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Abstract—1t is revealed that there is a link between the
quantization approach employed and the dimension of the vector
parameter which can be accurately estimated by a quantized
estimation system. A critical quantity called inestimable dimen-
sion for quantized data (IDQD) is introduced, which does not
depend on the quantization regions and the statistical models
of the observations but instead depends only on the number of
sensors and on the precision of the vector quantizers employed by
the system. It is shown that the IDQD describes a quantization-
induced fundamental limitation on the estimation capabilities of
the system. To be specific, if the dimension of the desired vector
parameter is larger than the IDQD of the quantized estimation
system, then the Fisher information matrix for estimating the
desired vector parameter is singular, and, moreover, there exist
infinitely many nonidentifiable vector parameter points in the
vector parameter space. Furthermore, it is shown that under
some common assumptions on the statistical models of the
observations and the quantization system, a smaller IDQD can be
obtained, which can specify an even more limiting quantization
induced fundamental limitation on the estimation capabilities of
the system.

Index Terms—Distributed sensor parameter estimation,
inestimable dimension for quantized data, singular Fisher
information matrix, identifiability, quantization.

I. INTRODUCTION

OLSTERED by recent technological advances in coding,
digital wireless communications technology and digi-
tal devices, the employment of quantized data has become
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Fig. 1. Parameter estimation system with quantized data.

increasingly popular in many applications, such as sensor
networking, the Internet of things, data-transmission systems
and data-storage systems. Inspired by this tendency, parame-
ter estimation utilizing quantized data has seen considerable
interest in recent years, see [1]-[14] and references therein.
In addition, the design of quantizers for parameter estimation
has also been an active area of research recently [15]-[17]. For
example, [17] considers the design of the optimal quantizers
for parameter estimation systems using quantized data under
the Bayesian criterion.

A parameter estimation system which employs quantized
data is depicted by Fig. 1. The distribution of the observations
[XIT, X2T S, x;,]T depends on an underlying vector parameter
0 € ©. Asshown in Fig. 1, for each j, a sequence of L ; vector
quantizers denoted as I'; B} lyjt,7j2, s ijj]T is employed
to convert the observation vector x; to digital data I';(x;),
which is transmitted, without error, to the fusion center (FC).
To be specific, as illustrated by Fig. 2, x; is partitioned into

a sequence of L; disjoint observation subvectors {x jl}lL:j |
first, and then for each [, x;; is quantized to a scalar uj;
by the [-th vector quantizer y;; in the sequence I';. The
output of the sequence of vector quantizers I'j(x;) is the
vector [uj1,uj2, ..., u;j L_/.]T which gathers the quantized data
from all vector quantizers {y j;}. After collecting the quantized
data from all sequences of vector quantizers, the FC makes
use of {I";(x;)} to estimate the value of the desired vector
parameter 6.
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Fig. 2. The sequence of vector quantizers employed for x;.

In general, the output of a quantizer is a scalar, however,
the output of I'; is a vector. To distinguish I'; from the com-
monly defined quantizers, we refer to the sequence of vector
quantizers, I';, as a superquantizer. It is worth mentioning that
L; can be any positive integer. The scenarios where L; > 1
are widely considered in recent literature, see [5] for instance.
For the scenario where L; = 1, the superquantizer I'; is
equivalent to a vector quantizer.

Our recent investigations into attacks on parameter estima-
tion systems provide insight into some very effective attacks
on systems utilizing quantized data [10]. Building on these
ideas, this paper attempts to fully uncover the fundamental
limitations on the estimation capabilities of the unattacked
quantized estimation system shown in Fig. 1. In order to assess
the estimation capabilities of the quantized estimation system
shown in Fig. 1, two criteria are often adopted [18]. The
first criterion is the information-regularity condition, which
is defined as

Definition 1 (Information-Regularity — Condition):  The
Fisher information matrix (FIM) for estimating the desired
parameter is nonsingular.

The information-regularity condition guarantees the
existence of the Cramer-Rao bound (CRB) for the desired
parameter. Further, under mild additional conditions,
it guarantees the estimation performance of an appropriate
estimator can always be improved by an increase in the
number of observations provided a suitably large set of
observations is employed. Moreover, it can be shown that in
most of the cases, if the FIM is singular, there is no unbiased
estimator for the desired parameter with finite variance [19].
To this end, the information-regularity condition, which
ensures the nonsingularity of the FIM for the desired
parameter @, is crucial in parameter estimation problems.

The second criterion to assess the estimation capabilities of
the quantized estimation system is the identifiability condition,
which is defined as

Definition 2 (ldentifiability Condition): There exists no
parameter value in the parameter space such that the
conditional distribution of the data conditioned on the
parameter is identical to that for some other parameter value
in the parameter space.

The identifiability condition is sufficient to guarantee almost
sure convergence of a class of estimators which includes the
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maximum likelihood estimator as the sample size approaches
infinity, given some reasonable conditions [18], [20].
Intuitively, if the identifiability condition fails for some para-
meter value, then there exists another parameter value which
is just as likely as the true value based on the observations,
and hence the desired parameter cannot be estimated consis-
tently [21], [22]. Therefore, it is necessary that every parameter
point in the parameter space ® satisfies the identifiability
condition for a meaningful estimation problem. In such cases,
we say the vector parameter space is identifiable.

In general, the FIM nonsingularity and the identifiability
of the vector parameter space are both determined by the
statistical models of the observations, the value of the desired
parameter, and the quantizer designs employed by the system
which complicates the analysis of the estimation capabilities
of a quantized estimation system. On the other hand, this
paper provides a simple expression called the inestimable
dimension for quantized data (IDQD) which describes a vector
parameter dimension beyond which the FIM nonsingularity
and the identifiability of the vector parameter space are both
guaranteed to fail. These powerful results can be employed in
preliminary design in many applications of quantized (digital)
data. For example, in the most commonly studied case of real
independent and identically distributed quantized data with
a common binary quantizer at N sensors and K times, this
paper showed that only a scalar parameter can be estimated
efficiently for large N and K. Any vector parameter of interest
with a dimension larger than 1 always brings about a singular
FIM and nonidentifiable vector parameter space. This result
has significant implications for big data problems which are
attracting significant attention lately, where large dimension
parameters frequently occur.

A. Summary of Results

1) For the general parameter estimation with quantized
data system shown in Fig. 1, the impact of quantization with
regard to the information-regularity condition is first studied.
By exploring the structure of the FIM for estimating the
desired vector parameter, it is shown that if the dimension
of the desired vector parameter is larger than the IDQD,
the FIM for estimating the desired vector parameter cannot be
nonsingular for any statistical models of the observations, any
value of the desired vector parameter, and any quantization
regions. Hence, the IDQD specifies a quantization induced
fundamental limitation on the estimation capabilities of the
quantized estimation system with regard to the information-
regularity condition, which limits the number of parameters
which can be estimated by the quantized estimation system
while maintaining a nonsingular FIM.

2) Next, we investigate the impact of quantization on the
identifiability condition. It is shown that for any statistical
models of the observations and any quantization regions
employed by the system, if the dimension of the desired vector
parameter is larger than the IDQD, then the vector parameter
space is not identifiable, and moreover, there are infinitely
many nonidentifiable vector parameter points in the vector
parameter space. Thus, the IDQD indicates a quantization
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induced fundamental limitation on the estimation capabilities
of the quantized estimation system with regard to the identi-
fiability condition.

3) We next show that there is no general equivalence
between the just described quantization induced FIM singu-
larity and the quantization induced nonidentifiability of the
vector parameter space. In particular, there exist some cases
where the necessary conditions for the existence of the FIM do
not hold, but the quantization induced nonidentifiability of the
vector parameter space can still be guaranteed. However, if the
FIM exists, the condition that the dimension of the desired
vector parameter is larger than the IDQD gives rise to both
quantization-induced issues.

4) Some further investigations into quantization induced
nonidentifiability are carried out. We show that in some
cases where the dimension of the desired vector parameter
is larger than the IDQD, every vector parameter point in the
quantization induced nonidentifiable vector parameter space is
nonidentifiable, while in some other cases, only some vector
parameter points in the quantization induced nonidentifiable
vector parameter space are identifiable. Thus the quantization
induced FIM singularity does not necessarily determine the
identifiability of the vector parameter point although it does
determine the identifiability of the vector parameter space.
Moreover, we show that the cardinality of a set of vector
parameter points in the quantization induced nonidentifiable
vector parameter space which are as likely as each other based
on the observations can be as small as 1 and can also be as
large as uncountably infinite.

5) Finally, as opposed to our previous general results,
we consider scenarios where some commonly assumed
specific assumptions on the statistical models of the obser-
vations are made. It is shown that under the assumptions,
the fundamental limitation of the quantization system becomes
more limiting. A smaller dimension of the vector parameter,
called the refined IDQD (rIDQD), will guarantee the FIM
singularity and the nonidentifiability of the vector parameter
space.

B. Related Work

The information-regularity condition and the identifiability
condition have been successfully applied in several engi-
neering disciplines, including statistical inference, control
theory, and array processing, see [19], [23]-[26] for examples.
Previous work has illuminated an intimate link between the
nonsingularity of the FIM and the local identifiability of
the desired parameter [18], [19], [24]-[28]. Local identifia-
bility implies identifiability in an open neighborhood of the
true value of the desired parameter and is weaker than the
identifiability discussed in this paper which is often called
global identifiability. Rothenberg [27] shows that if the rank
of the FIM is constant over some open neighborhood of
the desired parameter, then the nonsingularity of the FIM is
equivalent to the local identifiability of the desired parameter.
For normal distributions, the work in [25] provides some other
conditions which also guarantee the equivalence between the
nonsingularity of the FIM and the local identifiability of the
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desired parameter. However, it can be shown that quantization
induced singularity of the FIM does not generally imply a lack
of local identifiability.

The relationship between the identifiability and the dimen-
sion of the vector parameter to be estimated has been studied
in the area of array processing for a particular class of
multivariate Gaussian distributed signal models [25]. For the
particular class of models considered in [25], the task of
examining the identifiability can be simplified to examining
whether different values of the parameters give rise to different
values of the covariance matrix. However, there are major
differences between the work in [25] and that in this paper.
First and foremost, the array processing models considered
in [25] do not employ quantization which is the focus of
our work. Moreover, we don’t make any assumption on the
model of the received signals, and our results hold for arbitrary
statistical models of the observations, arbitrary value of the
desired vector parameter, and arbitrary quantizer designs.

For the parameter estimation system illustrated in Fig. 1
with N =2 and L = Ly = 1, a related but different problem
has been considered in [29]. Zhang and Berger [29] show that
under some assumptions, as the number of observations at
each sensor increases to infinity, there exists an asymptotically
unbiased estimator employing some quantizers with quantiza-
tion rates no greater than some prescribed values, which can
achieve a bounded variance. It is worth mentioning that for
a given quantization rate, the number of quantization levels
increases exponentially with respect to the number of observa-
tions at each sensor. Thus, the work in [29] essentially focuses
on the case where the number of quantization levels employed
is sufficiently large. In contrast, we are primarily interested in
the case where the number of quantization levels employed is
fixed and independent of the number of observations at each
sensor, and we show that the quantization with fixed number
of quantization levels induces a fundamental limitation on the
dimension of the vector parameter which can be accurately
estimated by the quantization estimation system.

C. Notation and Organization

In this paper, bold upper case letters and bold lower case
letters are used to represent matrices and column vectors
respectively. The symbol 1 stands for the all-one column
vector, and 0 for the all-zero column vector. Let [A]; ; denote
the element in the i-th row and j-th column of the matrix A.
The /-th element of a vector @ is denoted by ;. A > 0 and
A > 0 imply that the matrix A is positive definite and positive
semidefinite respectively. For any set S, |S| represents the
number of elements in the set S. For any given L, RY denotes
the set of all L-tuples real numbers. The rank and expectation
operators are denoted by rank(-) and IE (-) respectively.

The remainder of the paper is organized as follows. A gen-
eral quantized estimation system and its IDQD are introduced
in Section II. In Section III, the impact of quantization on
the information-regularity condition is investigated. Section IV
studies the impact of quantization on the identifiability con-
dition. The specialization of the results in Section III and
Section 1V to cases with some commonly assumed assumptions
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is considered in Section V. Finally, Section VII provides our
conclusions.

II. QUANTIZED PARAMETER ESTIMATION SYSTEM
MODEL AND INESTIMABLE DIMENSION
FOR QUANTIZED DATA

Consider an N-sensor system as shown in Fig. 1 where
the j-th sensor! produces a K-dimensional vector x j- The
statistical description of x; depends on a Dg-dimensional
vector parameter # € ® C IRP¢ that we wish to estimate. As a
generalization? to the standard quantized parameter estimation
system, partition the observation vector into L; parts as

T
T T T
x; = [le,sz,...,ijj] . (1)

Next the /-th observation subvector x;; of x; is converted to

the quantized value u j; by employing the vector quantizer y j;
03

using

Zr 1{xiie 1}, @)

where 1{x;; € 1;;)} 1if xj; € 1;;) and otherwise it is
zero. Thus y;; 1s an Rj;-level vector quantizer with given
(r) Rji
1),

ujr= )’jl le

quantization regions { 2, which are disjoint and cover
the domain of y;;. Next we collect all the quantized data
corresponding to X, into u; which we call the superquantized
vector, such that

[t ujas s ujr,]”

T (x;)
= (71 (x51) 272 (x72) + oo v, (352,)] . )

We assume for simplicity that the quantities u;, j =
1,2,..., N are transmitted without error to the FC to be used
for estimating 6.

Without loss of generality, we can assume that the observa-
tion vectors {x j}y=1 are independent, but the elements of x;
are not necessarily independent for each j. This is because
the scenarios where {x j}?lzl are not independent can be
considered as a special case of the system which only consists
of 1 sensor, since the observation vectors {x j}}\': | at different
sensors are just a partition of the overall observation vector
[XIT,XZT, . ..,x%]T. We assume that x; follows a statistical
model (Z;,.%;, ﬂj’f) for each j, where % is some set

endowed with a o-algebra .%;. The probability measure @f

u;

1>

of x; belongs to a family of probability measures {ﬂj’f

0 € O} on (Z;,.%#;) indexed by a Dy-dimensional vector
parameter @ lying in a set @ C RP¢. The superquantizer
Lj:(%5,%) — (RELJ, 2,) is a measurable function with

It should be noted that if the data comes from something other than a
sensor, the results still apply.

2The case of performing L ; scalar quantizations at each sensor, is common,
as is pure vector quantization with L; = 1, for example.

31t is worth mentioning that in this paper, we use Rj; to denote the
number of quantization levels of the vector quantizer y j;, while the notation
R is usually reserved for the quantization rate in the literature on vector
quantization.
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respect to .#; and #; for all j, where %, is the Borel algebra
on R,

Before proceeding, we define a critical quantity, which is
called the inestimable dimension for quantized data (IDQD)
of the quantized estimation system.

Definition 3 (Inestimable Dimension for Quantized Data):
The IDQOD A (N , {R jl}) of the quantized estimation system
described above is defined as

J

(N, {R;1}) éil—[ Rj1—N @)

It is seen from (4) that the defined IDQD 4 (N, {R;;})
of the quantized estimation system does not depend on the
value of the desired vector parameter @, the statistical models
(%, 7, @?)} and the quantization regions {Ij(.;)}, but is
only determined by the number N of sensors and the numbers
{Rji} of the quantization levels employed at the sensors.

It is worth mentioning that the definition of the IDQD in (4)
implies that the IDQD has some scaling properties. To be
specific, for the case with N = 1, L = 1 and R;; = R,
we can obtain 4 (1, {R}) = R — 1. Similarly, for the case with
Ly =L, =...=Ly =1and Rj; = R for all j and [,
we have 1 (N, {R}) = N(R — 1), which illustrates a linear
effect of increasing the number of sensors. Likewise, we also
can obtain

N (Rime 1) < 2 (N {Ra}) = N (Rige =1), )
where Rpyin 2 min; R, Rmax £ max;Rj;, Lmin £ min;L;,
and Lpyax = max;L;. This clearly shows the scaling property
of the IDQD with respect to N, {L;} and {R;;}.

In the following, we will show that there is a close link
between the IDQD and the estimation capabilities of the
quantized estimation system in terms of the information-
regularity condition and the identifiability condition.

III. IDQD AND INFORMATION-REGULARITY CONDITION

In this section, we first formulate the FIM for estimating 6,
and then based on the expression of the FIM, we show that
the IDQD of the quantized estimation system describes a
fundamental limitation of the quantized estimation system with
respect to the information-regularity condition.

Let §; denote the set of all possible outcomes of the
J-th superquantizer I;

Sj:{sgj),sgj),.. ‘(“é)|} (6)

It is clear that the size of S; can be written as

S| =T1R- (M

Let u denote a vector containing all the quantized data {u;}
received at the FC

A T
u:[ulT,uzT,...,u,{,] . (8)
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For any given quantized data u received at the FC, the log-
likelihood function L (f) can be expressed as*

L) 2 1nPr(u|0)

lnHPr uj |0
N
Z Z ]l{u = s}lnq(s) @)

©)
Jj=1seS;
where Vj, q(s) (#) is defined as
A
g% ) 2 2! (I} (x;) =) (10)

for any given vector s € S;.

Define the following assumptions.

Assumption 1: We assume the estimation problem has
already been formulated with the smallest possible dimension
of the vector parameter 0 using all information available.
Thus, there are no additional known constraints between the
elements of 0 that imply we can estimate a vector parameter
with a smaller dimension and then use the constraints to find 6.
Further, no additional side or prior information is available
involving the elements of 0.

Assumption 2: For the set @ in RP%, the interior of @ is
not empty.

Assumption 3: For all j and s, q()(()) in (10) is twice
differentiable with respect to 0 for all 0 € O.

Note that Assumption 1, Assumption 2 and Assumption 3
are called regularity conditions and are commonly adopted in
the signal processing literature [30].

To gain insights into whether the information-regularity
condition is satisfied, we first explore the FIM J(@) for esti-
mating . Under Assumption 2 and Assumption 3, the (I, m)-th
element of the FIM J(0) is defined as [30]

A o2L (9)
JO®l,,=-E [ 00,00y, ] ,

where 6; and 6, denote the /-th and m-th elements of € respec-
tively. Hence, by employing (9), J(@) can be expressed as

(s) 0 (s) 0
ZZ 0q; ()[qu ()] >

S5 “’<0> W |

(1)

J@) =

By employing (12), we can obtain the following theorem
with regard to the singularity of the FIM.

Theorem 1: Under Assumption 1, Assumption 2 and
Assumption 3, for any given 0, any quantization regions {1 r )}
and any statistical models {(Z;, F;, 90)} the FIM J(0)
described in (12) is singular, if the dlmensmn Dy of the vector
parameter 0 is greater than the IDQD, i.e.,

Dy > A (N, {Rj1}), 13)
where 2 (N,{R;i}) is defined in (4).
Proof: Refer to Appendix A. [ ]

4Note that if q(.s) (#) = 0 for some j and s, then the corresponding summand
in (9) should be eliminated in computing (9).
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Remark 1: Further discussion on Assumption 1 can found
in Section VI

Theorem 1 reveals a fundamental limitation when utilizing
quantized data for estimating a vector parameter, and sheds
light on the preliminary design of a quantized estimation
system. To be specific, the quantization and sensing approach
employed should guarantee that the IDQD of the quantized
estimation system, A (N, {Rj:}), is larger than or equal to
the dimension of the vector parameter of interest. Otherwise,
the FIM for estimating the vector parameter of interest is sin-
gular definitely singular for any 0, {I; (r)} and (2, 7, @ )}
Since this fundamental limitation 1s quantization 1nduced
we refer to this singularity of the FIM which is caused by
the condition Dy > A (N, {R jl}) as quantization induced
singularity. In order to alleviate this undesirable outcome,
it is seen from the definition of 4 (N, {Rj;}) in (4) that one
can employ finer quantizers {y;;} with larger {Rj;} or add
more sensors in the system. However, enlarging {R;;} can
significantly increase the data rate from each sensor to the
FC, and adding more sensors increases the cost of quantized
estimation system.

If the dimension of the vector parameter of interest is
smaller than the IDQD 4 (N {R ]1}) it is still possible that the
FIM for estimating the vector parameter of interest is singular
for some 0, {I(r)} and {(Z}, 7}, 9 )}. However, in this case

the singularity depends on 6, {I(r)} and {(Z;, 7], @ )}
Hence, the condition Dy > 1 (N {Rﬂ}) is not generally
necessary for guaranteeing the singularity of the FIM.

IV. IDQD AND IDENTIFIABILITY CONDITION

In this section, we study the relationship between the iden-
tifiability of the vector parameter space ® and the IDQD of
the quantized estimation system defined in (4). The definitions
of identifiability which are employed in this paper are first
described. Then, we show that the IDQD of the quantized
estimation system describes a fundamental limitation of the
quantized estimation system with respect to the identifiability
of the vector parameter space.

A. IDQD and Identifiability of the Vector Parameter Space

In order to characterize the impact of the quantization on the
identifiability condition, we first formally give the following
definitions with regard to the identifiability.

Definition 4 (Observational Equivalence [27]): Two dis-
tinct vector parameter points in ©, 0 and ', are said to
be observationally equivalent if Pr(u|0) = Pr (u ’0’) for all
possible u in (8).

Definition 5 (Identifiable Vector Parameter Point [27]): The
vector parameter point € © is called identifiable, if there is
no other 8’ € ®\{0} which is observationally equivalent to 0.

Definition 6 (ldentifiable Vector Parameter Space): The
vector parameter space © is considered identifiable, if every
vector parameter point @ € © is identifiable.

It is worth pointing out that in some literature, if a parameter
is said to be identifiable, it means that the parameter space
® is identifiable, for instance, see [21], [31]. In general,
for a meaningful estimation problem, it is necessary that the
parameter space © is identifiable.
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Let A2 {a1,a2,...,ap,} denote the set of all possible
realizations of u in (8), where the number of all possible
realizations is

N Lj

Dy =[]]]Ri-

j=11=1

(14)

According to Definition 4 and Definition 6, the vector
parameter space © is identifiable if and only if there are no
distinct vector parameter points #; and 6, in © such that
Pr(u|f;) = Pr(ulf;) for all u € A. In other words, the
vector parameter space © is identifiable if and only if the

mapping
w:® — RP

6 —> [Pr(ai10),Pr(az10),...,Pr(ap, 16)]" (15

is injective. Thus, we can examine the injectivity of the
mapping ¢y in (15) to investigate the identifiability condi-
tion. On the other hand, the following lemmas simplify this
investigation.

Let us define a (Z;V:] HIL:'le
vector ¥ (6)

ji — N)-dimensional

T
YO 2 (11O 9@ .y @] 16
where for each j, ¥ ; (9) is defined as
0 ) ((” , ’
NOE [qf-‘ '©.4% 0), g, «n} . an

qj(.s) () is defined in (10), and sl(j ) is defined in (6) for all
i=1,2,...,|5 -1

Lemma 1: The mapping @y in (15) is injective if and only
if the mapping

N Lj
2 [T Ry—N
v:0 — R/=H=

6 —> W (0) (18)

is injective. Therefore, a necessary and sufficient condition
under which the vector parameter space @ is identifiable is
that the mapping W in (18) is injective. Moreover, the dimen-
sion of the vector W (0) in (16) is strictly smaller than that of
ou (0) in (15) for any given N and {R;}.
Proof: Refer to Appendix B. [ |
As Lemma 1 demonstrates, the identifiability of the vector
parameter space © can also be determined by the injectivity of
the mapping ¥ in (18). To this end, we only need to inspect
the injectivity of the mapping ¥ in (18) to investigate the
identifiability of the vector parameter space. What’s more, it is
seen that the dimension of the vector W (@) in (16) is precisely
the IDQD of the quantized estimation system A (N, {R;}),
which is shown to be strictly smaller than the dimension of
@u (0) in (15) for any given N and {Rj;}. In the following,
we will show that because of the smaller dimension of W (),
inspecting the injectivity of the mapping ¥ in (18) is easier
than inspecting the injectivity of the mapping ¢, in (15) under
the condition that Dy > A (N, {le}).
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Before proceeding, let us first introduce a helpful result in
algebraic topology.

Lemma 2 (Invariance of Domain Theorem [32]): If U is
an open subset of R" and f : U — R" is an injective
continuous mapping, then V B} fU) is open in R", and
f is a homeomorphism between U and V.

The proof of Lemma 2 can be found in [32]. Next, we make
the following assumption throughout this section, which is
weaker than Assumption 3.

Assumption 4: For all j and all s, qj(.s) @) in (10) is
continuous with respect to 6.

By employing Lemma I and Lemma 2, we provide the
following theorem with regard to the identifiability of the
vector parameter space.

Theorem 2: Under Assumption 1, Assumptlon 2 and
Assumption 4, for any given quantization regions {I i } and
statistical models {(Z;, 7|, @f)} if the dzmenszon of the
desired vector parameter 0 is larger than the IDQD of the
quantized estimation system, i.e.,

Dg > A (N, {Rj1}), (19)

then the vector parameter space O is not identifiable.
Moreover, for any open subset U C O in RP?, there are
infinitely many vector parameter points in U which are not
identifiable.
Proof: Refer to Appendix C [ ]
Theorem 2 demonstrates that under Assumpnon 1,
Assumption 2 and Assumption 4, for any given {I i } and
(%, 7, @?)}, the condition Dy > A (N, {le}) is suffi-
cient to guarantee that there exist infinitely many nonidenti-
fiable vector parameter points in the vector parameter space
©. Hence, the vector parameter space © is not identifiable.
This nonidentifiability of the vector parameter space is also
quantization induced, and doesn’t depend on the statistical
models of the observations and the design of the quantization
regions. We refer to the nonidentifiability of the vector parame-
ter space which is caused by the condition Dg > 4 (N, {R;})
as quantization induced nonidentifiability. However, it is worth
mentioning that the condition Dg < 4 (N , {R | 1}) cannot guar-
antee the identifiability of the vector parameter space, which
is determined by the vector parameter space ®, the quantizer
designs {I](?)}, and the statistical models {(%7, %, @?)}.

B. Remarks on Quantization Induced Nonidentifiable
Vector Parameter Space

A particular note of interest is that Assumption 4 employed
in Theorem 2 is much weaker than Assumptlon 3 employed
in Theorem 1. The continuity of q (0) assumed in
Assumption 4 is not enough to guarantee the existence of
the FIM. Thus, in some cases where the FIM for estimating
the desired vector parameter doesn’t exist, the quantization
induced nonidentifiability of the vector parameter space can
still be guaranteed by Theorem 2 under the condition that
Dy > 4(N,{Rji}). Hence, in general, there is no equiv-
alence between the quantization induced singularity of the
FIM and the quantization induced nonidentifiability of the
vector parameter space. However, if both Assumption 2 and
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Assumption 3 hold, the condition that Dy > A(N,{Rj})
ensures both singularity of the FIM and nonidentifiability of
the vector parameter space.

According to Theorem 2, we know that under Assumption 2
and Assumption 4, for any given {I](;)} and {(Z;, Z, @;’)},
if the dimension of the desired vector parameter 6 is larger than
the IDQD of the quantized estimation system, then there exist
infinitely many nonidentifiable vector parameter points in ©.
However, there still remain two interesting questions which are
not answered by Theorem 2. First, although Theorem 2 shows
that under the condition Dy > A(N, {R};}), there are infinitely
many nonidentifiable vector parameter points in ®, whether
every vector parameter point in © is nonidentifiable or not is
still unknown. Second, under the condition Dy > A(N, {R;/}),
what is the cardinality of a given set of observationally equiv-
alent points in the nonidentifiable vector parameter space?

In this subsection, we employ examples to show that in
some cases, every vector parameter point in the vector para-
meter space is not identifiable, while in other cases, there
exist some vector parameter points which are identifiable.
Moreover, the examples illustrate that under the condition
Dy > A(N,{Rj;}), the cardinality of a set of observationally
equivalent points can be very different for various cases. It can
be as small as 1 and can also be as large as uncountably
infinite.

1) Every Vector Parameter Point in the Nonidentifiable
Vector Parameter Space is Nonidentifiable and Every Set of
Observationally Equivalent Points is Uncountable.

Example I: Consider a quantized estimation system with
N =1, L; =1, and the dimension of x;; is 1 for all /. In this
case the single sensor makes a scalar observation which we
denote as x for simplicity. The Gaussian assumed probability
density function (pdf) of x is

x—a)?
F(x10) = \/;T_ﬂe(_ZﬂL, (20)

. A
where the unknown vector parameter is # = [a, f]7. The
vector parameter space is

@z{[a,ﬁ]T:aeIR,ﬁzO}. @1)

It is clear that the interior of ® is not empty. We assume
that the sensor employs a binary quantizer to convert x to
u € {1,2} by using the nonempty quantization regions

1M = (a,b) and I® =R\ID, (22)

for some a and b with —0o < a < b < oo. This quantizer
model is common and widely considered in recent literature,
for instance, see [8], [33]. By the definition of the IDQD
in (4), we can obtain

A(NARjY) =2(1,{2) =1 <2 =Dy, (23)

and hence, by Theorem 2, the vector parameter space © is not
identifiable.

Proposition 1: For the quantized estimation system
described in Example 1, if the sensor doesn’t employ
quantization, then every vector parameter point 0 € ©
is identifiable. Since the vector parameter space O
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is not identifiable when the quantizer is employed,

the nonidentifiability of the vector parameter space is
indeed quantization induced. Furthermore, if the sensor
employs the quantizer with any given IV and I® with
the forms in (22), every vector parameter point in © is
not identifiable, and moreover, for any vector parameter
point 0 € O, the set of vector parameter points which are
observationally equivalent to 0 is uncountable.
Proof: Refer to Appendix D. [ ]
As Proposition 1 demonstrates, under the condition
Dy > A(N, {Rj;}), there exist some cases where for any vector
parameter point # € @O, the set of vector parameter points
which are observationally equivalent to € is uncountable, and
hence, every vector parameter point in @ is not identifiable.
To corroborate the theoretic analysis, we present some
numerical results which illustrate the identifiability of the
vector parameter points in ©. Fig. 3 depicts the relationship
between Pr (u = 10) and  for a particular case where /() =
(=2,2) and I® = R\ID, and Fig. 4 shows the contour
of Pr(u=110) for the same case. Since Pr(u =20) =
1 — Pr(u=1|0), we know that for a given 6 in O,
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if Pr(u=10") =Pr(u=1]0) for some other §" in ®\{6},
then by Definition 4, @' is observationally equivalent to #, and
hence, 0 is not identifiable. Therefore, every contour curve
in Fig. 4 illustrates a set of observationally equivalent vector
parameter points. Moreover, it is easy to see from Fig. 3 that
every vector parameter point is not identifiable.

2) Existence of Identifiable Vector Parameter Point in the
Nonidentifiable Vector Parameter Space.

Example 2: Consider a quantized estimation system with
N =1 and K = 2, where the observation x = [x1, x2]7 fol-
lows the distribution® A/(@, I) with unknown vector parameter

(] Y [01,0,]7. The vector parameter space © is RR? which
is open. We assume that the sensor employs a binary vector
quantizer to convert X to u € {1,2} by using the nonempty
quantization regions

1V = (a1, b)) x (a2,b) and 1P =RN\1D, (24

for some aj, a>, by and by, where —o00 < a; < b; < oo and
—00 < ap < by < o0.
From the definition of the IDQD in (4), we can obtain

A(N,{Ru}) =24(1,{2) =1 <2 = Dy, (25)

and hence, by Theorem 2, the vector parameter space ® is not
identifiable.

Proposition 2: For the quantized estimation system
described in Example 2 and for any given IV and 1® with
the forms in (24), there exists an identifiable vector parameter
point in ©.

Proof: Refer to Appendix E. [ |

As illustrated by Proposition 2, under the condition
Dy > A(N,{Rj;}), there exist some cases where the quan-
tization induced nonidentifiable vector parameter space ©
contains some identifiable vector parameter points. According
to Definition 5, for any identifiable vector parameter point 6,
the set of points which are observationally equivalent to 6
consists of only one point, that is, . Thus, under the condition
Dy > A(N,{Rj}), the cardinality of some observationally
equivalent set in nonidentifiable vector parameter space @ can
be as small as 1 in some cases, since it is possible that some
vector parameter point in ® is identifiable. Furthermore, it is
worth mentioning that under the condition Dy > A (N s { R; 1}) s
the FIM evaluated at any vector parameter point in @ is
singular for any case. Hence, as Proposition 2 demonstrates,
the singularity of the FIM does not necessarily contradict the
identifiability of the vector parameter point.

Some numerical results for a particular case where a; =
a = —1 and by = by = 1 are provided in support of the
theoretical analysis. Fig. 5 depicts the value of Pr(u = 1(0)
for each vector parameter point in @, and Fig. 6 illustrates
the contour of Pr(u =1(0). Since Pr(u =210) = 1 —
Pr(u = 116), according to Definition 5, it is clear that if 0
is not identifiable, then there exists some other 8’ in ©®\{f}
such that Pr(u =110) = Pr(u =1]0'). Fig. 5 shows that
Pr(u = 1]60) achieves its unique global maximum at § = 0,
which demonstrates that # = 0 is an identifiable vector

SN (6, 1) denotes a multivariate Gaussian distribution with mean vector 6
and covariance matrix I, where I is the 2-by-2 identity matrix.
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parameter point in this particular case. It is seen from Fig. 6
that every set of observationally equivalent points forms a
circle with the center at § = 0. Hence, except the set of points
which are observationally equivalent to # = 0, every other set
of observationally equivalent points is uncountable.

V. IDQD WITH ADDITIONAL ASSUMPTIONS

In Section III and Section IV, we make no assumptions about
the quantizers and the statistical model of the observations at
each sensor. Hence, Theorem I and Theorem 2 apply to any
case with any {y;} and {(%£], ], 39;))}. However, in general,
the sufficient condition Dg > A (N, {R;;}) employed in
Theorem I and Theorem 2 for guaranteeing the FIM singularity
and the nonidentifiability of the vector parameter space is
not strictly necessary. Hence, weaker conditions which still
imply singularity and nonidentifiability when some additional
assumptions are valid are of interest. In fact, under some com-
mon assumptions, we will show we can obtain a smaller IDQD
compared to the results given in Theorem I and Theorem 2
which better describes the limitations imposed by quantization
under these assumptions.
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A. Existence of Identical Sensor Observation Statistical
Models and Identical Superquantizers

In this subsection, we consider the scenarios where the
following assumption is valid.

Assumption 5: The statistical models of the observation
vectors at some different sensors are known to be the same
Jor all @ such that the number of different statistical models
at all the N sensors is P < N.

Collect all the sensors indices that employ the p-th
statistical model in the group G, such that
{1,2,...,

P
N} = Ulgp, and gp ﬂgp/ - (/)» VP 7& P/. (26)
p:

For the sake of notational simplicity, we use (f%; P F P 332)
to denote the statistical model for any x; with j € G,.

In general, it is possible that some different sensors employ
an identical superquanizer® to convert its observation vector to
digital data. Each G, can be further divided into M, disjoint
nonempty subgroups {g(’") Yty Of sensors that use different
superquantizers

Gy = g(m>, and G NGY) =0, Ym #£m'. (27)
m_
For simplicity, we use
T
fOm) A | ~m) ~(m) A (m)
r;m) A [ P ot s Tpn seees ¥ ’Z(m)] (28)

to denote the superquantizer employed by the sensors in

g},"” where L(' QF is the number of vector quantizers in F
(1")
Moreover, we use R(m) and {/, [ l} Rp Z, to respecitvely denote

the number of quantlzatlon levels of 7 N j (m)

A (m

and the quantization

regions of y i ) for each m, p and /.

Thus, under Assumption 5, if j and j’ are contained in g,(,’”)
for some p and m, then for any 6 and any outcome s of the
superquantizer Fg,m),

g ®) = 2 (10" (x)) =)

g% ) = (29)

By employing (29) and similar arguments as those in
Section III and Section IV, the following theorem can be
obtained.

Theorem 3: Under  Assumption 1, Assumption 2,
Assumption 3 and Assumptlon 5, for any given 6, any
quantization regions {I l} and any statistical models
(Zp, Fp, PO, if the

dimension Dy of the vector

parameter 0 is greater than Z;’:l Z (Hl ] R(m) 1),
Le.,
Do > 2usu (1997), (RY))
) L(m)

[1>

>3 (M1},

p:l m=1 1=1

(30)

SHere the order is important, thus an identical superquantizer uses the same
vector quantizers in the same order.
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then the FIM for estimating 0 is singular. Furthermore,
under Assumption 1, Assumption 2, Assumption 4 and
Assumption 5, for any given {I( )l} and {(.fo‘”p,fp, 3”0)}
if (30) holds, then the vector parameter space © is not
identifiable. Moreover, for any open subset U C © in R,
there are infinitely many vector parameter points in U which
are not identifiable.

The proof of Theorem 3 is omitted, since it is similar to the
proofs of Theorem 1 and Theorem 2 after properly accounting
for the impact of Assumption 5, which effectively reduces the
IDQD. At least in terms of the FIM singularity, the fact that
the IDQD is reduced seems reasonable since the statistically
identical models assumed in Assumption 5 leads to identical
terms in the sum in (12) which leads to a smaller dimension
of 6 at which the FIM must be singular. The impact of
Assumption 5 on identifiability can be similarly justified.

By the definition of AISM({Q(’")} {R(m)}) in (30), we know

that the critical quantlty JismU{Gp (m) 1 {R(m)}) does not depend
on {I(r)l} and {(%p, Jp, @0)} but is only determined by the

number of groups {G,}, the number of subgroups {g(’")} and
the precision of the vector quantizers employed by the system.

What’s more, we can obtain the relationship between the
IDQD 2 (N,{R;;}) in (4) and the quantity Asm({G"},
{R(’")}) in (30) as

N Lj

2 I1Ri-N

j=li=1

(N {le}

Lo

H RO —

p=1m=1 jegl()m) =1

P oM, L

=2 219" H R
p=1m=1
p M, (LY

=22 H R 3D
p=lm=1 \ I=1

= Jism (1G9, (RS (32)

where the inequality in (31) is a consequence of the fact that
|g(’")| > 1 for all p and all m. Thus from (32), rather than
utilizing the IDQD 4 (N, {R ]1}) in (4), it would be better to

employ the critical quantity /IISM({Q('")} {R(m)}) in (30) to
specify the fundamental limitation of the quantlzed estimation
system under Assumption 5 given the conditions of Theorem 3
apply. To this end, the critical quantity /IISM({QP'")} {R(m)})
in (30) is referred to as the refined inestimable dlmenszon for
quantized data (rIDQD) for the quantized estimation system
under Assumption 5.

Additionally, (31) implies that in order to reduce the severity
of the fundamental limitation of the quantized estimation
system, for any set of sensors whose observation vectors
obey the same statistical model, we should employ distinct
superquantlzers at each of the sensors in this set, so that we

can achieve |gp’")| = 1 for all p and all m. Otherwise, the
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quantization induced fundamental limitation becomes more
limiting implying the FIM singularity and the nonidentifia-
bility of the vector parameter space for an even smaller vector
parameter dimension.

B. Independent Observation Subvectors

In this subsection, we make the following assumption.

Assumption 6: All the partitioned observation subvectors
{xj1} are known to be independent. We denote the statistical
model of xj; by (21, Fji, ;-)l) for each j and l.

Note that Assumption 6 is commonly assumed in recent
literature on parameter estimation with quantized data, see [5]
for example. It is clear that the quantized estimation system
under Assumption 6 is a special case of the general quantized
estimation system described in Section II. However, as stated
previously we show we can find a smaller IDQD under
Assumption 6 that better describes the limitations imposed by
using quantized data.

It is clear that under Assumption 6, for any 6 and any
outcome § = [sl,sz,...,sLj]T of the superquantizer I';,
we have

S) (0) — @0(

() =)
ST (o ) = ).

=1

(33)

Thus, under Assumption 6, we can obtain the following
theorem by employing (33) and similar arguments as those
in Section III and Section 1V.

Theorem 4: Under Assumption 1, Assumption 2, Assump-
tion 3 and Assumption 6, for any given 0, any quantization
regions {Ij(-;)} and any statistical models {(Zj, Fj1, ﬂ)}
if the dimension Dy of the vector parameter 0 is greater than

N L N .
D 2 R =2 Ly, e,

J

N L
Dy > ilndep N {le} éZ:Z:le_
j=11=1

N
DL (34
j=1

then the FIM for estimating 0 is singular. Furthermore, under
Assumption 1, Assumption 2, Assumption 4 and Assumption
6, for any given {I;;)} and {(Z1, Fj1, 3”;’1)}, if (34) holds,
then the vector parameter space © is not identifiable. More-
over, for any open subset U C @ in RP?, there are infinitely
many vector parameter points in U which are not identifiable.

Theorem 4 can be justified as we now explain. Under
Assumption 6, all the partitioned observation subvectors {x;}
are known to be independent. Hence, without any impact, for
each j, we can view the j-th sensor as L; effective “sensors”
where the observation vector of the /-th effective “sensor” is
xj; and the [-th effective “sensor” employs the vector quantizer
yji to quantize its observation vector X;;. As a result, under
Assumption 6, the original N-sensor system where the j-th
sensor employs the superquantizer I'; for each j, is equivalent
toa (ZN_1 L ;)-sensor system where each sensor just employs

a vector quantizer. We use a pair of indices {(j, l)} = 1 1 | to
index the sensors in the (Z j=1 Lj)-sensor system, and the
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number of quantization levels of the vector quantizer employed
at the (j,/)-th sensor is Rj;. Therefore, by the equivalence
between these two sensor systems and by replacing N by
(XN, L)) and replacing >N [T, Ryt by S0, 307 Ryi
(the new sum over all sensors of the number of quantization
levels at each sensor) in the formula in (4), it follows that

ZZRJI_ZLJ»

j=11=1

j«Indep N {R]l} (35)

which justifies Theorem 4.

Noting that R;; > 1 for all j and [/, and by employing
the fact that for any positive integer L;, if a; > 0 for all
i =1,2,.,L;, then Hfz’l +a) =1+ zglai, we can
obtain

{N

J

Hle_N

(N {Rﬂ} =

M=

~.
Il
—-
N

lL—[[1+ 11_1)] 1

=1

1+Z
1

= Andep (N, {Rﬂ}) ‘

Thus, it is seen from (36) that the critical quantity
Andep (N, {Rj1}) in (34) allows us to guarantee the FIM is
singular and the vector parameter space is nonidentifiable
at a smaller dimension of §. We refer to Amdep (N, {R jl})
in (34) as the rIDQD for the quantized estimation system under
Assumption 6.

What’s more, it is seen from (34) that the rIDQD
Andep (N, {Rj1}) under Assumption 6 is precisely the number
of quantization levels employed by the effective sensor system
minus the number of effective sensors. Hence, the rIDQD
ilndep (N {R jl}) under Assumption 6 does not depend on

{11 } and {(%l, fjl, jl)}'

Il
M=

~.
Il
—

1—1

M=

~.
Il

(36)

C. Independent Observation Subvectors, Identical Sensor
Observation Statistical Models and Identical
Vector Quantizers

In this subsection, we consider the following assumption
which is stronger than Assumption 6.

Assumption 7: All the partitioned observation subvectors
{xj1} are known to be independent, and moreover, some
partitioned observation subvectors Xj; are known to obey
the same statistical model such that W < Z?’:l L; distinct
statistical models of the partitioned observation subvectors
{x;1} exist.

Collect all the partitioned observation subvector indices
that employ the w-th statistical model in the group A,,. For
notational simplicity, we use (Zw> Fo, @3)) to denote the
statistical model for any x;; with its index contained in A4,,.

Moreover, each group A, can be divided into T, dis-
joint nonempty subgroups {Aw)} 2, of partitioned observation
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subvector indices that employ different vector quantizers such
that

Ty ,
Av=U AD and ADNAY =g, vi£4,  (37)

In other words, if the indices of x;, ;, and X}, ;, are contained
: Q) Ly, T ~ (1)
in some A,’, then y;, , =y, 1,. For simplicity, we use 7,

to denote the vector quantizer employed for the partitioned
observation subvectors whose indices are contained in Al(,ﬂ) s

and use Ng)

and {f,f)r,)}f:(‘”t; to respectively denote the number
of quantization levels of )7,21) and the quantization regions of
fu(f) for each w and t.

Under Assumption 7, we have the following theorem with
regard to the fundamental limitation of the quantized estima-
tion system.

Theorem 5: Under  Assumption 1, Assumption 2,
Assumption 3 and Assumption 7, for any given 0, any
quantization regions {flf)r,)} and any statistical models
{(3&710, F 353))}, if the dimension Dy of the vector

parameter 0 is greater than Zg;l ;Ti] (Iél(,f) — 1), ie.,

W Ty
Dy > 24, (A0, (RDY) 23> (RD — 1), G8)

w=1t=1

then the FIM for estimating 0 is singular. Furthermore, under
Assumption 1, Assumption 2, Assumption 4 and Assumption
7, for any given {ig}} and {(37,0, Fw, 353))}, if (38) holds,
then the vector parameter space © is not identifiable. More-
over, for any open subset U C @ in RP?, there are infinitely
many vector parameter points in U which are not identifiable.

Since Assumption 7 combines Assumption 5 and
Assumption 6, the proof of Theorem 5 involves a combination
of the proofs of Theorem 3 and Theorem 4.

Note that

N Lj

/IIndep (N, {le}) = ZZ (le - 1)
()

~

Il
-
~
S

AW

I
M=

g
Il
—-
-
Il
-

w T,

> R —1 (39)
22 ()

= A (A1 (RDY). @0)

where (39) is based on the fact that |Af,§) | > 1 for all w
and all ¢. Therefore, under Assumption 7 which is stronger
than Assumption 6, the sufficient condition in (34) is even
less restrictive than the sufficient condition in (38) which
considers scenarios under Assumption 6. We call the quantity
i%ﬁggp({Ag)},{Iég)}) in (38) the rIDQD for the quantized
estimation system under Assumption 7.

It should be noted that under some other assumptions,
we can also obtain the corresponding rIDQD by employing
similar arguments to those just presented. For the sake of
brevity, we omit the detailed discussion.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 9, SEPTEMBER 2018

VI. ADDITIONAL INFORMATION ENSURES
INFORMATION REGULARITY

In the previous sections, we have shown that if the dimen-
sion of the desired vector parameter 6 is larger than the IDQD,
then without other known relationships involving the elements
of @, the FIM for estimating # cannot be nonsingular for any
statistical models of the observations, any value of the desired
vector parameter, and any quantization regions. In this section,
we provide two cases where if some additional information on
0 is added, then the information regularity can be guaranteed.

A. Additional Constraints on 0

Consider the case where we know that the desired vector
parameter @ satisfies D, < Dg continuously differentiable
constraints

c(9) =0, (41)

where ¢(f) is a D.-by-1 vector. Let C(f) denote the
D.-by-Dy gradient matrix of ¢ (@), that is,

A 0c(0)

C () T

Assuming C (#) has full row rank for any @ (i.e., the con-

straints are nonredundant), there exists a matrix A €

RPex (Do—De) gych that its columns form an orthonormal basis
for the nullspace of C (0), i.e.,

C@O)A =0, (43)

and ATA = 1. Then, the constrained CRB can be expressed
as (Th. 1 of [34])

E {(é - 0) (é - o)T] - A(ATJ(H)A)ilAT, (44)

where J(0) is defined in (12) and 0 is any unbiased estimator
of #. Thus, the corresponding constrained Fisher information
matrix can be written as (A(ATJ(@)A)"1AT)~1.

It is seen from (44) that no matter whether the unconstrained
FIM J(0) is singular or not, the information regularity can be
guaranteed as long as the additional constraints bring about a
matrix A which renders the (Dy — D.)-by-(Dy — D.) matrix
ATJ (0) A nonsingular. There are many cases where this can
happen. It is worth mentioning that the constraints in (41)
basically imply that some elements of 6 can be written as
functions of the other elements of 6. In light of this, # may
not be a vector parameter with the minimum dimension which
parameterizes the statistical model of the observations, and
therefore, Assumption I may not be valid for this case. In the
following, we provide a simple example to illustrate this idea.

For any given unconstrained FIM J(#), assume that
2um [T @), # 0, and let the i-th element of c(f) be
ci(@) =6; — 04 fori =1,2,..., D, with D, = Dy — 1,
where 6; is the i-th element of §. By employing (42), we can
obtain

(42)
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which yields

1
A=—[1,1,...,1]7 (46)
/Dy
by employing (43). As a result, we know
ATJ@O)A = 47)

1
N J 0 m 09
D I,Zm[ O]1m #

which implies that the information regularity is guaranteed.

B. Additional Information on the Prior Distribution of 0

Consider the case where we know that the desired vector
parameter 6 is a random vector with some distribution f(0).
The corresponding posterior Fisher information matrix Jg can
be expressed as [35]

Js A Fu [81nPr(u,0)(61nPr(u,0))T}

00 00
[alnPr(u |0)(61nPr(u |0))T}
:EU,0

o0 o0
E, [amf(o)(alnf(o))T]

00 00

T
=E0{J(0>}+Eo[alnf(a)(““f(”)) } 48)

00 00

where J (0) is given by (12). From Theorem 1, we know that
if Dg > A(N,{Rji}), then J (9) is singular. However, if the
distribution f(@) gives rise to

aln £ (8) (oln f (0)\
E 0
’ { 26 26 e
then Jp is always nonsingular. Thus, this additional informa-
tion f (@) ensures information regularity, and the inverse of

Jp provides a lower bound on the covariance matrix of the
estimation error.

(49)

VII. CONCLUSION

In this paper, we investigate the impact of quantization on
the estimation capabilities with respect to the information-
regularity condition and the identifiability condition. A critical
quantity, called IDQD, is introduced, which describes a fun-
damental limitation of using quantized data. To be specific,
under the condition that the dimension of the desired vector
parameter is larger than the IDQD, the FIM for estimating
the desired vector parameter is singular for any value of
the desired vector parameter, any quantization regions, and
any statistical models of the observations. Furthermore, it is
shown that under the same condition, the vector parameter
space is not identifiable, and moreover, there are infinitely
many nonidentifiable vector parameter points in the vector
parameter space. It is worth mentioning that there is no general
equivalence between the quantization induced FIM singularity
and the quantization induced nonidentifiability of the vector
parameter space. Further, in the quantization induced non-
identifiable vector parameter space, every vector parameter
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point is nonidentifiable in some cases, while in some other
cases, there exist some identifiable vector parameter points.
Thus the quantization induced FIM singularity does not nec-
essarily determine the identifiability of the vector parameter
point although it does determine the identifiability of the
vector parameter space. Moreover, the cardinality of a set of
observationally equivalent points in the quantization induced
nonidentifiable vector parameter space can be as small as 1 and
can also be as large as uncountably infinite. In addition, some
commonly assumed specific assumptions on the statistical
models of the observations are considered in this paper. It is
shown that under these assumptions, a refined IDQD becomes
smaller than the standard IDQD, implying the FIM singularity
and the nonidentifiability of the vector parameter space can be
guaranteed for an even smaller vector parameter dimension.

APPENDIX A
PROOF OF THEOREM 1

By employing (12), the rank of J (6) is upper bounded by
rank (J (9))

4% ©)[24® ®) 7
J J
= rank z z (S) 50 50
J=1seS§; (0)
N 0 )[04 (8
SZrank Z qjae() qjae() 50)
j=1 SESj
Noticing that
> a @) =1, v, (51)
seS;
we can obtain that
g (0
> ’ao ' o, Vi, (52)
SESj
and therefore,
s oq}” (0)[661,5) (0>]
ran
oy 00 00
!S =1
= HRJZ—I vj, (53)

where (53) follows from ).
By employing (50) and (53), we can bound the rank of J (6)
above by
N [Lj
rank (J (6)) < > HR,», —1

j=1

=

I

ZH jit—N

(54)

Thus, noting that the size of J (0) is Dg-by-Dg, if Dy >
A (N {Rj1}) = Zj»v:l HlL:’l Rj;— N, J(0) is singular for any
given 0, {1} and {(2},.7;, 7).
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APPENDIX B
PROOF OF LEMMA 1

First, consider a mapping W

L
ZnRﬂ
@ — R/

0 —> (), (55)
where the (Z;V:l HZL:’ | Rj1)-dimensional vector W () is
defined as

B0 2[00, ], 6o
and for each j, the |S;|-dimensional vector v j (0) is defined
as

(1)
IS |

T

_ () ()
O [g}* "0).477®).....q (0>] . (57)
qj(.s) () is defined in (10), and sl(j ) is defined in (6) for all
i=1,2,...,]|5;l

We first show that the mapping ¢, in (15) is not injective if
and only if the mapping ¥ in (55) is not injective, and hence,
the injectivity of the mapping ¥ in (55) is the same as that of
the mapping ¢, in (15).

Suppose the mapping ¥ in (55) is not injective. Then, there
exist two distinct @1, #; € © such that v @) = v 6>).

Noting that

Hmwrﬂjfl[@wﬂ -

j=1seS;

(58)

it is clear that Pr (u|f@;) = Pr(u6,) for all u € A, if there
exist two distinct 8y, #; € © such that W @) = 7 (6>).
Thus, the mapping ¢, in (15) is not injective.

On the other hand, suppose the mapping ¢, in (15) is not
injective. Then, there exist two distinct 81, 81 € © such that

Pr(ulf@;) =Pr(ulf,), Vue A, (59)
where Pr (u |0) is defined in (58).
Note that for each i, we have
> g O =1. (60)
SES,‘
Hence, for each i, there exists some h; € S; such that
g™ (1) #0. (©61)

For any given j and any given s € S;, we are going to
show that qjs)(01) = qj(s) (0>).
Consider a realization of u that

T
w=[h],hf, b sT B, RG] (62)
By employing (58) and (59), we have
h; h;
a® @) [1a™ ®)=4qP @) []a™ 02, (©3)

i#] i#]j
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By (61), we know that [],; ¢, (h) (#1) # 0, and therefore,
from (63), we can obtain

h;
E},q} ) (82)
) ) )
q;" 01)=q;" 02) —(35— (64)
! P ™ e
i#]
Furthermore, by noting that > s;4; ® (#2) = 1 and
employing (60) and (64), we can obtain
1;[ qi(hi) (62) 1;[ qi(hi) 0>)
i#] i#] (s)
Do~ maon 2"
i#] i#] !
=>4 ®)
SESj
=1, (65)
which implies
9¥ 01 =4 62). (66)

Therefore, by the definitions of W (#) and v j (0) in (56)
and (57), we know that

W (0)) =V (6), (67)

and hence, the mapping W in (55) is not injective. As a result,
we know that the mapping ¢, in (15) is not injective if and
only if the mapping W in (55) is not injective, which implies
that the injectivity of the mapping W in (55) is the same as
that of the mapping ¢y in (15).

Furthermore, for any given j, by the definitions of ¥ ; (6)
and 1# j(0) in (17) and (57) respectively, and noticing that

Yses, qjs) (6) =1 for all j, we can express 1#1 (0) as

- T
v ®=[v;07.1-17y;0)] . (68)

It is clear that if ¥ j (0) is not injective, then ¥ ; (6) is not
injective. On the other hand, if ¥ ; () is not injective, then
there exist two distinct 8y, 6; € O such that ¥ j @) =
¥ ; (02), and hence 1 — thﬁj @)=1- lTl/Ij (62). Conse-
quently, we have v j01) = v j (02) by (68), which implies
that 1} j (0) is not injective. Therefore, the injectivity of l/_f i (0)
is the same as that of ¢ ; () for all j, which implies that
W () is injective if and only if W (9) is injective. Since we
have proven that the mapping ¢y in (15) is not injective if and
only if the mapping W in (55) is not injective, we know that
the mapping ¢y in (15) is injective if and only if the mapping
W in (18) is injective.

In order to show that the dimension of the vector W (6)
in (16) is strictly smaller than that of ¢y (f) in (15) for any
given N and {Rj;}, it suffices to show that

N Lj N Lj
Du=[][IRi> D []Ri-N

j=li=1 j=11=1

(69)

for any given N and {Rj/}.
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Since N is the number of sensors and R;; denotes the
number of quantization levels of the quantizer y;; for each
J and [, we know that N > 1 and R;; > 1 for all j and all /.
Hence, we can obtain that

Lj
[TrRii=1. vi
=1

Furthermore, notice that if x > 0 and y > 0, then we have
the following inequality

(70)

I+x)d+y)=1+x+y+xy>=1+x+y. (71

Therefore, by induction, we can obtain that if x; > 0 for all
i=1,2,..., N, then

N N
[Ta+x)=1+> x. (72)
i=1 i=1

By employing (70) and (72), we can obtain
N Lj N Lj
[TITR: =1\ {[]Ri—1]+1
j=1i=1 j=1| \u=1
N [Lj
>1+> ([]Rri-1
j=1 \u=1
N Lj
> > T]Rri-N (73)
j=1i=1
This completes the proof.
APPENDIX C

PROOF OF THEOREM 2

Under Assumption 2, the interior of @ is not empty. Thus,
there exists a subset ¢ of @ which is open in RPe.
Define a Dg-dimensional vector ¥ ()

V(o) 2 [qr(e)T,oT]T, (74)
where W(#) is defined in (16), and the dimension of the
all-zero vector in (74) is Dg — A (N, {Rj1}).

Under Assumption 4, for all j and all s, qj(.s) (@) is a
continuous function with respect to 6. Hence, by (16), (17)
and (74), we know that the restriction ¥ lu of the mapping W
to U

WU — RP

0 —> W (9) (75)

is continuous with respect to 6.

It is clear that ¢/ is an open set in RP¢, but by the
definition of @(0) in (74), ] lu () is not open in RP¢. Thus,
by Lemma 2, the mapping \ilru is not injective. As a result,
by Lemma I, the vector parameter space @ is not identifiable.

What’s more, according to Definition 5 and Definition 6,
the nonidentifiability of the vector parameter space implies
that we can find two distinct nonidentifiable points 81 € U C
® and 02 € U C O which are observationally equivalent

to each other. Note that the set U/* = U\{01,60>} C U is
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also an open subset of @ in IRP¢. Therefore, by the same
argument, the restriction W i+ of the mapping W to U* is also
not injective, and hence, there also exist two distinct points
07 e U* CU C ©® and 05 € U* C U C O which are
not identifiable. Thus, by induction, there are infinitely many
vector parameter points in i/ C @ which are not identifiable.
This completes the proof.

APPENDIX D
PROOF OF PROPOSITION 1

If the observation x is not quantized, suppose there exist
two distinct vector parameter points 81 = [aj, ﬁl]T and
0, = [az, f2]7 which give rise to f (x |01) = f (x |0>) for
all x € IR, then we can obtain

nf(xlﬁ’l)

F10)

_bB=B s (ﬂ_%) ez _a, b
BT SR V> ”2(/32 TR
=0, VxeR. (76)

The fundamental theorem of algebra demonstrates that (76)
holds if and only if

51—52:0

20152

“a_%_y

pr B 77
a—%—a—lz-f-ln&—o

P B B

which implies 81 = [a1, 717 = [a2, 317 = 62, and hence,
we reach a contradiction. Thus, without quantization, every
vector parameter point @ € © is identifiable.

Now, consider the case where the binary quantizer in (22)
is employed at the sensor.

For any given vector parameter point ¢ 2 [a0, folT € ©,
let 0, 2 [ap, pPol” denote a vector parameter point in @
for some p € (0, 1) and some a,. We will show that for any
p € (0, 1), there exists an a, such that 8, is observationally
equivalent to 6.

Define a function g (a, f) as

b —a)?
g(a,ﬂ)éPr(uzllb’):/a \/Zlﬂ_ﬂe‘(_dex. (78)

Since Pr(u =210)=1—Pr(u=110) =1—g(a,p), it is
clear that if g (a,, pfo) = g (a0, Bo), then by Definition 4,
0, are observationally equivalent to 69, and hence, 6 is not
identifiable.

Since 7" and I® are both nonempty sets, a and b cannot
be both unbounded. Without loss of generality, we assume
—00 < a < b < 00. The case where —00 < a < b < ©
can be proved in a similar way. By (78) and noting b < oo,
we can obtain that for any given o and fo,

b—a
. . Pl 22
lim g (a, pfo) = lim /ﬁ ——e Zdx
a—> 00 a— 00 ﬁ 21

=0 < g (a0, fo) - (719)
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In the following, we will consider the case where a = —o0
and the case where a > —oo respectively. We will show that
for both cases, there exists some 0, = [a,, pﬁo]T such that

g (ap, pPo) = g (a0, Po).

Suppose a = —oo, then for any given ag and po,
b—a
. . 1 2
— I bl
Jm g (a, pfio) = lim [w N dx
= 1> g(ao, fo), (80)

Therefore, by (79) and (80), and noticing that g (a, f) is a
continuous function for all 8 = [a, £*]7 € ©, we know that
there exists an a, € (—00, 00) such that

g (ap, pPo) = g (a0, Bo) (81)

for any given p by employing Intermediate Value Theorem.
Suppose a > —oo. Noticing that for any given f, the
equation

0 1 _a=)? _—a)?
Py (a, B) = e ¥ —e ¥ =0 (82
o

27 p

only admits one solution

a:l(a—l—b)e(—oo,oo).

5 (83)
Moreover, since
0% b—a _b-a?
Wg (a, B) . = _We 8 <0, (84)

we know that a = % (a 4+ b) maximizes the function g (a, )
for any given f. Hence,

1
g (5 (a+D) ,ﬁo) > g (a0, fo) - (85)
Furthermore, note that
0 1 b—a (b-a)®
25 (@ +b),ﬁ) =——— % <0, (86
op (2 227 B3

which yields that g(%(a + b), p) is a strictly decreasing func-
tion with respect to . As a result, by employing (85) and (86),
we can obtain

1 1
g(i (a+b),pﬁo) > g(i (a+b),ﬁo) > g (a0, o) »
(87)

since p € (0,1). Thus, by (79) and (87), and by employing
Intermediate Value Theorem, we know that there exists an
a, € (%(a + b), 00) such that

g (ay, pho) = g (a0, Po) , (88)

since g (a, f) is continuous.

By (81) and (88), we know that no matter what a and b are,
for any given 0y = [0, fo]” € © and for any p € (0, 1),
there exists some 0, = [a,, pPol” such that g (ap, pﬁo) =
g (ap, po). Hence, every vector parameter point in @ is not
identifiable. Moreover, since the set (0, 1) is an uncountable
set, for any vector parameter point g € ®, the set of vector
parameter points which are observationally equivalent to 8 is
uncountable. This completes the proof.
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APPENDIX E
PROOF OF PROPOSITION 2

Define a function g (0) as
g@) 2 nPru=110)

| b ,(xl—zol)z J
=In —e X1
ap /\b/ 27T
2 1 xy—0h)2
+ In eiLﬁdez. (89)

a NV 271'

First, we claim that if a function f (x,y) is a log-
concave function of two arguments x € R”, y € R", then
for any convex set C € R”", the function fc f(x,y)dy is
also log-concave. The proof of this claim can be found in
Theorem 6 of [36]. Note that (a;, b1) and (az, b2) are convex

[S)

X

sets, and %6_7 is a log-concave function. Hence, we know
T
that g (@) is concave. By employing (89), we can obtain

[ o= 301017 _ o~ 5(@-01)* ]
2
b1 Ga=f)
fall 3¢ T dx;

d
0% 0) = ; (90)

e 1b2=0) _ ,—3(a2—02)

_ (0-0))?
sz Le T dxy

ar 2w

and moreover, by setting j—o g (@) = 0, we obtain only one

solution
0* — bi—a; by—ay]"
N 2 72 ’

Thus, g (#) achieves the unique globally maximum at *,
since g () is concave. Furthermore, since Pr (u =210) = 1 —
Pr(u = 110), it is clear that if there exists a vector parameter
point @ such that g (f) # g (6') for all " € @\{#}, then by
Definition 5, 0 is identifiable. As a result, 8 is an identifiable
vector parameter point in @. This completes the proof.

o
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