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ABSTRACT. We study the problem of characterizing polynomial vector fields that commute with
a given polynomial vector field on a plane. It is a classical result that one can write down solution
formulas for an ODE that corresponds to a planar vector field that possesses a linearly independent
commuting vector field. This problem is also central to the question of linearizability of vector fields.
Let f ∈ K[x], where K is a field of characteristic zero, and d the derivation that corresponds to the
differential equation ẍ = f (x) in a standard way. Let also H be the Hamiltonian polynomial for d,
that is H = 1

2 y2−
∫

f (x)dx. It is known that the set of all polynomial derivations that commute with
d forms a K[H]-module Md . In this paper, we show that, for every such d, the module Md is of rank 1
if and only if deg f > 2. For example, the classical elliptic equation ẍ = 6x2 +a, where a ∈ C, falls
into this category.

1. INTRODUCTION

We study the problem of characterizing polynomial vector fields that commute with a given
polynomial vector field on a plane. It is a classical result that one can write down solution
formulas for an ODE that corresponds to a planar vector field that possesses a linearly independent
(transversal) commuting vector field (see Theorem 2.1). This problem is also central to the question
of linearizability of vectors fields (cf. [5] and [11]). In what follows, we will use the standard
correspondence between (polynomial) vector fields and derivations on (polynomial) rings. Let

(1) d = y
∂

∂x
+ f (x)

∂

∂y
be a derivation, where f is a polynomial with coefficients in a field K of zero characteristic. This
derivation corresponds to a conservative Newton system, and so to the differential equation ẍ = f (x).
Let H be the Hamiltonian polynomial for d, that is H = 1

2y2−
∫

f (x)dx. Then the set of all
polynomial derivations that commute with d forms a K[H]-module Md [9, Corollary 7.1.5]. In this
paper, we show that, for every such d, the module Md is of rank 1 if and only if deg f > 2. For
example, the classical elliptic equation ẍ = 6x2 +a, where a ∈ C, falls into this category.

A characterization of commuting planar derivations in terms of a common Darboux polynomial
is given by Petravchuk [10]. This was generalized to higher dimensions in [8] by Li and Du. In [3],
Choudhury and Guha used Darboux polynomials to find linearly independent commuting vector
fields and to construct linearizations of the vector fields. In the case in which K is the real numbers,
our result generalizes a result on conservative Newton systems with a center to the case in which
a center may or may not be present. A vector field has a center at point P if there is a punctured
neighborhood of P in which every solution curve is a closed loop. A center is called isochronous
if every such loop has the same period. It was proven by Villarini [12, Theorem 4.5] that, if D1
and D2 are commuting vector fields orthogonal at noncritical points, then any center of D1 is
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isochronous. The hypothesis of this result can be relaxed to the case in which D2 is transversal to
D1 at noncritical points (cf. [11, Theorem, p. 92]). In light of this result, one approach to showing
the nonexistence of a vector field commuting with D is to show that D has a non-isochronous center.
In fact, Amel’kin [1, Theorem 11] has shown that if the system of ordinary differential equations
(ODEs) corresponding to derivation (1) is not linear and has a center at the origin, then there is no
transversal vector field that commutes with d.

As far as we are aware, there has not been a standard method to show the nonexistence of a
transversal polynomial vector field in the absence of a nonisochronous center. We develop our
own method to do this, which includes building a triangular system of differential equations. One
technique we use in approaching this system involves constructing a family of pairs of commuting
derivations on rings of the form K[x1/t ,x−1/t ,y] (see Lemma 3.9) and using recurrence relations.

It is impossible to remove the condition deg f > 2 from the statement of our main result, as
every non-zero derivation of degree less than 2 commutes with another transversal derivation (see
Proposition 2.1). The form of d in our main result implies that d is divergence free (which is the
same as Hamiltonian in the planar case). It is not possible to strengthen our result to the case in
which d is merely assumed to be divergence free of degree at least 2, as shown in Example 2.1 and
Proposition 2.2.

The paper is organized as follows. We introduce the basic terminology in Section 2. The main
result, Theorem 3.1, is stated and proven in Section 3.

2. BASIC TERMINOLOGY AND RELATED RESULTS

We direct the reader to [6, 7] for the basics of a ring with a derivation.

Definition 2.1. An S-derivation on a commutative ring R with subring S is a map d : R→ R such
that d(S) = 0 and for all a, b ∈ R,

d(a+b) = d(a)+d(b) and d(ab) = d(a) ·b+a ·d(b).

Definition 2.2. Let K be a field. A non-zero K-derivation d on K[x1, . . . ,xn] is called integrable if
there exist commuting K-derivations δ1, . . . ,δn−1 on K[x1, . . . ,xn] that are linearly independent from
d over K(x1, . . . ,xn), and commute with d, that is, for all a ∈ K[x1, . . . ,xn] and i, j, 16 i, j 6 n−1,

d(δi(a)) = δi(d(a)) and δi(δ j(a)) = δ j(δi(a)).

The following is a classical result.

Theorem 2.1. Let d and δ be R-derivations on R(x,y) defined by

d(x) = f1(x,y), d(y) = f2(x,y), δ(x) = g1(x,y), δ(y) = g2(x,y).

Let (x0,y0) ∈ R2. Suppose that d and δ commute and there is no (λ1,λ2) ∈ R2\{(0,0)} such that

λ1

(
f1(x0,y0)
f2(x0,y0)

)
= λ2

(
g1(x0,y0)
g2(x0,y0)

)
.

Then the initial value problem

ẋ = f1(x,y), ẏ = f2(x,y), x(0) = x0, y(0) = y0

has a solution given by
(x(t),y(t)) = F−1(t,0),



COMMUTING PLANAR POLYNOMIAL VECTOR FIELDS FOR CONSERVATIVE NEWTON SYSTEMS 3

where

F
(

x
y

)
=



x∫
x0

g2(r,y)
∆(r,y) dr+

y∫
y0

−g1(x0,s)
∆(x0,s)

ds

x∫
x0

− f2(r,y)
∆(r,y) dr+

y∫
y0

f1(x0,s)
∆(x0,s)

ds

 ,

and ∆(x,y) = f1(x,y)g2(x,y)− f2(x,y)g1(x,y).

Example 2.1. Consider the initial value problem

ẋ = 1+ x2, ẏ =−2xy, x(0) = x0, y(0) = y0,

where x0 and y0 are real numbers and y0 6= 0. The corresponding derivation is

d(x) = 1+ x2, d(y) =−2xy,

and we observe that the derivation

δ(x) = 0, δ(y) = y

commutes with d, and that d and δ are independent at (x0,y0). Using the above formula, we obtain
the solution

x(t) = tan(t + tan−1 x0), y(t) = y0(1+ x2
0)cos2(t + tan−1 x0).

We make some observations, in the form of the following propositions:

Proposition 2.1. Let K be a field. Every non-zero K-derivation of degree less than or equal to 1 on
K[x,y] is integrable.

Proof. Let d be such that d(x) and d(y) are not both 0. We will consider the following cases. The
symbols a, b, c, e, f , and g are taken to be elements of K.
Case 0 : d(x) = c, d(y) = g. Without loss of generality, say c 6= 0. Now the K-derivation δ(x) = c,

δ(y) = g+ c commutes with d and is transversal to d.
Case 1 : d(x) = ax, d(y) = ay, a 6= 0. Observe that d commutes with δ, where δ(x) = y,

δ(y) = x.
Case 2 : d(x) = ax+by, d(y) = ex+ f y, different from Case 1. Observe that d commutes with

δ, where δ(x) = x, δ(y) = y.
Case 3 : d(x) = ax+by+ c, d(y) = ex+ f y+g, a f −be 6= 0. In this case, d is equivalent to

a derivation from Case 1 or Case 2 via a linear change of coordinates. Let (x0,y0) be the
solution to the system ax+by+ c = ex+ f y+g = 0. Now let u = x− x0 and v = y− y0, so
that d(u) = au+bv and d(v) = eu+ f v.

Case 4 : d(x) = ax+by+ c, d(y) = ex+ f y+g, a f −be = 0
(a) a = b = 0, different from Case 0. If e 6= 0, then d commutes with and is transversal to

δ given by δ(x) =−g
e , δ(y) = 0. If f 6= 0, then d commutes with and is transversal to

δ given by δ(x) = 0, δ(y) =− g
f .

(b) at least one of a and b is not 0. First assume a 6= 0. If f = e = 0, then this is equivalent
to Case 4a by swapping the roles of x and y. Assume at least one of f and e is not 0.
By the condition a f −be = 0, it must be that e 6= 0. Using the coordinate z = ex−ay
instead of x puts this into the form of Case 4a. Next, assume b 6= 0. If f = e = 0, then
this is equivalent to Case 4a. Assume at least one of f and e is not 0. By the condition
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a f −be = 0, it must be that f 6= 0. Using the coordinate z = f x−by instead of x puts
this into the form of Case 4a. �

Definition 2.3. Let K be a field and let d be a K-derivation on K[x1, . . . ,xn]. We say d is divergence-
free if

n

∑
i=1

∂

∂xi
d(xi) = 0.

Proposition 2.2. Let K be a field of characteristic 0. There exist integrable divergence-free K-
derivations on K[x,y] that are not coordinate-change equivalent to a derivation of degree less than
or equal to 1.

Proof. The K-derivation defined by the same equations as d from Example 2.1 is divergence-free
and integrable. Note that the vector field corresponding to d vanishes only at the points (

√
−1,0)

and (−
√
−1,0) in K2. Since charK = 0, these points are distinct. After a coordinate change, the

number of points in K2 at which a vector field vanishes does not change. The vector field of any
derivation of degree less than or equal to 1 vanishes at zero, one, or infinitely many points. We
conclude that d is not coordinate-change equivalent to a derivation of degree no greater than 1. �

In the following section, we study a class of divergence-free vector fields. We show that no
member of this class is integrable.

3. MAIN RESULT

Fix a field K of characteristic 0. Suppose δ f represents a second-order differential equation of
the form

ẍ = f ,
where f ∈ K[x]\K, which corresponds to a conservative Newton system. That is,

(2) δ f

(
x
y

)
=

(
y
f

)
.

If deg f = 1, then δ f is integrable by Proposition 2.1. The following theorem, which is our main
result, addresses the case of deg f > 2.

Theorem 3.1. For every
• f ∈ K[x] such that deg f > 2 and
• K-derivation γ on K[x,y] that commutes with δ f , where δ f is the K-derivation defined by (2),

there exists q ∈ K[H] such that
γ = q ·δ f ,

where H = y2−2
∫

f dx and
∫

f dx has 0 as the constant term.

As a corollary, we recover the following result on conservative Newton systems with a center
at the origin. This result was first proven in [1, Theorem 11] and was given new proofs in [2,
Theorem 4.1] and [4, Corollary 2.6] (see also [13, p. 30]).

Corollary 3.1. The real system

ẋ =−y

ẏ = f (x),

with f (0) = 0, f ′(0) = 1, has a transversal commuting polynomial derivation if and only if f (x) = x.
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Proof of Theorem 3.1. Fix f ∈ K[x] such that deg f > 2. Fix a K-derivation δ so that δ(x) = y and
δ(y) = f . Fix a K-derivation γ such that [δ,γ] = 0. First consider the case in which degy γ6 1.

Lemma 3.1. If

γ

(
x
y

)
=

(
c1y+ c0
d1y+d0

)
,

where c1,c0,d1,d0 ∈ K[x], and [δ,γ] = 0, then

γ

(
x
y

)
= c1δ.

Proof. The equations δ(γ(x)) = γ(δ(x)) and δ(γ(y)) = γ(δ(y)) yield{
c′1y2 + c′0y+ f c1 = d1y+d0

d′1y2 +d′0y+ f d1 = f ′c1y+ f ′c0.

Equating coefficients of like powers of y, we obtain the two independent systems

(3) c′1 = 0, d′0 = c1 f ′, f c1 = d0

and

(4) d′1 = 0, c′0 = d1, f d1 = c0 f ′.

The solution set of (3) is c1 = constant,d0 = c1 f . System (4) has no non-zero solution, which we
deduce as follows. We have (

c0

f

)′
=

c′0 f − f ′c0

f 2 = 0,

so c0 = (const) f . Therefore, d1 = (const) f ′, which implies d′1 = (const) f ′′ = 0. Since we assume
deg f > 2, the constant must be 0. Therefore,

γ

(
x
y

)
= c1

(
y
f

)
. �

Now assume degy γ = M > 2. Write

(5) γ

(
x
y

)
=

(
cMyM + . . .+ c0
dMyM + . . .+d0

)
,

where for all i, ci,di ∈ K[x]. Since M = degy γ, at least one of cM and dM is non-zero. Now the
system (

δ(γ(x))
δ(γ(y))

)
=

(
γ(δ(x))
γ(δ(y))

)
becomes

(6)
(

c′MyM+1 + c′M−1yM + . . .+ c′0y
d′MyM+1 +d′M−1yM + . . .+d′0y

)
+

(
M f cMyM−1 + . . .+ f c1
M f dMyM−1 + . . .+ f d1

)
=

(
0 1
f ′ 0

)(
cMyM + . . .+ c0
dMyM + . . .+d0

)
.

Viewing these matrix entries as polynomials in y and equating coefficients yields the following
system of first-order ODEs
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c′M = 0 d′M = 0
c′M−1 = dM d′M−1 = f ′cM

c′M−2 +M f cM = dM−1 d′M−2 +M f dM = f ′cM−1
c′M−3 +(M−1) f cM−1 = dM−2 d′M−3 +(M−1) f dM−1 = f ′cM−2
c′M−4 +(M−2) f cM−2 = dM−3 d′M−4 +(M−2) f dM−2 = f ′cM−3
c′M−5 +(M−3) f cM−3 = dM−4 d′M−5 +(M−3) f dM−3 = f ′cM−4

...
...

c′0 +2 f c2 = d1 d′0 +2 f d2 = f ′c1
f c1 = d0 f d1 = f ′c0

as well as the condition
cM 6= 0 or dM 6= 0.

In each equation, it is the case that if ci and d j both appear, then i and j have opposite parities. Thus,
we see that this system consists of two independent systems. If M is odd, these systems are:

(Io)M (IIo)M
c′M = 0 d′M = 0

d′M−1 = f ′cM c′M−1 = dM
c′M−2 +M f cM = dM−1 d′M−2 +M f dM = f ′cM−1

d′M−3 +(M−1) f dM−1 = f ′cM−2 c′M−3 +(M−1) f cM−1 = dM−2
c′M−4 +(M−2) f cM−2 = dM−3 d′M−4 +(M−2) f dM−2 = f ′cM−3

d′M−5 +(M−3) f dM−3 = f ′cM−4 c′M−5 +(M−3) f cM−3 = dM−4
...

...
c′1 +3 f c3 = d2 d′1 +3 f d3 = f ′c2

d′0 +2 f d2 = f ′c1 c′0 +2 f c2 = d1
f c1 = d0 f d1 = f ′c0.

If M is even, the systems are:

(IIe)M (Ie)M
c′M = 0 d′M = 0

d′M−1 = f ′cM c′M−1 = dM
c′M−2 +M f cM = dM−1 d′M−2 +M f dM = f ′cM−1

d′M−3 +(M−1) f dM−1 = f ′cM−2 c′M−3 +(M−1) f cM−1 = dM−2
c′M−4 +(M−2) f cM−2 = dM−3 d′M−4 +(M−2) f dM−2 = f ′cM−3

d′M−5 +(M−3) f dM−3 = f ′cM−4 c′M−5 +(M−3) f cM−3 = dM−4
...

...
c′0 +2 f c2 = d1 d′0 +2 f d2 = f ′c1

f d1 = f ′c0 f c1 = d0.

In light of these observations, let

n = max{i | i odd and ci 6= 0 or i even and di 6= 0},
p = max{i | i even and ci 6= 0 or i odd and di 6= 0}.

Note that n or p may be undefined. Now write γ = γ1 + γ2, where γ1(x) contains the terms of γ(x)
of odd degree in y, γ1(y) contains the terms of γ(y) of even degree in y, γ2(x) contains the terms of
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γ(x) of even degree in y, and γ2(y) contains the terms of γ(y) of odd degree in y. Explicitly,

γ1

(
x
y

)
=



(
cnyn + cn−2yn−2 + . . .+ c1y

dn−1yn−1 +dn−3yn−3 + . . .+d0

)
if n is odd,

(
cn−1yn−1 + cn−3yn−3 + . . .+ c1y

dnyn +dn−2yn−2 + . . .+d0

)
if n is even,

(
0
0

)
if n is undefined,

and

γ2

(
x
y

)
=



(
cp−1yp−1 + cp−3yp−3 + . . .+ c0

dpyp +dp−2yp−2 + . . .+d1y

)
if p is odd,

(
cpyp + cp−2yp−2 + . . .+ c0

dp−1yp−1 +dp−3yp−3 + . . .+d1y

)
if p is even,

(
0
0

)
if p is undefined.

As we have seen, the criterion [δ,γ] = 0 is equivalent to the conjunction of two systems of equations
in which one system only involves the terms of γ1 and the other only involves the terms of γ2. Hence,
[δ,γ1] = [δ,γ2] = 0.

Let us examine the possible values of n. If n is undefined, then γ1(x,y) = (0,0). If n = 0, then
γ1 is the same as the γ of Lemma 3.1 with c1 = c0 = d1 = 0. Thus, by Lemma 3.1, γ1 = 0, which
contradicts that n = 0. If n = 1, then γ1 is the same as the γ of Lemma 3.1 with c0 = d1 = 0. Thus
by Lemma 3.1, γ1 = c1δ, and, in the proof of Lemma 3.1, it is shown that c1 ∈ K. If n> 2 is even,
the coefficients of γ1 must satisfy (Ie)n and dn 6= 0. We will show in Lemma 3.4 and Corollary 3.2
that this is impossible. If n is odd, the coefficients of γ1 must satisfy (Io)n and cn 6= 0. We will show
in Lemma 3.2 and Lemma 3.3 that this implies γ1 = qδ for some q ∈ K[H]. In summary,

• If n is undefined, then γ1 = 0 ·δ.
• It is impossible that n = 0.
• If n = 1, then γ1 = c1 ·δ and c1 ∈ K.
• It is impossible that n> 2 is even. (Lemma 3.4, Corollary 3.2)
• If n> 3 is odd, then γ1 = q ·δ for some q ∈ K[H]. (Lemmas 3.2, 3.3)

Let us examine the possible values of p. If p is undefined, then γ2(x,y) = (0,0). If p = 0, then γ2
is the same as the γ from Lemma 3.1 with c1 = d1 = d0 = 0. Thus, by Lemma 3.1, γ2 = 0, which
contradicts that p = 0. If p = 1, then γ2 is the same as the γ of Lemma 3.1 with c1 = d0 = 0. Thus,
by Lemma 3.1, γ2 = 0, which contradicts that p = 1. If p> 2 is even, the coefficients of γ2 must
satisfy (IIe)p and cp 6= 0. We will show in Lemma 3.5 and Corollary 3.3 that this is impossible. If
p > 3 is odd, the coefficients of γ2 must satisfy (IIo)p and dp 6= 0. We will show in Lemma 3.6,
Lemma 3.7, Lemma 3.8, Lemma 3.9, Lemma 3.11, and Corollary 3.4 that this is impossible. We
summarize these results as follows:
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• If p is undefined, then γ2 = 0 ·δ.
• It is impossible that p = 0.
• It is impossible that p = 1.
• It is impossible that p> 2 is even. (Lemma 3.5, Corollary 3.3)
• It is impossible that p> 3 is odd. (Lemmas 3.6, 3.7, 3.8, 3.9, 3.11, Corollary 3.4)

From the bulleted statements, it follows that γ1 = qδ for some q ∈ K[H] and γ2 = 0. These
lemmas and their corollaries constitute the rest of the proof of Theorem 3.1.

Definition 3.1. Let a ∈ K[x,y]. We define
∫

adx to be the element of K[x,y] whose partial derivative
with respect to x is a and whose constant term is 0.

Lemma 3.2. For every odd integer m > 3, the solution set of (Io)m, with c0, . . . ,dm treated as
variables, is an m+1

2 -dimensional K-vector space.

Proof. Fix m> 3. Label the equations of (Io)m as follows:

em+1 c′m = 0
em d′m−1 = f ′cm

em−1 c′m−2 +m f cm = dm−1
...

...
e1 d′0 +2 f d2 = f ′c1
e0 f c1 = d0.

We show the following by induction on k, 06 k 6 m−3
2 :

(7) The solution set of {em+1,em, . . . ,em−2k−2,dm−2k−3 = f cm−2k−2} is a K-vector space
of dimension k+2.

Base Case: k = 0
The system

(8) {em+1,em,em−1,em−2,dm−3 = f cm−2}
is

em+1 : c′m = 0
em : d′m−1 = f ′cm
em−1 : c′m−2 =−m f cm +dm−1
em−2 : d′m−3 =−(m−1) f dm−1 + f ′cm−2

dm−3 = f cm−2.

Let
(
d̃m−3, c̃m−2, d̃m−1, c̃m

)
be a solution of (8). By em+1, c̃m = a1 for some a1 ∈ K. It follows that

f ′c̃m−2 + f c̃′m−2 =−(m−1) f d̃m−1 + f ′c̃m−2,

and hence
c̃′m−2 =−(m−1)d̃m−1,

and so

d̃m−1 = m f c̃m + c̃′m−2 = m f c̃m− (m−1)d̃m−1.

Thus
d̃m−1 = f c̃m = a1 f .
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It follows from this and em−1 that

c̃′m−2 =−(m−1)a1 f ,

and hence
c̃m−2 =−

∫
(m−1)a1 f dx+a2

for some a2 ∈ K. From this and the condition d̃m−3 = f c̃m−2 it follows that

d̃m−3 = f
(
−
∫
(m−1)a1 f dx+a2

)
.

One can verify that

(9)
(

f
(
−

∫
(m−1)a1 f dx+a2

)
, −

∫
(m−1)a1 f dx+a2, a1 f , a1

)
is indeed a solution of (8). We have just shown that the solution set of (8) is exactly the elements of
K[x]4 of the form (9) with a1,a2 ∈ K. This set is the K-span of the tuples(

f
(
−

∫
(m−1) f dx

)
, −

∫
(m−1) f dx, f , 1

)
and ( f , 1, 0, 0).

Hence, the solution space is a two-dimensional K-vector space.

Inductive Step: Fix k, 06 k < m−3
2 . Consider

{em+1,em, . . . ,em−2k−2,dm−2k−3 = f cm−2k−2}(10)

{em+1,em, . . . ,em−2k−4,dm−2k−5 = f cm−2k−4}.(11)

Assume

(12) The solution set of (10) is a K-vector space of dimension k+2.

We will show

(13) The solution set of (11) is a K-vector space of dimension k+3.

We first show that

(14) The solution set of (11) is the solution set of

(15) {em+1, . . . ,em−2k−2,em−2k−3,dm−2k−3 = f cm−2k−2,dm−2k−5 = f cm−2k−4}.
For ease of reference, we write the equations em−2k−3 and em−2k−4:

em−2k−3 : c′m−2k−4 =−(m−2k−2) f cm−2k−2 +dm−2k−3
em−2k−4 : d′m−2k−5 =−(m−2k−3) f dm−2k−3 + f ′cm−2k−4.

Suppose (d̃m−2k−5, . . . , c̃m) is a solution of

{em+1, . . . ,em−2k−4,dm−2k−5 = f cm−2k−4}.

Then (d̃m−2k−3, . . . , c̃m) is a solution of {em+1, . . . ,em−2k−2}. We now show that

(16) d̃m−2k−3 = f c̃m−2k−2.

Since (d̃m−2k−5, . . . , c̃m) satisfies em−2k−4, we have

(17) d̃′m−2k−5 =−(m−2k−3) f d̃m−2k−3 + f ′c̃m−2k−4.
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Since d̃m−2k−5 = f c̃m−2k−4, it follows that

d̃′m−2k−5 = f ′c̃m−2k−4 + f c̃′m−2k−4.

Combining this with (17), we get

f c̃′m−2k−4 =−(m−2k−3) f d̃m−2k−3,

and hence

(18) c̃′m−2k−4 =−(m−2k−3)d̃m−2k−3.

Since (d̃m−2k−5, . . . , c̃m) satisfies em−2k−3, we have

c̃′m−2k−4 +(m−2k−2) f c̃m−2k−2 = d̃m−2k−3,

and combining this with (18) gives us (16).
We now show the opposite inclusion. Suppose (d̃m−2k−5, . . . , c̃m) satisfies (15). Since the tuple

satisfies dm−2k−5 = f cm−2k−4, em−2k−3, and dm−2k−3 = f cm−2k−2, we have

d̃′m−2k−5 = f ′c̃m−2k−4 + f c̃′m−2k−4

= f ′c̃m−2k−4 + f (−(m−2k−2) f c̃m−2k−2 + d̃m−2k−3)

= f ′c̃m−2k−4 + f (−(m−2k−2)d̃m−2k−3 + d̃m−2k−3)

= f ′c̃m−2k−4− (m−2k−3) f d̃m−2k−3.

Thus the tuple also satisfies em−2k−4. This completes the proof of (14).
Now we show (13). Since (11) is a system consisting of homogeneous linear differential equations

and a homogeneous linear equation in 2k+ 6 variables, the solution set is a K-vector subspace
of K[x]2k+6. Let W denote this vector space, let πi : K[x]2k+6→ K[x] be projection onto the i-th
coordinate, and let π : K[x]2k+6 → K[x]2k+4 be the projection onto the last 2k + 4 coordinates.
Similarly, the solution set of (10) is a K-vector subspace of K[x]2k+4. Call this space V . By (12),
dimV = k+2. Let pi : K[x]2k+4→ K[x] be the projection onto the i-th coordinate.

Let a1, . . . ,ak+2 ∈ K[x]2k+4 be a basis for V . For each i = 1, . . . ,k+2, we define bi ∈ K[x]2k+6 as
follows. Let

π(bi) = ai, π2(bi) =
∫
(−(m−2k−2) f p2(ai)+ p1(ai))dx, π1(bi) = f π2(bi).

By (14), each bi is a solution of (11). Since dm−2k−5 and cm−2k−4 only appear in the equations

c′m−2k−4 +(m−2k−2) f cm−2k−2 = dm−2k−3,

d′m−2k−5 +(m−2k−3) f dm−2k−3 = f ′cm−2k−4,

dm−2k−5 = f cm−2k−4.

of (11), we observe that
bk+3 := ( f ,1,0, . . . ,0) ∈W.

We show that
spanK{b1, . . . ,bk+3}=W.

Suppose w ∈W . By (14), π(w) ∈V , so there exist αi ∈ K, 16 i6 k+2, such that

π(w) =
k+2

∑
i=1

αiπ(bi).
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Also by (14), there is a β ∈ K such that

π2(w) =
∫ (
− (m−2k−2) f π4(w)+π3(w)

)
dx+β

=
∫ (
− (m−2k−2) f

k+2

∑
i=1

αiπ4(bi)+
k+2

∑
i=1

αiπ3(bi)
)

dx+β

=
k+2

∑
i=1

αi

∫ (
− (m−2k−2) f π4(bi)+π3(bi)

)
dx+β =

k+2

∑
i=1

αiπ2(bi)+β.

By (14), we have π1(w) = f π2(w). Using the fact that π1(bi) = f π2(bi), we get

π1(w) =
k+2

∑
i=1

αiπ1(bi)+ f β.

Thus,

w =
k+2

∑
i=1

αibi +βbk+3.

We conclude that spanK{b1, . . . ,bk+3}=W .
Since {π(b1), . . . ,π(bk+2)} is K-linearly independent, {b1, . . . ,bk+2} is K-linearly independent.

Since the constant term of π2(bi) is 0 for i = 1, . . . ,k+2, it is clear that

bk+3 6∈ spanK{b1, . . . ,bk+2}.

We conclude that dimK W = k+3. This completes the inductive step.
Setting k = m−3

2 in (7) proves the lemma. �

Lemma 3.3. If n> 3 is odd, then γ1 = qδ for some q ∈ K[H].

Proof. Recall that, if n> 3 is odd, the coefficients of γ1 must satisfy (Io)n. Observe that δ(H) = 0.
Hence, any K-derivation D of the form

D
(

x
y

)
=
(

a n−1
2

H
n−1

2 +a n−1
2 −1H

n−1
2 −1 + . . .+a0

)
·
(

y
f

)
, ai ∈ K,

commutes with δ. Writing D in the form of (5), we see that ci = 0 for even i and di = 0 for odd i, so
a choice of

a0, . . . ,a n−1
2

provides a solution to (Io)n. Moreover, two distinct choices of a0, . . . ,a n−1
2

provide two distinct
solutions of (Io)n. Thus, the set of solutions of (Io)n that correspond to derivations of the form qδ,
where q ∈ K[H], is a K-vector space of dimension n+1

2 . Since this vector space is contained in the
vector space of solutions to (Io)n, which by Lemma 3.2 has dimension n+1

2 , the spaces must be
equal. �

Lemma 3.4. For all even m> 2, the system (Ie)m implies dm = 0.

Proof. Fix even m> 2. Label the equations in (Ie)m as follows:
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em+1 : d′m = 0
em : c′m−1 = dm
em−1 : d′m−2 +m f dm = f ′cm−1
em−2 : c′m−3 +(m−1) f cm−1 = dm−2

...
e1 : d′0 +2 f d2 = f ′c1
e0 : f c1 = d0.

We show by induction on k, 06 k 6 m−2
2 , that

(19) {e0,e1, . . . ,e2k+1} implies c′2k+1 =−(2k+2)d2k+2.

The case k = 0 is straightforward. For the inductive hypothesis, fix k, 06 k < m−2
2 , and assume (19).

Now assume {e0,e1, . . . ,e2k+3}. Equations e2k+2 and e2k+3 are

c′2k+1 =−(2k+3) f c2k+3 +d2k+2 and d′2k+2 =−(2k+4) f d2k+4 + f ′c2k+3,

and the inductive hypothesis gives us

c′2k+1 =−(2k+2)dk+2.

Equating the two expressions for c′2k+1, we obtain d2k+2 = f c2k+3. Differentiating this and equating
the two expressions for d′2k+2 gives us

f ′c2k+3 + f c′2k+3 =−(2k+4) f d2k+4 + f ′c2k+3,

which implies
c′2k+3 =−(2k+4)d2k+4.

This completes the inductive step. This shows that a consequence of (Ie)m is

c′m−1 =−mdm.

Since m was assumed to be even, we have m 6= −1. In order that em and c′m−1 = −mdm both be
satisfied, it is necessary that dm = 0. �

Corollary 3.2. It is impossible that n is an even integer greater than or equal to 2.

Proof. Suppose n> 2 and n is even. Then the coefficients of γ1 must satisfy (Ie)n, and also dn 6= 0.
But by Lemma 3.4, dn = 0 is a consequence of (Ie)n. �

Lemma 3.5. For all even m> 2, the system (IIe)m implies cm = 0.

Proof. We establish the following notation. If φ is a non-zero univariate polynomial, lc(φ) denotes
the leading coefficient of φ.

Fix even m> 2. Label the equations of (IIe)m as follows:

em+1 : c′m = 0
em : d′m−1 = f ′cm
em−1 : c′m−2 +m f cm = dm−1
em−2 : d′m−3 +(m−1) f dm−1 = f ′cm−2

...
e1 : c′0 +2 f c2 = d1
e0 : f d1 = f ′c0.
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We first show the following by induction on k, 06 k 6 m−2
2 :

(20) If (d̃m−2k−1, . . . , c̃m) is a solution of {em+1, . . . ,em−2k} with c̃m 6= 0,
then d̃m−2k−1 6= 0, deg(d̃m−2k−1) = deg( f · c̃m−2k), and lc(d̃m−2k−1) = lc( f · c̃m−2k).

Base Case, k = 0:
Suppose (d̃m−1, c̃m) is a solution of {c′m = 0,d′m−1 = f ′cm} and cm 6= 0. Since deg f > 2 and c̃m

is a non-zero constant,

d̃m−1 6= 0 and deg d̃m−1 = deg( f c̃m) = deg f .

We have lc(d̃′m−1) = deg f · lc f · c̃m. Since c̃m is a constant and deg d̃m−1 = deg f , we have

lc(d̃m−1) = lc( f c̃m).

Inductive Step:
Fix k, 0 6 k < m−2

2 . Assume (20) for this k. Suppose (d̃m−2k−3, . . . , c̃m) is a solution of
{em+1, . . . ,em−2k−2} such that c̃m 6= 0. For ease of reference, we write:

em−2k−1 : c′m−2k−2 +(m−2k) · f · cm−2k = dm−2k−1
em−2k−2 : d′m−2k−3 +(m−2k−1) · f ·dm−2k−1 = f ′ · cm−2k−2

Then
c̃′m−2k−2 = d̃m−2k−1− (m−2k) f · c̃m−2k.

Since m is even, m−2k−1 6= 0. Therefore, by the inductive hypothesis,

(21) deg(c̃′m−2k−2) = deg(d̃m−2k−1)> 0,

and we have
lc(c̃′m−2k−2) =−(m−2k−1) · lc(d̃m−2k−1),

and hence

(22) deg c̃m−2k−2 · lc(c̃m−2k−2) =−(m−2k−1) · lc(d̃m−2k−1).

By equation em−2k−2, we have

(23) d̃′m−2k−3 = f ′ · c̃m−2k−2− (m−2k−1) · f · d̃m−2k−1.

We will show that the degrees of the two terms on the right-hand side of (23) are equal and that their
leading coefficients do not cancel. From (21), it follows that

deg c̃m−2k−2 = deg d̃m−2k−1 +1,

so that

(24) deg( f ′ · c̃m−2k−2) = deg( f · d̃m−2k−1).

Observe that
lc( f ′ · c̃m−2k−2) = deg f · lc f · lc(c̃m−2k−2)

and, using (22),

lc( f · d̃m−2k−1) = lc f · lc(d̃m−2k−1) = lc f · −1
m−2k−1 · lc(c̃m−2k−2) ·deg c̃m−2k−2.

It follows that

(25) lc( f ′ · c̃m−2k−2) 6= (m−2k−1) · lc( f · d̃m−2k−1),

and, together with (23) and (24), this gives us

(26) lc(d̃′m−2k−3) = lc f · lc(c̃m−2k−2) · (deg f +deg c̃m−2k−2).
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By (23), (24), and (25), we have

(27) deg(d̃m−2k−3) = deg f +deg c̃m−2k−2.

Combining (26) and (27) gives us

lc(d̃m−2k−3) = lc f · lc(c̃m−2k−2).

This completes the inductive step.
We proceed with the proof of the lemma. Let (c̃0, . . . , c̃m) be a solution of (IIe)m with c̃m 6= 0. We

will derive a contradiction. It follows immediately that (d̃1, . . . , c̃m) is a solution of {em+1, . . . ,e1}.
Setting k = m−2

2 in (20), we have that deg(d̃1) = deg( f · c̃2)> 0 and

(28) lc(d̃1) = lc( f ) · lc(c̃2).

From e0, we see that
deg(d̃1) = deg(c̃0)−1 = deg(c̃′0).

By equation e1, we have
lc(d̃1) = 2 · lc f · lc(c̃2)+deg c̃0 · lc(c̃0).

Therefore, by (28), we have

lc f · lc(c̃2) = 2 · lc f · lc(c̃2)+deg c̃0 · lc(c̃0)

and hence

lc(c̃0) =
− lc f · lc(c̃2)

deg c̃0
.

By equation e0, we have

lc f · lc(d̃1) = deg f · lc f · lc(c̃0) = deg f · lc f ·
(
− lc f · lc(c̃2)

deg c̃0

)
.

By (28),

lc f · lc f · lc(c̃2) = deg f · lc f ·
(
− lc f · lc(c̃2)

deg c̃0

)
.

It follows that
deg c̃0 =−deg f ,

which is a contradiction, since deg f > 0. �

Corollary 3.3. It is impossible that p is an even integer greater than or equal to 2.

Proof. Suppose p> 2 and p is even. Then the coefficients of γ2 must satisfy (IIe)p, together with
cp 6= 0. But by Lemma 3.5, (IIe)p implies cp = 0. �

In the remainder of the proof, we treat the case in which p is an odd integer greater than or equal
to 3. For this, we will use a family of univariate polynomials with rational coefficients, which we
denote {P3,P5,P7, . . .}. For each odd m> 3, Pm will be defined in terms of a family of univariate
polynomials with integer coefficients, denoted {T m

0 ,T m
1 ,T m

2 , . . . ,T m
m }. These polynomials will also

be used to prove certain properties of Pm.
We outline the proof of the case in which p is an odd integer greater than or equal to 3 as follows.

In Definition 3.2, we define the families of polynomials

{T m
i }

m>3, m odd
06i6m and {Pm}m>3, m odd.



COMMUTING PLANAR POLYNOMIAL VECTOR FIELDS FOR CONSERVATIVE NEWTON SYSTEMS 15

In Lemma 3.6, Lemma 3.7, and Lemma 3.8, we prove certain properties of {Pm}m>3, m odd. These
properties are used together with Lemma 3.9 to prove Lemma 3.11. Corollary 3.4 completes the
proof that p cannot be an odd integer greater than or equal to 3.

In Lemma 3.8, Lemma 3.9, Lemma 3.11, and Corollary 3.4, we refer to K-derivations on the ring
K[x1/t ,x−1/t ,y], where t is a positive integer. We view this ring as isomorphic to

K[x,y,z,w]/(zt− x,zw−1).

By [7, Lemma II.2.1], since charK = 0, any K-derivation on K[x,y] extends uniquely to a K-
derivation on K[x1/t ,x−1/t ,y]. One consequence of this is that a K-derivation on K[x1/t ,x−1/t ,y] can
be defined by stating its action on x and y.

Definition 3.2. Let m be an odd integer greater than or equal to 3. For i = 0, . . . ,m, we define
T m

i (X) ∈ Z[X ] as follows: Let
T m

m (X) = T m
m−1(X) = 1.

For 16 k 6 m−1
2 , let

(29) T m
m−2k(X) = X ·T m

m−(2k−1)(X)− (m− (2k−2)) · ((k−1) · (X +1)+1) ·T m
m−(2k−2)(X)

and let

(30) T m
m−(2k+1)(X) = T m

m−2k(X)− (m− (2k−1)) · k · (X +1) ·T m
m−(2k−1)(X).

No expression Tj without a superscript index will be used, so in T i
j , i is always an index and never

an exponent. We define Pm ∈ Z[X ] as follows:

(31) Pm(X) =
(m−1

2 · (X +1)+1
)
·T m

1 (X)−X ·T m
0 (X).

Lemma 3.6. Let m be an odd integer greater than or equal to 3. Then

(32) degPm(X)6
m+1

2
.

Proof. We show by induction on k, 06 k 6 m−1
2 , that

(33) degT m
m−2k(X)6 k and degT m

m−(2k+1)(X)6 k.

For the base case, k = 0, we have

degT m
m (X) = degT m

m−1(X) = 0.

For the inductive step, fix k, 06 k < m−1
2 , and assume (33). It follows from (29) and the inductive

hypothesis that
degT m

m−(2k+2)(X)6 k+1,

and it follows from (30) and the inductive hypothesis that

degT m
m−(2k+3)(X)6 k+1.

This completes the proof by induction. As a consequence, we have

degT m
1 (X)6 m−1

2 and degT m
0 (X)6 m−1

2 .

Therefore, (32) holds. �

Lemma 3.7. Let m be an odd integer greater than or equal to 3. Then Pm(X) is not the zero
polynomial.
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Proof. We first prove by induction on k, 06 k 6 m−1
2 , that

(34) T m
m−2k(−1) 6= 0 and T m

m−(2k+1)(−1) 6= 0.

The base case, k = 0, is trivial, since T m
m (X) = T m

m−1(X) = 1. For the inductive hypothesis, fix k,
06 k < m−1

2 , and assume
T m

m−2k(−1) ·T m
m−(2k+1)(−1) 6= 0.

Equation (30) shows that
T m

m−(2k+1)(−1) = T m
m−2k(−1).

Replacing k with k+1 in (29) gives us

T m
m−(2k+2)(−1) =−1 ·T m

m−(2k+1)(−1)− (m−2k) ·T m
m−2k(−1) =−(m−2k+1) ·T m

m−2k(−1).

Since k < m−1
2 , it must be that m−2k+1 6= 0. Now by the inductive hypothesis,

T m
m−(2k+2)(−1) 6= 0.

Replacing k with k+1 in (30) yields

T m
m−(2k+3)(−1) = T m

m−(2k+2)(−1) 6= 0.

This completes the proof of (34). By (31), we have

Pm(−1) = T m
1 (−1)+T m

0 (−1).

Replacing k with m−1
2 in (30) gives

T m
0 (−1) = T m

1 (−1),

and hence
Pm(−1) = 2 ·T m

1 (−1) 6= 0. �

Lemma 3.8. For every odd integer m greater than or equal to 3, the polynomial Pm(X) defined by
(31) in Definition 3.2 satisfies the following property:
for every

• positive integer t and
• h ∈ K[x1/t ,x−1/t ]\{0},

if the K-derivation

β

(
x
y

)
=

(
cm−1ym−1 + cm−3ym−3 + . . .+ c0

dmym +dm−2ym−2 + . . .+d1y

)
on K[x1/t ,x−1/t ,y] commutes with the K-derivation

α

(
x
y

)
=

(
y
h

)
on K[x1/t ,x−1/t ,y], then

Pm(N) = 0 or N ∈ {−1}∪
{
− k

k−1

∣∣∣26 k 6 m+1
2

}
,

where N = degh, each ci,di ∈ K[x1/t ,x−1/t ] and dm 6= 0.

Proof. Fix m > 3, fix t ∈ Z>1, fix h ∈ K[x1/t ,x−1/t ]\{0}, and define α as in the statement of the
lemma. Fix β as in the statement of the lemma. Note that ci and di must satisfy the equations of
system (IIo)m, with f replaced by h. Label these equations as follows:
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em+1 : d′m = 0
em : c′m−1 = dm
em−1 : d′m−2 +mhdm = h′cm−1
em−2 : c′m−3 +(m−1)hcm−1 = dm−2
...

...
em−(2k−1) : d′m−2k +(m− (2k−2))hdm−(2k−2) = h′cm−(2k−1)
em−2k : c′m−(2k+1)+(m− (2k−1))hcm−(2k−1) = dm−2k

em−(2k+1) : d′m−(2k+2)+(m−2k)hdm−2k = h′cm−(2k+1)

em−(2k+2) : c′m−(2k+3)+(m− (2k+1))hcm−(2k+1) = dm−(2k+2)
...

...
e0 : hd1 = h′c0.

Let N = degh and let L be the leading coefficient of h. Assume that

N 6∈ {−1}∪
{
− k

k−1

∣∣∣26 k 6 m+1
2

}
.

We first show by induction that for all k, 06 k 6 m−1
2 ,

(35) degdm−2k 6 k(N +1) and degcm−(2k+1) 6 k(N +1)+1.

We first treat the base case, k = 0. By equations em+1 and em, degdm 6 0 and degcm−1 6 1.
For the inductive hypothesis, fix k, 06 k < m−1

2 and assume (35). Consider em−(2k+1). By the
inductive hypothesis, we have

deg(hdm−2k)6 k(N +1)+N and deg(h′cm−(2k+1))6 k(N +1)+N.

It follows that

(36) degdm−(2k+2) 6 (k+1)(N +1).

Now consider em−(2k+2). By the inductive hypothesis,

deg(hcm−(2k+1))6 (k+1)(N +1).

It follows from this and (36) that

degcm−(2k+3) 6 (k+1)(N +1)+1.

This concludes the proof of (35) for all k, 06 k 6 m−1
2 .

Define am,am−1, . . . ,a0 as follows. Let

am−2k = the coefficient of xk(N+1) in dm−2k,

am−(2k+1) = the coefficient of xk(N+1)+1 in cm−(2k+1).

Equations em+1 and em and the requirement that dm 6= 0 imply that am−1 = am. Now we prove that,
for all k, 16 k 6 m−1

2 ,

(37) am−(2k+1) =
(
am−2k− (m− (2k−1)) ·L ·am−(2k−1)

)
· 1

k(N+1)+1

and

(38) am−2k = (L ·N ·am−(2k−1)− (m− (2k−2)) ·L ·am−(2k−2)) · 1
k(N+1) .

Fix k, 16 k 6 m−1
2 . By equation em−(2k−1), we have

(39) d′m−2k = h′cm−(2k−1)− (m− (2k−2)) ·h ·dm−(2k−2).
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Let us write an equation equating the coefficients of xk(N+1)−1 on both sides of (39). First, observe
that the coefficient of xk(N+1)−1 in d′m−2k is k(N + 1) · am−2k. Next consider h′cm−(2k−1). First
consider the case N 6= 0. It follows that degh′ = N−1. By (35), we have

(40) degcm−(2k−1) 6 k(N +1)−N.

Thus, the coefficient of xk(N+1)−1 in h′cm−(2k−1) is N ·L ·am−(2k−1). Now consider the case N = 0.
Either h′ = 0, or h′ 6= 0 and degh′ < N− 1. If h′ = 0, then h′cm−(2k−1) = 0 and the coefficient
of xk(N+1)−1 in h′cm−(2k−1) is 0, which is equal to L ·N · am−(2k−1). If N = 0 and h′ 6= 0, then,
since degh′ < N−1 and by (40), the coefficient of xk(N+1)−1 in h′cm−(2k−1) is 0, which is equal to
L ·N ·am−(2k−1). Finally, consider h ·dm−(2k−2). Since degh = N and, by (35),

degdm−(2k−2) 6 k(N +1)−N−1,

we see that the coefficient of xk(N+1)−1 in h · dm−(2k−2) is L · am−(2k−2). Since N 6= −1, we have
k(N +1) 6= 0. Thus, equating the coefficients of xk(N+1)−1 in (38) yields

am−2k = (L ·N ·am−(2k−1)− (m− (2k−2)) ·L ·am−(2k−2)) · 1
k(N+1) .

By equation em−2k, we have

(41) c′m−(2k+1) = dm−2k− (m− (2k−1)) ·h · cm−(2k−1).

Let us write an equation equating the coefficients of xk(N+1) on either side of (41). The coefficient
of xk(N+1) in c′m−(2k+1) is (k(N +1)+1) ·am−(2k+1). The coefficient of xk(N+1) in dm−2k is am−2k.
By (35), we have

degcm−(2k−1) 6 k(N +1)−N,

and, since degh = N, the coefficient of xk(N+1) in hcm−(2k−1) is L ·am−(2k−1). Since N 6=− k+1
k , we

have k(N +1)+1 6= 0. Thus, equating the coefficients of xk(N+1) on either side of (41) yields

am−(2k+1) =
(
am−2k− (m− (2k−1)) ·L ·am−(2k−1)

)
· 1

k(N+1)+1 .

This concludes the proof of (37) and (38).
For i = 0, . . . ,m, define Si ∈ Z as follows. Let

Sm = Sm−1 = 1.

For every k, 16 k 6 m−1
2 , let

Sm−2k = k(N +1) ·Sm−(2k−1) and Sm−(2k+1) = (k(N +1)+1) ·Sm−2k.

Next, we prove by induction that for all k, 06 k 6 m−1
2 , we have

(42) T m
m−2k(N) = Sm−2k · 1

Lk · 1
am
·am−2k and T m

m−(2k+1)(N) = Sm−(2k+1) · 1
Lk · 1

am
·am−(2k+1),

where T m
m−2k and T m

m−(2k+1) are as in Definition 3.2. Recall that by our assumption on the form of β,
we have am 6= 0.

The base case, k = 0, is proved immediately by noting that am = am−1 follows from em+1 and em.
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For the inductive hypothesis, fix k, 06 k < m−1
2 and assume (42) holds. We have from (29), (42),

and the definition of Si that

T m
m−(2k+2)(N) = N ·T m

m−(2k+1)(N)− (m−2k)(k(N +1)+1) ·T m
m−2k(N)

= N ·Sm−(2k+1) · 1
Lk · 1

am
·am−(2k+1)− (m−2k)(k(N +1)+1) ·Sm−2k · 1

Lk · 1
am
·am−2k

= N · Sm−(2k+2)
(k+1)(N+1) ·

1
Lk · 1

am
·am−(2k+1)− (m−2k) · Sm−(2k+2)

(k+1)(N+1) ·
1
Lk · 1

am
·am−2k

= Sm−(2k+2) · 1
Lk · 1

am
·
(
Nam−(2k+1)− (m−2k)am−2k

)
· 1
(k+1)(N+1) .

From (38) with k replaced by k+1, we see that

(43) T m
m−(2k+2)(N) = Sm−(2k+2) · 1

Lk+1 · 1
am
·am−(2k+2).

We have from (30), (43), (42), and the definition of Si that

T m
m−(2k+3)(N) = T m

m−(2k+2)(N)− (m− (2k+1)) · (k+1)(N +1) ·T m
m−(2k+1)(N)

= Sm−(2k+2) · 1
Lk+1 · 1

am
·am−(2k+2)− (m− (2k+1)) · (k+1)(N +1) ·Sm−(2k+1) · 1

Lk · 1
am
·am−(2k+1)

= Sm−(2k+3) · 1
Lk+1 · 1

am
·
(
am−(2k+2)−L(m− (2k+1))am−(2k+1)

)
· 1
(k+1)(N+1)+1 .

From (37) with k replaced by k+1, we see that

T m
m−(2k+3)(N) = Sm−(2k+3) · 1

Lk+1 · 1
am
·am−(2k+3).

This completes the proof of (42).
Now we show that Pm(N) = 0. Using k = m−1

2 in (42) and S0 = (m−1
2 (N +1)+1)S1, we have

Pm(N) =
(m−1

2 (N +1)+1
)
·T m

1 (N)−N ·T m
0 (N)

=
(m−1

2 (N +1)+1
)

S1 · 1
L(m−1)/2 · 1

am
·a1−N ·S0 · 1

L(m−1)/2 · 1
am
·a0 =

S0
L(m−1)/2 · 1

am
· (a1−Na0) .

Consider equation e0:
hd1 = h′c0.

Equating the coefficients of x(N+1)((m−1)/2)+N in e0, recalling (35), yields

a1 = Na0.

We conclude that Pm(N) = 0. �

Lemma 3.9. For every positive integer k, the K-derivation

α

(
x
y

)
=

(
y

x−
2k+1
2k−1

)
of the ring K[x−

1
2k−1 ,x

1
2k−1 ,y] commutes with the K-derivation

β

(
x
y

)
=

(
∑

k
l=0 a2(k−l)x

1+(1− 2k+1
2k−1 )ly2(k−l)

∑
k
l=0 a2(k−l)+1x(1−

2k+1
2k−1 )ly2(k−l)+1

)
,

where the ai ∈ K are defined recursively as follows: a2k+1 ∈ K \{0} is arbitrary, a2k = a2k+1, and
for 0 < l 6 k,

a2(k−l)+1 =
(
−2k+1

2k−1a2(k−l)+2− (2(k− l)+3)a2(k−l)+3
)(

(1− 2k+1
2k−1)l

)−1

and
a2(k−l) =

(
a2(k−l)+1− (2(k− l)+2)a2(k−l)+2

)(
(1− 2k+1

2k−1)l +1
)−1

.
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Proof. We first show that
β(α(x)) = α(β(x)).

We have β(α(x)) = β(y). Note that, in β(y), only odd powers of y with exponents less than or equal
to 2k+1 appear, and for all l, 06 l 6 k, the coefficient of y2(k−l)+1 is

(44) a2(k−l)+1x(1−
2k+1
2k−1 )l.

In α(β(x)), only odd powers of y with exponents less than or equal to 2k+1 appear. The coefficient
of y2k+1 is a2k, which equals a2k+1, which is the coefficient of y2k+1 in β(α(x)). For all l, 16 l 6 k,
the coefficient of y2(k−l)+1 in α(β(x)) is

a2(k−l)x(
1− 2k+1

2k−1)l (1+(1− 2k+1
2k−1)l

)
+a2(k−l)+2x(1− 2k+1

2k−1)l(2(k− l)+2).

By the definition of a2(k−l), this equals (44). Now we show that

β(α(y)) = α(β(y)).

We have
β(α(y)) = β

(
x−

2k+1
2k−1

)
=−2k+1

2k−1x−
2k+1
2k−1−1

β(x).

This expression contains only even powers of y from y0 to y2k. For all l, 06 l 6 k, the coefficient of
y2(k−l) in β(α(y)) is

(45) − 2k+1
2k−1a2(k−l)x(

1− 2k+1
2k−1)l− 2k+1

2k−1 .

We see that α(β(y)) contains only even powers of y from y0 to y2k. For l < k, the coefficient of
y2(k−l) in α(β(y)) is

a2(k−l)+1x(1− 2k+1
2k−1)l− 2k+1

2k−1 (2(k− l)+1)+a2(k−l)−1x(1− 2k+1
2k−1)l− 2k+1

2k−1
(
1− 2k+1

2k−1

)
(l +1).

By definition,

a2(k−l)−1 =
(
−2k+1

2k−1a2(k−l)− (2(k− l)+1)a2(k−l)+1
)((

1− 2k+1
2k−1

)
(l +1)

)−1
.

Hence, the coefficient of y2(k−l) in α(β(y)) is (45). The coefficient of y0 in α(β(y)) is

a1x(1− 2k+1
2k−1)k− 2k+1

2k−1 .

It remains to show that

(46) a1 =−2k+1
2k−1a0.

This is an immediate consequence of the following lemma.

Lemma 3.10. In the notation of Lemma 3.9, for all l, 06 l 6 k,
2k+1
2k−1a2(k−l) =

2(k−l)+1
2(k−l)−1a2(k−l)+1.

Proof. We proceed by induction on l. The base case l = 0 is immediate, since by definition
a2k = a2k+1. For the inductive hypothesis, fix l < k and assume

2k+1
2k−1a2(k−l) =

2(k−l)+1
2(k−l)−1a2(k−l)+1.

We want to show that

(47) 2k+1
2k−1a2(k−l)−2 =

2(k−l)−1
2(k−l)−3a2(k−l)−1.
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The left-hand side of (47) is, by the definition of a2(k−l)−2,

2k+1
2k−1 ·

(
a2(k−l)−1−2(k− l)a2(k−l)

)(
1− 2k+1

2k−1

)
(l +1)+1

.

By the definition of a2(k−l)−1, this equals

2k+1
2k−1 ·

(
−2k+1

2k−1 a2(k−l)−(2(k−l)+1)a2(k−l)+1(
1−2k+1

2k−1

)
(l+1)

−2(k− l)a2(k−l)

)
(
1− 2k+1

2k−1

)
(l +1)+1

.

By the inductive hypothesis, this is equal to

(48)

−2k+1
2k−1 ·

2(k−l)+1
2(k−l)−1−

2k+1
2k−1 (2(k−l)+1)(

1−2k+1
2k−1

)
(l+1)

−2(k− l)2(k−l)+1
2(k−l)−1


(
1− 2k+1

2k−1

)
(l +1)+1

·a2(k−l)+1.

The right-hand side of (47) is, using the definition of a2(k−l)−1,

2(k−l)−1
2(k−l)−3 ·

−2k+1
2k−1a2(k−l)− (2(k− l)+1)a2(k−l)+1(

1− 2k+1
2k−1

)
(l +1)

.

By the inductive hypothesis, this equals

2(k−l)−1
2(k−l)−3

−2(k−l)+1
2(k−l)−1 − (2(k− l)+1)(

1− 2k+1
2k−1

)
(l +1)

·a2(k−l)+1,

which is equal to (48), as a computation shows. �

By letting l = k in Lemma 3.10, we see that (46) holds. �

Lemma 3.11. For every

• positive integer t and
• h ∈ K[x1/t ,x−1/t ]\{0},

if there exists a K-derivation β on K[x1/t ,x−1/t ,y] such that

• β commutes with the K-derivation

α

(
x
y

)
=

(
y
h

)
on K[x−1/t ,x1/t ,y] and
• β is of the form

β

(
x
y

)
=

(
cm−1ym−1 + cm−3ym−3 + . . .+ c0

dmym +dm−2ym−2 + . . .+d1y

)
,

where m> 3 is odd, ci, di ∈ K[x−1/t ,x1/t ], and dm 6= 0,
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then
N := degh ∈ S∪T,

where

S = {1}∪
{
−2k+1

2k−1

∣∣ k ∈ Z,16 k 6 m−1
2

}
,

T = {−1}∪
{
− k

k−1

∣∣ k ∈ Z,k > 2
}
.

Proof. Fix t ∈ Z>1. Fix h ∈ K[x−1/t ,x1/t ]\{0} and hence α of the form stated in the lemma. Let
N = degh and assume N 6∈ T . Suppose a K-derivation β satisfying the properties stated in the
lemma exists and let m be the least odd integer greater than or equal to 3 such that there exists such
a β. By Lemma 3.8, Pm(N) = 0, and by Lemma 3.6 and Lemma 3.7 Pm has at most m+1

2 zeros. We
show that these zeros are exactly the elements of S.

We show that Pm(1) = 0. The K-derivations

∂1

(
x
y

)
=

(
y
x

)
and ∂2

(
x
y

)
=

(
x
y

)
on K[x,x−1,y] commute and ∂1 has the form of α in the statement of Lemma 3.8. The polynomial
r := y2− x2 is a first integral of ∂1, and so r(m−1)/2∂2 is a K-derivation commuting with ∂1 of the
form of β in the statement of Lemma 3.8. Therefore, by Lemma 3.8, Pm(1) = 0.

We show that, for all k, 16 k 6 m−1
2 ,

(49) Pm
(
− 2k+1

2k−1

)
= 0.

Fix k. Let K-derivations ∂1 and ∂2 on K[x
1

2k−1 ,x−
1

2k−1 ,y] be defined as α and β are in Lemma 3.9.
Now

r = y2 +2
(2k−1

2

)
x−2/(2k−1)

is a first integral of ∂1. Note that degy ∂2(y)= 2k+1. Now r(m−(2k+1))/2∂2 is a derivation commuting
with ∂1 of the form of β of Lemma 3.8. Hence, we have (49).

The set S consists of m+1
2 elements, and we have shown that each is a zero of Pm, which is nonzero

of degree at most m+1
2 . It follows that S is exactly the zero set of Pm. �

Corollary 3.4. It is impossible that p is an odd integer greater than or equal to 3.

Proof. Suppose p> 3 and p is odd. Let N = deg f . Recall that p = degy γ2. Consider Lemma 3.11.
Since the extensions of δ and γ2 to K-derivations on K[x,x−1,y] are of the forms of α and β, it
follows that N ∈ S∪T . Since N is assumed to be an integer greater than or equal to 2, this is a
contradiction. �

This finishes the proof of Theorem 3.1. �
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