EASY: Efficient Segment Assignment Strategy
for Reducing Tail Latencies in Pinot

Seyyed Ahmad Javadi, Harsh Gupta, Robin Manhas, Shweta Sahu, Anshul Gandhi
PACE Lab, Department of Computer Science, Stony Brook University
{sjavadi,hagupta,rmanhas,shsahu,anshul } @cs.stonybrook.edu

Abstract—Customer facing online services, such as LinkedIn
and Uber, rely on scalable and low-latency data stores to maintain
acceptable query tail latencies. An important challenge for
managing the performance of these systems is the assignment of
newly created data segments to data nodes to balance load. Given
the rate at which these services are accessed (thus generating new
data), the segment assignment problem is particularly important.
This paper presents EASY, an efficient segment assignment strat-
egy that leverages analytical modeling to predict the future load
induced by data segments, thus allowing for long-term balancing
of load across data nodes. Our implementation and evaluation of
EASY on Pinot shows that we can significantly reduce query tail
latencies in the presence of dynamically generated data segments.

Keywords—segment assignment strategy, tail latency, Pinot

I. INTRODUCTION

Large-scale and real-time Online Analytical Processing
(OLAP) is a major requirement for customer facing compa-
nies. A popular distributed near-realtime OLAP solution is
Pinot [13], that is extensively used at LinkedIn and Uber for
serving user queries (such as the Profile View functionality of
LinkedIn) and for internal analysis.

Pinot leverages a simple architecture where every table is
divided into data “segments” distributed among worker nodes.
Every segment typically contains information for a period of
time (e.g., one hour or one day). An incoming query from a
client to Pinot is run simultaneously across workers hosting
the target segments. The end-to-end response time of a query
in Pinot depends on the longest query latency among target
workers, as all individual (per-worker) results need to be
integrated by the broker node(s) before sending the response
back to the client.

In such distributed data store systems, the Segment Assign-
ment Strategy (SAS) has a significant impact on query latency.
SAS dictates the placement of new segments on worker nodes;
new segments are created dynamically as time passes. Naive
SAS such as round-robin can result in hotspots, severely
impacting query tail latencies (see Section IV).

Existing SAS in production systems often employ a de-
centralized and scalable utility function (or cost function)
approach whereby each server is assigned a cost that can be
easily computed; incoming segments are then assigned to the
lowest cost server, whose cost is then updated. While popular
open source OLAP solutions such as Pinot and Druid [17]
have their own cost-based SAS, these default strategies have
their shortcomings. The Pinot SAS aims to balance the number

of segments across workers. Our experimental results show
that this SAS leads to unbalanced load and high tail latencies.
Druid implements a more advanced SAS by taking the time
range of segments into account. However, as we show in
Section IV, there is much scope for improvement, especially
when there are multiple tables in the data store.

We propose a new load-aware SAS, EASY (Efficient seg-
ment Assignment StrategY), that outperforms existing SAS
solutions in terms of load distribution among workers and,
importantly, in terms of query tail latency. EASY works by
first passively computing the server load created by segments
as queries operate on them. Then, EASY models this segment
load and predicts, at run time, the future load induced by
a segment during its remaining (finite) lifetime. This task is
complicated by the fact that load depends critically on the age
of a segment; we find that, as time passes, the popularity and
load contribution of a segment decreases non-linearly.

We implement EASY on top of Pinot and experimentally
evaluate our SAS using a custom LinkedIn-like data and query
set (guided by the first author’s understanding of LinkedIn’s
Pinot system while he was interning there); we open source
all our implementation and code [11]. Our results show that
EASY significantly improves the load balance among worker
nodes, reducing query tail latencies by up to 6-21% when
compared to the default SAS of Pinot and Druid. Importantly,
EASY requires few changes and creates negligible overhead.

In summary, the contributions of this paper are:
« We present a novel and efficient load-aware SAS for Pinot.

o We design and implement a realistic data set and benchmark
for evaluating Pinot, and open source it [11].

« We implement our SAS on Pinot (publicly available [11]),
and experimentally evaluate it by comparing with the default
SAS of Pinot and Druid.

II. BACKGROUND AND PRIOR WORK

This section provides an overview of Pinot, and then dis-
cusses important prior work on SAS to put our work in context.

A. Background on Pinot

Pinot is a distributed near-realtime OLAP (On-Line An-
alytical Processing) data store that is used at LinkedIn for
various user-facing functions and internal analysis. Pinot has
been open source since 2015 and is currently being used by
other companies such as Uber. Pinot is designed to be able



" Pinotonline "
Serving

Historical
Historical|  Data Hadoop
Controller [«— v:/S oknca (Generate
I (Vorkers ) 1 Index)
':. Queries Push To
...

Consume ;
Realtime,’

)
\ Realtime | _Data
Kafk:
( Workers | .~ i

Hadoop

Fig. 1. Overview of Pinot’s architecture.

to process 100 Million SQL-like queries for 100 Billions of
records in 10s of ms latency. While this paper focuses on
Pinot, our proposed techniques can be applied to other OLAP
systems as well.

Figure 1 illustrates the Pinot architecture including the three
main components: (1) controller, (2) broker, and (3) worker
nodes. The controller is responsible for cluster-wide coordi-
nation and segment assignment to worker nodes (SAS). The
broker (or brokers) receives queries from clients, distributes
them among workers, and integrates the results from the
workers and sends the final result back to clients; the end-
to-end query response time can be obtained at the broker.
The worker nodes host data segments and respond to query
sub-requests that originate from the broker. Query logs are
maintained at workers.

Pinot processes recent data (e.g, a few days old) using
Realtime Workers and older data (may overlap with realtime
data) using Historical Workers, as shown in Figure 1. Realtime
data is pushed to Historical Workers as time passes (e.g., daily)
or when a given number of records have been ingested; the
data is pushed via Katka and HDFS. In this paper we focus
on Historical Workers, that store the bulk of the data.

Historical Workers store data in the form of a pre-built index
called segment; every table has its own segments. Segments
store contiguous data for a given time range; there is a row of
data columns for each time interval within the range. Every
segment thus has an associated start time and end time for its
data (in the Time column). Note that there may be a table-
specific expiry time that dictates how long segments should
be retained by Historical Workers. Once the expiry time, say
3 months, elapses, the associated segments are deleted.

B. Prior work

We now discuss important prior work on SAS; other related
works are discussed in Section V. We implement EASY on top
of Pinot by modifying Pinot’s SAS. The default SAS for Pinot
balances the number of segments across workers. By contrast,
EASY aims to minimize query tail latencies by reducing the
load imbalance between workers; we show in Section IV that
EASY significantly outperforms the default Pinot SAS.

The closest systems to Pinot are Druid [17] and Click-
House [1]. Druid’s SAS [17] is similar to EASY, except that
Druid’s cost function depends only on the time range of a
segment and not its load. As we show in Section IV, EASY
outperforms Druid by specifically taking segment load into
account. ClickHouse [1] is also an OLAP system but does not

Historical Worker

Queries
—>
<~

Responses

Historical Worker

[ EASY APl ]

Fig. 2. EASY’s solution architecture. Components we add are shaded in red.

employ time-ranged segments, like Pinot. Data is distributed
over workers based on weights that must be manually assigned
by cluster administrators.

Getafix [8] uses a modified bin packing approach to dis-
tribute incoming segments across workers based on their
popularity. The authors define segment popularity in terms of
access count of the segment, and popularity is aged exponen-
tially. Likewise, Copeland et al. [2] distribute data segments
to worker nodes so as to balance the access frequency of
resident data objects. Furtado [7] proposes a data placement
schema based on hash-partitioning to favor most frequently
accessed keys for a relational database. BlowFish [9] maintains
a request queue per segment and uses queue length as an
estimator of segment load; this queue length information is
then used to distribute segments across servers. However, the
access frequency or outstanding requests for a segment may
not directly correlate with the segment load. For example,
a less popular segment may still contribute significantly to
server load because of its size or its structure (e.g., number of
columns). By contrast, EASY models popularity based on its
estimated load, which is a more direct indicator of the cost of
a segment than its access frequency.

III. SYSTEM DESIGN AND IMPLEMENTATION

We now present the design of EASY, followed by the cost
function for SAS, and finally the implementation details of
EASY on Pinot.

A. Solution architecture

Figure 2 shows the solution architecture of EASY; the
components that make up EASY are shown in red. Since
SAS is managed by the controller, we implement our EASY
SAS in the controller; the mathematical details of our SAS
are presented in the next subsection. When a new segment is
generated, the controller sends a request to all workers. Each
worker, in turn, computes its cost function and returns the
value to the controller via an API call. The controller then
picks the r workers that have the smallest cost values, and
places r replicas of the incoming segment on these workers. r
is a user-specified value; we set » = 1 in our implementation.

To facilitate the computation of the cost function, each
worker logs the total cpu time spent, cpu_timeg, and the
total number of rows scanned, row_scang, by each query Q).
Note that () will likely span multiple segments; we thus also
log a list of segments scanned by (. However, we do not log



segment-level information, such as segment-level cpu time and
rows scanned, as this information logging requires significant
overhead and may be computationally infeasible. Instead,
we estimate segment-level information from cpu_timeg and
row_scang, as discussed next.

B. EASY'’s cost function

Recall that Pinot selects the lowest cost worker nodes for
each incoming segment. The default cost function in Pinot
simply assigns one unit of cost for each segment in a worker
node, thus assigning an incoming segment to the r workers
with the lowest number of segments. Unfortunately, this cost
function does not take into account the server load that each
segment contributes and may contribute in the future. The
cost function for EASY is specifically designed to efficiently
address this shortcoming.

High-level idea. The high-level idea behind EASY’s cost
function is to estimate the server load that each segment
will induce during its remaining lifetime. The server load
contribution of a segment is challenging to compute as it
depends on several factors, including (i) the popularity of
the segment, (ii) the size of the segment (number of rows),
(iii) the query mix that typically targets the segment and
its relative complexity, and (iv) the structure of the segment
(number of columns and their content). Worse, predicting the
load that a segment may contribute to in the future requires an
understanding of how induced load changes with time. Clearly,
modeling all of these factors will require significant time and
effort, leading to inefficient SAS design.

Instead, EASY simply models the total server load con-
tribution of a segment of a given table based on previously
observed data. Specifically, we compute the fotal cpu time
spent by all queries actively scanning a segment, and use this
as a proxy for load contribution. We find that this cpu time
per segment per query decreases with the age of a segment,
possibly because of caching. We thus also model this decaying
trend of cpu time as a function of the segment age (difference
between current time and segment start time).

To enable predictions of future load that a segment may
induce, we learn the cpu_time per row as a function of segment
age for a typical segment of each table. Then, for any segment
of a table, we predict its cpu_time contribution based on its
number of rows during its entire lifetime as it ages (since
segments expire after some expiry time).

Our approach differs from existing approaches since we
predict the future load induced by any segment. Further, we
model the actual load induced by a segment as opposed to
only modeling its popularity or frequency of access, which
are not accurate enough estimators of load (see Section IV).

1) Passive model training: EASY passively computes its
estimates of load per segment based on the measured load
induced by incoming queries on existing segments. Further, to
account for changes in workload, EASY periodically updates
its estimates in each interval (one hour, in our implementation).

Computing cpu_time per segment. As discussed in Sec-
tion III-A, we track the total cpu_time of each query @, say

cpu_timeg, at each worker. To determine the contribution of
individual segments to this cpu time, we also keep a track of
the segments, and the specific time range within the segments,
that each query scans. Let Sg be the set of segments scanned
by query @, and let ¢ be the time range, in hours, of segment
5 € S that ) scans (obtained via the WHERE clause of Q).
In our implementation of Pinot, each segment represents one
day, and so the fraction of segment s that is scanned by @ is
fs = ts/24. We now estimate the number of rows of s scanned
by @ (not directly available via Pinot) as f; X row_counts,
where row_count, is the total number of rows in segment
s and is already known to Pinot. Finally, we estimate the
contribution of segment s € Sg to cpu_timeg as:

fs X row_countg

Doz So fz X row_count,,

(D

cpu_timefg = cpu_timeg X

The total cpu_time contribution of s based on all queries
observed in the past interval is then estimated as:

>

observed Q

cpu_time® = cpu_timeg, )

Computing row_scan per segment. We use a similar approach
to estimate the number of rows scanned for segment s by all
queries in the past interval as:

row_scang X fs X row_counts

row_scan’® =
ersQ fz X row_count,

observed Q

)

where row_scang (logged by EASY) is the total number of
rows, across all segments, scanned by query Q.

Load modeling as a function of age. We now model the
load induced by any segment based on its age; this will allow
us to online predict the future load created by a segment in
Section II-B2. To enable load prediction for any segment size,
we normalize cpu_time® by row_scan®; we refer to this as:
normalized cpu_time: the total cpu time per scanned row of
segment s incurred by all queries in the last interval.
Likewise, we normalize row_scan® by row_count® to get:
normalized row_scan: the total rows scanned per row con-
tained in segment s by all queries in the last interval.

Figure 3 shows our empirical results for normalized
cpu_time and row_scan for three different Pinot tables (see
Section IV-A for details on our experimental setup). We see
that both values decrease non-linearly with segment age; the
decrease for row_scan is to be expected as segment popularity
drops with time (older segments are queried less frequently
compared to newer segments).

To enable efficient predictions for new segments, we model
the empirical observations. Given that popularity for segments
is Zipf distributed, we fit the empirical values as ¢ + ¢1 /2%,
where ¢y and c; are coefficients to be learned and « is a
parameter. Our regression results for these models are shown
as dotted lines in Figure 3 along with the modeled equations;
we find that setting cp = 0 does not significantly affect
the modeling accuracy for normalized cpu_time, and so we
simplify this model accordingly. The regression fit is very



—
o
o
g

S = mpirical - ProfileView
o = mpirical - JobApply
£ 0.03F mE mpirical - ArticleRead
[} + Modeled

£

>

Q

[$)

o

@

N

©

E

<)

pz4

Segment age (days) —

(a) Normalized cpu_time as a function of segment age.

30
T 05 == mpirical - ProfileView
S h() ~ 20.86-3.24 x*° | commmEmpirical - JobApply
3 m==Empirical - ArticleRead
> 207 - Modeled
o
E h(x) ~ 18.52 - 3.93 x*3
= 107 hix) ~ 9.24 - 3.95 x°2 |
IS
] \
Z 0

0 30 60 90
Segment age (in days) —

(b) Normalized row_scan as a function of segment age.

Fig. 3. Empirical and modeled estimates for normalized cpu_time and row_scan for segments of three different tables. Also shown are the regression fit
model equations for each case. The mean modeling error is less than 5% for cpu_time and less than 3% for row_scan for all tables.

close to the empirical observations, thus the dotted lines
coincide with the solid (empirical) lines in the figure. The
modeling error for cpu_time (g(x) in Figure 3(a)) is 3.24%,
4.11%, and 2.75% for ProfileView, JobApply, and ArticleRead
tables, respectively. The modeling error for row_scan (h(x)
in Figure 3(b)) is 2.94%, 1.16%, and 0.97% for ProfileView,
JobApply, and ArticleRead tables, respectively.

2) Online load prediction: To predict the future load in-
duced by a segment, EASY leverages the above described
models of g() and h(), and integrates the predicted load
over the remaining lifetime of the segment. In particular, at
time ¢, for a segment s with segment start time start, and
row_countg total rows, EASY predicts its future load as:

expiry

loads(t) = row_counts X /

t—startg

g(x) h(z) dz, (4

where t — start, is the age of s and expiry (3 months in
our implementation) is the expiration duration of s. Note that
g(x) x h(x) represents total cpu time per row of segment s, and
thus multiplying this quantity with row_counts gives us the
total cpu time for segment s; integrating over the remaining
lifetime gives us the predicted load induced by s.

Since our accurate models for normalized cpu time, g(z) =
a-x%, and row scan, h(xz) =b+c- 2P, are relatively easy to
express (where a, b, ¢, o, and (3 are regression coefficients, as
shown in Figure 3), we can obtain Eq. (4) in closed-form as:

ab
loads(t) = row_counts - | ——— (expiry®t! — (¢t — starts)*t!
(t) ((a+1) (expiry ( )
ac iyt BT (4 _ spqrt. o HBFL
+ PR (ea:pzry (t — starts) )

®

Given this closed-form expression, computing the segment
load under EASY is computationally efficient; hence the name
EASY (Efficient segment Assignment StrategY).

3) Putting it all together: We are now ready to define our
cost function. For a worker w with current set of segments .S,
at time ¢, the EASY cost is:

cost(w,t) = Z loads(t) (6)
SESw

Finally, for an incoming segment at time ¢, EASY selects
the r workers with lowest cost(w,t) for placement.

C. Implementing EASY on Pinot

We implement EASY in Java for integration with Pinot
(also written in Java). On the controller side, we implement
EASY SAS with ~200 lines of code. On the worker side,
we implement the EASY RESTIess API and Pinot logging
extensions with ~500 lines of code. The API is used to
compute the cost(w,t) function at each worker w and return
the value to the controller. We record cpu_time for each
query via java.lang.management.ThreadMXBean; we verified
the correctness of our cpu_time implementation with engineer-
ing staff at LinkedIn (when the first author was interning at
LinkedIn). We also expose the list of segments being targeted
by a query in the final log. The overhead of EASY is negligible
in practice, especially since we integrate our logging efforts
with the efficient LogFactory class used by LinkedIn in their
production Pinot implementation. For reference, we have open
sourced our EASY-equipped Pinot implementation [11].

IV. EVALUATION

We first describe our experimental setup and evaluation
methodology, and then present our evaluation results compar-
ing EASY to Pinot SAS and Druid SAS.

A. Experimental setup

We use 7 servers for our experiments, with 1 controller, 2
brokers, and 4 worker nodes. All servers are identical with 4
cores (Intel Xeon CPU E3-1231) and 16GB of memory (of
which 12GB is assigned to Pinot Java processes). Servers are
connected through 1GB network links.

Data store. The data on worker nodes is divided into tables,
and each table has its own segments; each segment is made
up of rows and columns, with each row corresponding to
information for a given time period. To mimic the LinkedIn
functionality, we create the following (self-explanatory) tables:
ProfileView, JobApply, and ArticleRead. The total number of
rows for ProfileView, JobApply, and ArticleRead are around
2.7M, 1.8M, and 0.9M, respectively. Each table has several
columns; for example, ProfileView has columns: Time, View-
erProfileld, ViewerWorkPlace, WereProfilesConnected, etc.

Workload and benchmark. We implement a query generator
benchmark for Pinot based on our tables. For each table,
we create several relevant queries. An example query for the
ProfileView table is “SELECT * FROM ProfileView WHERE



T 1200

7 - e
é T bT T !
- T Q O E
(&} 4
Feworggn  HPg BHG
= 1L Lo L 1 Lo
5
T 400 ——BalanceNum ||
o —— Spread
'0@ —EASY
o
s 07, oE o= 15K o= 25K

Fig. 4. Boxplot illustrating the Tgg for different SAS as a function of in-
creasing standard deviation of segment size (¢). For o0 = 5K, 15K, and 25K,
EASY reduces Tog by 1%, 5%, and 6% when compared to BalanceNum and
by 1%, 4%, and 5% when compared to Spread.

ViewStartTime > t; AND ViewStartTime < t5”, where t1 and
to are (randomized) query parameters. Every query requests
data from a table with time range length (based on WHERE
clause) being Zipf distributed and end time being the wall
clock time when the query is issued.

Our benchmark is implemented in ~2000 lines of code and
schema files. The table and query design is guided by our
understanding of the Pinot system used by LinkedIn (based on
the first author’s internship at LinkedIn). All implementation
details, including code, tables, and queries, have been open
sourced for reference [11].

B. Evaluation methodology

Metrics. We evaluate SAS in terms of two metrics:

(1) Tag: 99%ile query tail latency as seen by the broker(s), a
metric that LinkedIn uses internally [10]; and

(ii) CPU,: standard deviation of the CPU usage across
workers, a metric we aim to minimize to, in turn, reduce Tgyg.

Baselines. We compare EASY with the following SAS:

(i) BalanceNum: This default Pinot SAS aims to balance the
number of segments across workers. An incoming segment is
assigned to the worker with the least number of segments.
(ii) Spread: This is the Druid SAS in use at Metamarkets
which aims to avoid hotspots by spreading apart segments that
are closer in time as they are likely to be queried together [5].
For segments X and Y, Spread defines:

T1 Y1
cost(X,Y) :/ / e M=yl dg dy, )
xo Yo

where [z¢,21) and [yo,y1) is the time range of X and Y,
respectively, and ) is the decay rate. For an incoming segment
X, Spread selects the worker k£ which results in minimum
> yes, cost(X,Y), where Sy is the set of segments on k. The
intuition behind this cost function is to place X at a worker
that does not contain too many segments which are likely to
be queried together with X (have neighboring time ranges) to
minimize contention.

C. Results

We illustrate evaluation results under various scenarios.
In each case, we use normalized cpu_time and row_scan
information about segments from the past interval (one hour)
to guide the SAS, as described in Section III-B.

T —
— 1500 T

E I
= |

3
~ 1000 T T
5 | = —
2 —— - T
g 500¢
Q@
3
N . . .
© BalanceNum Spread EASY

Fig. 5. Boxplot illustrating the Tgo under different SAS for the scenario
where a worker node is added. EASY reduces Tgg by 21.55% and 1.61%
when compared to BalanceNum and Spread, respectively.

SAS for different segment size variability. We first consider a
scenario where 90 segments (for 90 days of data) are assigned
to four worker nodes via the specified SAS. We then run our
benchmark and generate queries over these 90 segments for the
next 30 minutes. This experiment uses the ProfileView table;
segment sizes (row count) are Normally distributed with mean
= 30K and varying standard deviation, o.

Figure 4 shows the boxplot (including median and first and
third quartiles) for our experimental results for Ty9 under Bal-
anceNum, Spread, and EASY. We find that EASY reduces Ty
moderately by around 1-6% when compared to BalanceNum
and Spread. The improvement is larger for higher variability
in segment sizes. This is to be expected as BalanceNum and
Spread do not explicitly take segment size into account, while
EASY implicitly takes the segment size into account when
learning the load contributions of segments (see Section III-B).

SAS when adding workers. We next consider the more
challenging scenario where a new worker node is added to
scale capacity and accommodate new segments. Specifically,
we start with three worker nodes which are assigned 60
segments via their SAS. Then, a fourth worker node is added
and 30 new segments are assigned (across all workers). We
monitor query latencies from this point onwards for the next 30
minutes. This experiment uses the ProfileView table; segment
sizes are Normally distributed with ; = 30K and 0 = 1K.

Figure 5 shows our experimental results for Ty9 under
BalanceNum, Spread, and EASY. We find that EASY reduces
To9 by 21.55% and 1.61% when compared to BalanceNum
and Spread, respectively. Likewise, EASY improves query
throughput (not shown) by 13.38% and 1.04% when com-
pared to BalanceNum and Spread, respectively. Finally, EASY
reduces C'PU, by 18.38% and 3.51% when compared to
BalanceNum and Spread, respectively.

The above results show that the improvement afforded
by EASY over BalanceNum is significant. This is because
BalanceNum assigns most of the 30 new segments to the
fourth (empty) worker node, resulting in a hotspot as newer
segments are queried more often. By contrast, both EASY and
Spread take recency of segments into account, thus providing
better load balancing.

SAS with multiple tables. We now experiment with seg-
ments from all three tables (see Section IV-A). We assign
28 segments (for the month of February) for each table to



T 1000 — — —
2]

E — — —
> i L

<) PR
'_

Z 500t ]
c

g

®

o

2

(o] L L

o

BalanceNum Spread EASY
Fig. 6. Boxplot illustrating the Tgg under different SAS for the case of
multiple tables. EASY reduces Tog9 by 4.93% and 6.33% when compared to
BalanceNum and Spread, respectively.

4 workers; assignment follows the specified SAS. We assign
segments chronologically — segments for a given day for all
tables, and then segments for the next day for all tables.
BalanceNum tries to balance the number of segments for
each table across workers. Spread considers segments from all
tables on a worker node, but assigns a higher cost in Eq. (7)
(by a factor 2x) if a pair of segments belong to the same
table as they are then more likely to be queried together [5].
EASY does not use a pair-wise cost function (as in Spread),
and easily extends to the case of multiple tables by considering
segments from all tables on a worker (s € S, in Eq. (6) can
be from any table) when computing the cost for a worker.
Figure 6 shows our experimental results for Tyg. This time,
EASY reduces Ty by 4.93% and 6.33% when compared
to BalanceNum and Spread, respectively. These results show
that EASY affords moderate improvements over Spread as
well. Spread performs poorly in this case as it does not take
into account the relative difference in the load contributed by
segments of different tables. That is, segments of different
tables with the same age are treated equally, even though they
may induce different loads on the workers due to differences
in their structure and content as well as incoming query rate
and pattern. By contrast, EASY learns these differences over
time and thus treats segments from different tables differently.

V. RELATED WORK

We now discuss related work apart from those already
discussed in Section II-B. Curino et al. [3] propose a resource
estimation technique to better consolidate multiple online data
processing workloads on physical servers. However, they do
not take the time range of data into account, which is an
important factor in accurately estimating segment load.

Wong et al. [16] consider the subset of segments required
to service a relational database query, and use this information
to consolidate segments onto servers. However, under Pinot,
since segments are created over time, the subset of segments
required by a query changes dynamically.

Ozmen et al. [12] address the problem of generating an opti-
mized layout for a given set of database objects by formulating
it as a non-linear program. The resulting layout both balances
load and avoids interference. By contrast, EASY’s approach
is much more efficient and only relies on load and popularity
estimates, which can be easily obtained.

Pinot partitions data based on timestamps as queries are
expected to apply to a particular range of time. This is not the
case for general OLAP where all dimensions may have equal
importance. VOLAP [4] migrates data shards among OLAP
workers to reduce load imbalance.

There are also related works that address the problem of
tenant placement in Database-as-a-Service deployments (e.g.,
STeP [15] and Pythia [6]) or placement of different databases
across servers (e.g., Schaffner et al. [14]). While similar, the
SAS problem is distinguished by the concept of time-ranged
segments which complicates the load distribution challenges.

VI. CONCLUSION

We present EASY, an efficient SAS (Segment Assign-
ment Strategy) for OLAP systems, such as Pinot [13] and
Druid [17]. The key idea in EASY is to model the cpu time
contribution of each segment, and leverage this modeling to
predict the future load induced by segments of a server. Ex-
perimental results show that SAS based on our accurate model
predictions provides significantly lower query tail latencies
when compared to the SAS of Pinot and Druid.

ACKNOWLEDGEMENTS

This work was supported by NSF CNS grants 1617046,
1622832, 1717588, 1730128, and 1750109.

REFERENCES

[1] ClickHouse — Open Source Distributed Column-oriented DBMS. https:
/lclickhouse.yandex.

[2] G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data Placement
in Bubba. In SIGMOD’88, pages 99-108, 1988.

[3] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan. Workload-
aware Database Monitoring and Consolidation. In SIGMOD’11, pages
313-324, 2011.

[4] F. Dehne, D. Robillard, A. Rau-Chaplin, and N. Burke. VOLAP: A
Scalable Distributed System for Real-time OLAP with High Velocity
Data. In [EEE Cluster’16, pages 354-363, 2016.

[5] Distributing Data in Druid at Petabyte Scale. https://metamarkets.com/
2016/distributing-data-in-druid-at-petabyte-scale.

[6] A.J. Elmore, S. Das, A. Pucher, D. Agrawal, A. El Abbadi, and X. Yan.
Characterizing Tenant Behavior for Placement and Crisis Mitigation in
Multitenant DBMSs. In SIGMOD’13, pages 517-528, 2013.

[7] P. Furtado. Experimental Evidence on Partitioning in Parallel Data
‘Warehouses. In DOLAP’04, pages 23-30, 2004.

[8] M. Ghosh, L. Xu, X. Qian, T. Kao, I. Gupta, and H. Gupta. Getafix:
Workload-aware Distributed Interactive Analytics. Technical report,
University of Illinois Urbana-Champaign, 2016.

[9]1 A. Khandelwal, R. Agarwal, and I. Stoica. BlowFish: Dynamic Storage-

Performance Tradeoff in Data Stores. In NSDI’16, pages 485-500, 2016.

‘Who Moved My 99th Percentile Latency? https://engineering.linkedin.

com/performance/who-moved-my-99th-percentile-latency.

PACELab/pinot. https://github.com/PACELab/pinot.

O. Ozmen, K. Salem, J. Schindler, and S. Daniel. Workload-aware

Storage Layout for Database Systems. In SIGMOD’10, pages 939-950,

(10]

[11]
[12]

2010.
[13] Pinot — A Realtime Distributed OLAP Datastore. https://github.com/
linkedin/pinot.

[14] J. Schaffner, D. Jacobs, T. Kraska, and H. Plattner. The Multi-Tenant
Data Placement Problem. In DBKDA’12, 2012.

R. Taft, W. Lang, J. Duggan, A. J. Elmore, M. Stonebraker, and
D. DeWitt. STeP: Scalable Tenant Placement for Managing Database-
as-a-Service Deployments. In SOCC’16, pages 388—400, 2016.

E. Wong and R. H. Katz. Distributing a Database for Parallelism. In
SIGMOD’83, pages 23-29, 1983.

F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli.
Druid: A Real-time Analytical Data Store. In SIGMOD’14, pages 157—
168, 2014.

[15]

[16]

[17]



