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A Protecting Group-Free Synthesis of (-)-Hortonones A-C from the 

Inhoffen-Lythgoe Diol  

Hovsep Stambulyana and Thomas G. Minehana* 

A synthesis of hortonones A-C has been accomplished from Vitamin D2 via the Inhoffen-Lythgoe diol without the use of 

protective groups. Key steps in the syntheses include a TMS-diazomethane mediated regioselective homologation of the 

cyclohexanone ring to a cycloheptanone moiety and a sodium naphthalenide-mediated allylic alcohol transposition. It has 

been found that the absolute configuration of the natural hortonones is opposite that of the synthetic material prepared 

from Vitamin D2. 

Introduction 

 

The hexahydroazulenones hortonones A-C (Figure 1) are a 

series of rearranged sequiterpenoids isolated by Andersen et 

al. in 2011 from the leaves of Sri Lankan Hortonia.1 

Importantly, hortonone C showed in vitro cytotoxicity against 

human breast cancer MCF-7 cells at 5 g/mL. A short synthetic 

route to these compounds would facilitate further 

investigation of their biological properties and allow for the 

preparation of derivatives with enhanced antitumor activities. 

In addition, total synthesis would allow a confirmation of the 

relative and absolute stereostructure of these natural 

products. 

 

We envisioned that the Inhoffen-Lythgoe diol,2 a trans-

fused 6,5 ring system possessing an array of contiguous 

stereocenters readily available either from ergocalciferol 

(vitamin D2) by exhaustive oxidative cleavage3 or by 

asymmetric synthesis,18 was an ideal synthetic precursor of the 

hortonones. Acid- or base-mediated isomerization of the easily 

derived ketone 5 would give the cis ring fusion present in the 

hortonones. Subsequent ring homologation, dehydrogenation, 

and 1,3-enone transposition would give hortonone C; 

hortonones A and B then could be derived from hortonone C 

by organometallic 1,2-addition followed by 1,3- oxidative 

transposition (Figure 2). 

 

 

 

 

 
 
Figure 1. Hortonones A-C 

 
 
Figure 2. Retrosynthetic analysis of hortonones A-C. 
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Results and Discussion 

Oxidative cleavage of ergocalciferol with ozone (1:1 CH2Cl2/CH3OH) 
followed by reductive workup with NaBH4 afforded low overall 
yields (~40%) of the Inhoffen-Lythgoe diol in our hands.3 However, 
subjecting the crude ozonolysis product mixture to catalytic 
dihydroxylation (1 mol % OsO4, NMO, acetone/H2O),4 oxidative 
cleavage (KIO4, dioxane/H2O) and reduction (NaBH4/MeOH) gave 
the desired diol 4 in 75% overall yield (Scheme 1). Transformation 
to the intermediate ketone 5 was then achieved in 85% yield by a 
three-step sequence involving selective tosylation of the primary 
alcohol, reduction of the tosylate with LiAlH4, and oxidation of the 
secondary alcohol with Dess-Martin Periodinane.5 

The trans-fused ketone 5 was then subjected to isomerization 

under basic conditions (NaH, THF, reflux, 4 h)6 to provide the 

corresponding cis ketone 6 in 72% yield after chromatography 

(Scheme 2). Initial attempts at homologation of this ketone to 

the 7-5 ring system of the hortonones by cyclopropanation of 

the kinetic trimethylsilyl enol ether of 6 and oxidative cleavage 

with FeCl3 were unfruitful.7 Furthermore, reduction of the 

ketone to the corresponding alcohol and attempted 

elimination of the alcohol with Burgess reagent17 led to an 

inseparable mixture of alkene regioisomers. However, it was 

discovered that exposure of 6 to TMSCHN2 and BF3•OEt2 in 

DCM at -40 °C followed by warming to room temperature 

provided the expanded ketone 7 in 74% yield with high 

regioselectivity (10:1 7:8).8 It is likely that approach of 

TMSCHN2 to the activated carbonyl of 6 preferentially takes 

place in such a way as to minimize steric interactions between 

the bulky trimethylsilyl group and the cyclopentane ring of 6. 

As a result, the favoured addition conformer (Scheme 2) places 

the alpha carbon atom “b” anti to the nitrogen leaving group, 

giving rise to cycloheptanone 7 as the major product upon 

rearrangement.  Dehydrogenation of 7 was then accomplished 

by the Saegusa protocol (TBSOTf, Et3N, CH2Cl2, 0° C, 2h; 50 mol 

% Pd(OAc)2, CH3CN, rt, overnight),9 affording enone 9 in 94% 

yield.  
 

 

 

 
Scheme 1. Synthesis of intermediate 5. Reagents and 

conditions: (a) O3, CH2Cl2, MeOH, -78 °C; (b) NaBH4, MeOH, rt, 

20 min; (c) 1 mol% OsO4, NMO, acetone, H2O, rt, 5h; (d) KIO4, 

1:1 dioxane/H2O, rt, 3h; (e) TsCl, Et3N, DMAP, CH2Cl2, rt, 1h; 

(f) LiAlH4, THF, rt, 5h; (g) Dess-Martin Periodinane, CH2Cl2, rt, 

1h. 

 

 
 

Scheme 2. Synthesis of cis-enone 9. Reagents and conditions: (a) 

NaH, THF, reflux, 4h; (b) TMSCHN2, BF3•OEt2, CH2Cl2, -40 °C – rt; 

(c) TBSOTf, Et3N, CH2Cl2, rt, 2h; (d) 50 mol% Pd(OAc)2, CH3CN, rt, 

12h.  
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Conversion of cycloheptenone 9 into hortonone C required a 

1,3-enone transposition,19-21 the most utilized method for 

which is the protocol of Wharton.10 However, all attempts to 

transpose the enone of 9 by Wharton reaction of the 

corresponding epoxy ketone failed. Nonetheless, hortonone C 

could be secured by a sequence involving an allylic alcohol 1,3-

transposition (Scheme 3).22 Reduction of 9 with DIBAH 

followed by stereoselective epoxidation and mesylation of the 

secondary alcohol afforded a 78% overall yield of 10, the 

relative stereochemistry of which was confirmed by two-

dimensional NMR (NOESY) experiments (See Scheme 3 and 

Supporting Information). Compound 10 was then reduced with 

a solution of sodium naphthalenide in THF (3M) at -10 °C to 

the corresponding allylic alcohol,11 which was then oxidized 

with the Dess-Martin reagent5 to provide hortonone C in 88% 

yield. Spectroscopic data (1H NMR, 13C NMR, MS, UV) for 

synthetic hortonone C were fully consistent with those 

reported for the natural sample by Anderson et al.1 However, 

the specific rotation for our sample (-116.0) was in the 

opposite sense of that reported for natural hortonone C (+74). 

 

Initial attempts to prepare hortonone A by conjugate addition 

of organocuprates (CH3MgBr/CuI12; Me2CuLi/TMSCl13) to 

enone 9 and oxidation of the resulting ketone afforded 

complex product mixtures and low overall yields. However, 

hortonone A could be easily prepared from hortonone C in 

71% yield by methyllithium addition (ether, -78 °C) followed by 

oxidative transposition of the tertiary allylic alcohol with PCC 

(4Å sieves, CH2Cl2).14 Oxidation of hortonone A to hortonone B 

was accomplished in 69% yield by enolization (TBSOTf, DIPEA,  

-78 °C),15 regioselective epoxidation (1.1 equiv MCPBA, CH2Cl2, 

NaHCO3, -20 °C) and aqueous hydrolysis (Scheme 4).16 

Selective attack of the peracid at the less crowded exocyclic 

olefin of the dienolsilane intermediate appears to be favoured 

at lower temperatures. Again, all spectrocopic data for 

synthetic hortonones A and B closely matched those reported 

for the natural products, with the exception of the specific 

rotations (synthetic hortonone A: [α]D -31.7; natural 

hortonone A: [α]D +24.0; synthetic hortonone B: [α]D -37.5; 

natural hortonone B: [α]D +24.0). 

 

 

 

 
Scheme 3. Preparation of hortonone C. Reagents and 

conditions: (a) DIBAH, CH2Cl2, -78 °C; (b) MCPBA, CH2Cl2, 

NaHCO3, 2h, rt; (c) MsCl, Et3N, CH2Cl2, rt, 1h; (d) Na0, 

naphthalene, THF, -10 °C, 30 min; (e) Dess-Martin 

periodinane, CH2Cl2, 1h, rt. 
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Scheme 4. Preparation of hortonones A and B. Reagents and 

conditions: (a) MeLi, THF, -78 °C; (b) PCC, 4Å sieves, CH2Cl2, 

1.5 h, rt; (c) TBSOTf, diisopropylethylamine, CH2Cl2, -78 °C, 1h; 

(d) MCPBA, CH2Cl2, NaHCO3,  -20 °C, 1h; aq. Na2S2O3. 

 

 
 

 

Figure 3. Proposed structures of natural hortonones A-C. 
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Conclusions 

The synthesis presented here allows the preparation of all 

three hortonones in 12-15 steps from the readily available 

Inhoffen-Lythgoe diol. This study has revealed that the 

absolute configuration of the hortonones is opposite that 

originally proposed by Andersen at al. (Figure 3),1 and thus 

vitamin D2 is not a likely biosynthetic precursor of this family 

of natural products. A synthetic route to (+)-hortonones A-C 

from an alternate starting material is currently being 

investigated and our findings will be reported in due course. 
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