

1 Running Header: TOMASI ET AL.—ECOPHYSIOLOGY

2

3 **Ecophysiology of mammals**

4

5 Thomas Tomasi,* Briana Anderson, and Theodore Garland, Jr.

6

7 *Department of Biology, Missouri State University, Springfield, MO 65897, USA (TT, BA)*

8 *Department of Evolution, Ecology, and Organismal Biology, University of California –*

9 *Riverside, Riverside, CA 92521, USA (TG)*

10

11 *Correspondent: tomtomasi@missouristate.edu*

12

13 Ecophysiology is a relatively recent interdisciplinary field, and although active prior to the 75th
14 anniversary of the American Society of Mammalogists (ASM), it has grown in breadth since
15 then. This growth is in part a result of advances in technology that have reduced the size and
16 improved the portability of key instrumentation, and also made sequencing of proteins and
17 nucleic acids faster and less expensive. Here, we demonstrate the breadth of recent research on
18 the ecophysiology of mammals, quantify the research activity of the past 25 years, and consider
19 future research needs. Some of the most active areas of research have related to maintenance of
20 homeostasis, associations of physiological traits with the evolution of varied life styles and life
21 histories, and reproductive physiology. Key findings involve allometry and scaling, energetics
22 and thermoregulation, phenotypic plasticity and epigenetics, and the importance of microbial
23 symbionts. With respect to predictions of trends in mammalian ecophysiology, the strongest

24 themes relate to conservation biology, in large part related to rapid climate change, habitat
25 destruction, and other anthropogenic factors. How our mammalian fauna adapts (or not) to these
26 changes will be of great interest, and has the potential to affect the science of mammalogy in the
27 future.

28

29 La ecofisiología es un campo interdisciplinario relativamente reciente, y a pesar de que era un
30 área vigorosa antes del septuagésimo quinto aniversario de la Sociedad Americana de
31 Mastozoología (ASM), desde entonces ha crecido en envergadura. Este crecimiento es en parte
32 el resultado de los avances tecnológicos en donde el tamaño de los instrumentos se ha reducido
33 facilitando de ese modo la portabilidad de instrumentos claves, y al mismo tiempo, permitiendo
34 que la secuenciación de proteínas y ácidos nucleicos sea más rápida y menos costosa. En este
35 trabajo, se demuestra el alcance de la investigación reciente sobre la ecofisiología de los
36 mamíferos, se cuantifica la actividad científica de las investigaciones de las últimas dos décadas
37 y se hacen predicciones para los próximos 25 años. Algunas de las áreas más activas de
38 investigación se han asociado con el mantenimiento de la homeostasis, la relación entre los
39 rasgos fisiológicos con la evolución de diferentes estilos e historias de vida, y la fisiología
40 reproductiva. Los hallazgos clave incluyen la alometría y la escala, la energética y la
41 termorregulación, la plasticidad fenotípica y la epigenética, y la importancia de los simbiontes
42 microbianos. Con respecto a las predicciones sobre las tendencias de la ecofisiología de
43 mamíferos, los temas más comunes están relacionados con la biología de la conservación, en su
44 mayor parte a consecuencia del rápido cambio climático, la destrucción del hábitat y otros
45 factores antropogénicos. La forma en que nuestra fauna de mamíferos se adapta (o no) a estos

46 cambios, a nivel fisiológico y de otro tipo, será de gran interés en el futuro, teniendo el potencial
47 de influir a la ciencia de la mastozoología.

48

49 Key words: allometry, climate change, ecophysiology, energetics, evolution, homeostasis,
50 microbiome, phenotypic plasticity, physiology, reproduction

51

52 **SCOPE, PROCEDURES, AND LIMITATIONS**

53 Following the model provided by (Wunder and Florant 1994) in *Seventy-five Years of*
54 *Mammalogy* (Birney and Choate, eds.), we focus on the sub-discipline of physiology known as
55 ecophysiology or physiological ecology. We focus primarily on basic physiological research
56 that is relevant to mammals living under natural conditions, including studies that take place in a
57 laboratory or in captivity under simulated natural conditions. Physiology is a major component
58 of adaptation, and although physiology is a distinct discipline, it is inseparable from the related
59 fields of biochemistry, anatomy, behavior, population biology, community ecology,
60 biogeography, and evolution (for a specific example of physiological adaptation, see Storz et al.
61 2019).

62 Aspects of ecophysiology that are relevant to mammalogy include: 1) physiological
63 acclimation and acclimatization (flexibility to adjust to environmental variation during the life of
64 an individual), 2) epigenetic modifications that produce acclimation across generations without
65 changing gene structure, and 3) evolutionary adaptations to ecological conditions (genetically
66 based changes across generations). The emphasis on ecological benefits of physiological
67 adaptations distinguishes this field from traditional comparative physiology (Karasov and
68 Douglas 2013; Carey 2015). With over 6,500 currently recognized mammalian species living in

69 diverse habitats across the planet (Burgin et al. 2018), it seems self-evident that mammals
70 function physiologically in diverse ways. Much of this article is devoted to the ecological and
71 comparative aspects of physiology that help mammalogists understand wild species of mammals.

72 Although we have not attempted an exhaustive review of recent literature, we include
73 references that are representative of what is known about the ecophysiology of wild mammals.
74 For book-length treatments, readers are referred elsewhere (Karasov and Martinez Del Rio 2007;
75 McNab 2012; Withers et al. 2016; Hayssen and Orr 2017). We highlight the breadth and depth
76 of research activity in the last 25 years, while admitting some bias in sub-disciplines. It should
77 also be noted that historical biases exist relative to which mammal species and what aspects of
78 their lives have been studied. Taxa in some regions of the world have been studied more
79 intensively than those in other regions. Historically, the categories of mammal species that have
80 received more attention include large charismatic mammals, species living in areas where
81 collecting permits were not required or were easy to obtain, and species living closer to research
82 centers as opposed to those in remote locations. Low-tech methods dominated until technology
83 could be developed and miniaturized for use on smaller mammals and in remote locations.
84 These technological advancements in ability to measure physiological traits have enabled
85 mammalian physiologists to address questions that could only be envisioned by their
86 predecessors. Since Wunder and Florant (1994) and contemporaries (McNab 1992; Hayes and
87 Kenkins 1997) reviewed the state of ecophysiology, advances have occurred by using old
88 techniques to address previously unasked questions (often using a comparative approach applied
89 to species not previously studied) and by developing new methods to help answer these
90 questions.

91 We surveyed the recent literature on mammalian ecophysiology, using Ebsco Host
92 (Academic Search Complete), limited to peer-reviewed publications between January 1992 and
93 January 2018. We also sought input from colleagues around the world to identify key questions,
94 critical methods, and major findings since 1990. Finally, we projected these recent trends into
95 the future in an attempt to identify the most critical questions and the techniques needed to be
96 developed or perfected to address them (the next generation of mammalogists will undoubtedly
97 comment on how well we did). We also tracked publication and presentation trends related to
98 mammalian ecophysiology over the past 25 years in what we consider to be key periodicals and
99 conference proceedings. These are compared to trends identified by Wunder and Florant (1994)
100 for the preceding 75 years.

101 The following summary of ecophysiological research over the last quarter century is
102 organized in three themes. To function under a wide variety of conditions, both abiotic and
103 biotic, mammals must maintain relatively constant internal conditions (homeostasis).
104 Multicellular animals do this to provide their cells with the appropriate intercellular environment
105 to maintain cellular function, with each cell contributing to the success of the whole animal.
106 Hence, homeostasis is the first and largest theme. However, many physiological traits are related
107 to ways in which mammals interact with their environments to delineate their ecological niche;
108 this second theme is designated “life styles.” For both of these themes, success is generally
109 measured in terms of short-term survival of the individual animal. In contrast, for reproductive
110 function, success is defined as the contribution of offspring to the next generation, which can be
111 detrimental to individual survival but is necessary for Darwinian fitness. Hence, reproduction
112 constitutes our third theme.

113

114

HOMEOSTASIS

115 Maintaining homeostasis requires balancing gains and losses. One pervasive component of
116 animal survival is an energy budget: how (and how much) energy is acquired, and how energy is
117 used at different stages of its life. This continues to be an active area of research across taxa
118 representing three orders of mammals (e.g., western black-and-white colobus [*Colobus*
119 *polykomos*])—Dasilva 1992; polar bear [*Ursus maritimus*]—Molnár et al, 2009; insectivorous
120 bats [*Myotis nattereri*, *M. bechsteinii*, *Plecotus auritus*]—Becker et al. 2013). Other approaches
121 to energy balance are exemplified by studies on the neural regulation of energy balance
122 (Donovan and Tecott 2013), and comparisons of mammals and birds (Weiner 1992).

123 Recent studies related to energy intake include milk energy and its conversion to growth
124 of young (Riek 2007), maximizing energy intake (Van Wieren 1996), and social hierarchy
125 effects on food intake (Gende and Quinn 2004). The challenges of specializing on an
126 herbivorous diet include maximum body size and adaptations for dealing with secondary plant
127 compounds (Clauss et al. 2003; Sorensen et al. 2005). Similarly, there are adaptations for
128 specialized carnivorous diets in marine systems; for example, different prey preferences for
129 resident versus transient killer whales (*Orcinus orca*—Ford et al. 1998) and greater individual
130 variation in the diet of sea otters (*Enhydra lutris*) in habitats with rocky substrates (Newsome et
131 al. 2009). Related to energy intake are physiological adaptations for securing sufficient food,
132 which are discussed below (Life Style). The capacity to process food in the digestive tract isn't
133 fixed, but changes with the energy needs of the animal; for example, during winter or during
134 reproduction when caloric requirements are elevated. This was first demonstrated by Voltura
135 and Wunder (1998) and is still being studied (Ji-Ying et al. 2016). The role of the gut
136 microbiome is just starting to be understood in this regard.

137 The other side of energy balance is expenditure, a topic that has recently been studied in
138 more taxa living in a greater array of environmental conditions (e. g., White and Seymour 2004).
139 As expected in this period of drastic climate change, the coadaptation of basal metabolic rates
140 (BMR— Lovegrove 2003; Rezende et al. 2004), and of thermoregulatory patterns more generally
141 (Levesque et al. 2016) with climate, has been of particular interest. To fully understand the
142 effects of climate change on a species, we also need to know about any specialized or unique
143 mechanisms and abilities that a species has to thermoregulate (Mitchell et al. 2002; Mauck et al.
144 2003; Briscoe et al. 2014; Rezende and Bacigalupe 2015).

145 Many mammals have food resources that vary in availability in space and time, or
146 regularly encounter periods of insufficient food to balance their energy budget. As a
147 consequence, they sometimes suspend homeothermy (becoming heterothermic) and enter torpor
148 to reduce energy expenditure on a daily or seasonal basis (Geiser et al. 2005; Ruf and Geiser
149 2015; Evans et al. 2016; Levesque et al. 2017; Turner and Geiser 2017). The use of torpor is
150 more widespread than previously known, with recent examples including house mice (*Mus*
151 *musculus*—Swoap et al. 2012) and lemurs (*Cheirogaleus medius*, *Galago moholi*, *Microcebus*
152 *griseorufus*—Dausmann et al. 2012). Much of this work has been described at a series of
153 conferences of the International Hibernation Society (Geiser and Ruf 1995; Geiser 2004; Stawski
154 et al. 2015; also see symposium volumes of the International Hibernation Society and an edited
155 book by Frank 2019). The effect of climate change on mammalian hibernation is starting to be
156 addressed (Humphries et al. 2002; Nemeth 2012). Other factors (e. g. precipitation, reproductive
157 status, precipitation, etc.) also influence the use of torpor (Adams 2010; Rintoul and Brigham
158 2014). The control of hibernation and daily torpor is one area of ongoing interest, particularly
159 related to neural regulation and brain function (Schwartz et al. 2013; Scherbarth et al. 2015;

160 Jansen et al. 2016), bone loss due to inactivity (Doherty et al. 2014; Ma et al. 2015; Wojda et al.
161 2016), fat storage and use (Frank and Storey 1995; Contreras et al. 2014), maintaining cellular
162 functions (Zhang et al. 2014b; Yuan et al. 2015), and the microbiome (Carey and Assadi-Porter
163 2017). Not all mammals adjust their torpor use the same way in response to environmental
164 perturbation; Doty et al. (2016) recently reported that daily torpor use after a wildfire decreased
165 in lesser long-eared bats (*Nyctophilus geoffroyi*), in contrast to increased torpor use reported for
166 terrestrial small mammals.

167 In conjunction with metabolic rates, the act of supplying oxygen and removing carbon
168 dioxide requires appropriately sized and regulated respiratory and cardiovascular systems
169 (Powell and Hopkins 2004; Hillman et al. 2013). Although gas exchange has not been as
170 extensively studied, a comparative approach includes research on intraspecific and interspecific
171 elevational differences (Ivy and Scott 2015; Storz 2016; Storz et al. 2019), diving physiology
172 (Hooker et al. 2009; Gerlinsky et al. 2014), hemoglobin and myoglobin characteristics (Janecka
173 et al. 2015; Wright and Davis 2015), and fetal gas exchange (Mess and Ferner 2010).

174 Also related to metabolic rate (and homeostasis in general) is water balance, the
175 acquisition or production of water and rates of water loss. Water is produced during aerobic
176 metabolism in mitochondria and is lost in the processes of respiration and evaporative cooling.
177 Additional components of water balance include cutaneous water loss, renal function (Beuchat
178 1996; Al-kahtani et al. 2004), and the neural regulation of water intake. Both desert and marine
179 mammals continuously face dehydration as the water gradient pulls water out of their bodies.
180 Recent research on water balance has been conducted mostly on tropical bats (*Glossophaga*
181 *soricina*—Hartman Bakken et al. 2008; *Epomophorus wahlbergi*—Minnaar et al. 2014), South
182 American desert rodents (sigmodontine species—Bozinovic et al. 2007), desert ungulates (*Ovis*

183 *canadensis nelson*—Gedir et al. 2016), and pinnipeds (*Mirounga angustirostris*—Lester and
184 Costa 2006). Water loss in hibernating mammals (Thomas and Geiser 1997; Ben-Hamo et al.
185 2013) has also been of recent interest, particularly in regard to periodic arousal
186 Some mammals undergo marked seasonal changes (Tighe et al. 2016), usually mediated
187 by changes in photoperiod and physiologically regulated via melatonin. Research in the 1970s
188 and 1980s identified the importance of melatonin and the pineal gland in photoperiod-related
189 phenomena (Arendt 1994; Gorman et al. 2001), and this work has been extended by recent
190 research only possible with the advent of laboratory tools such as rapid sequencing of
191 biopolymers (amino acids and nucleic acids). For example, our understanding of the role of
192 photoperiod on annual cycles of reproduction (Ninomiya-Alarcón et al 2004; Hoole et al. 2016),
193 feeding and body mass (Helwig et al. 2009; Wan-Long et al. 2013), immune function
194 (Prendergast et al. 2004; Xu and Hu 2017), and thermoregulation (Zhang et al. 2014a) have been
195 enhanced by these methods. Another area in which research on seasonal changes has been
196 conducted, though more limited in scope, is migration (often an alternative to hibernation), as
197 demonstrated by bats (McGuire et al. 2014). Although most recent research has focused on
198 annual cycles, work also continues on the control of daily cycles, for example in rodents
199 (*Cryptomys damarensis*—Richter et al. 2003; *Psammomys obesus*—Neuman et al. 2005;
200 *Microtus arvalis*—van der Veen et al. 2006) and primates (*Lemur catta*—Donati et al. 2013).

201

LIFE STYLES

203 In addition to maintaining homeostasis, suites of behavioral and physiological adaptations have
204 evolved or coadapted with other traits (e.g., behavioral) in ways that enhance survival and
205 reproductive ability in a variety of niches (Brashares et al. 2000; Storz et al. 2019). The

206 existence of different niches allows organisms to diversify with reduced competition, and
207 specialization is required to best fit particular niches. Although physiology is often hard to
208 separate from associated anatomy, biochemistry and genetics, many physiological adaptations
209 that help mammals fit into their niches have been identified (e.g., enhanced renal function in
210 species from arid habitats—Beuchat 1996; Al-kahtani et al. 2004). In turn, these adaptations
211 affect the ecology of the species (see Storz et al. 2019). In this section, we organize these
212 adaptations by life style. For example, mode of locomotion and diet specializations strongly
213 influences niche definition, and these may overlap (Verde Arregoitia et al. 2017).

214 Life style is closely associated with locomotion (Schaeffer and Lindstedt 2013; Bertram
215 2016), and recent research on the physiology of locomotion includes: 1) maximal aerobic
216 capacity and performance ability (Djawdan 1993); 2) energetics (Chappell et al. 2004; Garland
217 and Albuquerque 2017; Halsey and White 2017); 3) biomechanics (Michilsens et al. 2009;
218 Wilson et al. 2018); 4) ecomorphology (Spoor et al. 2007; Panciroli et al. 2017); 5) interactions
219 with reproduction (Noren et al. 2012; Andrew et al. 2016); and 6) the evolution of the "runner's
220 high" (Raichlen et al. 2012).

221 Aquatic mammals have special adaptations of the respiratory and cardiovascular systems
222 that are associated with diving (Mottishaw et al. 1999; Bostrom et al. 2008; Mortola 2015), and
223 that confer increased hypoxia tolerance (Sergina et al. 2015; Hoff et al. 2017) and oxygen
224 storage (Nery et al. 2013). Interest in conservation of marine mammals, in regard to
225 anthropogenic stress, has also generated studies of their stress physiology (Wright et al. 2007;
226 Atkinson et al. 2015), and the effect of climate change on marine mammals (Thiemann et al.
227 2008).

228 Fossorial mammals can also face hypoxic (and hypercapnic) conditions and muted
229 temperature fluctuations, allowing comparative studies of their physiological adaptations to these
230 conditions. Subterranean coruros (*Spalacopus cyanus*) increase ventilation when exposed to
231 hypoxia, while fossorial degus (*Octodon degus*) do so in response to hypercapnia (Tomasco et al.
232 2010). Much fossorial mammal research is on mole-rats, which have seasonal cycles in activity
233 and reproduction, apparently related more to rainfall than to temperature (*Heliothobius*
234 *argenteocinereus*—Zelová et al. 2011; Ngalameno et al. 2017), and extremely long life-spans
235 (*Heterocephalus glaber*—Kim et al. 2011).

236 Aerial species of mammals also require special adaptations. Mammals that glide have
237 been studied in relation to energy requirements (Flaherty et al. 2010; Byrnes et al. 2011).
238 Chiropteran flight has been described from the perspective of biomechanics and kinematics
239 (*Cynopterus brachyotis*—Iriarte-Diaz et al. 2012), in regard to the function of their small
240 digestive systems (less weight to carry; *Artibeus lituratus*—Caviedes-Vidal et al. 2007, 2008),
241 and the need for a prolonged lactation period (*Eptesicus fuscus*—Hood et al. 2011). An
242 important component of bats' nocturnal flight, echolocation, may have evolved from fossorial
243 mammals (Panyutina et al. 2017).

244 Herbivorous mammals often encounter toxins in their diet (especially in tree leaves) that
245 need to be detoxified or that decrease the energy they can obtain from their food. Wunder and
246 Florant (1994) correctly predicted that we would see more research on how herbivores use their
247 plant resources. Studies since then address adaptations to use these plants despite the toxins and
248 their associated energetic limitations (Min et al. 2005; Pauli et al. 2016); other studies consider
249 detoxification, such as research on woodrats (*Neotoma stephensi*, *N. albicula*—Sorensen et al.
250 2004) and rabbits (*Sylvilagus nuttallii*, *Brachylagus idahoensis*—Crowell et al. 2018).

251 Carnivorous mammals obviously have anatomical and behavioral traits that make them
252 successful, but they also possess physiological adaptations associated with this life style. These
253 include sensory adaptations that aid in finding prey (see below), the use of venom (Kowalski and
254 Rychlik 2018), and the ability to digest specific dietary components (chitin, wax, etc.). Several
255 studies have used captive carnivores to address the issue of diet breakdown (*E. lutris*,
256 *Leptonychotes weddellii*—Williams and Yeates 2004; *Mustela vison*—Mayntz et al. 2009;
257 *Myrmecophaga tridactyla*—Gull et al. 2015) or to develop and compare methods of diet analysis
258 (*E. lutris*—Tyrrell et al. 2013). Although prey species of mammals have evolved anti-predator
259 strategies, we didn't identify any recent research on physiological defense mechanisms.

260 Similar to predator-prey relationships, mammals are involved in host-parasite
261 relationships (always as the host), and research continues on the associated physiological costs of
262 parasitism (Schwanz 2006; Olifiers et al. 2015; Simpson et al. 2016), and how this might change
263 throughout the year (Kristan and Hammond 2003; Cizauskas et al. 2015). Some work on
264 immune function, mostly in regard to parasites, has also been conducted recently, including
265 models of immune function (Garnier et al. 2013; Jolles et al. 2015), host-parasite interactions
266 (Lopez-Romero et al. 2015; Zhang et al. 2017), and how social factors affect immune function
267 (Flies et al. 2016).

268 Beneficial interspecific relationships (from the mammals' perspective) also continue to
269 be studied, including symbiotic relationships between vertebrate classes (Zdunkiak et al. 2017),
270 between small mammals and pitcher plants (Greenwood et al. 2011), and among three-toed
271 sloths (*Bradypus* spp.), moths, and algae (Pauli et al. 2014). The ecological interactions in these
272 examples involve food acquisition or ectoparasite reduction, and so could be considered more
273 behavioral than physiological, but are included here because we use a broad definition of

274 ecophysiology, and most behaviors include physiological components. A special type of
275 symbiotic relationship involves gut microbes (Leser and Mølbak 2009; Amato et al. 2014). This
276 research includes comparative microbiome studies, using high-throughput sequencing platforms
277 to identify the thousands of microorganism taxa that occupy the gut, as exemplified by Carey et
278 al. (2013) and Kohl and Carey 2016).

279 To be successful in their various life styles, mammals must be able to sense the world
280 around them and communicate with others. Therefore, sensory physiology remains of interest,
281 and recent research in this subdiscipline covers vision (Williams et al. 2005; Pessoa et al. 2014)
282 and hearing (Mariappan et al. 2013; Wahlberg et al. 2017). For example, Charlton et al. (2017)
283 expanded our understanding of koala (*Phascolarctos cinereus*) vocalizations. In addition,
284 research on tactile abilities (Pacheco-Cobos et al. 2003; Gaspard et al. 2017), electroreception
285 (Ashwell and Hardman 2012; Czech-Damal et al. 2013), and echolocation (Gonzalez-Terrazas et
286 al. 2016; Luís et al. 2016) are also producing new insights.

287 Olfactory studies were not present in our subset of published articles, suggesting this has
288 not been an area of active research in the last 25 years. However, the use of pheromones, which
289 share some characteristics with olfaction, is an important aspect of mammalian chemical ecology
290 (a relatively new sub-discipline), and this has continued to be an area of active research,
291 especially in primates (Evans 2006; *Mandrillus sphinx*—Charpentier et al. 2013). Mammals use
292 pheromones for scent marking (Blank et al. 2014), influencing the reproductive status of the
293 opposite sex (Anand et al. 2002; Lazar et al. 2004; de Catanzaro et al. 2014), and male-male
294 competition (Bian et al. 2013; Rendon et al. 2016).

295

296

REPRODUCTION

297 As indicated above, most sub-disciplines of physiology focus on the short-term survival of the
298 individual, but reproduction is a risky and resource-demanding process, often detrimental at the
299 level of the individual, and not contributing to homeostasis. Nonetheless, reproduction is by
300 definition required for species persistence, leading to evolutionary trade-offs (Martin 2015), and
301 reproductive isolation is a key driver of speciation. Although this isolation is generally
302 considered to be geographic, genetic, or anatomical in nature, physiological differences often
303 contribute as well. In addition, understanding a species' reproductive processes (timing,
304 behaviors, physiology, etc.) is important in conservation efforts.

305 Recent publications on reproductive physiology include multiple integrated aspects of
306 reproduction, and by necessity overlap with morphology and behavior (Dixson and Anderson
307 2004). For example, although reproductive events such as implantation and parturition involve
308 physiological changes, they are also life-history events, and timing of these events may depend
309 on ecological factors (Friebe et al. 2014). Even when research on reproductive timing doesn't
310 measure physiological traits (Ciuti and Apollonio 2016), underlying changes in endocrine and
311 gonadal function are implied, and these functions can be profoundly different between breeding
312 and nonbreeding periods of the year (Teodoro et al. 2012). Most of the timing of mammalian
313 reproduction is based on photoperiod, and the possibility of anthropogenic light interfering with
314 reproduction of wild mammals has recently been demonstrated (Robert et al. 2015).

315 Reproduction is regulated by endocrine cycles, either regular (spontaneous ovulation) or
316 arrested (induced ovulation), and much of this was described prior to the period covered by this
317 review. However, we continue to add details, find differences among taxa, improve on non-
318 invasive methods to monitor hormones (Dehnhard et al. 2008), determine interactions with
319 hormones that are not reproductive steroids (Saltzman and Ziegler 2014; Fanson and Parrott

320 2015), and investigate ecological factors that influence basic reproductive function (Cizauskas et
321 al. 2015). Interesting work is also being done on hormones of one individual that affect another,
322 e.g., maternal-offspring effects (Horton 2005; Ryan et al. 2014; Hinde et al. 2015).

323 A primary way in which mothers impact their offspring is via milk production, but the
324 nutritional content of milk varies among taxa (Skibiel et al. 2013; Power et al. 2018) and the
325 immunological components vary between individuals (Roulin and Roulin 1999). The production
326 of milk is energetically expensive, particularly when required by fast-growing pups of species
327 such as marine mammals (Thometz et al. 2014; Fowler et al. 2016). Uniquely, milk production
328 in males has recently been demonstrated in two species of bats (*Dyacopterus spadecius* and
329 *Pteropus capistratus*—Kunz and Hosken 2009), which presumably helps distribute the cost of
330 lactation. In all other mammalian species, the primary physiological contribution to reproduction
331 by males is sperm production, the cost of which seems to increase when sperm competition
332 exists (Jean-François 2011). Other reproductive costs incurred by males (which may exceed the
333 cost of sperm production) are associated with access to estrus females, including territorial
334 defense, maintaining a position in a hierarchy, and growing accessory reproductive structures
335 (antlers, etc.)

336 The energetic cost of reproduction often limits the number of offspring produced
337 (Thompson et al. 2012), and constitutes a trade-off with other energy-demanding processes, such
338 as growth, maintenance of tissues (including large brains), thermoregulation, migration, etc.
339 (Bårdesen et al. 2009; McAllan and Geiser 2014). These costs also vary based on environmental
340 factors (Bergeron et al. 2011). Recent work has also begun examining the costs of reproduction
341 for males in biparental species (Zhao et al. 2018).

342

343

PUBLICATION TRENDS

344 As was done by Wunder and Florant (1994), we assessed trends over time in mammalian
345 ecophysiology research. Specifically, we analyzed journal publications for selected years over
346 the last quarter century. For the *Journal of Mammalogy* (*JM*), we counted physiology articles
347 (assuming 100% mammals), and broke these down by subdiscipline. For *Physiological and*
348 *Biochemical Zoology* (*PBZ*) and *Comparative Biochemistry and Physiology* (*CBP*), we counted
349 the number of publications on mammals (assuming 100% physiology) and broke these down into
350 a few subject categories. Similarly, we counted the publications in the symposia volumes of the
351 International Hibernation Society (IHS) over the same time period. As the IHS meets every four
352 years, the journal data are matched.

353 From 1996-2016 (every fourth year), the number of articles published in *JM* on
354 physiology has remained relatively constant. Over this time, an average of 18% of the articles in
355 *JM* were physiological in nature, but this has decreased from 27% in 1996 to 13% in 2012 (Table
356 1; Fig. 1) because the total number of articles published in *JM* has increased by about 50%, but
357 the absolute number of articles on physiology did not change. This decrease in percentage could
358 be due to a relative decrease in physiological research on wild mammal species (particularly
359 concerning reproduction), or to the existence of journals that are viewed as better options for this
360 research (a “dilution effect”). Of the 143 physiological articles, the top five categories included
361 33% on aspects of reproductive physiology, followed by 10% on torpor-arousal research, 8% on
362 digestion-storage of foods, 7% on communication, and 6% on energetics. Other kinds of
363 research were published in smaller numbers. These align with what Wunder and Florant (1994)
364 found for *JM* publications in the 1980s: their top four categories (over 10% each) were 1)
365 energetics, 2) digestion-nutrition, 3) temperature regulation, and 4) reproduction.

366 Over the last 20 years (every fourth year), *PBZ* has consistently published about 24%
367 (21-27%) of their articles on mammals (Fig. 1, Table 2), with another 2% involving mammals as
368 part of a comparison (Table 2). Thus, mammals were the most popular taxon, with articles on
369 birds and fish each representing about 18% of the published articles in our sampling. In this
370 journal, virtually all the articles on mammals involved ecophysiology. This observation, and the
371 constant number of mammal ecophysiology articles despite these numbers decreasing in other
372 journals, suggests that this is the journal of choice for ecophysiology research.

373 Over the same time period, *CBP* (which publishes nearly five times as many articles per
374 year as *PBZ*), published 15% of its articles solely on mammals (just over half the proportion of
375 articles as *PBZ*), with another 1% including mammals in mixed-taxon studies (Table 3). This has
376 decreased from 23% in 1996 to just 7% in 2016 (Fig. 1), and occurred in parallel with other
377 terrestrial vertebrate groups. The majority of articles published in this journal are now on fish
378 and invertebrates (about 30% each), and of the *CBP* publications on mammals, the slightly larger
379 proportions involved molecular physiology or were integrative in nature. One possible factor
380 responsible for some of this decline in research on live mammals could be taxon-based
381 differences in government regulations, restrictions, and oversight (enforced via Institutional
382 Animal Care and Use Committees) that is more stringent for mammals than other taxa. This
383 may have led some researchers to use other taxa in their studies. If increasingly onerous
384 regulation is a factor inhibiting physiological research on mammals, developing and
385 implementing more non-invasive or minimally invasive field methods for studying mammals
386 may help to reduce IACUC concerns. For a detailed treatment of use of wild mammals in
387 research, with a consideration of issues relating to field research, see Sikes et al. (2019).

388 A final indicator of research publications in mammalian ecophysiology we included are
389 the symposium volumes from the International Hibernation Society (symposia held every fourth
390 year). In the last six volumes, about 88% of the chapters involved mammals, and of these, more
391 than four of five fit into the subject categories of energetics, thermoregulation, torpor, rhythms,
392 cellular mechanisms, neuroendocrinology, dietary, or other physiological categories (Table 4).
393 Even those chapters that were mostly descriptive involved processes that had a physiological
394 basis. Because of the emphasis of this society on mechanisms for coping with inclement weather
395 and energy shortages, reproductive physiology was not represented in this data set. Other than
396 this, however, we see similar patterns of active publication in physiology since 1992 across all
397 the sources we investigated, and the topics are a continuation of the areas emphasized prior to
398 that date. Unfortunately, in the last two decades, the proportion of articles on physiology
399 published in *JM*, and the proportion of articles on mammals published in *CBP*, have slowly been
400 declining.

401

402

KEY FINDINGS

403 One of the questions we asked when preparing this article was "What are the most
404 significant research findings in mammalian ecophysiology over the last 25 years?" Based on our
405 own experience and responses from queried colleagues within the discipline, we suggest that the
406 most significant findings (and significant publications) can be separated into five broad
407 categories, some of which overlap. We note that Wunder and Florant (1994:269) made two
408 predictions for areas of future research that not only proved to be accurate, but are still valid as
409 we look beyond 2019: 1) "cell and molecular approaches" will be revealing, and 2) we need to
410 understand how mammals "adjust . . . as we witness climatic and other environmental changes."

411 *Allometry and scaling*.—Databases related to body size and its correlates with
412 ecophysiological parameters underwent tremendous expansion, and sharing of these via
413 publication, including online supplemental materials and data repositories, became routine, thus
414 greatly advancing research. Allometry and scaling showed continued development of grand
415 theories, often tested with empirical studies to address why physiological traits co-vary with
416 body size in particular ways (Brown et al. 2004; White and Kearney 2014; Glazier 2015).

417 *Energetics and thermoregulation*.—The ways in which basal, maximal, and field
418 metabolic rates have coadapted with other aspects of physiology, morphology, behavior, and life
419 history continued to be illuminated (Nagy 2005; McNab 2015). Torpor and hibernation were
420 shown to be much more widespread than previously thought, and to occur not only in cold
421 climates. Moreover, torpor and hibernation are now accepted as being as old as endothermy
422 itself (Lovegrove 2016). The evolution of endothermy continued to attract attention from
423 comparative, ecological, and evolutionary physiologists (Wone et al. 2015; Lovegrove 2016;
424 Garland and Albuquerque 2017; Nespolo et al. 2017; Nicol 2017).

425 *Genetics and evolution*.—Individual variation, repeatability, and covariation of
426 physiological and behavioral traits have now been demonstrated multiple times (e.g., Djawdan
427 1993; Hayes and Jenkins 1997; Szafrańska et al. 2007; Andrew et al. 2016). Subsequently, the
428 mechanistic underpinnings of individual variation were explored (reviews in Careau and Garland
429 2012; Konarzewski and Książek 2012). As a key component of this individual variation,
430 additive genetic variance of physiological traits was documented (Sadowska et al. 2005). Direct
431 measurements of natural selection acting on physiological and behavioral traits in wild
432 populations have also been made (Hayes and O'Connor 1999; Boratyński and Koteja 2009).

433 Thus, the components of adaptive, cross-generational changes that we all knew existed
434 (variation, heritability, selection), were demonstrated empirically in mammals.

435 Results of artificial selection experiments on metabolic rate and on behavior
436 demonstrated many correlated responses (or, sometimes, the lack of such predicted responses) at
437 multiple levels of biological organization (along with cell size; Sadowska et al. 2015; Wone et al.
438 2015; Wallace and Garland 2016). This selection can even alter the mammal's microbiome
439 (Kohl et al. 2016). "Omics" approaches started being applied to ecophysiological traits to
440 elucidate the genetic and molecular basis of responses to selection (Konczal et al. 2015).

441 Application of phylogenetically based statistical methods to classic ecophysiological questions
442 showed that these approaches can lead to substantially altered conclusions, including with regard
443 to scaling relationships (Garland and Carter 1994; Brashares et al. 2000; White and Seymour
444 2004; Dlugosz et al. 2013; White and Kearny 2014).

445 *Phenotypic plasticity and epigenetics.*— Phenotypic plasticity received increasing
446 attention (Kelly et al. 2012), following the long tradition of studies on acclimation and
447 acclimatization in mammalian ecophysiology. Responses to a wide array of environmental
448 factors have been examined. Epigenetic mechanisms that may underlie phenotypic plasticity and
449 may in some cases be transmitted across generations received increasing attention, especially as
450 new molecular tools appeared (e.g., DNA methylation sequencing). Although the potential role
451 of early-life effects in developmental programming of adult traits has been recognized based on
452 numerous studies of humans and laboratory rodents, studies of such phenomena in wild
453 mammals are scarce (Garland et al. 2017; Laubach et al. 2018).

454 *Microbiomes.*— The activity of host microbiomes, and particular the relationships
455 between host animals and microbial symbionts, emerged as being potentially integrated into

456 most aspects of animal physiology, behavior, and general biology (McFall-Ngai et al. 2013;
457 Carey and Assadi-Porter 2017). This is particularly true in relation to gut microbes, and the
458 impact they can have on realms of biology not previously envisioned.

459

460 **PREDICTIONS**

461 Attempts to predict the future in a scientific field, even with an understanding of the past, are as
462 challenging as they are for predictions of the weather, sports, and politics. Nonetheless, we
463 attempt here to make predictions of how ecophysiology will contribute to the next 25 years of
464 mammalian biology, based on: 1) our understanding of current status; 2) trends observed in the
465 recent past; 3) an appreciation for the pace and direction of technological advancements; 4)
466 familiarity with some of the leading scientists in mammalian ecophysiology; 5) informal input
467 from colleagues in mammalian ecophysiology; and 6) a bit of (admittedly non-scientific)
468 intuition.

469 These factors allowed us to generate a list of research themes (“key words”) and then
470 assign a weight to these themes relative to the number of times each was encountered. Fig. 2
471 presents a word-cloud created using Wordle (www.wordle.net) that illustrates these weighted
472 themes, with font sizes proportional to predicted research effort. The dominant themes are
473 related to global change and conservation physiology, which is unsurprising in this time of
474 perceived environmental crisis. Next are evolution, adaptation, and related topics, reflecting the
475 ascendancy of evolutionary physiology in the last 25 years (Garland and Carter 1994; Carey
476 2015; Storz et al. 2019). Third, we see such terms as energetics, behavior, and plasticity, which
477 are classic topics within the sphere of ecophysiology. The study of microbiomes also has the
478 potential to change the way we think about many aspects of mammalogy that we don’t currently

479 connect to our microbes, particularly the (chemical) interactions with those evolved to live in the
480 gut.

481 Although Wunder and Florant (1994) covered over 100 years in their review of the
482 history of physiological research, we might argue that the advancements made in the last 25
483 years rival those made in the preceding century. Those pioneers of mammalian ecophysiology
484 laid the groundwork, and developed explanatory theories, but these were based on a few species,
485 and techniques and equipment that were advanced for their day but primitive by today's
486 standards. Wunder and Florant (1994) mention that some equipment was developed by scientists
487 who became entrepreneurs and started making equipment for sale to colleagues. This practice
488 continued during the past 25 years; for example, Sable SystemsTM for precise measurements of
489 gas exchange, and bat detectors and associated software to hear and identify echolocation calls.

490 However, the major technological advancements in biology over the last 25 years may
491 well be in the area of sequencing polymers. In the recent past, it was predicted to take ten years
492 to sequence the genome of one human. Now we can sequence the amino acids in a protein or the
493 nucleic acids in RNA and DNA by the billions in a single day. Genomics, transcriptomics,
494 proteomics, metabolomics, and microbiomics are new scientific approaches to address questions
495 that up until now were just hypothetical (e.g., Konczal et al. 2015). The massive amount of
496 sequence data has led to the development of software to handle it, and the field of
497 "bioinformatics" was born. Databases for these sequences are growing exponentially, such that a
498 new sequence from an unknown source can often be matched to a gene and a species in seconds.

499 The use of sequence data to discern taxonomic differences and phylogenetic relationships
500 has clarified (and sometimes muddied) mammalian systematics, but has only recently been
501 moving into ecophysiological studies. The explosion of sequence data has led to the

502 development of research “tools” that allow us to dig deeper into “how mammals work” (e.g.,
503 Kitanovic et al. 2018). For example, quantitative polymerase change reaction (qPCR) assays
504 allow us to identify microscopic bits of evidence, such as a diet analysis by examination of fecal
505 materials. Prior to PCR, one had to sift through fecal matter under a microscope hoping to find
506 an identifiable remnant of a food item, and then perhaps only be able to identify that item to the
507 family level. Food items that were hard to digest were over-represented in data collected this
508 way. Today, one can “search” for DNA in the feces with a qPCR assay, and probably identify
509 the food item to species. Using qPCR, one can even determine the fraction of the diet made up
510 by each food item identified.

511 Other techniques using sequence data allow us to “view” how our research subjects
512 respond to their environment. For example, exposure to a pathogen or chemical, or to
513 temperature extremes, can stimulate certain cells to turn on particular genes (for example, heat
514 shock proteins) in response to this exposure. Differential expression of genes (up-regulation and
515 down-regulation) can be determined by analysis of the sequenced genes which were transcribed
516 (messenger RNA via “transcriptomics”). As not all transcribed genes actually end up making
517 new proteins, one can also assess the viable proteins in a sample (“proteomics”) to further
518 delineate the animal’s response to an environmental exposure or change. Other examples exist
519 for new uses of sequence data now, and we have to assume that: 1) more techniques will be
520 developed in the next 25 years; and 2) the cost of doing the sequencing will drop further and
521 allow even more mammalogists to incorporate these methods into their inquiry.

522

523 **ACKNOWLEDGEMENTS**

524 We appreciate the opportunity provided by ASM to contribute to this special collection of
525 articles: it has been an honor and a challenge. Numerous colleagues provided informal insights,
526 sometimes without realizing it, as to the key findings and directions in mammalian
527 ecophysiology that were very helpful as we developed the ideas in this paper. We thank T.
528 Horton and V. Hayssen for thoughtful comments on an early draft, and anonymous reviewers for
529 identifying areas needing clarification. We appreciate the assistance of C. Elizalde-Arellano for
530 the Spanish translation of our abstract. T.G. was supported by U.S. National Science Foundation
531 grant DEB-1655362.

532

LITERATURE CITED

534 ADAMS, R. A. 2010. Bat reproduction declines when conditions mimic climate change
535 projections for western North America. *Ecology* 91:2437-2445.

536 AL-KAHTANI, M. A., C. ZULETA, E. CAVIEDES-VIDAL, AND T. GARLAND, JR. 2004. Kidney mass
537 and relative medullary thickness of rodents in relation to habitat, body size, and phylogeny.
538 *Physiological and Biochemical Zoology* 77:346–365.

539 AMATO, K. R., ET AL. 2014. The role of gut microbes in satisfying the nutritional demands of
540 adult and juvenile wild, black howler monkeys (*Alouatta pigra*). *American Journal of
541 Physical Anthropology* 155:652-664.

542 ANAND, S., S. LOSEE-OLSON, F.W. TUREK, AND T. H. HORTON. 2002. Differential regulation of
543 luteinizing hormone and follicle-stimulating hormone in male Siberian hamsters by
544 exposure to females and photoperiod. *Endocrinology* 143:2178-2188.

545 ANDREW, J. R., W. SALTZMAN, M. A. CHAPPELL, AND T. GARLAND, JR. 2016. Consequences of
546 fatherhood in the biparental California mouse (*Peromyscus californicus*): locomotor

547 performance, metabolic rate, and organ masses. *Physiological and Biochemical Zoology*
548 89:130–140.

549 ARENDT, J., 1994. Melatonin and the mammalian pineal gland. Springer Science & Business
550 Media, Berlin, Germany.

551 ASHWELL, K. W., AND C. D. HARDMAN. 2012. Distinct development of the trigeminal sensory
552 nuclei in platypus and echidna. *Brain, Behavior and Evolution* 79:261-274.

553 ATKINSON, S., D. CROCKER, D. HOUSER, AND K. MASHBURN. 2015. Stress physiology in marine
554 mammals: how well do they fit the terrestrial model? *Journal of Comparative Physiology B:*
555 *Biochemical, Systemic and Environmental Physiology* 185:463-486.

556 BÅRDSEN, B., P. FAUCHALD, T. TVERAÅ, K. LANGELAND, AND M. NIEMINEN. 2009. Experimental
557 evidence of cost of lactation in a low risk environment for a long-lived mammal. *Oikos*
558 118:837-852.

559 BECKER, N. I., J. A. ENCARNAÇÃO, M. TSCHAPKA, AND E. K. V. KALKO. 2013. Energetics and
560 life-history of bats in comparison to small mammals. *Ecological Research* 28:249-258.

561 BEN-HAMO, M., A. MUÑOZ-GARCIA, J. B. WILLIAMS, C. KORINE, AND B. PINSHOW. 2013.
562 Waking to drink: rates of evaporative water loss determine arousal frequency in hibernating
563 bats. *Journal of Experimental Biology* 216:573-577.

564 BERGERON, P., V. CAREAU, M. M. HUMPHRIES, D. RÉALE, J. R. SPEAKMAN, AND D. GARANT.
565 2011. The energetic and oxidative costs of reproduction in a free-ranging rodent. *Functional
566 Ecology* 25:1063-1071.

567 BERTRAM, J. E. A. (ed.). 2016. Understanding mammalian locomotion: concepts and
568 applications. John Wiley and Sons, Hoboken, New Jersey.

569 BEUCHAT, C. A. 1996. Structure and concentrating ability of the mammalian kidney: correlations
570 with habitat. *American Journal of Physiology: Regulatory, Integrative, and Comparative*
571 *Physiology* 40:157-180.

572 BIAN, X., D. LIU, H. ZENG, G. ZHANG, R. WEI, AND R. HOU. 2013. Exposure to odors of rivals
573 enhances sexual motivation in male giant pandas. *PLoS ONE* 8:1-5.

574 BLANK, D. A., K. RUCKSTUHL, AND W. YANG. 2014. Secretion marking with preorbital glands in
575 goitered gazelle, *Gazella subgutturosa* (Artiodactyla: Bovidae). *Folia Zoologica* 63:127-136.

576 BORATYŃSKI, Z., AND P. KOTEJA. 2009. The association between body mass, metabolic rates and
577 survival of bank voles. *Functional Ecology* 23:330-339.

578 BOSTROM, B. L., A. FAHLMAN, AND D. R. JONES. 2008. Tracheal compression delays alveolar
579 collapse during deep diving in marine mammals. *Respiratory Physiology and Neurobiology*
580 161:298-305.

581 BOZINOVIC, F., A. P. CRUZ-NETO, A. CORTÉS, G. B. DIAZ, R. A. OJEDA, AND S. M. GIANNONI.
582 2007. Physiological diversity in tolerance to water deprivation among species of South
583 American desert rodents. *Journal of Arid Environments* 70:427-442.

584 BRASHARES, J., T. GARLAND, JR., AND P. ARCESE. 2000. Phylogenetic analysis of coadaptation in
585 behavior, diet, and body size in the African antelope. *Behavioral Ecology* 11:452–463.

586 BRISCOE, N. J., K. A. HANDASYDE, S. R. GRIFFITHS, W. P. PORTER, A. KROCKENBERGER, AND M.
587 R. KEARNEY. 2014. Tree-hugging koalas demonstrate a novel thermoregulatory mechanism
588 for arboreal mammals. *Biology Letters* 10:1-5.

589 BROWN, J. H., J. F. GILLOOLY, A. P. ALLEN, V. M. SAVAGE, AND G. B. WEST. 2004. Toward a
590 metabolic theory of ecology. *Ecology* 85:1771–1789.

591 BURGIN, C. J., J. P. COLELLA, P. L. KAHN, AND N. S. UPHAM. 2018. How many species of
592 mammals are there? *Journal of Mammalogy* 99:1-14.

593 BYRNES, G., T. LIBBY, N. T.-L LIM, AND A. J. SPENCE. 2011. Gliding saves time but not energy in
594 Malayan colugos. *Journal of Experimental Biology* 214:2690-2696.

595 CAREAU, V., AND T. GARLAND, JR. 2012. Performance, personality, and energetics: correlation,
596 causation, and mechanism. *Physiological and Biochemical Zoology* 85:543–571.

597 CAREY, H. V. 2015. Lessons learned from comparative and evolutionary physiology. *Physiology*
598 30:80–81.

599 CAREY, H. V., W. A. WALTERS, AND R. KNIGHT. 2013. Seasonal restructuring of the ground
600 squirrel gut microbiota over the annual hibernation cycle. *American Journal of Physiology:*
601 *Regulatory Integrative and Comparative Physiology* 304:R33–R42.

602 CAREY, H. V., AND F. M. ASSADI-PORTER. 2017. The hibernator microbiome: host-bacterial
603 interactions in an extreme nutritional symbiosis. *Annual Review of Nutrition*. 37:477–500.

604 CARO, T., H. WALKER, Z. ROSSMAN, M. HENDRIX, AND T. STANKOWICH. 2017. Why is the giant
605 panda black and white? *Behavioral Ecology* 28:657-667.

606 CAVIEDES-VIDAL, E., T. J. MCWHORTER, S. R. LAVIN, J. G. CHEDIACK, C. R. TRACY, AND W. H.
607 KARASOV. 2007. The digestive adaptation of flying vertebrates: high intestinal paracellular
608 absorption compensates for smaller guts. *Proceedings of the National Academy of Sciences*
609 *of the United States of America* 104:19132-19137.

610 CAVIEDES-VIDAL, E., W. H. KARASOV, J. G. CHEDIACK, V. FASULO, A. P. CRUZ-NETO, AND L.
611 OTANI. 2008. Paracellular absorption: a bat breaks the mammal paradigm. *PLoS ONE* 3:1-8.

612 CHAPPELL, M. A., T. GARLAND, JR, E. L. REZENDE, AND F. R. GOMES. 2004. Voluntary running in
613 deer mice: speed, distance, energy costs and temperature effects. *Journal of Experimental*
614 *Biology* 207:3839–3854.

615 CHARLTON, B. D., D. J. WATCHORN, AND D. A. WHISSON. 2017. Subharmonics increase the
616 auditory impact of female koala rejection calls. *Ethology* 123:571-579.

617 CHARPENTIER, M. J., S. MBOUMBA, C. DITSOGA, AND C. M. DREA. 2013. Nasopalatine ducts and
618 flehmen behavior in the mandrill: reevaluating olfactory communication in old world
619 primates. *American Journal of Primatology* 75:703-714.

620 CIUTI, S., AND M. APOLLONIO. 2016. Reproductive timing in a lekking mammal: male fallow
621 deer getting ready for female estrus. *Behavioral Ecology* 27:1522-1532.

622 CIZAUSKAS, C. A., W. C. TURNER, N. PITTS, AND W. M. GETZ. 2015. Seasonal patterns of
623 hormones, macroparasites, and microparasites in wild African ungulates: the interplay
624 among stress, reproduction, and disease. *PLoS ONE* 10:1-29.

625 CLAUSS, M., ET AL. 2003. The maximum attainable body size of herbivorous mammals:
626 morphophysiological constraints on foregut, and adaptations of hindgut fermenters.
627 *Oecologia* 136:14-27.

628 CONTRERAS, C., M. FRANCO, N. J. PLACE, AND R. F. NESPOLO. 2014. The effects of poly-
629 unsaturated fatty acids on the physiology of hibernation in a South American marsupial,
630 *Dromiciops gliroides*. *Comparative Biochemistry and Physiology Part A: Molecular and*
631 *Integrative Physiology* 177:62-69.

632 CROWELL, M. M., L. A. SHIPLEY, J. S. FORBEY, J. L. RACHLOW, R. G. KELSEY, AND P. BARBOZA.
633 2018. Dietary partitioning of toxic leaves and fibrous stems differs between sympatric
634 specialist and generalist mammalian herbivores. *Journal of Mammalogy* 99:565-577.

635 CZECH-DAMAL, N., G. DEHNHARDT, P. MANGER, AND W. HANKE. 2013. Passive electroreception
636 in aquatic mammals. *Journal of Comparative Physiology A: Neuroethology, Sensory, Neural*
637 & Behavioral Physiology 199:555-563.

638 DASILVA, G. L. 1992. The western black-and-white colobus as a low-energy strategist: activity
639 budgets, energy expenditure and energy intake. *Journal of Animal Ecology* 61:79-91.

640 DAUSMANN, K. H., J. NOWACK, S. KOBBE, AND N. MZILIKAZI. 2012. Afro-tropical heterothermy: a
641 continuum of possibilities. Pp. 13-27 in *Living in a seasonal world* (T. Ruf, C. Bieber, W.
642 Arnold, and E. Millesi, eds.). Springer, Berlin, Germany.

643 DE CATANZARO, D., T. POLLOCK, L. J. GREVILLE, AND P. A. FAURE. 2014. Estradiol transfer from
644 male big brown bats (*Eptesicus fuscus*) to the reproductive and brain tissues of cohabiting
645 females, and its action as a pheromone. *General and Comparative Endocrinology* 208:126-
646 133.

647 DEHNHARD, M., S. NAIDENKO, A. FRANK, B. BRAUN, F. GÖRITZ, AND K. JEWGENOW. 2008. Non-
648 invasive monitoring of hormones: a tool to improve reproduction in captive breeding of the
649 Eurasian lynx. *Reproduction in Domestic Animals* 43:74-82.

650 DIXSON, A. F., AND M. J. ANDERSON. 2004. Sexual behavior, reproductive physiology and sperm
651 competition in male mammals. *Physiology and Behavior* 83:361-371.

652 DJAWDAN, M. 1993. Locomotor performance of bipedal and quadrupedal heteromyid rodents.
653 *Functional Ecology* 7:195–202.

654 DLUGOSZ, E. M., ET AL. 2013. Phylogenetic analysis of mammalian maximal oxygen
655 consumption during exercise. *Journal of Experimental Biology* 216:4712–4721.

656 DOHERTY, A.H., G.L. FLORANT, AND S.W. DONAHUE. 2014. Endocrine regulation of bone and
657 energy metabolism in hibernating mammals. *Integrative and Comparative Biology*, 54:463-
658 483.

659 DONATI, G., L. SANTINI, J. RAZAFINDRAMANANA, L. BOITANI, AND S. BORGOGNINI-TARLI. 2013.
660 Un-expected nocturnal activity in 'diurnal' *Lemur catta* supports cathemerality as one of the
661 key adaptations of the lemurid radiation. *American Journal of Physical Anthropology* 150-
662 99:106.

663 DONOVAN, M. H., AND L. H. TECOTT. 2013. Serotonin and the regulation of mammalian energy
664 balance. *Frontiers in Neuroscience* 7:1-15.

665 DOTY, A., C. STAWSKI, B. LAW, AND F. GEISER. 2016. Post-wildfire physiological ecology of an
666 Australian microbat. *Journal of Comparative Physiology B: Biochemical, Systemic and*
667 *Environmental Physiology* 186:937-946.

668 EVANS, A. L., ET AL. 2016. Drivers of hibernation in the brown bear. *Frontiers in Zoology* 13:1-
669 13.

670 EVANS, C. S. 2006. Accessory chemosignaling mechanisms in primates. *American Journal of*
671 *Primateology* 68:525-544.

672 FANSON, K. V., AND M. L. PARROTT. 2015. The value of eutherian–marsupial comparisons for
673 understanding the function of glucocorticoids in female mammal reproduction. *Hormones*
674 *and Behavior* 76:41-47.

675 FLAHERTY, E. A., M. BEN-DAVID, AND W. P. SMITH. 2010. Quadrupedal locomotor performance
676 in two species of arboreal squirrels: predicting energy savings of gliding. *Journal of*
677 *Comparative Physiology B: Biochemical, Systemic and Environmental Physiology*
678 180:1067-1078.

679 FLIES, A. S., L. S. MANSFIELD, E. J. FLIES, C. K. GRANT, AND K. E. HOLEKAMP. 2016.

680 Socioecological predictors of immune defenses in wild spotted hyenas. *Functional Ecology*
681 30:1549-1557.

682 FORD, J. K. B., G. M. ELLIS, L. G. BARRETT-LENNARD, A. B. MORTON, R. S. PALM, AND K. C.

683 BALCOMB III. 1998. Dietary specialization in two sympatric populations of killer whales
684 (*Orcinus orca*) in coastal British Columbia and adjacent waters. *Canadian Journal of*
685 *Zoology* 76:1456-1471.

686 FOWLER, M. A., C. DEBIER, C. D. CHAMPAGNE, D. E. CROCKER, AND D. P. COSTA. 2016. The
687 demands of lactation promote differential regulation of lipid stores in fasting elephant seals.
688 *General and Comparative Endocrinology* 225:125-132.

689 FRANK, C. (ED.). **In press**. Hibernation and daily torpor in vertebrates. Johns Hopkins
690 University Press, Baltimore, Maryland.

691 FRANK, C. L., AND K. B. STOREY. 1995. The optimal depot fat composition for hibernation by
692 golden-mantled ground squirrels (*Spermophilus lateralis*). *Journal of Comparative*
693 *Physiology B* 164: 536-542.

694 FRIEBE, A., ET AL. 2014. Factors affecting date of implantation, parturition, and den entry
695 estimated from activity and body temperature in free-ranging brown bears. *PloS ONE* 9:1-
696 10.

697 GARLAND, T., JR., M. D. CADNEY, AND R. A. WATERLAND. 2017. Early-life effects on adult
698 physical activity: concepts, relevance, and experimental approaches. *Physiological and*
699 *Biochemical Zoology* 90:1-14.

700 GARLAND, JR., T., AND P. A. CARTER. 1994. Evolutionary physiology. *Annual Review of*
701 *Physiology* 56:579–621.

702 GARLAND, JR., T., AND R. L. ALBUQUERQUE. 2017. Locomotion, energetics, performance, and
703 behavior: a mammalian perspective on lizards, and vice versa. *Integrative and Comparative*
704 *Biology* 57:252–266.

705 GARNIER, R., S. GANDON, Y. CHAVAL, N. CHARBONNEL, AND T. BOULINIER. 2013. Evidence of
706 cross-transfer of maternal antibodies through allosuckling in a mammal: potential
707 importance for behavioral ecology. *Mammalian Biology* 78:361-364.

708 GASPARD, J., ET AL. 2017. Detection of hydrodynamic stimuli by the postcranial body of Florida
709 manatees (*Trichechus manatus latirostris*). *Journal of Comparative Physiology A:*
710 *Neuroethology, Sensory, Neural & Behavioral Physiology* 203:111-120.

711 GEDIR, J. V., J. W. ILLCAIN, P. R. KRAUSMAN, J. D. ALLEN, G. C. DUFF, AND J. R. MORGART.
712 2016. Potential foraging decisions by a desert ungulate to balance water and nutrient intake
713 in a water-stressed environment. *PLoS ONE* 11:1-20.

714 GEISER, F., AND T. RUF. 1995. Hibernation versus daily torpor in mammals and birds:
715 physiological variables and classification of torpor patterns. *Physiological Zoology* 68:935-
716 966.

717 GEISER, F. 2004. Metabolic rate and body temperature reduction during hibernation and daily
718 torpor. *Annual Review of Physiology* 66:239-274.

719 GEISER, F., B. S. LAW, AND G. KÖRTNER. 2005. Daily torpor in relation to photoperiod in a
720 subtropical blossom-bat, *Syconycteris australis* (Megachiroptera). *Journal of Thermal*
721 *Biology* 30:574-579.

722 GENDE, S. M., AND T. P. QUINN. 2004. The relative importance of prey density and social
723 dominance in determining energy intake by bears feeding on Pacific salmon. *Canadian*
724 *Journal of Zoology* 82:75-85.

725 GERLINSKY, C., D. ROSEN, AND A. TRITES. 2014. Sensitivity to hypercapnia and elimination of
726 CO following diving in Steller sea lions (*Eumetopias jubatus*). *Journal of Comparative*
727 *Physiology B: Biochemical, Systemic and Environmental Physiology* 184:535-544.

728 GLAZIER, D. S. 2015. Is metabolic rate a universal “pacemaker” for biological processes?
729 *Biological Reviews* 90:377–407.

730 GONZALEZ-TERRAZAS, T. P., ET AL. 2016. How nectar-feeding bats localize their food:
731 echolocation behavior of *Leptonycteris yerbabuenae* approaching cactus flowers. *Plos ONE*
732 11:1-18.

733 GORMAN, M. R., B. D. GOLDMAN, AND I. ZUCKER. 2001. Mammalian photoperiodism. Pp. 481-
734 508 in *Circadian clocks* (J. S. Takahashi, F. W. Turek, and R. Y. Moore, eds.). Springer,
735 Boston, MA.

736 GREENWOOD, M., C. CLARKE, C. C. LEE, A. GUNSAKAM, AND R. H. CLARKE. 2011. A unique
737 resource mutualism between the giant Bornean pitcher plant, *Nepenthes rajah*, and members
738 of a small mammal community. *PLoS ONE* 6:1-5.

739 GULL, J. M., ET AL. 2015. Digestive physiology of captive giant anteaters (*Myrmecophaga*
740 *tridactyla*): determinants of faecal dry matter content. *Journal of Animal Physiology and*
741 *Animal Nutrition* 99:565-576.

742 HALSEY, L. G., AND C. R. WHITE. 2017. A different angle: comparative analyses of whole-animal
743 transport costs when running uphill. *The Journal of Experimental Biology* 220:161–166.

744 HARTMAN BAKKEN, B., L. G. M. HERRERA, R. M. CARROLL, J. AYALA-BERDÓN, J. E.
745 SCHONDUBE, AND C. M. DEL RIO. 2008. A nectar-feeding mammal avoids body fluid
746 disturbances by varying renal function. *American Journal of Physiology: Renal Physiology*
747 64:1855-1863.

748 HAYES, J. P., AND S. H. JENKINS. 1997. Individual variation in mammals. *Journal of Mammalogy*
749 78:274–293.

750 HAYES, J. P., AND C. S. O'CONNOR. 1999. Natural selection on thermogenic capacity of high-
751 altitude deer mice. *Evolution* 53:1280–1287.

752 HAYSEN, V., AND T. J. ORR. 2017. *Reproduction in mammals: the female perspective*. Johns
753 Hopkins University Press, Baltimore, Maryland.

754 HELWIG, M., Z. A. ARCHER, G. HELDMAIER, A. TUPS, J. G. MERCER, AND M. KLINGENSPOR.
755 2009. Photoperiodic regulation of satiety mediating neuropeptides in the brainstem of the
756 seasonal Siberian hamster (*Phodopus sungorus*). *Journal of Comparative Physiology A:*
757 *Neuroethology, Sensory, Neural and Behavioral Physiology* 195:631-642.

758 HILLMAN, S., T. HANCOCK, AND M. HEDRICK. 2013. A comparative meta-analysis of maximal
759 aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to
760 gas exchange. *Journal of Comparative Physiology B: Biochemical, Systemic and*
761 *Environmental Physiology* 183:167-179.

762 HINDE, K., A. L. SKIBIEL, A. B. FOSTER, L. DEL ROSSO, S. P. MENDOZA, AND J. P. CAPITANIO.
763 2015. Cortisol in mother's milk across lactation reflects maternal life history and predicts
764 infant temperament. *Behavioral Ecology* 26:269-281.

765 HOFF, M. L. M., A. FABRIZIUS, N. U. CZECH-DAMAL, L. P. FOLKOW, AND T. BURMESTER. 2017.
766 Transcriptome analysis identifies key metabolic changes in the hooded seal (*Cystophora*
767 *cristata*) brain in response to hypoxia and reoxygenation. *PLoS ONE* 12:1-21.

768 HOOD, W. R., O. T. OFTEDAL, AND T. H. KUNZ. 2011. Is tissue maturation necessary for flight?
769 Changes in body composition during postnatal development in the big brown bat. *Journal of*

770 Comparative Physiology B: Biochemical, Systemic and Environmental Physiology 181:423-
771 435.

772 HOOKER, S. K., R. W. BAIRD, AND A. FAHLMAN. 2009. Could beaked whales get the bends?:
773 effect of diving behaviour and physiology on modelled gas exchange for three species:
774 *Ziphius cavirostris*, *Mesoplodon densirostris* and *Hyperoodon ampullatus*. Respiratory
775 Physiology and Neurobiology 167:235-246.

776 HOOLE, C., A. E. MCKECHNIE, D. M. PARKER, AND N. C. BENNETT. 2016. Reproductive photo-
777 responsiveness in male forest shrews (*Myosorex varius*) from the Eastern Cape of South
778 Africa. Mammalian Biology 81:111-114.

779 HORTON, T. H. 2005. Fetal origins of developmental plasticity: animal models of induced life
780 history variation. American Journal of Human Biology 17:34-43.

781 HUMPHRIES, M. M., D. W. THOMAS, AND J. R. SPEAKMAN. 2002. Climate-mediated energetic
782 constraints on the distribution of hibernating mammals. Nature 418: 313-316.

783 IRIARTE-DIAZ, J., D. K. RISKIN, K. S. BREUER, AND S. M. SWARTZ. 2012. Kinematic plasticity
784 during flight in fruit bats: individual variability in response to loading. PLoS ONE 7:1-8.

785 IVY, C. M., AND G. R. SCOTT. 2015. Control of breathing and the circulation in high-altitude
786 mammals and birds. Comparative Biochemistry and Physiology Part A: Molecular and
787 Integrative Physiology 186:66-74.

788 JANECKA, J. E, ET AL. 2015. Genetically based low oxygen affinities of felid hemoglobins: lack of
789 biochemical adaptation to high-altitude hypoxia in the snow leopard. Journal of
790 Experimental Biology 218:2402-2409.

791 JANSEN, H. T., ET AL. 2016. The bear circadian clock doesn't 'sleep' during winter dormancy.
792 Frontiers in Zoology 13:1-15.

793 JEAN-FRAN OIS, L. 2011. Social cues of sperm competition influence accessory reproductive
794 gland size in a promiscuous mammal. *Proceedings of the Royal Society B: Biological
795 Sciences* 278:1171-1176.

796 JI-YING, Z., Z. XIAO-YA, W. JING, T. SONG, AND Z. ZHI-JUN. 2016. Plasticity in gastrointestinal
797 morphology and enzyme activity in lactating striped hamsters (*Cricetulus barabensis*).
798 *Journal of Experimental Biology* 219:1327-1336.

799 JOLLES, A. E., B. R. BEECHLER, AND B. P. DOLAN. 2015. Beyond mice and men: environmental
800 change, immunity and infections in wild ungulates. *Parasite Immunology* 37:255-266.

801 KARASOV, W. H., AND C. MARTINEZ DEL RIO. 2007. *Physiological ecology*. Princeton University
802 Press, Princeton, New Jersey.

803 KARASOV, W., AND A. E. DOUGLAS. 2013. Comparative digestive physiology. *Comprehensive
804 Physiology* 3:741-783.

805 KELLY, S. A., T. M. PANHUIS, AND A. M. STOEHR. 2012. Phenotypic plasticity: molecular
806 mechanisms and adaptive significance. *Comprehensive Physiology* 2:1417-1439.

807 KIM, E. B., ET AL. 2011. Genome sequencing reveals insights into physiology and longevity of
808 the naked mole rat. *Nature* 479:223-227.

809 KITANOVIC, S., ET AL. 2018. Role of cytochrome P450 2B sequence variation and gene copy
810 number in facilitating dietary specialization in mammalian herbivores. *Molecular Ecology*
811 27:723-736.

812 KOHL, K. D., AND H. V. CAREY. 2016. A place for host-microbe symbiosis in the comparative
813 physiologist's toolbox. *Journal of Experimental Biology* 219:3496-3504.

814 KOHL, K. D., E. T. SADOWSKA, A. M. RUDOLF, M. D. DEARING, AND P. KOTEJA. 2016.

815 Experimental evolution on a wild mammal species results in modifications of gut microbial

816 communities. *Frontiers in Microbiology* 7, article 634.

817 KONARZEWSKI, M., AND A. KSIĄŻEK. 2012. Determinants of intra-specific variation in basal

818 metabolic rate. *Journal of Comparative Physiology B: Biochemical, Systems, and*

819 *Environmental Physiology* 183:27–41.

820 KONCZAL, M., W. BABIK, J. RADWAN, E. T. SADOWSKA, AND P. KOTEJA. 2015. Initial molecular-

821 level response to artificial selection for increased aerobic metabolism occurs primarily via

822 changes in gene expression. *Molecular Biology and Evolution* 32:1461–1473.

823 KOWALSKI, K., AND L. RYCHLIK. 2018. The role of venom in the hunting and hoarding of prey

824 differing in body size by the Eurasian water shrew, *Neomys fodiens*. *Journal of Mammalogy*

825 99:351-362.

826 KRISTAN, D. M., AND K. A. HAMMOND. 2003. Physiological and morphological responses to

827 simultaneous cold exposure and parasite infection by wild-derived house mice. *Functional*

828 *Ecology* 17:464-471.

829 KUNZ, T. H., AND D. J. HOSKEN. 2009. Male lactation: why, why not and is it care? *Trends In*

830 *Ecology and Evolution* 24:80-85.

831 LAUBACH, Z. M., W. PERNG, D. C. DOLINOY, C. D. FAULK, K. E. HOLEKAMP, AND T. GETTY.

832 2018. Epigenetics and the maintenance of developmental plasticity: extending the signaling

833 theory framework. *Biological Reviews of the Cambridge Philosophical Society* 93:1323–

834 1338.

835 LAZAR, J., L. E. L. RASMUSSEN, D. R. GREENWOOD, I. BANG, AND G. D. PRESTWICH. 2004.

836 Elephant albumin: a multipurpose pheromone shuttle. *Chemistry and Biology* 11:1093-1100.

837 LESER, T. D., AND L. MØLBAK. 2009. Better living through microbial action: the benefits of the
838 mammalian gastrointestinal microbiota on the host. *Environmental Microbiology* 11:2194-
839 2206.

840 LESTER, C. W., AND D. P. COSTA. 2006. Water conservation in fasting northern elephant seals
841 (*Mirounga angustirostris*). *Journal of Experimental Biology* 209:4283-4294.

842 LEVESQUE, D. L., J. NOWACK, AND C. STAWSKI. 2016. Modelling mammalian energetics: the
843 heterothermy problem. *Climate Change Responses* 3:7.

844 LEVESQUE, D. L., A. K. MENZIES, M. LANDRY-CUERRIER, G. LAROCQUE, AND M. M. HUMPHRIES.
845 2017. Embracing heterothermic diversity: non-stationary waveform analysis of temperature
846 variation in endotherms. *Journal of Comparative Physiology. B, Biochemical, Systemic, and*
847 *Environmental Physiology* 187:749–757.

848 LOPEZ-ROMERO, G., J. QUINTERO, H. ASTIAZARÁN-GARCÍA, AND C. VELAZQUEZ. 2015. Host
849 defences against *Giardia lamblia*. *Parasite Immunology* 37:394-406.

850 LOVEGROVE, B. G. 2003. The influence of climate on the basal metabolic rate of small
851 mammals: a slow-fast metabolic continuum. *Journal of Comparative Physiology* 173:87-
852 112.

853 LOVEGROVE, B. G. 2016. A phenology of the evolution of endothermy in birds and mammals.
854 *Biological Reviews* 92:1213–1240.

855 LUÍS, A. R., M. N. COUCHINHO, AND M. E. DOS SANTOS. 2016. A quantitative analysis of pulsed
856 signals emitted by wild bottlenose dolphins. *Plos ONE* 11:1-11.

857 MA, Y., J. G. NING, H. L. REN, P. F. ZHANG, AND H. Y. ZHAO. 2015. Suppressed bone remodeling
858 in black bears conserves energy and bone mass during hibernation. *Journal of Experimental*
859 *Biology* 218:2067-2074.

860 MARIAPPAN, S., W. BOGDANOWICZ, G. MARIMUTHU, AND K. RAJAN. 2013. Distress calls of the
861 greater short-nosed fruit bat *Cynopterus sphinx* activate hypothalamic-pituitary-adrenal
862 (HPA) axis in conspecifics. *Journal of Comparative Physiology A: Neuroethology, Sensory,*
863 *Neural and Behavioral Physiology* 199:775-783

864 MARTIN, P. R. 2015. Trade-offs and biological diversity: integrative answers to ecological
865 questions. Pp. 291–308 in *Integrative organismal biology* (C. K. Ghalambor and L. B.
866 Martin, eds.). Wiley Press, Hoboken, New Jersey.

867 MAUCK, B., K. BILGMANN, D. D. JONES, U. EYSEL, AND G. DEHNHARDT. 2003. Thermal windows
868 on the trunk of hauled-out seals: hot spots for thermoregulatory evaporation? *The Journal of*
869 *Experimental Biology* 206:1727-1738.

870 MAYNTZ, D., ET AL. 2009. Balancing of protein and lipid intake by a mammalian carnivore, the
871 mink, *Mustela vison*. *Animal Behaviour* 77:349-355.

872 MCALLAN, B. M., AND F. GEISER. 2014. Torpor during reproduction in mammals and birds:
873 dealing with an energetic conundrum. *Integrative and Comparative Biology* 54:516-532.

874 MCFALL-NGAI, M., ET AL. 2013. Animals in a bacterial world, a new imperative for the life
875 sciences. *Proceedings of the National Academy of Sciences* 110:3229–3236.

876 MCGUIRE, L. P., K. A. JONASSON, AND C. G. GUGLIELMO. 2014. Bats on a budget: torpor-assisted
877 migration saves time and energy. *PLoS ONE* 9:1-14.

878 McNab, B. K. 1992. Energy expenditure: a short history. Pp. 1-15 in *Mammalian energetics:*
879 *interdisciplinary views of metabolism and reproduction* (T. E. Tomasi and T. H. Horton,
880 eds.). Cornell University Press. Ithaca, New York.

881 McNab, B. K. 2012. *Extreme measures: the ecological energetics of birds and mammals.*
882 University of Chicago Press, Chicago, Illinois.

883 McNAB, B. K. 2015. Behavioral and ecological factors account for variation in the mass-
884 independent energy expenditures of endotherms. *Journal of Comparative Physiology B: Biochemical, Systems, and Environmental Physiology* 185:1–13.

885

886 MESS, A. M., AND K. J. FERNER. 2010. Evolution and development of gas exchange structures in
887 Mammalia: the placenta and the lung. *Respiratory Physiology and Neurobiology* 173:74-82.

888 MICHILSENS, F., P. AERTS, R. VAN DAMME, AND K. D'AOÛT. 2009. Scaling of plantar pressures
889 in mammals. *Journal of Zoology* 279:236–242.

890 MIN, B. R., S. P. HART, D. MILLER, G. M. TOMITA, E. LOETZ, AND T. SAHLU. 2005. The effect of
891 grazing forage containing condensed tannins on gastro-intestinal parasite infection and milk
892 composition in Angora does. *Veterinary Parasitology* 130:105-113.

893 MINNAAR, I. A., N. C. BENNETT, C. T. CHIMIMBA, AND A. E. McKECHNIE. 2014. Partitioning of
894 evaporative water loss into respiratory and cutaneous pathways in Wahlberg's epauletted
895 fruit bats (*Epomophorus wahlbergi*). *Physiological and Biochemical Zoology* 87:475-485.

896 MITCHELL, D., ET AL. 2002. Adaptive heterothermy and selective brain cooling in arid-zone
897 mammals. *Comparative Biochemistry and Physiology* 131:571-585.

898 MOLNÁR, P. K., T. KLANJSCEK, A. E. DEROCHER, M. E. OBBARD, AND M. A. LEWIS. 2009. A
899 body composition model to estimate mammalian energy stores and metabolic rates from
900 body mass and body length, with application to polar bears. *Journal of Experimental
901 Biology* 212:2313-2323.

902 MORTOLA, J. P. 2015. The heart rate - breathing rate relationship in aquatic mammals: a
903 comparative analysis with terrestrial species. *Current Zoology* 61:569-577.

904 MOTTISHAW, P., S. J. THORNTON, AND P. W. HOCHACHKA. 1999. The diving response mechanism
905 and its surprising evolutionary path in seals and sea lions. *American Zoologist* 39:434–450.

906 NAGY, K. A. 2005. Field metabolic rate and body size. *Journal of Experimental Biology*
907 208:1621–1625.

908 NEMETH, I. 2012. Assessing the effect of climate change on hibernating mammals using
909 nonlinear mixed effects method. Pp. 73-84 in *Living in a seasonal world* (T. Ruf, C. Bieber,
910 W. Arnold, and E. Millesi, eds). Springer, Berlin, Germany.

911 NERY, M., J. ARROYO, AND J. OPAZO. 2013. Accelerated evolutionary rate of the myoglobin gene
912 in long-diving whales. *Journal of Molecular Evolution* 76:380-387.

913 NESPOLO, R. F., J. J. SOLANO-IGUARAN, AND F. BOZINOVIC. 2017. Phylogenetic analysis supports
914 the aerobic-capacity model for the evolution of endothermy. *The American Naturalist*
915 189:13–27.

916 NEUMAN, A., Y. GOTHLIF, A. HAIM, G. BEN-AHARON, AND N. ZISAPEL. 2005. Nocturnal patterns
917 and up-regulated excretion of the melatonin metabolite 6-sulfatoxymelatonin in the diurnal
918 rodent *Psammomys obesus* post-weaning under a short photoperiod. *Comparative
919 Biochemistry and Physiology Part A: Molecular and Integrative Physiology* 142:297-307.

920 NEWSOME, S. D., ET AL. 2009. Using stable isotopes to investigate individual diet specialization
921 in California sea otters (*Enhydra lutris nereis*). *Ecology* 90:961-974.

922 NGALAMENO, M. K., A. D. S. BASTOS, G. MGODE, AND N. C. BENNETT. 2017. The pattern of
923 reproduction in the mole-rat *Helioscops alboguttatus* from Tanzania: do not refrain during the long
924 rains! *Canadian Journal of Zoology* 95:107-114.

925 NICOL, S. C. 2017. Energy homeostasis in monotremes. *Frontiers in Neuroscience* 11:195.

926 Ninomiya-Alarcón, J. G., R. Hudson, G. Reyes-Guerrero, B. Barrera-Mera, and R. Guevara-
927 Guzmán. 2004. Effect of photoperiod on the mechanical response of the pregnant rabbit

928 uterus to oxytocin. American Journal of Physiology: Regulatory, Integrative and
929 Comparative Physiology 56:174-180.

930 NOREN, S. R., J. V. REDFERN, AND E. F. EDWARDS. 2012. Pregnancy is a drag: hydrodynamics,
931 kinematics and performance in pre- and post-parturition bottlenose dolphins (*Tursiops*
932 *truncatus*). Journal of Experimental Biology 215:385–385.

933 OLIFIERS, N., ET AL. 2015. Co-infection and wild animal health: effects of trypanosomatids and
934 gastrointestinal parasites on coatis of the Brazilian Pantanal. PLoS ONE 10:1-19.

935 PACHECO-COBOS, L., M. ROSETTI, H. DISTEL, AND R. HUDSON. 2003. To stay or not to stay: the
936 contribution of tactile and thermal cues to coming to rest in newborn rabbits. Journal of
937 Comparative Physiology A: Neuroethology, Sensory, Neural and Behavioral Physiology
938 189:383-389.

939 PANCIROLI, E., C. JANIS, M. STOCKDALE, AND A. MARTÍN-SERRA. 2017. Correlates between
940 calcaneal morphology and locomotion in extant and extinct carnivorous mammals. Journal
941 of Morphology 278:1333–1353.

942 PANYUTINA, A. A., A. N. KUZNETSOV, I. A. VOLODIN, A. V. ABRAMOV, AND I. B. SOLDATOVA.
943 2017. A blind climber: the first evidence of ultrasonic echolocation in arboreal mammals.
944 Integrative Zoology 12:172-184.

945 PAULI, J. N., J. E. MENDOZA, S. A. STEFFAN, C. C. CAREY, P. J. WEIMER, AND M. Z. PEERY. 2014.
946 A syndrome of mutualism reinforces the lifestyle of a sloth. Proceedings of the Royal
947 Society B: Biological Sciences 281:1-1.

948 PAULI, J. N., M. Z. PEERY, E. D. FOUNTAIN, AND W. H. KARASOV. 2016. Arboreal folivores limit
949 their energetic output, all the way to slothfulness. American Naturalist 188:196-204.

950 PESSOA, D. A., R. MAIA, R. C. DE ALBUQUERQUE AJUZ, P. R. DE MORAES, M. C. SPYRIDES, AND
951 V. F. PESSOA. 2014. The adaptive value of primate color vision for predator detection.
952 American Journal of Primatology 76:721-729.

953 POWELL, F. L., AND S. R. HOPKINS. 2004. Comparative physiology of lung complexity:
954 implications for gas exchange. News in Physiological Sciences 19:55-60.

955 POWER, M. L., S. M. WATTS, K. L. MURTOUGH, AND F. M. KNIGHT. 2018. Macronutrient
956 composition of milk of captive nine-banded armadillos (*Dasypus novemcinctus*). Journal of
957 Mammalogy 99:498–504.

958 PRENDERGAST, B. J., S. D. BILBO, AND R. J. NELSON. 2004. Photoperiod controls the induction,
959 retention, and retrieval of antigen-specific immunological memory. American Journal of
960 Physiology: Regulatory, Integrative and Comparative Physiology 55:54-60.

961 RAICHLEN, D. A., A. D. FOSTER, G. L. GERDEMAN, A. SEILLIER, AND A. GIUFFRIDA. 2012. Wired
962 to run: exercise-induced endocannabinoid signaling in humans and cursorial mammals with
963 implications for the “runner’s high.” Journal of Experimental Biology 215:1331–1336.

964 RENDON, N. M., H. A. SOINI, M. L. SCOTTI, M. V. NOVOTNY, AND G. E. DEMAS. 2016. Urinary
965 volatile compounds differ across reproductive phenotypes and following aggression in male
966 Siberian hamsters. Physiology and Behavior 164:58-67.

967 REZENDE, E. L., F. BOZINOVIC, AND T. GARLAND JR. 2004. Climatic adaptation and the evolution
968 of basal and maximum rates of metabolism in rodents. Evolution 58:1361-1374.

969 REZENDE, E. L., AND L. D. BACIGALUPE. 2015. Thermoregulation in endotherms: physiological
970 principles and ecological consequences. Journal of Comparative Physiology B: Biochemical,
971 Systems, and Environmental Physiology 185:709–727.

972 RICHTER, T. A., B. MALPAUX, P. A. FLEMING, AND A. J. MOLTENO. 2003. Melatonin secretion in
973 a strictly subterranean mammal, the Damaraland mole-rat (*Cryptomys damarensis*). *Journal*
974 *of Zoology* 261:313-320.

975 RIEK, A. 2007. Relationship between milk energy intake and growth rate in suckling mammalian
976 young at peak lactation: an updated meta-analysis. *Journal of Zoology* 274:160-170.

977 RINTOUL, J. L. P., AND R. M. BRIGHAM. 2014. The influence of reproductive condition and
978 concurrent environmental factors on torpor and foraging patterns in female big brown bats
979 (*Eptesicus fuscus*). *Journal of Comparative Physiology B: Biochemical, Systemic and*
980 *Environmental Physiology* 184:777-787.

981 ROBERT, K. A., J. A. LESKU, J. PARTECKE, AND B. CHAMBERS. 2015. Artificial light at night
982 desynchronizes strictly seasonal reproduction in a wild mammal. *Proceedings of the Royal*
983 *Society B: Biological Sciences* 282:16.

984 ROULIN, H., AND A. ROULIN. 1999. The immunological function of allosuckling. *Ecology Letters*
985 2:319-324.

986 RUF, T., AND F. GEISER. 2015. Daily torpor and hibernation in birds and mammals. *Biological*
987 *Reviews* 90:891–926.

988 Ryan, C. P., W. G. Anderson, C. N. Berkvens, and J. F. Hare. 2014. Maternal gestational cortisol
989 and testosterone are associated with trade-offs in offspring sex and number in a free-living
990 rodent (*Urocitellus richardsonii*). *PloS ONE* 9:1-8.

991 SADOWSKA, E. T., ET AL. 2005. Genetic correlations between basal and maximum metabolic
992 rates in a wild rodent: consequences for evolution of endothermy. *Evolution* 59:672-681.

993 SADOWSKA, E. T., ET AL. 2015. Evolution of basal metabolic rate in bank voles from a
994 multidirectional selection experiment. Proceedings of the Royal Society B: Biological
995 Sciences 282:1-7.

996 SALTZMAN, W., AND T. E. ZIEGLER. 2014. Functional significance of hormonal changes in
997 mammalian fathers. Journal of Neuroendocrinology 26:685-696.

998 SCHAEFFER, P. J., AND S. L. LINDSTEDT. 2013. How animals move: comparative lessons on
999 animal locomotion. Comprehensive Physiology 3:291–314.

1000 SCHERBARTH, F., V. DIEDRICH, R. A. DUMBELL, H. A. SCHMID, S. STEINLECHNER, AND P.
1001 BARRETT. 2015. Somatostatin receptor activation is involved in the control of daily torpor in
1002 a seasonal mammal. American Journal of Physiology: Regulatory, Integrative and
1003 Comparative Physiology 309:668-674.

1004 SCHWANZ, L. E. 2006. Schistosome infection in deer mice (*Peromyscus maniculatus*): impacts
1005 on host physiology, behavior, and energetics. Journal of Experimental Biology 209:5029-
1006 5030.

1007 SCHWARTZ, C., M. HAMPTON, AND M. T. ANDREWS. 2013. Seasonal and regional differences in
1008 gene expression in the brain of a hibernating mammal. PLoS ONE 8:1-17.

1009 SERGINA, S., ET AL. 2015. Biochemical adaptations to dive-derived hypoxia/reoxygenation in
1010 semiaquatic rodents. Comparative Biochemistry and Physiology 190:37-45.

1011 SIKES, R.S., GANNON, W.L. AND ANIMAL CARE AND USE COMMITTEE OF THE AMERICAN SOCIETY
1012 OF MAMMALOGISTS. 2011. Guidelines of the American Society of Mammalogists for the use
1013 of wild mammals in research. Journal of mammalogy 92:235-253.

1014 SIKES R. S., T. A. THOMPSON, AND J. A. BRYAN II. 2019. American Society of Mammalogists:
1015 raising the standards for ethical and appropriate oversight of wildlife research. *Journal of*
1016 *Mammalogy* 100:xx-xx.

1017 SIMPSON, K., C. N. JOHNSON, AND S. CARVER. 2016. *Sarcoptes scabiei*: the mange mite with
1018 mighty effects on the common wombat (*Vombatus ursinus*). *PLoS ONE* 11:1-17.

1019 SKIBIEL, A. L., L. M. DOWNING, T. J. ORR, AND W. R. HOOD. 2013. The evolution of the nutrient
1020 composition of mammalian milks. *Journal of Animal Ecology* 82:1254-1264.

1021 SORENSEN, J.S., C.A. TURNBULL, AND M.D. DEARING. 2004. A specialist herbivore (*Neotoma*
1022 *stephensi*) absorbs fewer plant toxins than does a generalist (*Neotoma albicula*).
1023 *Physiological and Biochemical Zoology* 77:139-148.

1024 SORENSEN, J. S., J. D. MCMASTER, AND M. D. DEARING. 2005. Plant secondary metabolites
1025 compromise the energy budgets of specialist and generalist mammalian herbivores. *Ecology*
1026 86:125-139.

1027 SPOOR, F., T. GARLAND, G. KROVITZ, T. M. RYAN, M. T. SILCOX, AND A. WALKER. 2007. The
1028 primate semicircular canal system and locomotion. *Proceedings of the National Academy of*
1029 *Sciences* 104:10808–10812.

1030 STAWSKI, C., G. KÖRTNER, J. NOWACK, AND F. GEISER. 2015. The importance of mammalian
1031 torpor for survival in a post-fire landscape. *Biology Letters* 11:1-5.

1032 STORZ, J. F. 2016. Hemoglobin--oxygen affinity in high-altitude vertebrates: is there evidence
1033 for an adaptive trend? *Journal of Experimental Biology* 219:3190-3203.

1034 STORZ, J. F., Z. A. CHEVIRON, G. B. MCCLELLAND, AND G. R. SCOTT. 2019. Evolution of
1035 physiological performance capacities and environmental adaptation: insights from high-
1036 altitude deer mice (*Peromyscus maniculatus*). *Journal of Mammalogy* 100:yyy-zzz.

1037 SWOAP, S. J., B. ILIFF, AND S. LE. 2012. Adenosine, AMP, and daily torpor. Pp. 337-349 in
1038 Living in a seasonal world (T. Ruf, C. Bieber, W. Arnold, and E. Millesi, eds.). Springer,
1039 Berlin, Germany.

1040 SZAFRAŃSKA, P. A., K. ZUB, AND M. KONARZEWSKI. 2007. Long-term repeatability of body mass
1041 and resting metabolic rate in free-living weasels, *Mustela nivalis*. Functional Ecology
1042 21:731–737.

1043 TEODORO, L., A. MELO-JUNIOR, K. SPERCOSKI, R. MORAIS, AND F. SOUZA. 2012. Seasonal
1044 aspects of reproductive physiology in captive male maned wolves (*Chrysocyon brachyurus*,
1045 Illiger 1815). Reproduction in Domestic Animals 47:250-255.

1046 THIEMANN, G. W., S. J. IVERSON, AND I. STIRLING. 2008. Polar bear diets and arctic marine food
1047 webs: insights from fatty acid analysis. Ecological Monographs 78:591-613.

1048 THOMAS, D. W., AND F. GEISER. 1997. Periodic arousals in hibernating mammals: is evaporative
1049 water loss involved?. Functional Ecology 11:585–591.

1050 THOMETZ, N. M., M. T. TINKER, M. M. STAEDLER, K. A. MAYER, AND T. M. WILLIAMS. 2014.
1051 Energetic demands of immature sea otters from birth to weaning: implications for maternal
1052 costs, reproductive behavior and population-level trends. Journal of Experimental Biology
1053 217:2053-2061.

1054 THOMPSON, M. E., M. N. MULLER, AND R. W. WRANGHAM. 2012. The energetics of lactation and
1055 the return to fecundity in wild chimpanzees. Behavioral Ecology 23:1234-1241.

1056 TIGHE, R. L., R. K. BONDE, AND J. P. AVERY. 2016. Seasonal response of ghrelin, growth
1057 hormone, and insulin-like growth factor I in the free-ranging Florida manatee (*Trichechus*
1058 *manatus latirostris*). Mammalian Biology 81:247-254.

1059 TOMASCO, I. H., R. DEL RÍO, R. ITURRIAGA, AND F. BOZINOVIC. 2010. Comparative respiratory
1060 strategies of subterranean and fossorial octodontid rodents to cope with hypoxic and
1061 hypercapnic atmospheres. *Journal of Comparative Physiology B: Biochemical, Systemic and*
1062 *Environmental Physiology* 180:877-884.

1063 TURNER, J., AND F. GEISER. 2017. The influence of natural photoperiod on seasonal torpor
1064 expression of two opportunistic marsupial hibernators. *Journal of Comparative Physiology*
1065 *B: Biochemical, Systemic and Environmental Physiology* 187:375-383.

1066 TYRRELL, L. P., S. D. NEWSOME, M. L. FOGEL, M. VIENS, R. BOWDEN, AND M. J. MURRAY. 2013.
1067 Vibrissae growth rates and trophic discrimination factors in captive southern sea otters
1068 (*Enhydra lutris nereis*). *Journal of Mammalogy* 94:331-338.

1069 VAN DER VEEN, D. R., N. L. MINH, P. GOS, M. ARNERIC, M. P. GERKEMA, AND U. SCHIBLER.
1070 2006. Impact of behavior on central and peripheral circadian clocks in the common vole
1071 *Microtus arvalis*, a mammal with ultradian rhythms. *Proceedings of the National Academy*
1072 *of Sciences* 103:3393-3398.

1073 VAN WIEREN, S. E. 1996. Do large herbivores select a diet that maximizes short-term energy
1074 intake rate? *Forest Ecology and Management* 88:149-156.

1075 VERDE ARREGOITIA, L. D., D. O. FISHER, AND M. SCHWEIZER. 2017. Morphology captures diet
1076 and locomotor types in rodents. *Royal Society Open Science* 4:160957.

1077 VOLTURA M. B., AND B. A. WUNDER. 1998. Effects of ambient temperature, diet quality, and
1078 food restriction on body composition dynamics of the prairie vole, *Microtus ochrogaster*.
1079 *Physiological Zoology* 71:321-328.

1080 WAHLBERG, M., L. DELGADO-GARCÍA, AND J. KRISTENSEN. 2017. Precocious hearing in harbour
1081 porpoise neonates. *Journal of Comparative Physiology A: Neuroethology, Sensory, Neural*
1082 & Behavioral Physiology

1083 203:121-132.

1083 WALLACE, I. J., AND T. GARLAND, JR. 2016. Mobility as an emergent property of biological
1084 organization: insights from experimental evolution. *Evolutionary Anthropology* 25:98–104.

1085 WAN-LONG, Z., Z. DI, Z. LIN, AND W. ZHENG-KUN. 2013. Effects of exogenous melatonin on
1086 body mass regulation and hormone concentrations in *Eothenomys miletus*. *Journal of Stress*
1087 *Physiology and Biochemistry* 9:119-130.

1088 WEINER, J. 1992. Physiological limits to sustainable energy budgets in birds and mammals:
1089 ecological implications. *Trends in Ecology and Evolution* 7:384-388.

1090 WHITE, C. R., AND R. S. SEYMOUR. 2004. Does basal metabolic rate contain a useful signal?
1091 Mammalian BMR allometry and correlations with a selection of physiological, ecological,
1092 and life-history variables. *Physiological and Biochemical Zoology* 77:929-941.

1093 WHITE, C. R., AND M. R. KEARNEY. 2014. Metabolic scaling in animals: methods, empirical
1094 results, and theoretical explanations. *Comprehensive Physiology* 4:231–256.

1095 WILLIAMS, G. A., J. B. CALDERONE, AND G. H. JACOBS. 2005. Photoreceptors and photopigments
1096 in a subterranean rodent, the pocket gopher (*Thomomys bottae*). *Journal of Comparative*
1097 *Physiology A: Neuroethology, Sensory, Neural and Behavioral Physiology* 191:125-134.

1098 WILLIAMS, T. M., AND L. YEATES. 2004. The energetics of foraging in large mammals: a
1099 comparison of marine and terrestrial predators. *International Congress Series* 1275:351-358.

1100 WILSON, A. M., ET AL. 2018. Biomechanics of predator–prey arms race in lion, zebra, cheetah
1101 and impala. *Nature* 554:183–188.

1102 WITHERS, P. C., C. E. COOPER, S. K. MALONEY, F. BOZINOVIC, AND A. CRUZ-NETO. 2016.

1103 Ecological and environmental physiology of mammals. Oxford University Press, Oxford,

1104 United Kingdom.

1105 WOJDA, S. J., R. A. GRIDLEY, M. E. MCGEE-LAWRENCE, T. D. DRUMMER, AND A. HESS. 2016.

1106 Arctic ground squirrels limit bone loss during the prolonged physical inactivity associated

1107 with hibernation. *Physiological and Biochemical Zoology* 89:72-80.

1108 WONE, B. W. M. ET AL. 2015. A strong response to selection on mass-independent maximal

1109 metabolic rate without a correlated response in basal metabolic rate. *Heredity* 114:419–427.

1110 WRIGHT, A. J., ET AL. 2007. Do marine mammals experience stress related to anthropogenic

1111 noise? *International Journal of Comparative Psychology* 20:274-316.

1112 WRIGHT, T. J., AND R. W. DAVIS. 2015. Myoglobin oxygen affinity in aquatic and terrestrial birds

1113 and mammals. *Journal of Experimental Biology* 218:2180-2189.

1114 WUNDER, B. A., AND G. L. FLORANT 1994. Physiology. Pp. 258-270 in Seventy five years of

1115 mammalogy (1919-1994) (E. C. Birney and J. R. Choate, eds.). Special Publication No. 11.

1116 American Society of Mammalogists.

1117 XU, D., AND X. HU. 2017. Photoperiod and temperature differently affect immune function in

1118 striped hamsters (*Cricetulus barabensis*). *Comparative Biochemistry and Physiology Part A:*

1119 *Molecular and Integrative Physiology* 204:211-218.

1120 YUAN, L., F. GEISER, B. LIN, H. SUN, J. CHEN, AND S. ZHANG. 2015. Down but not out: the role of

1121 microRNAs in hibernating bats. *PLoS ONE* 10:1-19.

1122 ZDUNKIAK, P., K. ERCIYAS-YAVUZ, AND P. TRYJANOWSKI. 2017. A possible mutualistic

1123 interaction between vertebrates: frogs use water buffaloes as a foraging place. *Acta*

1124 *Herpetologica* 12:113-116.

1125 ZELOVÁ, J., R. ŠUMBERA, J. OKROUHLÍK, J. ŠKLÍBA, M. LÖVY, AND H. BURDA. 2011. A seasonal
1126 difference of daily energy expenditure in a free-living subterranean rodent, the silvery mole-
1127 rat (*Heliosciurus argenteocinereus*; Bathyergidae). Comparative Biochemistry and
1128 Physiology Part A: Molecular and Integrative Physiology 158:17-21.

1129 ZHANG, F. K., ET AL. 2017. Transcriptomic responses of water buffalo liver to infection with the
1130 digenetic fluke *Fasciola gigantica*. Parasites and Vectors 10:1-13.

1131 ZHANG, L., W. ZHU, F. YANG, AND Z. WANG. 2014a. Influence of photoperiod on cold-adapted
1132 thermogenesis and endocrine aspects in the tree shrew (*Tupaia belangeri*). Animal Biology
1133 64:1-17.

1134 ZHANG, Y., ET AL. 2014b. Critical roles of mitochondria in brain activities of torpid *Myotis*
1135 *ricketti* bats revealed by a proteomic approach. Journal of Proteomics 105:266-284.

1136 ZHAO, M., T. GARLAND, JR., M. A. CHAPPELL, J. R. ANDREW, B. N. HARRIS, AND W. SALTZMAN.
1137 2018. Effects of a physical and energetic challenge on male California mice (*Peromyscus*
1138 *californicus*): modulation by reproductive condition. The Journal of Experimental Biology
1139 221:1-13.

1140

1141 *Special Issue Editor was Ronald A. Van Den Bussche.*

1142

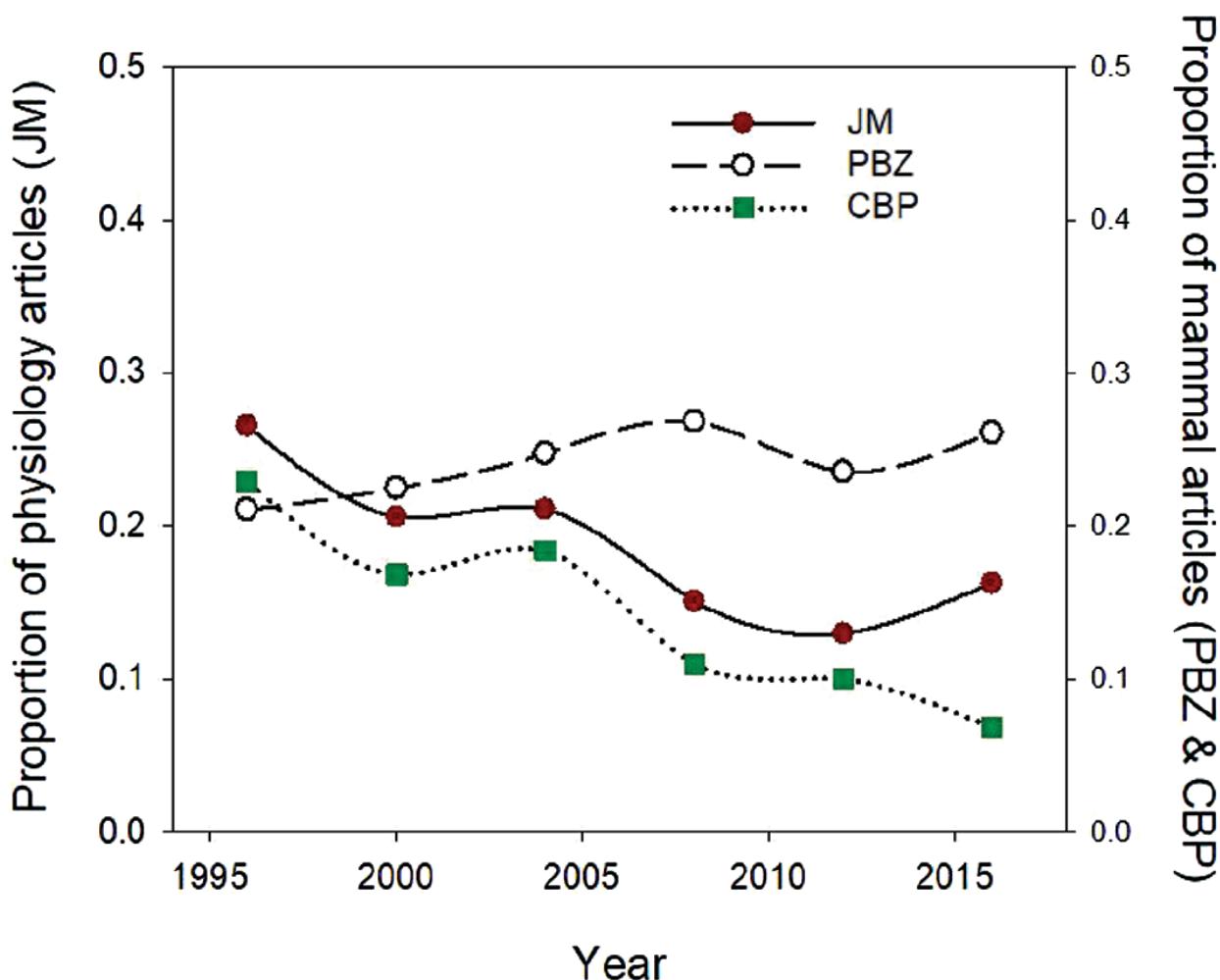
1143 **Figure Legends**

1144 **Fig. 1.**—Fraction of articles that involve mammalian ecophysiology published in key journals
1145 over the last two decades. Articles in the *Journal of Mammalogy (JM)* are presumed to all be
1146 about mammals, with a fraction of these physiological in nature. In contrast, articles in
1147 *Physiological & Biochemical Zoology (PBZ)*, and in *Comparative Biochemistry and Physiology*
1148 (*CBP*) are all presumed to be physiological (including cellular biochemistry), with a fraction of
1149 these studies on mammals.

1150

1151 **Fig. 2.**—Wordle diagram illustrating the dominant themes identified when we pondered the
1152 question "What will be the most significant research findings in the next 25 years, in terms of
1153 ecophysiology contributing to our understanding of wild mammals (e.g., their behavior,
1154 conservation, evolution, morphology, natural history, and taxonomy/systematics)?" The sizes of
1155 words and phrases reflect their frequency of occurrence in our examination of the literature and
1156 discussions with colleagues.

1157


1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

Table 1.—*Journal of Mammalogy* publications on research in ecophysiology.

	1996	2000	2004	2008	2012	2016	Total	Proportion
Energetics	1	2	2	2	0	2	9	0.06
Thermoregulation	0	2	0	0	0	0	2	0.01
Torpor, arousals	3	1	2	1	4	4	125	0.10
Energy, food intake and digestion-storage	2	1	3	1	0	4	11	0.08
Renal and water balance (osmoregulation)	0	0	1	0	0	2	3	0.02
Cardio and respiration (O ₂ delivery)	0	0	1	0	0	0	1	0.01
Reproduction	10	9	9	11	4	4	47	0.33
Communication	0	1	2	5	1	1	10	0.07
Sensory physiology	0	0	3	0	1	2	6	0.04
Biotic interactions	1	1	1	0	0	0	3	0.02
Timing, rhythms	1	1	2	0	2	1	7	0.05
Muscle	0	0	0	0	0	2	2	0.01
Neuro and endocrinology mechanism	2	0	0	1	0	2	5	0.03
Cell-molecular mechanisms	0	0	0	0	0	0	0	0.00

Other physiology	6	3	5	1	6	1	22	0.15
Total physiology	26	21	31	22	18	25	143	0.18
Non-physiology	72	81	116	124	121	129	643	0.82
Total articles	98	102	147	146	139	154	786	

Table 2.—*Physiological and Biochemical Zoology* (previously named *Physiological Zoology*) publications. Mammals ++ = studies of mixed taxa including mammals. Mammals -- = studies of mixed taxa not including mammals.

	1996	2000	2004	2008	2012	2016	Total	Proportion
Mammals	16	20	23	22	16	12	109	0.24
Birds	9	17	10	20	14	11	81	0.18
Reptiles	10	10	13	14	8	3	58	0.13
Amphibians	6	7	7	5	2	5	32	0.07
Fish	11	11	18	14	17	10	81	0.18
Invertebrates	20	18	12	5	8	2	65	0.14
Mammals ++	0	3	6	0	0	1	10	0.02
Mammals --	0	2	2	0	0	0	4	0.01
Miscellaneous	4	1	2	2	3	2	14	0.03
Total articles	76	89	93	82	68	46	454	

Table 3.—*Comparative Biochemistry and Physiology (parts A & B)* publications. Mammals ++ = studies of mixed taxa including mammals. Mammals -- = studies of mixed taxa not including mammals.

	1996	2000	2004	2008	2012	2016	Total	Proportion
Mammals	90	54	69	60	36	15	324	0.15
Molecular physiology	22	18	21	16	12	4	93	0.05
Integrative physiology	17	15	29	19	21	5	106	0.05
Biochemistry	22	10	8	13	0	2	55	0.03
Molecular biology	29	11	11	12	3	4	70	0.03
Birds	43	25	44	59	21	14	206	0.09
Reptiles	13	19	16	27	15	8	98	0.04
Amphibians	20	23	12	17	7	7	86	0.04
Fish	76	59	101	158	133	106	633	0.29
Invertebrates	112	104	99	191	120	59	685	0.31
Mammals ++	10	1	4	4	1	2	22	0.01
Mammals --	4	3	6	5	4	0	22	0.01
Miscellaneous	25	33	24	28	23	10	143	0.06

Total articles 393 321 375 549 360 221 2219

Table 4.—International Hibernation Society symposium publications.

	1996	2000	2004	2008	2012	2016	Total	Proportion
Energetics and thermoregulation	9	7	8	5	4	5	38	0.12
Dietary	3	3	1	1	3	8	19	0.06
Cell-molecular mechanisms	6	9	10	7	8	13	53	0.16
Neuroendocrinology	8	9	6	9	4	5	41	0.12
Other physiology	4	9	2	1	6	13	35	0.11
Ecology-evolution-behavior	4	2	5	4	6	9	30	0.09
Torpor and arousals	4	4	2	5	6	5	26	0.08
Timing and rhythms	7	3	4	3	4	4	25	0.08
Miscellaneous	6	4	6	2	2	4	24	0.07
Total mammals	51	50	44	37	43	66	291	0.88
Non-mammals	5	5	14	5	4	5	38	0.12
Total articles	56	55	58	42	47	71	329	