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Ecophysiology is a relatively recent interdisciplinary field, and although active prior to the 75th 13 

anniversary of the American Society of Mammalogists (ASM), it has grown in breadth since 14 

then. This growth is in part a result of advances in technology that have reduced the size and 15 

improved the portability of key instrumentation, and also made sequencing of proteins and 16 

nucleic acids faster and less expensive.  Here, we demonstrate the breadth of recent research on 17 

the ecophysiology of mammals, quantify the research activity of the past 25 years, and consider 18 

future research needs.  Some of the most active areas of research have related to maintenance of 19 

homeostasis, associations of physiological traits with the evolution of varied life styles and life 20 

histories, and reproductive physiology.  Key findings involve allometry and scaling, energetics 21 

and thermoregulation, phenotypic plasticity and epigenetics, and the importance of microbial 22 

symbionts.  With respect to predictions of trends in mammalian ecophysiology, the strongest 23 
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themes relate to conservation biology, in large part related to rapid climate change, habitat 24 

destruction, and other anthropogenic factors.  How our mammalian fauna adapts (or not) to these 25 

changes will be of great interest, and has the potential to affect the science of mammalogy in the 26 

future.  27 

 28 

La ecofisiología es un campo interdisciplinario relativamente reciente, y a pesar de que era un 29 

área vigorosa antes del septuagésimo quinto aniversario de la Sociedad Americana de 30 

Mastozoología (ASM), desde entonces ha crecido en envergadura. Este crecimiento es en parte 31 

el resultado de los avances tecnológicos en donde el tamaño de los instrumentos se ha reducido 32 

facilitando de ese modo la portabilidad de instrumentos claves, y al mismo tiempo, permitiendo 33 

que la secuenciación de proteínas y ácidos nucleicos sea más rápida y menos costosa. En este 34 

trabajo, se demuestra el alcance de la investigación reciente sobre la ecofisiología de los 35 

mamíferos, se cuantifica la actividad científica de las investigaciones de las últimas dos décadas 36 

y se hacen predicciones para los próximos 25 años.  Algunas de las áreas más activas de 37 

investigación se han asociado con el mantenimiento de la homeostasis, la relación entre los 38 

rasgos fisiológicos con la evolución de diferentes estilos e historias de vida, y la fisiología 39 

reproductiva.  Los hallazgos clave incluyen la alometría y la escala, la energética y la 40 

termorregulación, la plasticidad fenotípica y la epigenética, y la importancia de los simbiontes 41 

microbianos.  Con respecto a las predicciones sobre las tendencias de la ecofisiología de 42 

mamíferos, los temas más comunes están relacionados con la biología de la conservación, en su 43 

mayor parte a consecuencia del rápido cambio climático, la destrucción del hábitat y otros 44 

factores antropogénicos.  La forma en que nuestra fauna de mamíferos se adapta (o no) a estos 45 
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cambios, a nivel fisiológico y de otro tipo, será de gran interés en el futuro, teniendo el potencial 46 

de influir a la ciencia de la mastozoología.  47 

  48 

Key words: allometry, climate change, ecophysiology, energetics, evolution, homeostasis, 49 

microbiome, phenotypic plasticity, physiology, reproduction 50 

 51 

SCOPE, PROCEDURES, AND LIMITATIONS 52 

Following the model provided by (Wunder and Florant 1994) in Seventy –five Years of 53 

Mammalogy (Birney and Choate, eds.), we focus on the sub-discipline of physiology known as 54 

ecophysiology or physiological ecology.  We focus primarily on basic physiological research 55 

that is relevant to mammals living under natural conditions, including studies that take place in a 56 

laboratory or in captivity under simulated natural conditions. Physiology is a major component 57 

of adaptation, and although physiology is a distinct discipline, it is inseparable from the related 58 

fields of biochemistry, anatomy, behavior, population biology, community ecology, 59 

biogeography, and evolution (for a specific example of physiological adaptation, see Storz et al. 60 

2019).     61 

Aspects of ecophysiology that are relevant to mammalogy include: 1) physiological 62 

acclimation and acclimatization (flexibility to adjust to environmental variation during the life of 63 

an individual), 2) epigenetic modifications that produce acclimation across generations without 64 

changing gene structure, and 3) evolutionary adaptations to ecological conditions (genetically 65 

based changes across generations).  The emphasis on ecological benefits of physiological 66 

adaptations distinguishes this field from traditional comparative physiology (Karasov and 67 

Douglas 2013; Carey 2015).  With over 6,500 currently recognized mammalian species living in 68 
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diverse habitats across the planet (Burgin et al. 2018), it seems self-evident that mammals 69 

function physiologically in diverse ways.  Much of this article is devoted to the ecological and 70 

comparative aspects of physiology that help mammalogists understand wild species of mammals. 71 

Although we have not attempted an exhaustive review of recent literature, we include 72 

references that are representative of what is known about the ecophysiology of wild mammals.  73 

For book-length treatments, readers are referred elsewhere (Karasov and Martinez Del Rio 2007; 74 

McNab 2012; Withers et al. 2016; Hayssen and Orr 2017).  We highlight the breadth and depth 75 

of research activity in the last 25 years, while admitting some bias in sub-disciplines.  It should 76 

also be noted that historical biases exist relative to which mammal species and what aspects of 77 

their lives have been studied.  Taxa in some regions of the world have been studied more 78 

intensively than those in other regions.  Historically, the categories of mammal species that have 79 

received more attention include large charismatic mammals, species living in areas where 80 

collecting permits were not required or were easy to obtain, and species living closer to research 81 

centers as opposed to those in remote locations. Low-tech methods dominated until technology 82 

could be developed and miniaturized for use on smaller mammals and in remote locations.  83 

These technological advancements in ability to measure physiological traits have enabled 84 

mammalian physiologists to address questions that could only be envisioned by their 85 

predecessors.  Since Wunder and Florant (1994) and contemporaries (McNab 1992; Hayes and 86 

Kenkins 1997) reviewed the state of ecophysiology, advances have occurred by using old 87 

techniques to address previously unasked questions (often using a comparative approach applied 88 

to species not previously studied) and by developing new methods to help answer these 89 

questions.   90 
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We surveyed the recent literature on mammalian ecophysiology, using Ebsco Host 91 

(Academic Search Complete), limited to peer-reviewed publications between January 1992 and 92 

January 2018.  We also sought input from colleagues around the world to identify key questions, 93 

critical methods, and major findings since 1990.  Finally, we projected these recent trends into 94 

the future in an attempt to identify the most critical questions and the techniques needed to be 95 

developed or perfected to address them (the next generation of mammalogists will undoubtedly 96 

comment on how well we did). We also tracked publication and presentation trends related to 97 

mammalian ecophysiology over the past 25 years in what we consider to be key periodicals and 98 

conference proceedings. These are compared to trends identified by Wunder and Florant (1994) 99 

for the preceding 75 years. 100 

The following summary of ecophysiological research over the last quarter century is 101 

organized in three themes.  To function under a wide variety of conditions, both abiotic and 102 

biotic, mammals must maintain relatively constant internal conditions (homeostasis).  103 

Multicellular animals do this to provide their cells with the appropriate intercellular environment 104 

to maintain cellular function, with each cell contributing to the success of the whole animal.  105 

Hence, homeostasis is the first and largest theme.  However, many physiological traits are related 106 

to ways in which mammals interact with their environments to delineate their ecological niche; 107 

this second theme is designated “life styles.”  For both of these themes, success is generally 108 

measured in terms of short-term survival of the individual animal.  In contrast, for reproductive 109 

function, success is defined as the contribution of offspring to the next generation, which can be 110 

detrimental to individual survival but is necessary for Darwinian fitness.  Hence, reproduction 111 

constitutes our third theme. 112 

  113 
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HOMEOSTASIS 114 

Maintaining homeostasis requires balancing gains and losses.  One pervasive component of 115 

animal survival is an energy budget: how (and how much) energy is acquired, and how energy is 116 

used at different stages of its life.  This continues to be an active area of research across taxa 117 

representing three orders of mammals (e.g., western black-and-white colobus [Colobus 118 

polykomos]—Dasilva 1992; polar bear [Ursus maritimus]—Molnár et al, 2009; insectivorous 119 

bats [Myotis nattereri, M. bechsteinii, Plecotus auritus]—Becker et al. 2013).  Other approaches 120 

to energy balance are exemplified by studies on the neural regulation of energy balance 121 

(Donovan and Tecott 2013), and comparisons of mammals and birds (Weiner 1992).  122 

Recent studies related to energy intake include milk energy and its conversion to growth 123 

of young (Riek 2007), maximizing energy intake (Van Wieren 1996), and social hierarchy 124 

effects on food intake (Gende and Quinn 2004).  The challenges of specializing on an 125 

herbivorous diet include maximum body size and adaptations for dealing with secondary plant 126 

compounds (Clauss et al. 2003; Sorensen et al. 2005). Similarly, there are adaptations for 127 

specialized carnivorous diets in marine systems; for example, different prey preferences for 128 

resident versus transient killer whales (Orcinus orca—Ford et al. 1998) and greater individual 129 

variation in the diet of sea otters (Enhydra lutris) in habitats with rocky substrates (Newsome et 130 

al. 2009).  Related to energy intake are physiological adaptations for securing sufficient food, 131 

which are discussed below (Life Style).  The capacity to process food in the digestive tract isn’t 132 

fixed, but changes with the energy needs of the animal; for example, during winter or during 133 

reproduction when caloric requirements are elevated.  This was first demonstrated by Voltura 134 

and Wunder (1998) and is still being studied (Ji-Ying et al. 2016).  The role of the gut 135 

microbiome is just starting to be understood in this regard.  136 
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The other side of energy balance is expenditure, a topic that has recently been studied in 137 

more taxa living in a greater array of environmental conditions (e. g., White and Seymour 2004).  138 

As expected in this period of drastic climate change, the coadaptation of basal metabolic rates 139 

(BMR— Lovegrove 2003; Rezende et al. 2004), and of thermoregulatory patterns more generally 140 

(Levesque et al. 2016) with climate, has been of particular interest.  To fully understand the 141 

effects of climate change on a species, we also need to know about any specialized or unique 142 

mechanisms and abilities that a species has to thermoregulate (Mitchell et al. 2002; Mauck et al. 143 

2003; Briscoe et al. 2014; Rezende and Bacigalupe 2015).   144 

Many mammals have food resources that vary in availability in space and time, or 145 

regularly encounter periods of insufficient food to balance their energy budget. As a 146 

consequence, they sometimes suspend homeothermy (becoming heterothermic) and enter torpor 147 

to reduce energy expenditure on a daily or seasonal basis (Geiser et al. 2005; Ruf and Geiser 148 

2015; Evans et al. 2016; Levesque et al. 2017; Turner and Geiser 2017).  The use of torpor is 149 

more widespread than previously known, with recent examples including house mice (Mus 150 

musculus—Swoap et al. 2012) and lemurs (Cheirogaleus medius, Galago moholi, Microcebus 151 

griseorufus—Dausmann et al. 2012).  Much of this work has been described at a series of 152 

conferences of the International Hibernation Society (Geiser and Ruf 1995; Geiser 2004; Stawski 153 

et al. 2015; also see symposium volumes of the International Hibernation Society and an edited 154 

book by Frank 2019).  The effect of climate change on mammalian hibernation is starting to be 155 

addressed (Humphries et al. 2002; Nemeth 2012).  Other factors (e. g. precipitation, reproductive 156 

status, precipitation, etc.) also influence the use of torpor (Adams 2010; Rintoul and Brigham 157 

2014).  The control of hibernation and daily torpor is one area of ongoing interest, particularly 158 

related to neural regulation and brain function (Schwartz et al. 2013; Scherbarth et al. 2015; 159 
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Jansen et al. 2016), bone loss due to inactivity (Doherty et al. 2014; Ma et al. 2015; Wojda et al. 160 

2016), fat storage and use (Frank and Storey 1995; Contreras et al. 2014), maintaining cellular 161 

functions (Zhang et al. 2014b; Yuan et al. 2015), and the microbiome (Carey and Assadi-Porter 162 

2017).  Not all mammals adjust their torpor use the same way in response to environmental 163 

perturbation; Doty et al. (2016) recently reported that daily torpor use after a wildfire decreased 164 

in lesser long-eared bats (Nyctophilus geoffroyi), in contrast to increased torpor use reported for 165 

terrestrial small mammals.   166 

In conjunction with metabolic rates, the act of supplying oxygen and removing carbon 167 

dioxide requires appropriately sized and regulated respiratory and cardiovascular systems 168 

(Powell and Hopkins 2004; Hillman et al. 2013).  Although gas exchange has not been as 169 

extensively studied, a comparative approach includes research on intraspecific and interspecific 170 

elevational differences (Ivy and Scott 2015; Storz 2016; Storz et al. 2019), diving physiology 171 

(Hooker et al. 2009; Gerlinsky et al. 2014), hemoglobin and myoglobin characteristics (Janecka 172 

et al. 2015; Wright and Davis 2015), and fetal gas exchange (Mess and Ferner 2010).   173 

Also related to metabolic rate (and homeostasis in general) is water balance, the 174 

acquisition or production of water and rates of water loss.  Water is produced during aerobic 175 

metabolism in mitochondria and is lost in the processes of respiration and evaporative cooling. 176 

Additional components of water balance include cutaneous water loss, renal function (Beuchat 177 

1996; Al-kahtani et al. 2004), and the neural regulation of water intake.  Both desert and marine 178 

mammals continuously face dehydration as the water gradient pulls water out of their bodies.  179 

Recent research on water balance has been conducted mostly on tropical bats (Glossophaga 180 

soricina—Hartman Bakken et al. 2008; Epomophorus wahlbergi—Minnaar et al. 2014), South 181 

American desert rodents (sigmodontine species—Bozinovic et al. 2007), desert ungulates (Ovis 182 
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canadensis nelson—Gedir et al. 2016), and pinnipeds (Mirounga angustirostris—Lester and 183 

Costa 2006).  Water loss in hibernating mammals (Thomas and Geiser 1997; Ben-Hamo et al. 184 

2013) has also been of recent interest, particularly in regard to periodic arousal  185 

Some mammals undergo marked seasonal changes (Tighe et al. 2016), usually mediated 186 

by changes in photoperiod and physiologically regulated via melatonin.  Research in the 1970s 187 

and 1980s identified the importance of melatonin and the pineal gland in photoperiod-related 188 

phenomena (Arendt 1994; Gorman et al. 2001), and this work has been extended by recent 189 

research only possible with the advent of laboratory tools such as rapid sequencing of 190 

biopolymers (amino acids and nucleic acids).  For example, our understanding of the role of 191 

photoperiod on annual cycles of reproduction (Ninomiya-Alarcón et al 2004; Hoole et al. 2016), 192 

feeding and body mass (Helwig et al. 2009; Wan-Long et al. 2013), immune function 193 

(Prendergast et al. 2004; Xu and Hu 2017), and thermoregulation (Zhang et al. 2014a) have been 194 

enhanced by these methods.  Another area in which research on seasonal changes has been 195 

conducted, though more limited in scope, is migration (often an alternative to hibernation), as 196 

demonstrated by bats (McGuire et al. 2014).  Although most recent research has focused on 197 

annual cycles, work also continues on the control of daily cycles, for example in rodents 198 

(Cryptomys damarensis—Richter et al. 2003; Psammomys obesus—Neuman et al. 2005; 199 

Microtus arvalis—van der Veen et al. 2006) and primates (Lemur catta—Donati et al. 2013). 200 

 201 

LIFE STYLES 202 

In addition to maintaining homeostasis, suites of behavioral and physiological adaptations have 203 

evolved or coadapted with other traits (e.g., behavioral) in ways that enhance survival and 204 

reproductive ability in a variety of niches (Brashares et al. 2000; Storz et al. 2019).  The 205 
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existence of different niches allows organisms to diversify with reduced competition, and 206 

specialization is required to best fit particular niches.  Although physiology is often hard to 207 

separate from associated anatomy, biochemistry and genetics, many physiological adaptations 208 

that help mammals fit into their niches have been identified (e.g., enhanced renal function in 209 

species from arid habitats—Beuchat 1996; Al-kahtani et al. 2004).  In turn, these adaptations 210 

affect the ecology of the species (see Storz et al. 2019).  In this section, we organize these 211 

adaptations by life style.  For example, mode of locomotion and diet specializations strongly 212 

influences niche definition, and these may overlap (Verde Arregoitia et al. 2017). 213 

Life style is closely associated with locomotion (Schaeffer and Lindstedt 2013; Bertram 214 

2016), and recent research on the physiology of locomotion includes: 1) maximal aerobic 215 

capacity and performance ability (Djawdan 1993); 2) energetics (Chappell et al. 2004; Garland 216 

and Albuquerque 2017; Halsey and White 2017); 3) biomechanics (Michilsens et al. 2009; 217 

Wilson et al. 2018); 4) ecomorphology (Spoor et al. 2007; Panciroli et al. 2017); 5) interactions 218 

with reproduction (Noren et al. 2012; Andrew et al. 2016); and 6) the evolution of the "runner's 219 

high" (Raichlen et al. 2012).   220 

Aquatic mammals have special adaptations of the respiratory and cardiovascular systems 221 

that are associated with diving (Mottishaw et al. 1999; Bostrom et al. 2008; Mortola 2015), and 222 

that confer increased hypoxia tolerance (Sergina et al. 2015; Hoff et al. 2017) and oxygen 223 

storage (Nery et al. 2013). Interest in conservation of marine mammals, in regard to 224 

anthropogenic stress, has also generated studies of their stress physiology (Wright et al. 2007; 225 

Atkinson et al. 2015), and the effect of climate change on marine mammals (Thiemann et al. 226 

2008).   227 
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Fossorial mammals can also face hypoxic (and hypercapnic) conditions and muted 228 

temperature fluctuations, allowing comparative studies of their physiological adaptations to these 229 

conditions.  Subterranean coruros (Spalacopus cyanus) increase ventilation when exposed to 230 

hypoxia, while fossorial degus (Octodon degus) do so in response to hypercapnia (Tomasco et al. 231 

2010).  Much fossorial mammal research is on mole-rats, which have seasonal cycles in activity 232 

and reproduction, apparently related more to rainfall than to temperature (Heliophobius 233 

argenteocinereus— Zelová et al. 2011; Ngalameno et al. 2017), and extremely long life-spans 234 

(Heterocephalus glaber—Kim et al. 2011). 235 

Aerial species of mammals also require special adaptations.  Mammals that glide have 236 

been studied in relation to energy requirements (Flaherty et al. 2010; Byrnes et al. 2011).  237 

Chiropteran flight has been described from the perspective of biomechanics and kinematics 238 

(Cynopterus brachyotis—Iriarte-Diaz et al. 2012), in regard to the function of their small 239 

digestive systems (less weight to carry; Artibeus lituratus—Caviedes-Vidal et al. 2007, 2008), 240 

and the need for a prolonged lactation period (Eptesicus fuscus—Hood et al. 2011).  An 241 

important component of bats’ nocturnal flight, echolocation, may have evolved from fossorial 242 

mammals (Panyutina et al. 2017).   243 

Herbivorous mammals often encounter toxins in their diet (especially in tree leaves) that 244 

need to be detoxified or that decrease the energy they can obtain from their food.  Wunder and 245 

Florant (1994) correctly predicted that we would see more research on how herbivores use their 246 

plant resources.  Studies since then address adaptations to use these plants despite the toxins and 247 

their associated energetic limitations (Min et al. 2005; Pauli et al. 2016); other studies consider 248 

detoxification, such as research on woodrats (Neotoma stephensi, N. albigula—Sorensen et al. 249 

2004) and rabbits (Sylvilagus nuttallii, Brachylagus idahoensis—Crowell et al. 2018). 250 
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Carnivorous mammals obviously have anatomical and behavioral traits that make them 251 

successful, but they also possess physiological adaptations associated with this life style.  These 252 

include sensory adaptations that aid in finding prey (see below), the use of venom (Kowalski and 253 

Rychlik 2018), and the ability to digest specific dietary components (chitin, wax, etc.).  Several 254 

studies have used captive carnivores to address the issue of diet breakdown (E. lutris, 255 

Leptonychotes weddellii—Williams and Yeates 2004; Mustela vison—Mayntz et al. 2009; 256 

Myrmecophaga tridactyla—Gull et al. 2015) or to develop and compare methods of diet analysis 257 

(E. lutris—Tyrrell et al. 2013).  Although prey species of mammals have evolved anti-predator 258 

strategies, we didn’t identify any recent research on physiological defense mechanisms. 259 

Similar to predator-prey relationships, mammals are involved in host-parasite 260 

relationships (always as the host), and research continues on the associated physiological costs of 261 

parasitism (Schwanz 2006; Olifiers et al. 2015; Simpson et al. 2016), and how this might change 262 

throughout the year (Kristan and Hammond 2003; Cizauskas et al. 2015).  Some work on 263 

immune function, mostly in regard to parasites, has also been conducted recently, including 264 

models of immune function (Garnier et al. 2013; Jolles et al. 2015), host-parasite interactions 265 

(Lopez-Romero et al. 2015; Zhang et al. 2017), and how social factors affect immune function 266 

(Flies et al. 2016). 267 

Beneficial interspecific relationships (from the mammals’ perspective) also continue to 268 

be studied, including symbiotic relationships between vertebrate classes (Zdunkiak et al. 2017), 269 

between small mammals and pitcher plants (Greenwood et al. 2011), and among three-toed 270 

sloths (Bradypus spp.), moths, and algae (Pauli et al. 2014).  The ecological interactions in these 271 

examples involve food acquisition or ectoparasite reduction, and so could be considered more 272 

behavioral than physiological, but are included here because we use a broad definition of 273 
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ecophysiology, and most behaviors include physiological components.  A special type of 274 

symbiotic relationship involves gut microbes (Leser and Mølbak 2009; Amato et al. 2014).  This 275 

research includes comparative microbiome studies, using high-throughput sequencing platforms 276 

to identify the thousands of microorganism taxa that occupy the gut, as exemplified by Carey et 277 

al. (2013) and Kohl and Carey 2016). 278 

To be successful in their various life styles, mammals must be able to sense the world 279 

around them and communicate with others.  Therefore, sensory physiology remains of interest, 280 

and recent research in this subdiscipline covers vision (Williams et al. 2005; Pessoa et al. 2014) 281 

and hearing (Mariappan et al. 2013; Wahlberg et al. 2017).  For example, Charlton et al. (2017) 282 

expanded our understanding of koala (Phascolarctos cinereus) vocalizations.  In addition, 283 

research on tactile abilities (Pacheco-Cobos et al. 2003; Gaspard et al. 2017), electroreception 284 

(Ashwell and Hardman 2012; Czech-Damal et al. 2013), and echolocation (Gonzalez-Terrazas et 285 

al. 2016; Luís et al. 2016) are also producing new insights. 286 

Olfactory studies were not present in our subset of published articles, suggesting this has 287 

not been an area of active research in the last 25 years.  However, the use of pheromones, which 288 

share some characteristics with olfaction, is an important aspect of mammalian chemical ecology 289 

(a relatively new sub-discipline), and this has continued to be an area of active research, 290 

especially in primates (Evans 2006; Mandrillus sphinx—Charpentier et al. 2013).  Mammals use 291 

pheromones for scent marking (Blank et al. 2014), influencing the reproductive status of the 292 

opposite sex (Anand et al. 2002; Lazar et al. 2004; de Catanzaro et al. 2014), and male-male 293 

competition (Bian et al. 2013; Rendon et al. 2016). 294 

 295 

REPRODUCTION 296 
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As indicated above, most sub-disciplines of physiology focus on the short-term survival of the 297 

individual, but reproduction is a risky and resource-demanding process, often detrimental at the 298 

level of the individual, and not contributing to homeostasis.  Nonetheless, reproduction is by 299 

definition required for species persistence, leading to evolutionary trade-offs (Martin 2015), and 300 

reproductive isolation is a key driver of speciation.  Although this isolation is generally 301 

considered to be geographic, genetic, or anatomical in nature, physiological differences often 302 

contribute as well.  In addition, understanding a species’ reproductive processes (timing, 303 

behaviors, physiology, etc.) is important in conservation efforts.   304 

Recent publications on reproductive physiology include multiple integrated aspects of 305 

reproduction, and by necessity overlap with morphology and behavior (Dixson and Anderson 306 

2004).  For example, although reproductive events such as implantation and parturition involve 307 

physiological changes, they are also life-history events, and timing of these events may depend 308 

on ecological factors (Friebe et al. 2014).  Even when research on reproductive timing doesn’t 309 

measure physiological traits (Ciuti and Apollonio 2016), underlying changes in endocrine and 310 

gonadal function are implied, and these functions can be profoundly different between breeding 311 

and nonbreeding periods of the year (Teodoro et al. 2012).  Most of the timing of mammalian 312 

reproduction is based on photoperiod, and the possibility of anthropogenic light interfering with 313 

reproduction of wild mammals has recently been demonstrated (Robert et al. 2015). 314 

Reproduction is regulated by endocrine cycles, either regular (spontaneous ovulation) or 315 

arrested (induced ovulation), and much of this was described prior to the period covered by this 316 

review.  However, we continue to add details, find differences among taxa, improve on non-317 

invasive methods to monitor hormones (Dehnhard et al. 2008), determine interactions with 318 

hormones that are not reproductive steroids (Saltzman and Ziegler 2014; Fanson and Parrott 319 
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2015), and investigate ecological factors that influence basic reproductive function (Cizauskas et 320 

al. 2015).  Interesting work is also being done on hormones of one individual that affect another, 321 

e.g., maternal-offspring effects (Horton 2005; Ryan et al. 2014; Hinde et al. 2015). 322 

A primary way in which mothers impact their offspring is via milk production, but the 323 

nutritional content of milk varies among taxa (Skibiel et al. 2013; Power et al. 2018) and the 324 

immunological components vary between individuals (Roulin and Roulin 1999).  The production 325 

of milk is energetically expensive, particularly when required by fast-growing pups of species 326 

such as marine mammals (Thometz et al. 2014; Fowler et al. 2016).  Uniquely, milk production 327 

in males has recently been demonstrated in two species of bats (Dyacopterus spadecius and 328 

Pteropus capistrastus—Kunz and Hosken 2009), which presumably helps distribute the cost of 329 

lactation.  In all other mammalian species, the primary physiological contribution to reproduction 330 

by males is sperm production, the cost of which seems to increase when sperm competition 331 

exists (Jean-François 2011).  Other reproductive costs incurred by males (which may exceed the 332 

cost of sperm production) are associated with access to estrus females, including territorial 333 

defense, maintaining a position in a hierarchy, and growing accessory reproductive structures 334 

(antlers, etc.) 335 

The energetic cost of reproduction often limits the number of offspring produced 336 

(Thompson et al. 2012), and constitutes a trade-off with other energy-demanding processes, such 337 

as growth, maintenance of tissues (including large brains), thermoregulation, migration, etc. 338 

(Bårdsen et al. 2009; McAllan and Geiser 2014).  These costs also vary based on environmental 339 

factors (Bergeron et al. 2011).  Recent work has also begun examining the costs of reproduction 340 

for males in biparental species (Zhao et al. 2018). 341 

  342 
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PUBLICATION TRENDS 343 

As was done by Wunder and Florant (1994), we assessed trends over time in mammalian 344 

ecophysiology research.  Specifically, we analyzed journal publications for selected years over 345 

the last quarter century.  For the Journal of Mammalogy (JM), we counted physiology articles 346 

(assuming 100% mammals), and broke these down by subdiscipline.  For Physiological and 347 

Biochemical Zoology (PBZ) and Comparative Biochemistry and Physiology (CBP), we counted 348 

the number of publications on mammals (assuming 100% physiology) and broke these down into 349 

a few subject categories.  Similarly, we counted the publications in the symposia volumes of the 350 

International Hibernation Society (IHS) over the same time period.  As the IHS meets every four 351 

years, the journal data are matched.  352 

From 1996-2016 (every fourth year), the number of articles published in JM on 353 

physiology has remained relatively constant.  Over this time, an average of 18% of the articles in 354 

JM were physiological in nature, but this has decreased from 27% in 1996 to 13% in 2012 (Table 355 

1; Fig. 1) because the total number of articles published in JM has increased by about 50%, but 356 

the absolute number of articles on physiology did not change. This decrease in percentage could 357 

be due to a relative decrease in physiological research on wild mammal species (particularly 358 

concerning reproduction), or to the existence of journals that are viewed as better options for this 359 

research (a “dilution effect”).  Of the 143 physiological articles, the top five categories included 360 

33% on aspects of reproductive physiology, followed by 10% on torpor-arousal research, 8% on 361 

digestion-storage of foods, 7% on communication, and 6% on energetics.  Other kinds of 362 

research were published in smaller numbers.  These align with what Wunder and Florant (1994) 363 

found for JM publications in the 1980s: their top four categories (over 10% each) were 1) 364 

energetics, 2) digestion-nutrition, 3) temperature regulation, and 4) reproduction. 365 
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Over the last 20 years (every fourth year), PBZ has consistently published about 24% 366 

(21-27%) of their articles on mammals (Fig. 1, Table 2), with another 2% involving mammals as 367 

part of a comparison (Table 2).  Thus, mammals were the most popular taxon, with articles on 368 

birds and fish each representing about 18% of the published articles in our sampling.  In this 369 

journal, virtually all the articles on mammals involved ecophysiology.  This observation, and the 370 

constant number of mammal ecophysiology articles despite these numbers decreasing in other 371 

journals, suggests that this is the journal of choice for ecophysiology research. 372 

Over the same time period, CBP (which publishes nearly five times as many articles per 373 

year as PBZ), published 15% of its articles solely on mammals (just over half the proportion of 374 

articles as PBZ), with another 1% including mammals in mixed-taxa studies (Table 3).  This has 375 

decreased from 23% in 1996 to just 7% in 2016 (Fig. 1), and occurred in parallel with other 376 

terrestrial vertebrate groups.  The majority of articles published in this journal are now on fish 377 

and invertebrates (about 30% each), and of the CBP publications on mammals, the slightly larger 378 

proportions involved molecular physiology or were integrative in nature.  One possible factor 379 

responsible for some of this decline in research on live mammals could be taxon-based 380 

differences in government regulations, restrictions, and oversight (enforced via Institutional 381 

Animal Care and Use Committees) that is more stringent for mammals than other taxa.  This 382 

may have led some researchers to use other taxa in their studies.  If increasingly onerous 383 

regulation is a factor inhibiting physiological research on mammals, developing and 384 

implementing more non-invasive or minimally invasive field methods for studying mammals 385 

may help to reduce IACUC concerns. For a detailed treatment of use of wild mammals in 386 

research, with a consideration of issues relating to field research, see Sikes et al. (2019). 387 
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A final indicator of research publications in mammalian ecophysiology we included are 388 

the symposium volumes from the International Hibernation Society (symposia held every fourth 389 

year).  In the last six volumes, about 88% of the chapters involved mammals, and of these, more 390 

than four of five fit into the subject categories of energetics, thermoregulation, torpor, rhythms, 391 

cellular mechanisms, neuroendocrinology, dietary, or other physiological categories (Table 4).  392 

Even those chapters that were mostly descriptive involved processes that had a physiological 393 

basis.  Because of the emphasis of this society on mechanisms for coping with inclement weather 394 

and energy shortages, reproductive physiology was not represented in this data set.  Other than 395 

this, however, we see similar patterns of active publication in physiology since 1992 across all 396 

the sources we investigated, and the topics are a continuation of the areas emphasized prior to 397 

that date.  Unfortunately, in the last two decades, the proportion of articles on physiology 398 

published in JM, and the proportion of articles on mammals published in CBP, have slowly been 399 

declining. 400 

 401 

KEY FINDINGS 402 

One of the questions we asked when preparing this article was "What are the most 403 

significant research findings in mammalian ecophysiology over the last 25 years?"  Based on our 404 

own experience and responses from queried colleagues within the discipline, we suggest that the 405 

most significant findings (and significant publications) can be separated into five broad 406 

categories, some of which overlap.  We note that Wunder and Florant (1994:269) made two 407 

predictions for areas of future research that not only proved to be accurate, but are still valid as 408 

we look beyond 2019: 1) “cell and molecular approaches” will be revealing, and 2) we need to 409 

understand how mammals “adjust . . . as we witness climatic and other environmental changes.” 410 
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Allometry and scaling.—Databases related to body size and its correlates with 411 

ecophysiological parameters underwent tremendous expansion, and sharing of these via 412 

publication, including online supplemental materials and data repositories, became routine, thus 413 

greatly advancing research.  Allometry and scaling showed continued development of grand 414 

theories, often tested with empirical studies to address why physiological traits co-vary with 415 

body size in particular ways (Brown et al. 2004; White and Kearney 2014; Glazier 2015). 416 

Energetics and thermoregulation.—The ways in which basal, maximal, and field 417 

metabolic rates have coadapted with other aspects of physiology, morphology, behavior, and life 418 

history continued to be illuminated (Nagy 2005; McNab 2015).  Torpor and hibernation were 419 

shown to be much more widespread than previously thought, and to occur not only in cold 420 

climates.  Moreover, torpor and hibernation are now accepted as being as old as endothermy 421 

itself (Lovegrove 2016).  The evolution of endothermy continued to attract attention from 422 

comparative, ecological, and evolutionary physiologists (Wone et al. 2015; Lovegrove 2016; 423 

Garland and Albuquerque 2017; Nespolo et al. 2017; Nicol 2017). 424 

Genetics and evolution.—Individual variation, repeatability, and covariation of 425 

physiological and behavioral traits have now been demonstrated multiple times (e.g., Djawdan 426 

1993; Hayes and Jenkins 1997; Szafrańska et al. 2007; Andrew et al. 2016).  Subsequently, the 427 

mechanistic underpinnings of individual variation were explored (reviews in Careau and Garland 428 

2012; Konarzewski and Książek 2012).  As a key component of this individual variation, 429 

additive genetic variance of physiological traits was documented (Sadowska et al. 2005).  Direct 430 

measurements of natural selection acting on physiological and behavioral traits in wild 431 

populations have also been made (Hayes and O’Connor 1999; Boratyński and Koteja 2009).  432 
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Thus, the components of adaptive, cross-generational changes that we all knew existed 433 

(variation, heritability, selection), were demonstrated empirically in mammals. 434 

Results of artificial selection experiments on metabolic rate and on behavior 435 

demonstrated many correlated responses (or, sometimes, the lack of such predicted responses) at 436 

multiple levels of biological organization (along with cell size; Sadowska et al. 2015; Wone et al. 437 

2015; Wallace and Garland 2016).  This selection can even alter the mammal’s microbiome 438 

(Kohl et al. 2016).  "Omics" approaches started being applied to ecophysiological traits to 439 

elucidate the genetic and molecular basis of responses to selection (Konczal et al. 2015). 440 

Application of phylogenetically based statistical methods to classic ecophysiological questions 441 

showed that these approaches can lead to substantially altered conclusions, including with regard 442 

to scaling relationships (Garland and Carter 1994; Brashares et al. 2000; White and Seymour 443 

2004; Dlugosz et al. 2013; White and Kearny 2014).  444 

Phenotypic plasticity and epigenetics.— Phenotypic plasticity received increasing 445 

attention (Kelly et al. 2012), following the long tradition of studies on acclimation and 446 

acclimatization in mammalian ecophysiology.  Responses to a wide array of environmental 447 

factors have been examined.  Epigenetic mechanisms that may underlie phenotypic plasticity and 448 

may in some cases be transmitted across generations received increasing attention, especially as 449 

new molecular tools appeared (e.g., DNA methylation sequencing).  Although the potential role 450 

of early-life effects in developmental programming of adult traits has been recognized based on 451 

numerous studies of humans and laboratory rodents, studies of such phenomena in wild 452 

mammals are scarce (Garland et al. 2017; Laubach et al. 2018). 453 

Microbiomes.— The activity of host microbiomes, and particular the relationships 454 

between host animals and microbial symbionts, emerged as being potentially integrated into 455 
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most aspects of animal physiology, behavior, and general biology (McFall-Ngai et al. 2013; 456 

Carey and Assadi-Porter 2017).  This is particularly true in relation to gut microbes, and the 457 

impact they can have on realms of biology not previously envisioned. 458 

 459 

PREDICTIONS 460 

Attempts to predict the future in a scientific field, even with an understanding of the past, are as 461 

challenging as they are for predictions of the weather, sports, and politics.  Nonetheless, we 462 

attempt here to make predictions of how ecophysiology will contribute to the next 25 years of 463 

mammalian biology, based on: 1) our understanding of current status; 2) trends observed in the 464 

recent past; 3) an appreciation for the pace and direction of technological advancements; 4) 465 

familiarity with some of the leading scientists in mammalian ecophysiology; 5) informal input 466 

from colleagues in mammalian ecophysiology; and 6) a bit of (admittedly non-scientific) 467 

intuition.  468 

These factors allowed us to generate a list of research themes (“key words”) and then 469 

assign a weight to these themes relative to the number of times each was encountered.  Fig. 2 470 

presents a word-cloud created using Wordle (www.wordle.net) that illustrates these weighted 471 

themes, with font sizes proportional to predicted research effort.  The dominant themes are 472 

related to global change and conservation physiology, which is unsurprising in this time of 473 

perceived environmental crisis.  Next are evolution, adaptation, and related topics, reflecting the 474 

ascendancy of evolutionary physiology in the last 25 years (Garland and Carter 1994; Carey 475 

2015; Storz et al. 2019).  Third, we see such terms as energetics, behavior, and plasticity, which 476 

are classic topics within the sphere of ecophysiology.  The study of microbiomes also has the 477 

potential to change the way we think about many aspects of mammalogy that we don’t currently 478 
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connect to our microbes, particularly the (chemical) interactions with those evolved to live in the 479 

gut. 480 

Although Wunder and Florant (1994) covered over 100 years in their review of the 481 

history of physiological research, we might argue that the advancements made in the last 25 482 

years rival those made in the preceding century.  Those pioneers of mammalian ecophysiology 483 

laid the groundwork, and developed explanatory theories, but these were based on a few species, 484 

and techniques and equipment that were advanced for their day but primitive by today’s 485 

standards.  Wunder and Florant (1994) mention that some equipment was developed by scientists 486 

who became entrepreneurs and started making equipment for sale to colleagues.  This practice 487 

continued during the past 25 years; for example, Sable SystemsTM for precise measurements of 488 

gas exchange, and bat detectors and associated software to hear and identify echolocation calls.   489 

However, the major technological advancements in biology over the last 25 years may 490 

well be in the area of sequencing polymers.  In the recent past, it was predicted to take ten years 491 

to sequence the genome of one human.  Now we can sequence the amino acids in a protein or the 492 

nucleic acids in RNA and DNA by the billions in a single day.  Genomics, transcriptomics, 493 

proteomics, metabolomics, and microbiomics are new scientific approaches to address questions 494 

that up until now were just hypothetical (e.g., Konczal et al. 2015).  The massive amount of 495 

sequence data has led to the development of software to handle it, and the field of 496 

“bioinformatics” was born.  Databases for these sequences are growing exponentially, such that a 497 

new sequence from an unknown source can often be matched to a gene and a species in seconds. 498 

The use of sequence data to discern taxonomic differences and phylogenetic relationships 499 

has clarified (and sometimes muddied) mammalian systematics, but has only recently been 500 

moving into ecophysiological studies.  The explosion of sequence data has led to the 501 
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development of research “tools” that allow us to dig deeper into “how mammals work” (e.g., 502 

Kitanovic et al. 2018).  For example, quantitative polymerase change reaction (qPCR) assays 503 

allow us to identify microscopic bits of evidence, such as a diet analysis by examination of fecal 504 

materials.  Prior to PCR, one had to sift through fecal matter under a microscope hoping to find 505 

an identifiable remnant of a food item, and then perhaps only be able to identify that item to the 506 

family level.  Food items that were hard to digest were over-represented in data collected this 507 

way.  Today, one can “search” for DNA in the feces with a qPCR assay, and probably identify 508 

the food item to species.  Using qPCR, one can even determine the fraction of the diet made up 509 

by each food item identified. 510 

Other techniques using sequence data allow us to “view” how our research subjects 511 

respond to their environment.  For example, exposure to a pathogen or chemical, or to 512 

temperature extremes, can stimulate certain cells to turn on particular genes (for example, heat 513 

shock proteins) in response to this exposure.  Differential expression of genes (up-regulation and 514 

down-regulation) can be determined by analysis of the sequenced genes which were transcribed 515 

(messenger RNA via “transcriptomics”).  As not all transcribed genes actually end up making 516 

new proteins, one can also assess the viable proteins in a sample (“proteomics”) to further 517 

delineate the animal’s response to an environmental exposure or change. Other examples exist 518 

for new uses of sequence data now, and we have to assume that: 1) more techniques will be 519 

developed in the next 25 years; and 2) the cost of doing the sequencing will drop further and 520 

allow even more mammalogists to incorporate these methods into their inquiry.  521 
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Figure Legends 1143 

Fig. 1.—Fraction of articles that involve mammalian ecophysiology published in key journals 1144 

over the last two decades.  Articles in the Journal of Mammalogy (JM) are presumed to all be 1145 

about mammals, with a fraction of these physiological in nature.  In contrast, articles in 1146 

Physiological & Biochemical Zoology (PBZ), and in Comparative Biochemistry and Physiology 1147 

(CBP) are all presumed to be physiological (including cellular biochemistry), with a fraction of 1148 

these studies on mammals. 1149 

 1150 

Fig. 2.—Wordle diagram illustrating the dominant themes identified when we pondered the 1151 

question "What will be the most significant research findings in the next 25 years, in terms of 1152 

ecophysiology contributing to our understanding of wild mammals (e.g., their behavior, 1153 

conservation, evolution, morphology, natural history, and taxonomy/systematics)?"  The sizes of 1154 

words and phrases reflect their frequency of occurrence in our examination of the literature and 1155 

discussions with colleagues. 1156 
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Table 1.— Journal of Mammalogy publications on research in ecophysiology. 

 1996 2000 2004 2008 2012 2016 Total Proportion 

Energetics 1 2 2 2 0 2 9 0.06 

Thermoregulation 0 2 0 0 0 0 2 0.01 

Torpor, arousals 3 1 2 1 4 4 125 0.10 

Energy, food intake and digestion-storage 2 1 3 1 0 4 11 0.08 

Renal and water balance (osmoregulation) 0 0 1 0 0 2 3 0.02 

Cardio and respiration (O2 delivery) 0 0 1 0 0 0 1 0.01 

Reproduction 10 9 9 11 4 4 47 0.33 

Communication 0 1 2 5 1 1 10 0.07 

Sensory physiology 0 0 3 0 1 2 6 0.04 

Biotic interactions 1 1 1 0 0 0 3 0.02 

Timing, rhythms 1 1 2 0 2 1 7 0.05 

Muscle 0 0 0 0 0 2 2 0.01 

Neuro and endocrinology mechanism 2 0 0 1 0 2 5 0.03 

Cell-molecular mechanisms 0 0 0 0 0 0 0 0.00 
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Other physiology 6 3 5 1 6 1 22 0.15 

Total physiology 26 21 31 22 18 25 143 0.18 

Non-physiology 72 81 116 124 121 129 643 0.82 

Total articles 98 102 147 146 139 154 786  
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Table 2.—Physiological and Biochemical Zoology (previously named Physiological Zoology) publications. Mammals ++ = studies of 

mixed taxa including mammals. Mammals -- = studies of mixed taxa not including mammals. 

 1996 2000 2004 2008 2012 2016 Total Proportion 

Mammals 16 20 23 22 16 12 109 0.24 

Birds 9 17 10 20 14 11 81 0.18 

Reptiles 10 10 13 14 8 3 58 0.13 

Amphibians 6 7 7 5 2 5 32 0.07 

Fish 11 11 18 14 17 10 81 0.18 

Invertebrates 20 18 12 5 8 2 65 0.14 

Mammals ++ 0 3 6 0 0 1 10 0.02 

Mammals -- 0 2 2 0 0 0 4 0.01 

Miscellaneous 4 1 2 2 3 2 14 0.03 

Total articles 76 89 93 82 68 46 454  
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Table 3.—Comparative Biochemistry and Physiology (parts A & B) publications. Mammals ++ = studies of mixed taxa including 

mammals. Mammals -- = studies of mixed taxa not including mammals. 

 1996 2000 2004 2008 2012 2016 Total Proportion 

Mammals 90 54 69 60 36 15 324 0.15 

     Molecular physiology 22 18 21 16 12 4 93 0.05 

     Integrative physiology 17 15 29 19 21 5 106 0.05 

     Biochemistry 22 10 8 13 0 2 55 0.03 

     Molecular biology 29 11 11 12 3 4 70 0.03 

Birds 43 25 44 59 21 14 206 0.09 

Reptiles 13 19 16 27 15 8 98 0.04 

Amphibians 20 23 12 17 7 7 86 0.04 

Fish 76 59 101 158 133 106 633 0.29 

Invertebrates 112 104 99 191 120 59 685 0.31 

Mammals ++ 10 1 4 4 1 2 22 0.01 

Mammals -- 4 3 6 5 4 0 22 0.01 

Miscellaneous 25 33 24 28 23 10 143 0.06 
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Total articles 393 321 375 549 360 221 2219  
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Table 4.—International Hibernation Society symposium publications. 

 1996 2000 2004 2008 2012 2016 Total Proportion 

Energetics and thermoregulation 9 7 8 5 4 5 38 0.12 

Dietary 3 3 1 1 3 8 19 0.06 

Cell-molecular mechanisms 6 9 10 7 8 13 53 0.16 

Neuroendocrinology 8 9 6 9 4 5 41 0.12 

Other physiology 4 9 2 1 6 13 35 0.11 

Ecology-evolution-behavior 4 2 5 4 6 9 30 0.09 

Torpor and arousals 4 4 2 5 6 5 26 0.08 

Timing and rhythms 7 3 4 3 4 4 25 0.08 

Miscellaneous 6 4 6 2 2 4 24 0.07 

Total mammals 51 50 44 37 43 66 291 0.88 

Non-mammals 5 5 14 5 4 5 38 0.12 

Total articles 56 55 58 42 47 71 329  

 

 


