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ABSTRACT. We study the problem of characterizing polynomial vector fields that commute with
a given polynomial vector field on a plane. It is a classical result that one can write down solution
formulas for an ODE that corresponds to a planar vector field that possesses a linearly independent
commuting vector field. This problem is also central to the question of linearizability of vector fields.
Let f € K[x], where K is a field of characteristic zero, and d the derivation that corresponds to the
differential equation ¥ = f(x) in a standard way. Let also H be the Hamiltonian polynomial for d,
thatis H = %yz — [ f(x)dx. Tt is known that the set of all polynomial derivations that commute with
d forms a K[H]-module M. In this paper, we show that, for every such d, the module M, is of rank 1
if and only if deg f > 2. For example, the classical elliptic equation & = 6x> +a, where a € C, falls
into this category.

1. INTRODUCTION

We study the problem of characterizing polynomial vector fields that commute with a given
polynomial vector field on a plane. It is a classical result that one can write down solution
formulas for an ODE that corresponds to a planar vector field that possesses a linearly independent
(transversal) commuting vector field (see Theorem 2.1). This problem is also central to the question
of linearizability of vectors fields (cf. [5] and [11]). In what follows, we will use the standard
correspondence between (polynomial) vector fields and derivations on (polynomial) rings. Let

d d
(0 d=ya+f(X)@

be a derivation, where f is a polynomial with coefficients in a field K of zero characteristic. This
derivation corresponds to a conservative Newton system, and so to the differential equation ¥ = f(x).
Let H be the Hamiltonian polynomial for d, that is H = %yz — [ f(x)dx. Then the set of all
polynomial derivations that commute with d forms a K[H]-module M, [9, Corollary 7.1.5]. In this
paper, we show that, for every such d, the module M, is of rank 1 if and only if deg f > 2. For
example, the classical elliptic equation X = 6x> +a, where a € C, falls into this category.

A characterization of commuting planar derivations in terms of a common Darboux polynomial
is given by Petravchuk [10]. This was generalized to higher dimensions in [8] by Li and Du. In [3],
Choudhury and Guha used Darboux polynomials to find linearly independent commuting vector
fields and to construct linearizations of the vector fields. In the case in which K is the real numbers,
our result generalizes a result on conservative Newton systems with a center to the case in which
a center may or may not be present. A vector field has a center at point P if there is a punctured
neighborhood of P in which every solution curve is a closed loop. A center is called isochronous
if every such loop has the same period. It was proven by Villarini [12, Theorem 4.5] that, if D,
and D, are commuting vector fields orthogonal at noncritical points, then any center of D; is
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isochronous. The hypothesis of this result can be relaxed to the case in which D; is transversal to
D at noncritical points (cf. [11, Theorem, p. 92]). In light of this result, one approach to showing
the nonexistence of a vector field commuting with D is to show that D has a non-isochronous center.
In fact, Amel’kin [1, Theorem 11] has shown that if the system of ordinary differential equations
(ODEs) corresponding to derivation (1) is not linear and has a center at the origin, then there is no
transversal vector field that commutes with d.

As far as we are aware, there has not been a standard method to show the nonexistence of a
transversal polynomial vector field in the absence of a nonisochronous center. We develop our
own method to do this, which includes building a triangular system of differential equations. One
technique we use in approaching this system involves constructing a family of pairs of commuting
derivations on rings of the form K [xl/ ! ,x‘l/ "y] (see Lemma 3.9) and using recurrence relations.

It is impossible to remove the condition deg f > 2 from the statement of our main result, as
every non-zero derivation of degree less than 2 commutes with another transversal derivation (see
Proposition 2.1). The form of d in our main result implies that d is divergence free (which is the
same as Hamiltonian in the planar case). It is not possible to strengthen our result to the case in
which d is merely assumed to be divergence free of degree at least 2, as shown in Example 2.1 and
Proposition 2.2.

The paper is organized as follows. We introduce the basic terminology in Section 2. The main
result, Theorem 3.1, is stated and proven in Section 3.

2. BASIC TERMINOLOGY AND RELATED RESULTS

We direct the reader to [6, 7] for the basics of a ring with a derivation.

Definition 2.1. An S-derivation on a commutative ring R with subring S is amap d: R — R such
that d(S) =0 and for all a, b € R,

d(a+b)=d(a)+d(b) and d(ab)=d(a)-b+a-d(b).

Definition 2.2. Let K be a field. A non-zero K-derivation d on K[x1,...,x,] is called integrable if
there exist commuting K-derivations 9,...,8,_1 on K[xj,...,x,| that are linearly independent from
d over K(xi,...,x,), and commute with d, that is, for all a € K|[xy,...,x,] and i,j, 1 <i,j<n—1,

d(8i(a)) = 8;(d(a)) and &;(§;(a)) = 3;(di(a)).
The following is a classical result.

Theorem 2.1. Let d and & be R-derivations on R(x,y) defined by

d(X) =h (xvy)’ d(y) = f2(x7y)7 6<X) = gl(xay)a 6()7) = gZ(Xay)'
Let (x0,y0) € R2. Suppose that d and § commute and there is no (A1, \2) € R?\{(0,0)} such that

A, (S1(x0.30)\ 5 (81(x0,0)
: (fz(Xo,yo) 2\ 82(x0,¥0)
Then the initial value problem

x:fl(xvy)7 )}:f2(x7y)’ X(O) = X0, y(O) =Xo

has a solution given by
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where
X y
(7) — ( 7)
/%%w+/%%§w
£ (5)- ’
/ f2 7yd +/f1

and A(x,y) = fi(x,y)82(x,y) — fa(x,y)g1 (x,y)-
Example 2.1. Consider the initial value problem
i=1+x% y=-2xy, x(0)=xo, ¥(0)=yo,
where x¢ and yq are real numbers and yo # 0. The corresponding derivation is
d(x) =1+x*,  d(y)=—2xy,
and we observe that the derivation

8(x) =0, 3(y)=y

commutes with d, and that d and & are independent at (xg,yp). Using the above formula, we obtain

the solution

1

x(t) =tan(r +tan"'xg), y(r) = yo(1 +x3)cos?(t +tan~ ' xp).

We make some observations, in the form of the following propositions:

Proposition 2.1. Let K be a field. Every non-zero K-derivation of degree less than or equal to 1 on
K|x,y| is integrable.

Proof. Let d be such that d(x) and d(y) are not both 0. We will consider the following cases. The
symbols a, b, c, e, f, and g are taken to be elements of K.

Case 0 : d(x) =c, d(y)=g. Without loss of generality, say ¢ # 0. Now the K-derivation 6(x) = c,
d(y) = g+ ¢ commutes with d and is transversal to d.

Case 1l : d(x) =ax, d(y)=ay, a#0. Observe that d commutes with 8, where 3(x) =y,
8(y) = x.

Case?2 : d(x) =ax+by, d(y)=ex+fy, different from Case |. Observe that d commutes with
O, where 8(x) =x, d&(y) =y.

Case3 : d(x) =ax+by+c, d(y)=ex+fy+g, af—be=#0.In this case,d isequivalent to
a derivation from Case | or Case 2 via a linear change of coordinates. Let (xo,yo) be the
solution to the system ax+by+c =ex+ fy+g=0. Now let u =x —xg and v =y — yg, S0
that d(u) = au+bv and d(v) = eu+ fv.

Case4 :d(x)=ax+by+c, dly)=ex+fy+g, af—be=0

(a) a =b =0, different from Case 0. If e # 0, then d commutes with and is transversal to
d given by 8(x) = —%,8(y) = 0 If f # 0, then d commutes with and is transversal to
d given by 8(x) =0, 8( )= —]—t.

(b) at least one of a and b is not 0. First assume a # 0. If f = e = 0, then this is equivalent
to Case 4a by swapping the roles of x and y. Assume at least one of f and e is not 0.
By the condition af — be = 0, it must be that e # 0. Using the coordinate z = ex — ay
instead of x puts this into the form of Case 4a. Next, assume b # 0. If f = e = 0, then
this is equivalent to Case 4a. Assume at least one of f and e is not 0. By the condition
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af —be =0, it must be that f # 0. Using the coordinate z = fx — by instead of x puts
this into the form of Case 4a. 0

Definition 2.3. Let K be a field and let d be a K-derivation on K[xy,...,x,]. We say d is divergence-
free if

Zn: id (xi)=0

i=1 ax,- Vo

Proposition 2.2. Let K be a field of characteristic 0. There exist integrable divergence-free K-
derivations on K|[x,y] that are not coordinate-change equivalent to a derivation of degree less than
or equal to 1.

Proof. The K-derivation defined by the same equations as d from Example 2.1 is divergence-free
and integrable. Note that the vector field corresponding to d vanishes only at the points (1/—1,0)

and (—v/—1,0) in K”. Since charK = 0, these points are distinct. After a coordinate change, the

) . .
number of points in K~ at which a vector field vanishes does not change. The vector field of any
derivation of degree less than or equal to 1 vanishes at zero, one, or infinitely many points. We
conclude that d is not coordinate-change equivalent to a derivation of degree no greater than 1. [

In the following section, we study a class of divergence-free vector fields. We show that no
member of this class is integrable.

3. MAIN RESULT

Fix a field K of characteristic 0. Suppose 87 represents a second-order differential equation of
the form

=1,

where f € K[x] \ K, which corresponds to a conservative Newton system. That is,

()-()

If deg f = 1, then &y is integrable by Proposition 2.1. The following theorem, which is our main
result, addresses the case of deg f > 2.

Theorem 3.1. For every

e f € K|[x| such that deg f > 2 and
e K-derivationy on K[x,y| that commutes with &7, where & is the K-derivation defined by (2),

there exists q € K[H| such that
where H =y* —2 [ fdx and [ fdx has 0 as the constant term.
As a corollary, we recover the following result on conservative Newton systems with a center

at the origin. This result was first proven in [1, Theorem 11] and was given new proofs in [2,
Theorem 4.1] and [4, Corollary 2.6] (see also [13, p. 30]).

Corollary 3.1. The real system
X=-y
y=fx),

with f(0) =0, f/(0) =1, has a transversal commuting polynomial derivation if and only if f(x) = x.
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Proof of Theorem 3.1. Fix f € K|[x] such that deg f > 2. Fix a K-derivation 8 so that §(x) = y and
8(y) = f. Fix a K-derivation y such that [8,y] = 0. First consider the case in which deg,y < 1.

Lemma 3.1. If
v X\ _ c1y+co
y diy+dy)’

where c1,co,d1,dy € K[x], and [8,7] =0, then

’Y(i) = 6‘15.

Proof. The equations 3(y(x)) = y(8(x)) and 8(y(y)) = v(8(y)) yield

cly? +coy+ fer =diy+d
diy? +dyy+ fdy = flery+ fco.

Equating coefficients of like powers of y, we obtain the two independent systems

3) c'l =0, d(/) = clf/, fc1=dy
and
4) dy=0, co=di, fdi=cof.

The solution set of (3) is ¢; = constant,dy = c1 f. System (4) has no non-zero solution, which we

deduce as follows. We have
<C_0)/ ~al S
f f? ’
so ¢y = (const) f. Therefore, d; = (const) f’, which implies d] = (const) f” = 0. Since we assume
deg f > 2, the constant must be 0. Therefore,

X y
=c . U
Y(y> 1(f)
Now assume deg,y=M > 2. Write

X cMyM +...+¢o
5 =
) y(y) (dMyM+...+d0)’
where for all i, ¢;,d; € K[x|. Since M = degyy, at least one of ¢y and djy is non-zero. Now the
system

becomes

©) (cjwyMJrl +c§ulyM+...+c6y) n (MfcMyM_1 +...+fc1>

dyyM N v dy M+ tdyy) T \MfdyyM T+ L+ fd,

_ 0 1 CMyM +...4+co
f0) \duwyM+...+do) "
Viewing these matrix entries as polynomials in y and equating coefficients yields the following
system of first-order ODEs
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¢y =0 d, =0
. C;W*l = dM . d]lwil == f/CM/
Cryy_ntMfey =dy— dy > +Mfdy = e

st M—1)fey—1=du— dy s+ M—1)fdy—1= fem—
CyatM=2)feyy2=dy-3 dy_,+M=2)fdy—=fcu-3
Cy_s+M=3)fey—3=dy—s dy_s+(M—=3)fdy_3=fcpm—a

C6 +2fcr =d; d(/) +2fdr, = flcl
fer=dy fdy = feo
as well as the condition
(674 7§ 0 or dM 75 0.

In each equation, it is the case that if ¢; and d; both appear, then i and j have opposite parities. Thus,
we see that this system consists of two independent systems. If M is odd, these systems are:

(Io)m (ITo)m
¢y =0 dy; =0
dy_1=f'em Ch—1 =dm
Chyy o +Mfem =du-1 dy o +Mfdy = f'em

dlll/lf3+(M_1)fdM—1 :f/CM—Z C;u,3+(M—1)fCM_] =dy_»
CyatM=2)fecyy 2=dy-3 dy ,+M=2)fdy 2= fcu-3
d]/l/[fS—i_(M_?’)fdM*:; :f/CM74 C;W,5+(M—3)fCM73 =dy_4

C/l +3fcz=ds d{ +3fds = f/CQ

dy+2fdr = f'cy co+2fcr=di
fer=do fdy = f'co.
If M is even, the systems are:
(Ile)m (Ie)m
/ !
dy_1=f'em Ch—1 =dm
Chn +Mfey =dy— dy_»,+Mfdy = ey

dy s+ (M—1)fdy = flewa chy s+ M—1)fey 1 =dy 2
dy s+ M=3)fdy-3=f'em-a  cy_s+(M=3)fcu-3=dyu-4
co+2fcr =d dy+2fdy = f'cy
fdl :f/CO fCl :do

In light of these observations, let

n=max{i|iodd and ¢; # 0 or i even and d; # 0},
p =max{i|ieven and ¢; # 0 or i odd and d; # 0}.

Note that n or p may be undefined. Now write Y = Y; + 72, where 7 (x) contains the terms of y(x)
of odd degree in y, 1 (y) contains the terms of y(y) of even degree in y, ¥, (x) contains the terms of
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v(x) of even degree in y, and y>(y) contains the terms of y(y) of odd degree in y. Explicitly,

ey FCnay" 2+ . 41y
dy1y" N+ dy3y" 3+ 4 do

) if n is odd,

if n is even,

Cn— ]yn 1+Cn 3yn 3+ .Fcry
ny +dn 2)’" 2+ +d0

<O> if n 1s undefined,

0
and
P p—3
r-1 +CP‘3_y2 TN it s odd,
dpy? +dp 2yP" "+ ... +dy
p p—2
T (x) = “pY +Cp_2y _—3#...+co if p is even,
y dy P! +dp 3y’ +...+dyy
0 e
if p is undefined.
L \0

As we have seen, the criterion [3,7] = 0 is equivalent to the conjunction of two systems of equations
in which one system only involves the terms of y; and the other only involves the terms of y,. Hence,
[8.11]=1[8,7] =0

Let us examine the possible values of n. If n is undefined, then y; (x,y) = (0,0). If n = 0, then
Y1 is the same as the y of Lemma 3.1 with ¢; = ¢g = d| = 0. Thus, by Lemma 3.1, y; = 0, which
contradicts that n = 0. If n = 1, then v; is the same as the y of Lemma 3.1 with ¢9 = d; = 0. Thus
by Lemma 3.1, y; = ¢19, and, in the proof of Lemma 3.1, it is shown that ¢; € K. If n > 2 is even,
the coefficients of y; must satisfy (/e), and d, # 0. We will show in Lemma 3.4 and Corollary 3.2
that this is impossible. If n is odd, the coefficients of y; must satisfy (/0), and ¢, # 0. We will show
in Lemma 3.2 and Lemma 3.3 that this implies y; = ¢ for some ¢ € K[H|. In summary,

If n is undefined, then y; = 0- .

It is impossible that n = 0.

Ifn=1,theny; =c;-dand c; € K.

It is impossible that n > 2 is even. (Lemma 3.4, Corollary 3.2)

If n > 3 is odd, then y; = ¢- 8 for some g € K[H]. (Lemmas 3.2, 3.3)

Let us examine the possible values of p. If p is undefined, then 2 (x,y) = (0,0). If p =0, then v,
is the same as the y from Lemma 3.1 with ¢; = d; = dy = 0. Thus, by Lemma 3.1, 'y, = 0, which
contradicts that p = 0. If p = 1, then 7 is the same as the y of Lemma 3.1 with ¢; = dp = 0. Thus,
by Lemma 3.1, y» = 0, which contradicts that p = 1. If p > 2 is even, the coefficients of y, must
satisfy (IIe), and ¢, # 0. We will show in Lemma 3.5 and Corollary 3.3 that this is impossible. If
p = 3 is odd, the coefficients of ¥, must satisfy (110) p and d, # 0. We will show in Lemma 3.6,
Lemma 3.7, Lemma 3.8, Lemma 3.9, Lemma 3.11, and Corollary 3.4 that this is impossible. We
summarize these results as follows:
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e If p is undefined, theny, = 0- 9.

e It is impossible that p = 0.

e It is impossible that p = 1.

e [t is impossible that p > 2 is even. (Lemma 3.5, Corollary 3.3)

e It is impossible that p > 3 is odd. (Lemmas 3.6, 3.7, 3.8, 3.9, 3.11, Corollary 3.4)

From the bulleted statements, it follows that y; = ¢ for some ¢ € K[H| and y, = 0. These
lemmas and their corollaries constitute the rest of the proof of Theorem 3.1.

Definition 3.1. Let a € K[x,y]. We define [ adx to be the element of K [x,y] whose partial derivative
with respect to x is a and whose constant term is O.

Lemma 3.2. For every odd integer m > 3, the solution set of (10)y, with cy,...,dy, treated as
variables, is an mTH—dimensional K-vector space.

Proof. Fix m > 3. Label the equations of (/0),, as follows:

/
em+1 =0
/ Y
em oy =fm
em—1 Cpygtmfem=dn_1

e dy+2fdy = f'cy
eo fec1 =dy.
m—3

We show the following by induction on k, 0 < k < *5=:

) The solution set of {ey+1,€m,- - - €m—2k—2,dm—_2%—3 = fCm—2k—2} is a K-vector space
of dimension k + 2.

Base Case: k=0

The system
®) {em—i-l vlmslm—1,em—2,dm_3 = fcm—Z}
is
emil c, =0
em: d, ,=fcm
em—1 - = —MfCm+dn_1
dm—3 = fem—2.

Let (a7m_3, 5m_2,d~m_1,5m) be a solution of (8). By e, 11, ¢,y = a; for some a; € K. It follows that

flena+ e, o =—(m—1)fdu_1+ f'én,

and hence
5;11—2 - _(m_ l)dm—l’
and so
dp 1 =mfen+3E 5 =mfén—(m—1)dy_1.
Thus

aTm—l = fén=airf.
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It follows from this and e,,,_; that

Gz = —(m—Narf,

and hence
Cm_n = —/(m— Da) fdx+a;

for some a, € K. From this and the condition d,,,_3 = fém—p it follows that
dy 3= f (—/(m— 1)a1fdx+a2) .
One can verify that

©) <f(—/(m—1)a1fdx+a2), —/(m—l)alfdx—l—az, af, a)

is indeed a solution of (8). We have just shown that the solution set of (8) is exactly the elements of
K[x]* of the form (9) with a;,a, € K. This set is the K-span of the tuples

(£(= fm=ysax), = [n=1ysax. £, 1) and (7, 1.0, 0).
Hence, the solution space is a two-dimensional K-vector space.

Inductive Step: Fix k, 0 < k < mT_3 Consider

(10) {em+1,€m, - em—k—2,dm—2k—3 = fem—2k—2}
(11) {ems1,em, - em—sk—a,dm—2k—5 = fCm—_2k—4a}.
Assume

(12) The solution set of (10) is a K-vector space of dimension k + 2.
We will show

(13) The solution set of (11) is a K-vector space of dimension k + 3.
We first show that

(14) The solution set of (11) is the solution set of

(15) {emi1,- - em—2k—2,€m—2k—3,dm—2k—3 = fCm-2k—2,dm—2k—5 = fCm—2k—4}.
For ease of reference, we write the equations e, ;3 and e, _2;_4:
. / _
em—2k—3" Copyop_y=—(m—=2k=2)fcn o2+ dn 213
. ! _ /
em—rk—4: dy o s =—(m—2k—=3)fdn_2k—3+ fcn_ok—s-

Suppose (dy—2r—5,- - ,¢n) is a solution of
{emtts-sem—2k—a4:dm—2k—5= fCm—21—a}-
Then (d_2k—3, - ..,Cp) is a solution of {e,,;1,...,em_2t_2}. We now show that
(16) dm-2k-3 = [Em—2k—2.
Since (dyp_ox_5,- - .,Cn) satisfies e,,_o;_4, we have

a7 by ks = —(m—2k—=3) fdn_sk—3+ [ Em_ok—s-
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Since dy,_2x—5 = fEn_2xk_a4, it follows that

7 ! ~ ~/
dy—ok—5 = [ Cm—2k—4+ [Cp_op_4

Combining this with (17), we get
[y oeq = —(m—2k=3) fdp 23,

and hence
(18) & o a=—(m—2k—3)d, 23
Since (dyy_oi_s,- - .,Cn) satisfies e,,_»¢_3, we have

s+ (m—2k—2) fEn_ok—2 = dp_2k3,

and combining this with (18) gives us (16). ~
We now show the opposite inclusion. Suppose (d,,—2k—s, .. .,Cn) satisfies (15). Since the tuple
satisfies dy, ok —5 = fem—2k—4> €m—2k—3, and dyy, 2k 3 = fcp—2x—2, we have

7 ] ~ ~/
m2k—5 = J Cm—2k—a+ fCp_or_4

= flem-ak—a+ f(—(m—2k=2)fn 22+ dn2x3)
= f'Cn—ok—a+ f(—(m—2k—2)dp—2k—3 +dn—213)
= f'en_ok—a— (m—2k—3) fdy_24_3.

Thus the tuple also satisfies e, ;4. This completes the proof of (14).

Now we show (13). Since (11) is a system consisting of homogeneous linear differential equations
and a homogeneous linear equation in 2k + 6 variables, the solution set is a K-vector subspace
of K[x]?**®. Let W denote this vector space, let 7;: K[x]***6 — K[x] be projection onto the i-th
coordinate, and let 7w: K[x]** — K[x]**** be the projection onto the last 2k +4 coordinates.
Similarly, the solution set of (10) is a K-vector subspace of K[x]***4. Call this space V. By (12),
dimV = k+2. Let p;: K[x]*** — K[x] be the projection onto the i-th coordinate.

Letai,...,a; 2 € K[x]*** be a basis for V. Foreachi = 1,...,k+2, we define b; € K[x]**6 as
follows. Let

7(b) = ai. Ta(b) = [ (~(m—2k=2)fpala) + pra)dx, m(b) = fra(bi).
By (14), each b; is a solution of (11). Since d,,_»r_5 and ¢,,_»;_4 only appear in the equations
Cpap—a T (M =2k =2) fem ak—2 = dm23,
dyy o5+ (m—2k=3) fdy 2x3 = f'em ka4,
dp—2k—5 = fCm—2k—4-

of (11), we observe that

biss = (f,1,0,...,0) € W.
We show that

spang{by,...,bxi3} =W.
Suppose w € W. By (14), m(w) € V, so there exist o; € K, 1 <i < k+2, such that
k42

TE(W) = ; OC,’TC(bi).
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Also by (14), there is a B € K such that
o (w) = / (= (m—2k=2)fma(w) +73(w) ) + B

k+2 k+2
—/ (m=2k=2)f Y, ouma(b) + Y, ouma(b ))dx+B

k+2

k+2
ZZ%/ (m =2k = 2) fra(by) + 7 (i) )d+ B = Y- cuma(by) + B,
i=1

i=1
By (14), we have ; (w) = fma(w). Using the fact that 7wy (b;) = fma(b;i), we get

k+2

Z o1y (bi) + fB.

Thus,

k+2
w = Z o;b; + Bbk+3~

i=1

We conclude that spang{by,...,by3} =W.
Since {n(by),...,m(brs2)} is K-linearly independent, {by,...,b; >} is K-linearly independent.
Since the constant term of Ty (b;) is O for i = 1,...,k+ 2, it is clear that

biys & spang{by,...,bri2}.

We conclude that dimKW k+ 3. This completes the inductive step.
Setting k = 52 in (7) proves the lemma. U

Lemma 3.3. Ifn > 3 is odd, then y, = g0 for some q € K[H|.

Proof. Recall that, if n > 3 is odd, the coefficients of y; must satisfy (/0),. Observe that 8(H) =
Hence, any K-derivation D of the form

D X\ H%l H—fl y c K
y) = dnt +a%71 +...+ag r) a; €K,

commutes with 8. Writing D in the form of (5), we see that ¢; = 0 for even i and d; = 0 for odd i, so
a choice of

ap,...,dn—1

2
provides a solution to (Io),. Moreover, two distinct choices of ag,...,a,_1 provide two distinct
2

solutions of (10),. Thus, the set of solutions of (/0), that correspond to derivations of the form ¢J,
where g € K[H], is a K-vector space of dimension %1 Since this vector space is contained in the

vector space of solutions to (/0),, which by Lemma 3.2 has dimension %1, the spaces must be
equal. O

Lemma 3.4. For all even m > 2, the system (Ie),, implies d,, = 0.

Proof. Fix even m > 2. Label the equations in (Ie),, as follows:
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€m+1 - d/ =0

em " c’ | =dnm

€m—1 - d, 2+mfdm = f Cm—1

€m—2 . m—3 +( - 1)fcm | =dn 2

e d6+2fd2 :f’cl
eo . fCl =

We show by induction on &, 0 < k < mT—Z, that
(19) {eo,e1,...,ea1} implies ¢y = —(2k+2)dar2.

The case k = 0 is straightforward. For the inductive hypothesis, fix k, 0 < k < mT—Z, and assume (19).
Now assume {eq,ej,...,exs3}. Equations ey and ey 3 are

C/2k+1 = —(2k+3) feor3 +doypi2  and dék+2 = —(2k+4) fdosa+ f/C2k+3,
and the inductive hypothesis gives us
Copp1 = —(2k+2)dps2.

Equating the two expressions for ¢/, 41> We obtain dyy2 = feor+3. Differentiating this and equating
the two expressions for d, 4o gives us

fleas+ fehpps = —(2k+4) fdopra+ fleass,
which implies
Cos = —(2k +4)doy 1.

This completes the inductive step. This shows that a consequence of (Ie),, is

r
Coy_1 = —Mdp,.

Since m was assumed to be even, we have m # —1. In order that ¢,, and c;n_l = —md,, both be
satisfied, it is necessary that d,,, = 0. U

Corollary 3.2. It is impossible that n is an even integer greater than or equal to 2.

Proof. Suppose n > 2 and n is even. Then the coefficients of y; must satisfy (/e),, and also d,, # 0.
But by Lemma 3.4, d, = 0 is a consequence of (/e),,. O

Lemma 3.5. For all even m > 2, the system (Ile),, implies c¢;,, = 0.

Proof. We establish the following notation. If ¢ is a non-zero univariate polynomial, Ic(¢) denotes
the leading coefficient of ¢.
Fix even m > 2. Label the equations of (Ile),, as follows:

€m+1 - =0
. /
€m - m 1 — f Cm
€m—1 - 2+mfcm =dp—1

em_2 - d/ 3—|—( — 1) fdp—1 =flemn

el: C6 +2fcr=d
[ fd1 = f’Co.
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m—2.

We first show the following by induction on k, 0 < k < =5

(20) If (dm:Zk,l, ceeyCp) is a solution of {em+1,- s em_o} with &, # 0,
then dy,2x—1 # 0, deg(dpy—2x—1) = deg(f - Em—21), and lc(dp—2x—1) = lc(f - En—2k)-
Base Case, k = 0:
Suppose (dy—1,n) is a solution of {c}, =0,d" | = f'c;y} and ¢, # 0. Since deg f > 2 and &,
is a non-zero constant,

dy1#0 and degd, | =deg(fé,)=degf.

We have lc( 711—1) =degf-lcf-¢,. Since &, is a constant and deg dy_1 = deg f, we have

le(dp—1) =lc(fEm).
Inductive Step:

m—2 7

Fix k, 0 < k < ™5=. Assume (20) for this k. Suppose (dy—2k—3,...,Cn) is a solution of
{em+1,--,em—_2r—2} such that &, # 0. For ease of reference, we write:

em—2k—1: Choyopn+(M—=2k)-f-Cmrk = dn—2k—1
em-ak—2: dy oy 3+ (m=2k=1)-f-dp k1= f"cmox2
Then
dn_zk_z = Cim—Zk—l - (m - Zk)f “Crn—2k-
Since m is even, m — 2k — 1 # 0. Therefore, by the inductive hypothesis,
Q1) deg(&, 5 ») = deg(dn_2k-1) =0,
and we have

IC(E;H*ZI(*Z) - _(m - 2k - 1) . lc(dm_Zk_1>7

and hence

(22) degém-ok—2-1c(Em-2k—2) = —(m—2k—1) -lc(dpn—2x—1)-
By equation e, »;_, we have

(23) Lok 3= En-oka—(m—2k—1)- f-dp_21.

We will show that the degrees of the two terms on the right-hand side of (23) are equal and that their
leading coefficients do not cancel. From (21), it follows that

degéy_ok—2 = degdy_ok—1+1,
so that
(24) deg(f' m—ok—2) = deg(f - dpm—2k—1)-
Observe that
le(f' - Em-ox—2) = deg f-1c f-1c(Em—2n—2)
and, using (22),
le(f - dm-nt—1) =lc f 1e(dn—k—1) = 1¢ [+ 5= - 1c(Gm—nk—2) - deg Em_nk—2.
It follows that
(25) le(f' - En-ok—2) # (m—2k—1)-1c(f - dpn—211),
and, together with (23) and (24), this gives us

(26) Ic( ~;,1_2,6_3) =lcf-1c(Gpnk—2)- (degf+degCpm_ok_2).
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By (23), (24), and (25), we have

27 deg(dm—or—3) = deg f +degCnor—2-
Combining (26) and (27) gives us

le(dm—nk—3) =l f-1c(Em_nk—2).
This completes the inductive step.
We proceed with the proof of the lemma. Let (o, ..., Cy) be a solution of (I1e),, with &, # 0. We

will derive a contradiction. It follows immediately that (dj,...,&y) is a solution of {e;,11,...,e;}.
Setting k = mT_z in (20), we have that deg(d) = deg(f - &) > 0 and
(28) lc(dy) = le(f) -1c(&).

From ¢, we see that
deg(dy) = deg(é) — 1 = deg ().
By equation ey, we have
le(dy) =2-1c f-1c(&2) +deg & - 1c(ép).
Therefore, by (28), we have
lc f-1c() =2-1c f-1c(&2) + deg o - 1c(Cp)

and hence

. —lef-le(ér)
1e(®0) = —Geaco

By equation ¢(, we have

lcf-le(dy) =deg f-lc f-1c(ép) = deg f-Ic f - (M)

degco
By (28),
—lcf-1c(é
lef lcf-lc(é) = deg f-lc f (ZJ;T;(Q)) .
It follows that
degcéy = —deg f,
which is a contradiction, since deg f > 0. O

Corollary 3.3. It is impossible that p is an even integer greater than or equal to 2.

Proof. Suppose p > 2 and p is even. Then the coefficients of y, must satisfy (/le),, together with
cp # 0. But by Lemma 3.5, (Ile), implies ¢, = 0. O

In the remainder of the proof, we treat the case in which p is an odd integer greater than or equal
to 3. For this, we will use a family of univariate polynomials with rational coefficients, which we
denote {P3,Ps,P;,...}. For each odd m > 3, P, will be defined in terms of a family of univariate
polynomials with integer coefficients, denoted { 7", 7", T,", ..., T,n'}. These polynomials will also
be used to prove certain properties of P,.

We outline the proof of the case in which p is an odd integer greater than or equal to 3 as follows.
In Definition 3.2, we define the families of polynomials

>3, modd
{T,-”’}S";J" and  {Pu}m>3, modd-
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In Lemma 3.6, Lemma 3.7, and Lemma 3.8, we prove certain properties of {P,, },>3, m odd- These
properties are used together with Lemma 3.9 to prove Lemma 3.1 1. Corollary 3.4 completes the
proof that p cannot be an odd integer greater than or equal to 3.
In Lemma 3.8, Lemma 3.9, Lemma 3.11, and Corollary 3.4, we refer to K-derivations on the ring
K[x'/t,x=1/t y], where t is a positive integer. We view this ring as isomorphic to
K[x,y,z,w]/(d —x,zw — 1).
By [7, Lemma I1.2.1], since charK = 0, any K-derivation on K|[x,y] extends uniquely to a K-

derivation on K[x'/*, x~1/* y]. One consequence of this is that a K-derivation on K[x'/*,x~1/* y] can
be defined by stating its action on x and y.

Definition 3.2. Let m be an odd integer greater than or equal to 3. For i =0,...,m, we define
T"(X) € Z|X] as follows: Let
"X)=T" (X)=1.

m—1

and let
(30) T k) (X) =Tyl (X) = (m— (2k = 1)) - k- (X +1) - T, 51 (X).

No expression T; without a superscript index will be used, so in T!, iis always an index and never
an exponent. We define P, € Z[X] as follows:

(31) PyX)= (%1 X+ 1)+ 1) T"(X) - X - TJ"(X).
Lemma 3.6. Let m be an odd integer greater than or equal to 3. Then
1

(32) deg Pp(X) < "=
Proof. We show by induction on k, 0 < k < mT_l, that
(33) degT" »(X) <k and deg TnT—(2k+1)(X) < k.
For the base case, k = 0, we have

deg 7, (X) =degT," ;(X)=0.

For the inductive step, fix k, 0 < k < mT’l, and assume (33). It follows from (29) and the inductive
hypothesis that

deg T, (o i0)(X) <k+1,
and it follows from (30) and the inductive hypothesis that
dengT_(zk+3)(X) <k+1.
This completes the proof by induction. As a consequence, we have

deg 7" (X) < ’"T_l and degTy"(X) < L.

Therefore, (32) holds. U

Lemma 3.7. Let m be an odd integer greater than or equal to 3. Then P, (X) is not the zero
polynomial.
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Proof. We first prove by induction on £, 0 < k < m—’l , that

(34) m-ok(—1) #0 and Tm —(2k+1) ( 1) #0.

The base case, k = 0, is trivial, since 7,;(X) = T,' ,(X) = 1. For the inductive hypothesis, fix k,
0<k< mT’l, and assume

mok(—1) - Tl gy 1) (=1) # 0.
Equation (30) shows that
T2k 1) (1) = T (=1).
Replacing k with k+ 1 in (29) gives us
T ki) (1) = =1 T o1y (1) = (m = 2k) - TL oy (= 1) = —(m = 2k + 1) - T 5 (—1).
Since k < mT*I it must be that m — 2k + 1 # 0. Now by the inductive hypothesis,
Tm —(2k+2) ( ) 7& 0.
Replacing k with k+ 1 in (30) yields
TnT_(zk+3)(_1) - TnT—(2k+2)(_1) #0.
This completes the proof of (34). By (31), we have
Pu(=1) =T"(=1) + 15" (= 1).
Replacing k with mT_] in (30) gives
I (=1) =1"(-1),
and hence
Pu,(—1)=2-T"(—1) #0. 0J

Lemma 3.8. For every odd integer m greater than or equal to 3, the polynomial P, (X) defined by
(31) in Definition 3.2 satisfies the following property:
for every

e positive integer t and
o he K[x'/ x~\{0},

if the K-derivation
B X\ Cm—lymi1 +Cm—3ym73+---+C0
y Ay + dp—2y™ > + ...+ d1y

on K[x'/* x~1" y] commutes with the K-derivation
x\ _ (v
()= ()
on K[x'/t x=1/ y), then

Po(N)=0 or Ne{- 1}u{ " 1’2<k<m7+‘},
where N = degh, each c;,d; € K[x"/",x~V/"] and d,, # 0.

Proof. Fix m >3, fix t € Z, fix h € K[x"/*,x~1/"]\ {0}, and define o as in the statement of the
lemma. Fix B as in the statement of the lernma Note that ¢; and d; must satisfy the equations of
system (I10),,, with f replaced by h. Label these equations as follows:
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€m+1 - dl/n =0

em: ¢ 1 =dn

em—1: d, »+mhdy, =Hhcpy_

em—2 " ¢ s+ (m—1)hey—1 =du—2

€m—(2k—1) ° m ox T (m— (2k =2))hd,,_ ok —2) = h'cp_(a—1)

€m—2k - —(2k+1) + (m — (2k — 1))hcm7(2k71) = dm—2k

em—(2k+1) : (2kr2) T (M= 2k)hdy o = H' ¢y ope11)
m—(2k+2) O (ays) T (M= (k1) hcs_ir1y = di—(2k42)

ey - /’ld] = h/C().

Let N =degh and let L be the leading coefficient of 4. Assume that
N {-1pu{-g |2 <k ],
We first show by induction that for all k£, 0 < k < ’"T_l

(35) degdy ok <k(N+1) and degcy, (g1 SK(N+1)+1.

We first treat the base case, k = 0. By equations €m+] and e, degd,, < 0 and degc,,,—1 < 1.
For the inductive hypothesis, fix k, 0 < k < 5 and assume (35). Consider e, —(2k+1)- By the
inductive hypothesis, we have

deg(hdpm—2t) <K(N+1)+N and  deg(h'c,_(os1)) <k(N+1)+N.
It follows that
Now consider ¢,, (3;2). By the inductlve hypothes1s,
deg(hcm—(ari1)) < (k+1)(N+1).
It follows from this and (36) that
degcy iz < (k+1)(N+1) +

This concludes the proof of (35) forall k, 0 < k < 22— 1 .
Define a,,,,a,,—1,. .. ,ag as follows. Let

a,,_o; = the coefficient of N1 in d ok,

N+1)+1 ;
1 in Cm—(2k+1)-

Equations e,,+ and e,, and the requirement that d,, # 0 imply that a,,_; = a,,. Now we prove that,
for all k, 1 < k < ™51,

(37) A2kt 1) = (@m-2k — (m— (2k = 1)) -L- (24 —1)) - m
and

(38) am—2k = (LN -ay_k—1)— (m—(2k—2))-L-ay_(2k—2)) - m
Fixk, 1 <k < ’”T By equatlon €m—(2k—1)» We have
(39) ok = hem_(ok—1) — (m—(2k=2)) - h-dy,_(25_2).-

Apm—(2k+1) = the coefficient of x K
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Let us write an equation equatmg the coefficients of xX*(¥*+1~1 on both sides of (39). First, observe
that the coefficient of *WV*1=1'in @'  is k(N +1)-a,_y. Next consider 4’ Cn—(2k—1)- First
consider the case N # 0. It follows that degh’ = N — 1. By (35), we have

(40) degc —(2k—1) X k(N+ 1) N.

Thus, the coefficient of x(N+1D—1 i W ¢ (ok—1) is N-L-ay,_(2x—1). Now consider the case N = 0.
Either #' = 0, or i’ # 0 and degh’ < N — 1. If i =0, then /'c,,_ (1) = 0 and the coefficient
of X¥NFD=1in i'c, (1) is 0, which is equal to L-N-a,,_(_1). If N =0 and i’ # 0, then,
since degh’ < N — 1 and by (40), the coefficient of xX*(¥+1D~1 in p/ Cm—(2k—1y 18 0, which is equal to
L-N-a,_ (1) Finally, consider i - d,, _(5;_7). Since degh = N and, by (35),

degd (2k 2) k(N+1) N—l,

we see that the coefficient of xXX(N+1=1 in p. dy—(2k—2) 18 L+ @y _(2x—2)- Since N # —1, we have
k(N +1) # 0. Thus, equating the coefficients of **(V D=1 in (38) yields

am—2k = (LN -ay_k—1)— (m—(2k—=2)) - L-a,,_(2k—2)) - m
By equation e, »;, we have
(41) o2k 1) = dm—2k — (m—= (2k = 1)) - h- 241y

Let us write an equation equating the coefficients of xK(N+1) on either side of (41). The coefficient

of W Hin e oy vis (K(N 4 1)+ 1) dy 211y The coefficient of x*™ 1 in d o s dyn-ot.

By (35), we have
ngC (Zk 1) k<N+ 1) N

and, since degh = N, the coefficient of XV *1) in hey— (k1) 18 L@y (2k—1)- Since N # — k“

have k(N + 1) + 1 # 0. Thus, equating the coefficients of xKNH1) on either side of (41) ylelds

, WEC

2kt 1) = (@m—ok — (m—(2k—=1)) - L-a_4—1)) - m

This concludes the proof of (37) and (38).
Fori=0,...,m, define S; € Z as follows. Let

S =Sm_1=1.
For every k, 1 <k < mT, let
Sm—2k =k(N+1)-S, k1) and S, 1) = (k(N+1)+1)-Sp o
Next, we prove by induction that for all k£, 0 < k < mT’l, we have
42) T o (N) =Sm 2k 7% 2 @m—2x and Ty "ok (V) = S (k1) " % 2 " Am—(2k+1);

where T ok and T

we have a,, # 0.
The base case, k = 0, is proved immediately by noting that a,, = a,,— follows from e,,,| and e,,.

" (2k+1) €8S in Definition 3.2. Recall that by our assumption on the form of {3,
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For the inductive hypothesis, fix k£, 0 < k < mT’l and assume (42) holds. We have from (29), (42),
and the definition of §; that

Lo 2ks2)N) =N -TJ0 oy (N) = (m = 2k) (k(N+1) +1) - T, 5 (N)
= N-Sp—2k1) 7% 2 Gm—(2k1) — (M= 20) k(N + 1) +1) - Spot - 15 - 2 - A2

S_ 2%k+2 1 1 S 2k+2 1 1
:N'#'—'a—'am_(zml)—(m—2k)’(—>'—'7'am72k

(43) Tny(szrz) (N) = Sm—(2k+2) ’ # ) # “Qm—(2k+2)-
We have from (30), (43), (42), and the definition of S; that
= Sm—(2k+2) : Lk% . aim A (2ky2) — (m—(2k+1)) - (k+ 1)(N + 1) Skt 1) " T8 2 Am—(2k1)

= Su—(2k+3) 77 " 2+ (@m—(arr2) — Lim = (2k+ 1))y 41y - m

This completes the proof of (42)

Now we show that P,,(N) = 0. Using k = =1 in (42) and Sp = (%5 (N + 1) + 1)S;, we have
Pu(N) = ("7 (N+ 1) +1) - T{"(N) =N - Tg"(N)
m— N
= ( 1(N+1)+1)S] W%.al_N.SOW$aO: L(mfol)/Z .ﬁ.(al _Nao).
Consider equation eg:
hd1 = /’ZICO.
Equating the coefficients of x(NTD((m=1)/2)+N i ¢ recalling (35), yields
= Nay.
We conclude that P, (N) = 0. O

Lemma 3.9. For every positive integer k, the K-derivation

(0 =\ _2k+l
y X 21

of the ring K[X_Zk%l,xzk%l 3] commutes with the K-derivation
2k+1y;
B(X) . ( Z;czo aZ(k—l)x1+(1 2k2k1 %) y2(k l) )
N 1—2ktl -~ s
Y Zlfzo a2(k71)+1x( 2k—1 )1y2(k D+1
where the a; € K are defined recursively as follows: ax1 € K\ {0} is arbitrary, ay, = ayy1, and
for 0 <1<k,

!
ar-1y+1 = (=3 1a20—1)+2 — 2k = 1) +3)az—p+3) (1= 321)1)

and
—1

ar—1) = (aag—ty+1 — Rk —1) +2)arq_ry42) (1 =351+ 1)
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Proof. We first show that
Blax)) = au(B(x)).

We have B(ou(x)) = B(y). Note that, in B(y), only odd powers of y with exponents less than or equal
to 2k + 1 appear, and for all /, 0 < [ < &, the coefficient of yz("_l)+1 is

(=311

(44) Ay (k—1)+1%

In o(B(x)), only odd powers of y with exponents less than or equal to 2k + 1 appear. The coefficient
of y***1 is ay;, which equals a1, which is the coefficient of y***! in B(a(x)). Forall , 1 < I <k,
the coefficient of y2k=D+1 in oy(B(x)) is

2k+1

ay(j—1)X K130 (14 (1=3ED0) +02(k—1)+2x07ﬁ)l(2(k —1)+2).
By the definition of ay(; ), this equals (44). Now we show that

Bla(y)) = a(B(y))-
We have

Ba(y) =B (x #7) = ~3=h 5.
This expression contains only even powers of y from y to y2k . Forall [, 0 <[ <k, the coefficient of
Y261 in B(a(y)) is
45) — 2l (133

We see that o(B(y)) contains only even powers of y from y° to y?*. For I < k, the coefficient of
Y& in a(B(y)) is

2k+1)l 2k+1

az(k—1)+1X<l 2T 2k = 1) 4+ 1) + ag(p—py—1x

( 2k+1)l 2k+1

2T 1(1-%)([—{—1).
By definition,

aye-n-1 = (—zeqaa—1 — Uk =)+ Daggpy1) ((1-3) ((+1))
Hence, the coefficient of y?*~1) in oa(B(y)) is (45). The coefficient of y° in a(B(y)) is

1

a1 B3

It remains to show that

(46) ay = — 3 1ao.

This is an immediate consequence of the following lemma.

Lemma 3.10. In the notation of Lemma 3.9, for all [, 0 <1 <k,

2+, _ 2(k=D+1
2hk—1R2(k=1) = 2(k=1)—192(k=1)+1"

Proof. We proceed by induction on /. The base case /[ = 0 is immediate, since by definition
ayi = a4 1. For the inductive hypothesis, fix [ < k and assume

2(k—1)+1
%’;ﬁ“az(k n= Ek 1§+ A (k—1)+1

We want to show that

47) I ar 2= %Ei:g:;az(k—l)—l
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The left-hand side of (47) is, by the definition of ay(;_;)_2,
aerr (@2p—n—1 = 2(k=Dayp—p))
2%k—1 2k
(1—3E) (1+1)+1
By the definition of ay(;_;)_1, this equals

2k+1
—577a (2(k—=1)+1)ay(—
( 2k—1“2(k— )2k+1 2(k—1)+1 _2(k_l)a2(k_[)>
2kt 1 (1-21) )

%1 (1-ZDy 1) +1

By the inductive hypothesis, this is equal to

2k+1 2(k=D)+1 2k+1
5T — 2(k=D)+1) _
2k—1 2(k—1)—1 2k—1 _z(k_l)2(k l§+}

(48) (1-3c5) -+ D
"A2(k—1)+1
=D+ o
The right-hand side of (47) is, using the definition of ap ;)
2k—1)—1 — 3 ary — 2(k—1) + Dayg—p+1
w (1=%) (+1)

- —Q2k-0)+1)
—1)— T (k—1)+1>
e <1—2k+}><l+1>
which is equal to (48), as a computation shows.
By letting [ = k in Lemma 3.10, we see that (46) holds.

Lemma 3.11. For every

e positive integert and
o he K/ x\{0},

if there exists a K-derivation B on K[x'/*,x='/* \y] such that

e 3 commutes with the K-derivation

on K[x V! x'/" y] and

e B is of the form
B X\ Cm—lym_1 + Cm—?Jym_3 +...+co
y dmy™ + dm72ym_2 +...+dy ’

where m >3 is odd, c;, d; € K[x~'/* x'/"], and d,, # 0,
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then
N:=deghe SUT,
where
S:{I}U{—%\keZI k<,
T={-1JU{- |keZk>2}.

Proof. Fix t € Z,. Fix h € K[x~ /" x'/"]\{0} and hence o of the form stated in the lemma. Let
N = degh and assume N ¢ T. Suppose a K-derivation 3 satisfying the properties stated in the
lemma exists and let m be the least odd integer greater than or equal to 3 such that there exists such
a B. By Lemma 3.8, P,,(N) = 0, and by Lemma 3.6 and Lemma 3.7 P,, has at most ’"T“Ll zeros. We
show that these zeros are exactly the elements of S.

We show that P,,(1) = 0. The K-derivations

1 (3)=() = 2(3)=()

on K[x,x!,y] commute and 9; has the form of o in the statement of Lemma 3.8. The polynomial
r:=y? —x? is a first integral of 91, and so rm=1)/29, is a K-derivation commuting with d; of the
form of B in the statement of Lemma 3.8. Therefore, by Lemma 3.8, P, (1) = 0.

We show that, for all k, 1 <k < 71,
2k+1
(49) Pu(—2¢1) =0

Fix k. Let K-derivations d; and d; on K [xﬁ,)fm ,y] be defined as o and P are in Lemma 3.9.
Now

r—= yz +2 (%)x—z/(zk—l)

is a firstintegral of d;. Note that deg, d2(y) =2k + 1. Now rlm=(2k+1))/29, is a derivation commuting
with d; of the form of B of Lemma 3.8. Hence, we have (49).
The set S consists of ’"T“ elements, and we have shown that each is a zero of P,,, which is nonzero

of degree at most ’"TH It follows that S is exactly the zero set of P,,. U
Corollary 3.4. It is impossible that p is an odd integer greater than or equal to 3.

Proof. Suppose p > 3 and p is odd. Let N = deg f. Recall that p = deg, ,. Consider Lemma 3.11.

Since the extensions of & and Y, to K-derivations on K[x,x~!,y] are of the forms of o and P, it
follows that N € SUT. Since N is assumed to be an integer greater than or equal to 2, this is a
contradiction. U

This finishes the proof of Theorem 3.1. U
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