-use ecomorphs
(see the electronic supplementary material, figure S1): (i) omni-
vores, which are dietary generalists that feed mostly on detritus
and small plankton, and which are normally produced by
default; and (ii) carnivores, which are dietary specialists that
feed on, and are induced by the consumption of, anostracan
fairy shrimp or other tadpoles [39-45]. In most populations,
omnivores are the more frequently produced of the two eco-
morphs (e.g. earlier studies that sampled diverse sites in
allopatry found an average of 20% carnivores and 80% omni-
vores [41-43]; see the electronic supplementary material, figure
S2). However, in populations where S. bombifrons co-occurs
with a congener (Spea multiplicata), these two species have under-
gone ecological character displacement, resulting in S. bombifrons
producing nearly all carnivores (e.g. earlier studies found an
average of 95% carnivores and 5% omnivores in sympatry
[41-43]; see the electronic supplementary material, figure S2).
We refer to these S. bombifrons populations that occur with and
without S. multiplicata as ‘sympatric’ and ‘allopatric’, respect-
ively. Because the two species have come into secondary
contact following range expansion by S. bombifrons [46,47], sym-
patric populations represent the ‘derived’ state, whereas
allopatric populations represent the ‘ancestral” state.

For the experiments below, we created 10 full sibships of
S. bombifrons by breeding adults that were recently collected from
diverse populations in allopatry (electronic supplementary material,
table S1 and figure S2), all of which probably experience ongoing
gene flow [46]: Colorado (four sibships), northern Nebraska (one
sibship), southwestern Nebraska (two sibships), Oklahoma (two
sibships) and Texas (one sibship). These 10 sibships constituted
our allopatric animals. We also created eight full sibships of S. bom-
bifrons by breeding adults that were recently collected from six
populations in the San Simon valley of southeastern Arizona
(where S. multiplicata is present; electronic supplementary material,
table S1 and figure S2), all of which probably experience ongoing
gene flow [47]. These eight sibships constituted our sympatric
animals. Breeding was induced by injecting adults with 0.04 ml
luteinizing hormone-releasing hormone (Sigma L-7134) at a concen-
tration of 0.01 pg Wl and leaving pairs overnight in separate
nursery tanks. The next day, adults were removed, and the eggs
from each sibship were kept in these tanks until they hatched.

(b) Testing whether frequency of trait expression
predicts its adaptive refinement

We predicted that sympatric tadpoles would be superior competi-
tors for shrimp—and therefore grow more on shrimp—compared
to allopatric tadpoles. This is because S. bombifrons produces carni-
vores (the ecomorph that specializes on shrimp) more frequently
in sympatry than in allopatry (see §2a). Conversely, we predicted
that allopatric tadpoles would be superior competitors for detritus
compared to sympatric tadpoles, because S. bombifrons produces
omnivores (the ecomorph that uses detritus) more frequently in
allopatry than in sympatry (see §2a).

For these tests, we had to give each tadpole a population-
specific mark (to differentiate it from its tankmate; e.g. see
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[48]). We therefore needed to grow tadpoles to a sufficient size to
receive these marks. To do so, we randomly selected 95 tadpoles
from each of 15 sibships (eight allopatric, seven sympatric) and
placed them in an outdoor wading pool (1.5 m diameter) for 4
days (water temperatures approx. 30°C). At the start, each pool
received 50 ml of plant-based fish food. After returning the tad-
poles indoors, we placed each sibship in clean water and fed
them 400 mg of fish food. Twenty-four hours later, we measured
the snout—vent length (SVL) of these tadpoles and created our
experimental units.

Each experimental unit consisted of three tanks (18 x 13 x
8.5 cm, filled with 1.21 of dechlorinated water) containing: (i) a
single allopatric tadpole, (ii) a single sympatric tadpole, and
(iii) two tadpoles, one of which was a sibling of the allopatric
tadpole, and the other of which was a sibling of the sympatric
tadpole. The first two were dubbed ‘singleton tanks’, whereas
the third was dubbed a ‘competition tank’. All tadpoles in each
experimental unit were similar in SVL at the start (individuals
varied by less than 2.5%). To distinguish between tankmates in
the competition tanks, we injected pink elastomer [48] into
the dorsal tail of one individual (equal numbers of allopatric
and sympatric tadpoles were injected). All three tanks in each
experimental unit were placed adjacent to each other.

Half of the competition tanks received daily 40 mg of
crushed fish food (hereafter, ‘detritus’), which simulates in form
and nutrition the detritus on which Spea omnivores feed in natu-
ral ponds [44]. The other half received twice daily 100 live brine
shrimp (Artemia), which simulate the fairy shrimp (Thamnocepha-
lus or Steptocephalus) on which Spea carnivores feed in natural
ponds. Preliminary tests indicated that these amounts of detri-
tus and shrimp induced competition; i.e. food was completely
eaten between feedings. Singleton tanks received half of these
amounts; thus, the per capita amounts of food provided to
singleton and competition tanks were identical. All tanks experi-
enced 50% water changes every other day. We had 51 replicate
units per diet. After 10 days, we ended the experiment by
euthanizing tadpoles in a 0.8% aqueous solution of tricaine
methanesulfonate (MS-222) and preserving them in 95% ethanol.

We evaluated the predictions outlined at the start of this sec-
tion in three ways. First, we used likelihood ratio tests to compare
a series of mixed models. ‘Diet’ (i.e. detritus or shrimp) and
‘selective environment’ (i.e. allopatry or sympatry) were fixed
categorical variables and ‘sibship’, ‘competitor sibship’ and
‘replicate” were random effects. We compared a null model that
contained only the random effects to single-factor models that
retained the random effects and included either diet or selective
environment as a fixed effect, and to two-factor models (with
and without an interaction term). The ‘best model” was deter-
mined if it was significantly better than all other models
according to likelihood ratio tests (performed using ‘anova’ in
R). The biological interpretation of each model is described in
the electronic supplementary material.

Second, we performed a type III sum of square analysis of
variance (ANOVA) on the interaction model to corroborate our
observations from the above test. We also calculated the effect
size (Cohen’s d) between diets for each selective environment
to determine if tadpoles from sympatry have experienced greater
divergence in growth between diets (i.e. greater growth on
shrimp and/or reduced growth on detritus) than tadpoles
derived from allopatry. If there was a significant interaction,
we performed post hoc multiple comparisons tests by grouping
selective environment with diet (i.e. allopatry.shrimp, allopatry.-
detritus, etc.) and using the ‘pairwise.t.test” function with “fdr’
correction in R.

Finally, for each competition tank, we categorized each
tadpole as the ‘winner” of competition if it grew more than its
tankmate. We then performed one-tailed Fisher’s exact tests to
determine if the number of winners differed between selective

environments. One-tailed tests were used because we had the
a priori prediction that there would be more allopatric winners
on detritus and more sympatric winners on shrimp (this
a priori prediction was based on patterns of trait expression in
nature; see §2a). We also used Levene’s tests to evaluate differ-
ences in the amount of variation in growth among selective
environments and diets. If competitive differences between selec-
tive environments happen to be diet-dependent, then we would
expect greater variation on one diet than on the other.

() Evaluating mechanisms of adaptive refinement
The results of the previous experiment revealed that (see §3a):
(i) tadpoles from sympatry grew more than tadpoles from allopatry
on shrimp, and (ii) tadpoles from allopatry grew more than
tadpoles from sympatry on detritus. Based on previous work
[41,42,44,48-52], we evaluated five, non-mutually exclusive mech-
anisms that could explain these differences between selective
environments in competitive ability. We specifically tested whether
tadpoles from the two selective environments have diverged in:
(i) intrinsic growth rate, (i) time budgets, (iii) trait integration,
(iv) shrimp capture ability, or (v) trophic morphology. Each test is
described in the electronic supplementary material.

(d) Testing for genetic assimilation of trophic
morphology

Finally, we tested if tadpoles from sympatry developed more carni-
vore-like features, even in the absence of the cue that normally
induces the carnivore morphology (ingestion of live shrimp
or tadpoles). Finding such a pattern would suggest that trophic
morphology has been genetically assimilated in sympatry. To per-
form this test, we randomly selected 10, two-day old tadpoles from
each sibship in §2b (we selected these tadpoles before they had been
fed). We euthanized and preserved tadpoles as in §2b. We then
measured SVL and the width of the jaw muscle (orbitohyoideus
muscle; OH), which is diagnostic of ecomorphology [39]. We stan-
dardized OH for body size (SVL) by regressing log OH on log SVL
[44,53]. We then compared these size-corrected OH and SVL values
between allopatry and sympatry using a likelihood ratio test and
linear mixed effects models (fitted with maximum-likelihood in
the R package ‘Ime4’). Specifically, we used a likelihood ratio test
(through the ‘anova’ function in R [54]) to compare a null model
only containing the random effect ‘sibship” with a full model
that retained this random effect and also included ‘selective
environment’ as a fixed effect.

3. Results

(a) Testing whether frequency of trait expression
predicts its adaptive refinement

At the start of the experiment, tadpoles from the two selective
environments did not differ in body size (likelihood ratio
test between null model and selective environment model:
x*= 0.81, p = 0.3681; type III sum of squares ANOVA: y*=
1.1548, p = 0.2825). At the end of the experiment, however,
tadpole growth showed a significant diet by selective environ-
ment interaction (table 1a,b). That is, the magnitude of
diet-dependent growth differed across selective environments.
A multiple comparisons test revealed that tadpoles from the
two selective environments had comparable growth on a det-
ritus diet, but that sympatric tadpoles grew more than
allopatric tadpoles on a shrimp diet (table 1c). This difference
on a shrimp diet created a significantly greater slope between
diets for sympatry than for allopatry (figure 1a). Consistent
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Table 1. Results from competition experiment, incuding (a) summary statistics from our model selection procedure; (b) results from our ANOVA on
the interaction model; and (c) distance between group means in growth and their associated p-value following false discovery rate correction (in parentheses).
((a) and (b) indicate that the interaction between diet and selective environment was significant; (¢) shows that this interaction was driven primarily by shrimp-
fed sympatric tadpoles (Sym.shr) growing more than shrimp-fed allopatric tadpoles (Allo.shr), while detritus-fed tadpoles had comparable growth across both

selective environments (Allo.det and Sym.det).)

(@) model selection

model

null 832.99

W e
selective environment 834.75

d|et+ wectve emior et ome
diet : selective environment 788.36

(b) type Ill sum of squares ANOVA

term
intercept 53.14
d|et D 2098 .
selective environment 0.04
dletselectlveenwronment . 634 [

(c) multiple comparisons test

group Allo.det
Allo.shr 1.31 (0.001)
Cymdet 011(0766)

with this difference in slope, we found that effect size between
diets (Cohen'’s d) was greater for sympatry (Cohen’s d = 1.206)
than for allopatry (Cohen’s d = 0.722). This pattern matches
our prediction for sympatric tadpoles: they exhibited greater
adaptive refinement (improved growth achieved through
superior competitive ability) than allopatric tadpoles on the
diet that is frequently consumed in sympatry (shrimp).

Furthermore, when we categorized each tadpole as
‘winner’ or ‘loser’ (depending on whether or not it grew more
than its competitor), sympatric tadpoles were more often the
winner on shrimp (35 sympatric winners versus 16 allopatric
winners; p = 0.0002), whereas allopatric tadpoles were more
often the winner on detritus (31 allopatric versus 20 sympa-
tric winners; p = 0.0236; figure 1b). This result is consistent
with the observation that the slopes of two selective environ-
ments intersect near the detritus category (figure 1a). These
results also support our prediction (see §2b): sympatric
tadpoles were superior competitors on shrimp, and allopatric
tadpoles were superior competitors on detritus.

Finally, a shrimp diet yielded greater variation in growth
than a detritus diet (0= 4.64 versus 2.58, respectively; p =
0.0067), and there was greater variation in growth for sympa-
tric tadpoles than allopatric tadpoles (o”= 5.14 versus 3.67,
respectively; p =0.0397). However, when tadpoles were
grouped by diet and selective environment simultaneously,
the differences in variation only approached significance
(p=0.0724). Generally, these results, again, suggest that
there is a greater effect of competition on shrimp (i.e. greater
growth variance), and that sympatric tadpoles had a greater

Ceerxw o —

logLike

—411.50 — —
s wm mn
—4137 0.00 1.000

—389.25 44,25 290 x 10"
—386.18 6.14 0.013

311 x 10"

464 % 106

0.841

0.012

Allo.shr

0.93 (0.016) 1235 (11 x 107
difference in growth between diets than allopatric tadpoles
(i.e. greater variance for sympatry).

(b) Evaluating mechanisms of adaptive refinement
Sympeatric and allopatric tadpoles did not differ in: (i) intrinsic
growth rate on alternative diets (electronic supplementary
material, table S2); (ii) time spent resting, swimming, eating
or active (electronic supplementary material, table S3); or
(iii) trait integration (electronic supplementary material, table
S4). These two groups did differ in: (iv) time to eat shrimp;
and (v) certain trophic traits. Regarding time to eat shrimp,
sympatric tadpoles captured and consumed shrimp faster
than allopatric tadpoles (y*=5.11, p = 0.0238; figure 2). Also,
as expected, there was significantly lower variance in shrimp
capture time for sympatric tadpoles than for allopatric
tadpoles (0”= 3340 versus 20824, respectively; p < 0.0001).
Regarding trophic traits, as predicted, sympatric tadpoles
had significantly more carnivore-like mouthparts than allopa-
tric tadpoles (mean + s.e.m. mouthparts scores =2.8 + 0.2
versus 1.8 +0.1 for sympatric and allopatric tadpoles,
respectively; electronic supplementary material, table S5).
For jaw muscle (OH) width, there was a significant diet by
selective environment by treatment interaction. Delving
into this interaction revealed that, for tadpoles reared in com-
petition, sympatric tadpoles did not differ between diets, but
allopatric tadpoles did (electronic supplementary material,
table S6). Specifically, sympatric tadpoles showed consist-
ently large OH widths across diets (thereby providing
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Figure 1. Evidence of frequency-dependent adaptation. Tadpoles from sympatric populations (where carnivores are produced frequently): (@) grew more on and
(b) won more contests over, the resource for which carnivores are adapted—shrimp—than did tadpoles from allopatric populations (where carnivores are produced
infrequently). By contrast, tadpoles from allopatry (b) won more contests over detritus, a resource for which omnivores are adapted. (Online version in colour.)
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Figure 2. A mechanism of frequency-dependent adaptation. Tadpoles from sym-
patric populations (where camivores are produced frequently) ate shrimp faster
than tadpoles from allopatric populations (where camivores are expressed
relatively infrequently). Diamonds, group means. (Online version in colour.)

evidence of canalization in this trait; see also §3c), but allopa-
tric tadpoles showed plasticity (larger OH on shrimp than on
detritus). A multiple comparison test confirmed this pattern:
detritus-fed allopatric tadpoles had significantly smaller
OH widths than all other groups (electronic supplementary
material, table S6B). When we focused on singletons,
sympatric tadpoles had significantly larger OH widths than
allopatric tadpoles, but there was no diet by selective
environment interaction (electronic supplementary material,
table S7). In contrast with the patterns for mouthparts and
jaw muscles, sympatric tadpoles had significantly more omni-
vore-like denticle rows than allopatric tadpoles (8.3 + 0.6
versus 4.5+ 0.3 for sympatric and allopatric tadpoles,
respectively; electronic supplementary material, table S5).
Gut length did not differ between diets, selective environ-
ments or treatments.

(c) Testing for genetic assimilation of trophic
morphology

On average, sympatric tadpoles had significantly larger OH
widths (0.041 + 0.012) than allopatric tadpoles (—0.029 +
0.010; ,\/2= 6.58, p = 0.0103; figure 3). Because this difference
was already apparent in tadpoles that had not experienced
the dietary cue(s) that normally induce carnivores, and
because these sympatric tadpoles represent the derived
state (see §2a), this finding suggests that sympatric tadpoles
have undergone genetic assimilation in trophic morphology.

4. Discussion

A key prediction of plasticity-led evolution, and of evolution
by natural selection generally, is that the frequency of a trait’s
expression will determine the degree to which its functionality
is improved by selection [2,12,21,22]. In particular, compared
to individuals from populations that express a particular phe-
notype infrequently, those from populations that express this
phenotype more frequently should produce a superior version
of the phenotype [12,18,25,32,55-58]. We tested this expec-
tation of frequency-dependent adaptation experimentally by
using S. bombifrons tadpoles from natural populations that
have diverged in the frequency with which they produce an
environmentally induced carnivore ecomorph.

Our results were consistent with frequency-dependent
adaptation. Specifically, compared to tadpoles from allopatric
populations (which express the carnivore ecomorph relatively
infrequently; see §2a), those from sympatric populations
(which express the carnivore ecomorph frequently): (i) were
superior competitors for shrimp, a resource for which carni-
vores are specialized [59] (figure 1 and table 1); (ii) were more
efficient at capturing and consuming shrimp (figure 2);
(iii) showed less variation in shrimp-capturing ability; (iv)
had more exaggerated carnivore features (electronic sup-
plementary material, table S5); and (v) were more carnivore-
like prior to experiencing an environmental cue—shrimp
ingestion—that normally induces production of the carnivore
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Figure 3. Evidence of genetic assimilation of trophic morphology. Even in the
absence of a dietary cue that normally induces carnivores, tadpoles from sym-
patric populations (where carnivores are produced frequently) developed
more carnivore-like jaw muscles (OH) than tadpoles from allopatric popu-
lations (where camivores are expressed relatively infrequently). (Online
version in colour.)

ecomorph [39,45,60] (figure 3). We also found evidence that
the omnivore ecomorph has undergone adaptive refinement
in populations where this phenotype is expressed more fre-
quently. Compared to tadpoles from sympatric populations
(which seldom express the omnivore ecomorph; see §2a),
those from allopatric populations (which express the omni-
vore ecomorph frequently) were superior competitors for
detritus, a primary resource of the omnivore ecomorph [59]
(figure 1b). These results therefore suggest that neither selec-
tive environment produces tadpoles that are intrinsically
superior across both diets. Instead, the selective environment
that produces a given ecomorph more frequently (carnivores
in sympatry, omnivores in allopatry) appears to produce a
competitively superior version of that ecomorph. Thus, our
data provide empirical support from natural populations
for frequency-dependent adaptation.

Regarding possible mechanisms of this frequency-
dependent adaptation, we found no evidence that tadpoles
from the two selective environments differed in: (i) intrinsic
growth rate (electronic supplementary material, table S2);
(ii) time spent resting, swimming, eating or active (electronic
supplementary material, table S3); or (iii) trait integration
(electronic supplementary material, table S4). Sympatric tad-
poles did, however, eat shrimp faster (figure 2) and exhibited
less variation in shrimp-eating time than allopatric tadpoles.
Thus, the competitive advantage of sympatric tadpoles in
using shrimp (table 1 and figure 1) could be explained, in
part, by sympatric tadpoles being better at capturing and
consuming shrimp.

Differences between selective environments in tadpole
trophic morphology probably also contributed to the sympa-
tric tadpoles’ competitive advantage on shrimp. Sympatric
tadpoles had larger jaw (OH) muscles and mouthparts than
allopatric tadpoles (electronic supplementary material, table
S5). Both traits aid in the capture of large, mobile prey,
such as fairy shrimp and tadpoles [50,61,62]. Indeed, pre-
vious work found a similar pattern. One such study [63]
compared the morphology of experimentally reared tadpoles
from sympatry versus allopatry and found that the former
were more likely to express the carnivore morphology; the

former also had significantly different jaw muscle (OH) allo-
metry (the slope of the relationship between OH width and
body length was steeper for tadpoles derived from sympatry
than for those from allopatry). Another study [25] found that
wild-caught tadpoles from sympatric populations were more
carnivore-like in their morphology than wild-caught tadpoles
from allopatric populations. Together with the present study,
these studies suggest that populations which express the car-
nivore morph more frequently produce more exaggerated
carnivore features and that those exaggerated features
improve fitness. Thus, more frequent trait expression predicts
greater magnitude of adaptive refinement.

As noted above, we found that sympatric tadpoles pro-
duced larger (more -carnivore-like) jaw muscles than
allopatric tadpoles, even prior to cue exposure (figure 3).
This result implies that sympatric tadpoles: (i) may be
primed to eat shrimp from early development (larger jaw
muscles are needed to eat shrimp); and (ii) do not need an
environmental cue to develop the carnivore morphology.
This result further suggests adaptive refinement of the carni-
vore ecomorph in sympatry relative to allopatry. At a
mechanistic level, because tadpoles from sympatry start out
more carnivore-like, they may have greater difficulty over-
coming a potential trade-off in the ability to switch
between morphs [64], and thus have greater difficulty devel-
oping as omnivores. Regardless of the exact mechanistic
cause, this early phenotypic bias may be adaptive, given
that selection favours carnivore production in sympatric
populations of S. bombifrons [53].

Our finding that sympatric tadpoles do not need an
environmental cue to produce carnivore-like jaw muscles
suggests that the ancestors of these tadpoles might have
undergone genetic assimilation of trophic morphology.
Although genetic assimilation has previously been demon-
strated in laboratory experiments [16,65,66], and theory
supports its role in enabling populations to adapt to rapidly
changing environments [6,10,67-72], its relevance to natural
populations has been questioned (e.g. [3,4]). Interestingly,
we also found evidence of genetic assimilation in jaw
musculature from our competing tadpoles (electronic sup-
plementary material, table S6). In this case, sympatric
tadpoles had larger (more carnivore-like) jaw muscles in
both diet treatments and exhibited the flat reaction norm
characteristic of genetic assimilation [12,73]. Similarly, Levis
et al. [74] found evidence of genetic assimilation in patterns
of gene expression. Whereas gene expression profiles of allo-
patric tadpoles differed between detritus and shrimp diets,
those of sympatric tadpoles did not. Furthermore, a transcrip-
tion factor (btf3) exhibited loss of diet-dependent expression
plasticity, and a peptidase gene (pm20d2) showed an overall
decrease in expression in sympatry relative to allopatry,
suggesting  possible These
studies, combined with those of other natural systems (e.g.
[36,37,55,75-79]), point to the generalizability—and possible
importance—of genetic assimilation.

Additional studies are needed, however, to identify the
mechanisms underlying any such genetic assimilation [72].

improved efficiency [74].

For instance, the gene expression differences mentioned
above are consistent with genetic assimilation, but they
could also be caused by persistent epigenetic changes (e.g.
see [80]). To distinguish between genetic assimilation and
‘epigenetic assimilation” as mechanisms underlying constitu-
tive expression of a phenotype will require investigating
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whether constitutively expressed phenotypes are associated
with DNA sequence changes versus epigenetic ‘tags’ (e.g.
methylation).

Returning to frequency-dependent adaptation, why
should the frequency of trait expression drive the magnitude
of its adaptive refinement? Frequency-dependent adaption is
expected to occur for at least two, non-mutually exclusive,
evolutionary reasons. First, differences in the size of sub-
populations that express the phenotype should lead to
differences in both: (i) the strength of selection relative to
that of genetic drift and (ii) the number of variants exposed
to selection per generation [2,81]. A rough analysis suggests
that the subpopulation of S. bombifrons carnivores in sympa-
try is at least twice as large as that in allopatry (electronic
supplementary material, appendix S1). All else being equal,
this difference across selective environments in numbers of
carnivores suggests that selection should be at least twice as
effective at acting on sympatric carnivore subpopulations
than on allopatric carnivore subpopulations. Although the
exact selection coefficients and effective populations sizes
are unknown, selection favouring extreme carnivores in sym-
patry is probably stronger than selection favouring carnivores
in allopatry: sympatric populations are under strong direc-
tional selection, whereas allopatric populations are under
weak disruptive (i.e. quintic rather than quadratic) selection
[53]. Thus, the recurrent exposure of a relatively larger popu-
lation size of carnivores in sympatry may have played a
causal role in the adaptive evolution of this phenotype.
Both factors—recurrence of phenotype expression and large
population producing the phenotype—are probably needed
for rapid adaptation, and the relative importance of each
factor warrants further study.

A second reason frequency-dependent adaptation should
occur is that as a trait’s frequency of expression increases, so
should the bias in the direction of selection on non-specific
modifiers of that trait [2,82]). That is, selection on loci that
show antagonistic pleiotropy among alternative phenotypes
should favour those alleles that are best suited to the most fre-
quently expressed phenotype [2]. This bias in modifier
accumulation can alter the fitness consequences associated
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