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Abstract

Motivation: Neuronal synapses transmit electrochemical signals between cells through
the coordinated action of presynaptic vesicles, ion channels, scaffolding and adapter
proteins, and membrane receptors. In situ structural characterization of numerous
synaptic proteins simultaneously through multiplexed imaging facilitates a “bottom-up”
approach to synapse classification and phenotypic description. Objective automation of
efficient and reliable synapse detection within these datasets is essential for the
high-throughput investigation of synaptic features. Convolutional neural networks can
solve this generalized problem of synapse detection, however, these architectures require
large numbers of training examples to optimize their thousands of parameters.

Results: We propose DoGNet, a neural network architecture that closes the gap
between classical computer vision blob detectors, such as Difference of Gaussians (DoG)
filters, and modern convolutional networks. DoGNet is optimized to analyze highly
multiplexed microscopy data. Its small number of training parameters allows DoGNet
to be trained with few examples, which facilitates its application to new datasets
without overfitting. We evaluate the method on multiplexed fluorescence imaging data
from both primary mouse neuronal cultures and mouse cortex tissue slices. We show
that DoGNet outperforms convolutional networks with a low-to-moderate number of
training examples, and DoGNet is efficiently transferred between datasets collected
from separate research groups. DoGNet synapse localizations can then be used to guide
the segmentation of individual synaptic protein locations and spatial extents, revealing
their spatial organization and relative abundances within individual synapses.

Availability: The source code is publicly available:
https://github.com/kulikovv/dognet

Author summary

Multiplexed fluorescence imaging of synaptic proteins facilitates high throughput
investigations in neuroscience and drug discovery. Currently, there are several
approaches to synapse detection using computational image processing. Unsupervised
techniques rely on the a priori knowledge of synapse properties, such as size, intensity,
and co-localization of synapse markers in each channel. For each experimental replicate,
these parameters are typically tuned manually in order to obtain appropriate results. In
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contrast, supervised methods like modern convolutional networks require massive
amounts of manually labeled data, and are sensitive to signal/noise ratios. As an
alternative, here we propose DoGNet, a neural architecture that closes the gap between
classical computer vision blob detectors, such as Difference of Gaussians (DoG) filters,
and modern convolutional networks. This approach leverages the strengths of each
approach, including automatic tuning of detection parameters, prior knowledge of the
synaptic signal shape, and requiring only several training examples. Overall, DoGNet is
a new tool for blob detection from multiplexed fluorescence images consisting of several
up to dozens of fluorescence channels that requires minimal supervision due to its few
input parameters. It offers the ability to capture complex dependencies between
synaptic signals in distinct imaging planes, acting as a trainable frequency filter.

Introduction 1

Neuronal synapses are the fundamental sites of electrochemical signal transmission 2

within the brain that underlie learning and memory. The protein compositions within 3

both presynaptic and postsynaptic synaptic densities crucially determine the stability 4

and transmission sensitivity of individual synapses [1, 2]. The analysis of synapse 5

protein abundances, localizations, and morphologies offers better understanding of 6

neuronal function, as well as ultimately psychiatric and neurological diseases [3, 4]. 7

However, the high spatial density and structural complexity of synapses both in vitro 8

and in vivo requires new computational tools for the objective and efficient 9

identification and structural profiling of diverse populations of synapses. 10

Fluorescence microscopy (FM) combines molecular discrimination with 11

high-throughput, low-cost image acquisition of large fields of view of neuronal synapses 12

within intact specimens using modern confocal imaging instruments. Immunostaining 13

techniques [5, 6] can be used to identify synapses as puncta within fluorescence 14

microscopy images to distinguish distinct types of synapses based on molecular 15

composition. However, phenotypic classification of individual synapses in FM images is 16

challenging because of the morphological complexities of variable structural features of 17

synapses, including synaptic boutons, presynaptic vesicles, and synaptic clefts, which 18

cannot be resolved using conventional light microscopy. 19

Manual synapse detection and classification quickly becomes intractable for even 20

moderately sized datasets, thus necessitating automated processing. In recent years, 21

deep convolutional neural networks (ConvNets) have become state-of-the-art tools for 22

image classification [7] and segmentation [8], and have been extended to electron 23

microscopy images of neuronal synapses [9, 10]. ConvNets, however, requires thousands 24

of learnable parameters and therefore requires a large amount of training data to avoid 25

overfitting. Furthermore, even when sufficient training data is available, ConvNets may 26

fail to generalize to new experimental conditions that result in modified image 27

properties. Both of these factors complicate the use of ConvNets for synapse detection 28

in fluorescence microscopy images, often rendering traditional blob detection techniques 29

such as [11] preferable. 30

In this work, we introduce a new neural network architecture for synapse detection 31

in multiplexed immunofluorescence images. Compared with ConvNets, the new 32

architecture achieves a considerable reduction in the number of learnable parameters by 33

replacing the generic filters of ConvNets with Difference of Gaussians (DoG) filters [12]. 34

This replacement is motivated by the fact that in FM images, typical mammalian 35

synapses are close in size to the diffraction limit of light. Consequently, individual 36

synapses are resolved as blobs due to the convolution of the microscope point spread 37

function with the underlying fluorescence labels, and approximately Gaussian [13,14]. 38

DoG filters are known to be good blob detectors and have few parameters. The DoGNet 39
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architecture uses multiple trainable DoG filters applied to multiple input channels and, 40

potentially, in a hierarchical way (Deep DoGNets). The parameters of the DoG filters 41

inside DoGNets are trained in an end-to-end fashion together with other network layers. 42

We use linear weights layer to combine the response maps of different DoG filters 43

together into a probabilistic map. 44

We post-process this probability map in order to estimate the centers of synapses and 45

describe their properties. For each synapse, the output of our system gives the location 46

and the shape of the punctum for each protein marker, with desired confidence level. 47

We have validated the performance of this new architecture by comparing several 48

variations of DoGNets to popular types of ConvNet architectures including U-Nets [8] 49

and Fully Convolutional Networks [15] for the task of synapse detection. The 50

comparison is performed on four different datasets including a synthetic dataset, an 51

annotated real dataset from previous work [16,17], and another human annotated 52

dataset acquired with PRISM multiplexed imaging [6]. Apart from outperforming 53

ConvNet architectures, the DoGNet approach achieves accuracy comparable to 54

inter-human agreement on the dataset from [6]. Finally, we have shown that a DoGNet 55

trained on one correlated Array Tomography and Electron Microscopy dataset can be 56

successfully applied to an Array Tomography (AT) dataset without associated Electron 57

Microscopy images, which may facilitate accurate synapse detection in large datasets 58

where correlated EM data are not available. 59

Overall, the system is based on the DoGNet detector and a post-processing pipeline 60

that reveals synaptic structure consistent with known synaptic protein localization, and 61

provides a wealth of data for further downstream phenotypic analysis, thereby achieving 62

successful automation of synapse detection in neuronal FM images. Notably, the 63

DoGNet architecture is not specific to such images, and can be applied to other 64

microscopy modalities where objects of interest show a punctate spatial patterning, or 65

where, more generally, a certain image analysis task may be performed via learnable 66

blob detection such as single molecule segmentation in super-resolution microscopy and 67

single particle tracking [18], detection of clusters or endosomes in immunofluorescence 68

images [19], and detection of puncta in fluorescence in situ hybridization (FISH) 69

datasets [20,21]. 70

Fig 1. Single layer DoGNet inference pipeline. Synaptic protein channels from
the PRISM [6] dataset are used as input images. Each channel of the input images are
convolved with a number of the Difference of Gaussian filters. This processing is
performed using the sigmoid function convolved with (or multipled by) the per-pixel
weighted sum of intermediate maps. The DoGNet is trained to predict the probability
map for each pixel as belonging to a synapse. Synapses locations and parameters of
their proteins (such as average intensities and shapes) are extracted by fitting Gaussians
to the intensities of individual proteins in the vicinities of the local maxima of the
resulting probability map. The scalebar on the large scale image equals 25 µm (5 µm in
the cropped region).

Related work. Automation of synapse detection and large-scale investigation of 71

neuronal organization has seen considerable progress in recent years. Most work has 72

been dedicated to the segmentation of electron microscopy datasets, with modern 73

high-throughput pipelines for automated segmentation and morphological 74

reconstruction of synapses [8–10,22,23]. Much of this progress may be credited to deep 75

convolutional networks. Segmentation accuracy of these approaches can be increased by 76

making “deeper” networks [24], adding dilated/“a-trous” convolution [25] or using 77

“hourglass” architectures [8, 26] that include downscaling/upscaling parts with so-called 78

skip connections. ConvNets typically outperform random forest and other classical 79

machine learning approaches that are dependent on hand-crafted features such as those 80
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proposed in [27,28]. At the same time, while it is possible to reduce the number of 81

training examples needed by splitting the segmentation pipeline into several smaller 82

pipelines [10], the challenge of reducnig the number of training parameters without 83

sacrificing segmentation accuracy remains. 84

Within the context of neuronal immunofluorescence images, synapses are typically 85

defined by the colocalization of pre- and postsynaptic proteins within puncta that have 86

sizes on the order of the diffraction limit of 250 nm. One fully automated method using 87

priors, which quantifies synaptic elements and complete synapses based on pre- and 88

postsynaptic labeling plus a dendritic or cell surface marker, was previously proposed 89

and applied successfully [29]. Alternatively, a machine learning approach to synapse 90

detection was proposed in [30, 31], where a support vector machine (SVM) was used to 91

estimate the confidence of a pixel being a synapse, depending on a small number of 92

neighboring pixels. Synapse positions were then computed from these confidence values 93

by evaluating local confidence profiles and comparing them with a minimum confidence 94

value. Finally, in [32], a probabilistic approach to synapse detection on AT volumes was 95

proposed. The principal idea of this approach was to estimate the probability of a pixel 96

being a punctum within each tissue slice, and then calculating the joint distribution of 97

presynapic and postsynapic proteins between neighbouring slices. Our work was mainly 98

inspired by works [32] and [11], that produced the state-of-the-art results in synapse 99

detection on fluorescence images. 100

More conventional machine vision techniques have also been applied for synapse 101

detection [6, 11,12]. These methods aim at detecting regions that differ in brightness 102

compared with neighboring regions. The most common approach for this task is 103

convolution with a Laplacian filter [12]. The Laplacian filter can be computed as the 104

limiting case of the difference between two Gaussian smoothed images. Since 105

convolution with a Gaussian kernel is a linear operation, convolution with the difference 106

of two Gaussian kernels can be used instead of seeking the difference between smooth 107

images. The usage of Difference of Gaussians for synapse detection was proposed in [11] 108

with manually defined filter parameters. Here, we introduce a new DoGNet architecture 109

that integrates the use of simple DoG filters for blob detection with machine, deep 110

learning, thereby combining the strengths of the preceding published 111

approaches [8, 11, 32]. Our approach offers the ability to capture complex dependencies 112

between synaptic signals in distinct imaging planes, acting as a trainable frequency 113

filter. 114

Materials and methods 115

Our synapse puncta detection procedure consists of two steps: an application of the 116

pre-trained DoGNet architecture to imaging planes of the source image and a 117

post-processing of its output. In a nutshell, DoGNet is a standard convolutional neural 118

network with convolution kernels reparametrized using the Difference-of-Gaussians 119

(DoG) as shown in Fig 2. The DoGNet architecture applies a small number of DoG 120

filters to each protein channel and then combines the outputs of the filtering operations. 121

We train that network end-to-end using the backpropagation algorithm [33]. 122

Accordingly, we describe the operation of our procedure by first discussing the 123

properties of trainable DoG filters. We then discuss single layer and deep versions of the 124

DoGNet architecture, and the training processes for both. Finally, we present in detail 125

the post-processing procedure. 126

Difference-of-Gaussians filters. In classical computer vision, the DoG filter is 127

perhaps the most popular operation for blob detection. As follows from its name, DoG 128

filtering corresponds to applying two Gaussian filters to the same real-valued image and 129

then subtracting the results. As the difference between two different low-pass filtered 130
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Fig 2. (a) The architecture of shallow DoGNet. The input image channels (for example
synapsin, vGlut, and PSD95) are each processed by five trainable DoG filters. The
weighted sum (with trainable weights) combines the resulting 15 DoG layer output maps
into a single map. The sigmoid function converts the latter map into a pixel probability
map. (b,c,d) The variations of the Difference of Gaussians that we use in each DoG
layer. (b) An isotropic Difference of Gaussians. (c) An anisotropic difference of
Gaussians. Each Gaussian is described by a pair of variance values and a rotation angle.
(d) A 3D Isotropic Difference of Gaussians. Surfaces show filter values along z slices.

images, the DoG is actually a band-pass filter, which removes high frequency 131

components representing noise as well as some low frequency components representing 132

the background variation of the image. The frequency components in the preserved 133

band are assumed to be associated with the edges and blobs that are of interest. DoG 134

filters are often regarded as approximations to Laplacian-of-Gaussian filters that require 135

more operations to compute. 136

Depending on the parameterization of the underlying Gaussian filters, DoG filters 137

may vary in their complexity. For example, in the most common case, one considers the 138

difference of two isotropic Gaussian probability distribution functions as the filter kernel: 139

DoG Isotropic[w1, w2, σ1, σ2](x, y) = w1 exp

(
−x

2 + y2

2σ2
1

)
− w2 exp

(
−x

2 + y2

2σ2
2

)
(1)

This version of the DoG filter depends on four parameters, namely the amplitude 140

coefficients w1 and w2, as well as the bandwidth parameters σ1 and σ2. The shape of 141

the resulting function is depicted in Fig 2(b). The amplitudes w1 and w2 can be 142

replaced by normalizing coefficients 1/2πσ1 and 1/2πσ2 respectively, reducing the 143

number of trainable parameters to just two. 144

The four- and the two-parameter DoG filters described above are suitable for 145

detecting isotropic blobs. For anisotropic blob detection, pairs of anisotropic Gaussians 146

with zero means and shared orientations may be more suitable. In this case, we 147

parameterize an anisotropic zero-mean Gaussian as: 148

Gw,σx,σy,α(x, y) = w exp(−ax2 − 2bxy − cy2) (2)

where for an orientation angle α ∈ [0;π) the coefficients a, b, c are defined as: 149

a =
cos2 α

2σ2
x

+
sin2 α

2σ2
y

(3)

150

b = − sin 2α

4σ2
x

+
sin 2α

4σ2
y

(4)

151

c =
sin2 α

2σ2
x

+
cos2 α

2σ2
y

(5)

The anisotropic DoG filter is then defined as: 152

DoG Ansotropic[w1, w2, σ1,x, σ1,y, σ2,x, σ2,y, α](x, y) = (6)

Gw1,σ1,x,σ1,y,α −Gw2,σ1,x,σ1,y,α

We refer to the DoG filter (6) as the Anisotropic or seven-parameter DoG filter based 153

on the number of associated parameters. The five-parameter DoG filter can be obtained 154

by fixing the constants w1 and w2 to be normalizing, i.e. wi = 1/2π
√
σi,xσi,y. An 155

example of anisotropic Difference of Gaussians is depicted in Fig 2(c). The usage of 156
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anisotropic difference of Gaussians allows detecting different kinds of elongated blobs 157

with only three additional trainable parameters per filter (compared to the two- or 158

four-parameter versions). 159

Overall, DoG filters provide a simple way to parameterize blob-detecting linear 160

filters using a small number of parameters. They can also be extended to 161

three-dimensional blob detection in a straightforward manner. Since in three dimensions 162

generic linear filters come with an even larger number of parameters, the use of DoG 163

parameterization is even better justified. Here, one natural choice would be to use 164

differences of Gaussian filters that are isotropic within axial slices and use a different 165

variance (bandwidth) along the axial dimensions: 166

Gw,σ,σz
(x, y, z) = w exp(−x

2 + y2

2σ2
− z2

2σ2
z

) (7)

DoG 3D[w1, w2, σ1, σ2, σ1,z, σ2,z] = Gw1,σ1,σ1,z
−Gw2,σ2,σ2,z

(8)

Generally, as axial resolution in 3D fluorescence microscopy is typically lower, σz,i is 167

also taken to be larger than σi. The filter (8) provides a six-parameter parameterization 168

of a family of 3D blob detection filters (one of which is visualized in Fig 2(d)), whereas 169

a generic 3D filter takes O(d3) parameters, where d is the spatial window size. 170

“Shallow” DoGNet. The shallow (single layer) Difference of Gaussians network 171

(DoGNet) is a neural network built around DoG filters Fig 2(a). It takes as an input a 172

multiplexed fluorescence image, applies multiple DoG filters (1),(6) or (8) to each of the 173

input channels. Subsequently, DoGNet combines the obtained maps linearly (which in 174

deep learning terminology corresponds to applying 1× 1 convolution). The latter step 175

obtains a single map of the same spatial resolution as the input image. Finally, a 176

sigmoid non-linearity is applied to convert the applied maps into probability maps. The 177

pipeline is shown in Fig 1. 178

More formally, we define a single-layer DoGNet as 179

Ψ(X; θ = {γ, β, ζ}) = S((X ~DoGβn
) ~ γ + ζ), (9)

where X denotes the input multiplexed image, ~ is the 2D convolution operation, and 180

the vector β denotes the parameters of all DoG filters. Assuming that the input 181

contains N channels, and each channel is filtered with M DoG filters, the application of 182

all DoG results in M ×N maps. Those maps are then combined into K maps using a 183

pixel-wise linear operation (which can be treated as a convolution with 1× 1 filters). 184

The tensor corresponding to such linear combination and containing K ×M ×N values 185

is denoted γ. 186

To each of the obtained K maps, the bias value ζk is added, and finally all obtained 187

values are passed through the element-wise sigmoid non-linearity 188

S(x) = 1/(1 + exp(−x)). Overall, θ in (9) denotes all learnable parameters of the 189

DoGNet. 190

In the case of the single-layer DoGNet, the output has a single map (i.e. K = 1). 191

Except for the last sigmoid operation, the single-layer DoGNet contains only linear 192

operations and can be regarded as a special parameterization of the linear filtering 193

operator that maps the input M maps to several output maps, usually two maps. 194

Deep DoGNet. The deep DoGNet architecture is obtained simply by stacking 195

multiple DoGNet layers (9): 196

Φ(X; θ = {θ1 . . . θT }) = Ψ(Ψ(. . .Ψ(X, θ1) . . . ; θT−1); θT ), (10)

where T is the number of stacked single layers DoGNets, and θt denotes the learnable 197

parameters of the t-th layer. The final number of maps KT is once again set to one, so 198

that the whole network outputs a single probability map. However, the numbers of 199
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layers Kt that are output by the intermediate DoGNet layers would typically be greater 200

than one. In our experiments the number of sequential layers T was set to three. 201

Element-wise multiplication. Inspired by an idea from [32], instead of producing 202

a single probability map, our network delivers two independent maps and using the 203

element-wise product of those maps we get the final map. We have implemented this 204

approach as a separate layer and that does not require any trainable parameters. In the 205

case of synapses, this step allows reducing the effect of displacement between pre- and 206

postsynaptic punctae by learning probability maps independently for pre and 207

postsynaptic signals. Given several probability maps (for pre- and postsynaptic 208

punctae) the element-wise products will act as a logical operator ”AND,” highlighting 209

the intersection between those maps, where the synaptic cleft is located. In our research 210

we use element-wise multiplication not only for DoGNets but for baselines as well, they 211

all benefit from this layers. 212

DoGNet initialization. We have found that appropriate parameter initialization 213

is key to obtaining reproducible results with our approach. Popular neural networks 214

have a redundant number of parameters and are initialized by sampling their values 215

from a Gaussian distribution. This initialization is not suitable for DoGNets because of 216

the relatively small number of parameters. Instead, we use a strategy from object 217

detection frameworks [34]. This approach consists of initialization with a range of 218

reasonable states (priors). An optimization procedure selects the best priors and tunes 219

their parameters. In DoGNet we use Laplacian of Gaussians with different sizes that are 220

sampled from a regular grid as priors. Specifically, we obtain the Gaussian variance 221

(sigma) by splitting the line segment [0.5, 2] into equal parts. The number of parts 222

depends on the number of DoGs reserved for each image plane (in our experiments that 223

number was set to five). We set the difference-variance in the Laplacian of Gaussians to 224

0.01. For example, if we set the number of DoGs for a channel to 3, the sigmas will be 225

0.5, 1.25, and 2, respectively. 226

Training DoGNets. We train the described architecture by minimizing the 227

softdice loss (11) proposed in [35] between the predicted probability map Ψ(X; θ) and a 228

ground truth mask Yg: 229

Lθ(X,Yg) = 1− 2

∑
YgΨ(X; θ)∑

Ψ(X; θ)
2

+
∑
Yg

2
(11)

Here, sums are taken over individual pixels, and in the ground-truth map Yg all pixels 230

belonging to synapses are marked with ones, while the background pixels are marked 231

with zeros. In the experiments we found that on the imbalanced data typical for synapse 232

detection problems, this loss performs better than standard binary cross entropy. 233

In order to optimize this loss function, partial derivatives with respect to DoGNet 234

parameters dL/dθ must be obtained, which may be accomplished via 235

backpropagation [33]. The backpropagation process computes the partial derivatives 236

with respect to the filter parameters at each of the spatial positions within the spatial 237

support of the filter (which we limit to 15 pixels). The partial derivatives with respect 238

to the DoGNet parameters are then obtained by differentiating formulas (1),(6) or (8) 239

at each spatial location and multiplying by the respective derivatives. 240

The ground truth mask Yg as well as the input images X for the training process are 241

obtained using a combination of manual annotation and artificial augmentation. The 242

synapse detection in FM images is a challenging and arguably ambiguous task even for 243

human experts. Furthermore, even a small, 100× 100 pixel region of an image might 244

contain more than 80 synapses. In practice it is impossible to annotate the borders of 245

each synapse accurately, therefore the experts were asked to mark the centroid of 246

synapses only, corresponding to the synaptic cleft, after which all pixels within a radius 247

of 0.8µm were assigned to the corresponding synapse. We trained DoGNets for 5000 248
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epochs. Each epoch is a set of ten randomly cropped subsamples 64× 64 from the 249

annotated training dataset. Because DoGNets have few parameters, we found that the 250

training processes converged rapidly typically requiring only several minutes on an 251

NVidia Titan-X GPU for the datasets described below. Once trained, inference can be 252

performed on a CPU as well as on a GPU using the implementations of Gaussian 253

filtering that may be optimized for a particular computing architecture. Our 254

implementation uses the PyTorch deep learning framework [36], which allows for concise 255

code and benefits from automatic differentiation routines. 256

Post-processing 257

Because both shallow and deep versions of DoGNet produce probability maps rather 258

than lists of synapse locations and parameters, these probability maps need to be 259

postprocessed in order to identify synapse locations and properties. Toward this end, 260

first, we reject points with low confidence by truncating the probability maps using a 261

threshold of τ of 0.5. In order to extract synapse locations from the probability map 262

produced by the DoGNet, we need to find local maxima. In standard fashion, we 263

greedily pick local maxima in the probability map, traversing them in the order of 264

decreasing probability values while suppressing all maxima within a cut-off radius 265

R = 1.6µm from previously identified maxima (so called non-maxima suppression) [37]. 266

The output of this procedure is the x and y locations of synaptic puncta. 267

The next step is to describe each detected punctum with a vector containing the 268

information about the detected synapse. To obtain a descriptor for a synapse, we select 269

a small window of the same radius R = 1.6µm around its location, fit Gaussian 270

distributions to each of the input channels, and for each protein marker we store the 271

average intensity, the displacement of the Gaussian mean with respect to the window 272

center, the Gaussian orientation, and its asymmetry. Evaluating the quality of such a 273

descriptor is left for future work. 274

Results 275

Datasets. The proposed method and a set of baselines were evaluated on four 276

independent datasets for which synapses were annotated manually: [Collman15] dataset 277

of conjugate array tomography (cAT) images [16], [Weiler14] dataset of array 278

tomography (AT) images [17], [PRISM] dataset of multiplexed confocal microscopy 279

images [6], and a synthetic dataset that we generate here. Each published experimental 280

dataset was obtained using fluorescence imaging based on commercially available 281

antibodies, with synapsin, vGlut, and PSD-95 markers common to the datasets. At the 282

end of section, we additionally perform comparisons using synthetic dataset with 283

excitatory and inhibitory synapse sub-types. 284

Compared methods. In each of our trials we compared several DoGNet 285

configurations with several baseline methods including reduced version of the fully 286

convolutional network (FCN) [15], and an encoder-decoder network with skip 287

connections (U-net) [8]. An exhaustive comparison between different deep architectures 288

is a nearly impossible task, mostly because of an infinite number of possible 289

configurations. Nevertheless, we have done our best to tune the parameters of the 290

baseline methods. The best-performing variants of the baseline architectures (FCN, 291

Unet) were used in the experiments and are described in detail in the supplementary 292

material. To make our evaluation more direct, we have designed the competitive 293

networks to have the same receptive field (FOV) (arbitrarily chosen to 15 pixels). We 294

have also evaluated two manually-tuned methods, namely the probabilistic synapse 295
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detection method [32] and the image processing pipeline proposed in [38]. Detailed 296

technical background on these architectures are described in supplementary materials. 297

The DoGNet architecture has two major options: Shallow and Deep, with the 298

Shallow option corresponding to a single layer and the Deep option corresponding to 299

number of sequential layers. The second word in our notation Isotropic or Anisotropic 300

indicates the number of degrees of freedom in the DoG parameterization, e.g. “Isotropic” 301

denotes four-degree DoG (1). The number of DoG filters for each channel was arbitrary 302

set to five. We also evaluated a simple ablation denoted as Direct that takes the 303

Shallow Isotropic DoGNet architecture and replaces DoG-parameterized filters with 304

15× 15 unconstrained filters (thus using “Direct” parameterization)(see Supplementary 305

Information) 306

Error metrics. The quality of synapse detection was estimated using the standard 307

metrics: precision, recall, and F1-score, with the output of each method consisting of 308

the set of points denoting synapse coordinates. True positives were estimated as the 309

number of paired points between annotation and detection provided the distance 310

between them was less than half of the mean synapse radius (ρ = 0.6µm). To avoid 311

multiple detections of synapses (false positives), we require that each detected point can 312

be matched at most once. Detections and annotations without pairs were considered to 313

be false positives and false negatives, respectively. The precision measure was then 314

computed as the ratio of true positives to all positives, and the recall measure as the 315

ratio of true positives to all synapses contained in the annotation. The F1-score 316

combines the precision and recall in one criterion by taking the double product of recall 317

and precision divided over their sum. For evaluation purposes, we also added the AUC 318

criterion corresponding to the area under the ROC curve obtained by varying the 319

confidence threshold τ . This criterion is stable to the threshold choice and depends on 320

the quality of the probability map produced by a method. For different thresholds, we 321

estimated the conjunctions between probability map and ground truth binary 322

segmentation pixel-wise. 323

For quantitative comparison, we have also used the absolute difference in counting 324

(|DiC|). This metric merely computes the difference between the number of synapses 325

detected using a method and the ground truth. This measure does not answer the 326

question of how well a synapse was localized but still gives additional insight into 327

quantitative results. 328

Since the training procedure is a probabilistic process depending on initialization 329

and data sampling, we estimate each value as the mean of five independent runs. 330

Results on PRISM dataset 331

To verify our method on PRISM data [6], we performed manual dense annotation of 332

several image regions of a dataset of FM images obtained using this technique. The 333

manual annotation was performed by two experts using synapsin, vGlut, Bassoon and 334

PSD-95 channels. Each expert annotated three regions. The total set was made of six 335

regions and split into training, validation (392 synaptic locations) and testing subsets 336

(173 synaptic locations). Each subset consisted of two regions annotated by different 337

experts, with test regions overlapped in order to estimate inter-expert agreement. For 338

synapse annotation, we developed a graphical user interface. This software allows 339

selecting image channels and regions. As we solve the task of semantic segmentation 340

during the training, we need a densely annotated image region. We mark each synapse 341

with a point approximately at the synaptic cleft. 342

Evaluation against baselines is presented in Table 1. Due to circular puncta shape 343

and the relatively small displacement of markers, the optimal method was Shallow 344

Anisotropic with only 107 trainable parameters. This configuration also performed 345
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Method # params F1 Score Precision Recall AUC |DiC|
ConvNets
Direct 3392 0.74 0.66 0.84 0.85 17.67
FCN 3002 0.75 0.73 0.77 0.84 7.44
Unet 622 0.80 0.78 0.83 0.88 10.44
DoGNets
Shallow Isotropic 62 0.78 0.72 0.87 0.91 15.22
Shallow Anisotropic 107 0.83 0.81 0.86 0.91 4.89
Deep Isotropic 140 0.81 0.81 0.82 0.89 9.78
Deep Anisotropic 230 0.80 0.81 0.80 0.83 7.89
Manually tuned methods
Nieland 2014 [38] - 0.78 0.72 0.84 0.82 1.
Simhal 2017 [32] - 0.50 0.45 0.58 0.68 21.

Table 1. Comparison of several variations of DoGNets and several baselines on PRISM
dataset.

Trial F1 Score Precision Recall
Shallow Isotropic vs Expert 1 0.83 0.83 0.84
Shallow Isotropic vs Expert 2 0.87 0.91 0.83
Shallow Isotropic vs Expert 3 0.86 0.90 0.83
Expert 1 vs Expert 2 0.82 0.86 0.78
Expert 3 vs Expert 2 0.81 0.81 0.8
Expert 3 vs Expert 1 0.77 0.79 0.8

Table 2. Agreement between DoGNet and three independent human experts on the
task of synapse detection on the PRISM dataset.

considerably better than the Direct Ablation approach, highlighting the advantage of 346

using DoG parameterization in place of direct parameterization of the filters. 347

We performed several analyses in order to evaluate agreement between three 348

independent human experts as well as between the experts and our method (Table 2). 349

Importantly, the proposed network agreed with the Experts similarly to the agreement 350

between the Experts themselves. 351

Results on Collman15 dataset 352

In this dataset, the alignment of electron microscopy (EM) and array tomography (AT) 353

images provides the ground truth for synapse detection using fluorescence markers. 354

Using high resolution EM data synaptic clefts and pre- versus post- synaptic sites can 355

be identified unambiguously, which was used as validation for the synapse detections 356

from fluorescence data (Fig 3(a)). The dataset contains 27 slices of 6310× 4520 pixels 357

each, with a resolution of 2.23× 2.23× 70 nm, and contains annotation with pixel-level 358

segmentation of synaptic clefts. In order to fit our training procedure, we have used 359

only synaptic cleft centroid coordinates. The EM resolution is much greater, so AT data 360

were interpolated to be aligned with EM data. Provided we utilize solely AT data, its 361

original resolution of 0.1µm per pixel can be recovered without losing any information. 362

The first five slices were used as the train dataset, whereas the remainder (slices 6-27) 363

served as the test dataset. 364

Results of our evaluation (Table 3) show that shallow DoGNets exhibit highest 365

performance in terms of the F1-measure. The receptive field 15× 15 pixels followed by 366

inter-channel element-wise multiplication allow capturing highly displaced markers 367
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Method params F1 Score Precision Recall AUC |DiC|
ConvNets
Direct 3392 0.69 0.79 0.62 0.88 11.19
FCN 3002 0.71 0.72 0.70 0.79 4.12
Unet 622 0.73 0.73 0.73 0.91 4.26
DoGNets
Shallow Isotropic 62 0.75 0.74 0.76 0.90 4.25
Shallow Anisotropic 107 0.75 0.75 0.76 0.88 4.26
Shallow3D 61 0.68 0.62 0.77 0.65 9.13
Deep Isotropic 140 0.73 0.77 0.71 0.97 4.99
Deep Anisotropic 230 0.71 0.77 0.33 0.87 7.72
Manually tuned methods
Nieland 2014 [38] - 0.37 0.49 0.32 0.63 16.5
Simhal 2017 [32] - 0.65 0.52 0.89 0.74 -

Table 3. Comparison of several variations of DoGNets and several baselines on the
[Collman15] dataset. The ‘Shallow3D’ network uses the 3D version of DoGNet, while
other variants operate on 2D slices independently. Optimal performance was obtained
using Shallow DoGNets.

puncta combinations. Displacements in marker punctae occur because synapses are 3D 368

objects with random orientations. Therefore, the presynaptic and postsynaptic signals 369

in the image plane produce displaced peaks up to a half of a micron. The 370

closest-performing ConvNet architecture was U-net with 622 trainable parameters; 371

increasing the number of its parameters led to overfitting and therefore lower 372

performance on the test dataset examined here. 373

The AT stains include markers specific for excitatory (vGlut, PSD95) and inhibitory 374

(GABAergic, gephyrin) synapses. In our experiments, the use of inhibitory markers did 375

not improve the detection scores. Moreover, the precision of all trainable methods was 376

considerably lower using only inhibitory markers (synapsin, GABA, gephyrin). 377

Fig 3. Results of DoGNet synapse detection on distinct datasets. Yellow arrows denote
synapse orientation from presynaptic to postsynaptic sides. (a) The Collman15 dataset
is a mixture of EM and FM images (EM is shown in grayscale, the red, green, and blue
channels show the intensity of synapsin, vGlut, and PSD95 respectively). (b) The
PRISM dataset. False color scheme has red channel corresponding to synapsin, blue to
PSD95, and green to the cytoskeletal marker MAP2, which indicates how synapses are
distributed along microtubules. (c) The Weiler14 dataset. The red, green, and blue
channels show the intensity of synapsin, vGlut, and PSD95, respectively.

Results on Weiler dataset 378

The Weiler dataset [17] consists of 12 different neural tissue samples. Each sample was 379

stained with a number of distinct antibodies including synapsin vGlut, and PSD-95. For 380

each stain, 70 aligned slices were acquired using array tomography (AT). Each slice was 381

a 3164× 1971 pixel image with spatial resolution of 0.2µm per-pixel. This dataset does 382

not have any published annotation. 383

We investigated the ability of DoGNets to generalize across distinct datasets by 384

applying networks trained on the well-annotated [Collman15] dataset, which was 385

annotated using serial electron microscopy data, to the previously unlabeled AT dataset 386

[Weiler14] [17]. Generally, the staining of [17] is similar to the Collman15 dataset [16]. 387
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Method # params F1 Score Prec. Recall AUC |DiC|
ConvNets
Direct 3392 0.72 (0.03)↑ 0.79 0.66 0.88 5.33
FCN 3002 0.64 (-0.07)↓ 0.85 0.51 0.84 19.
Unet 622 0.79 (0.06)↑ 0.85 0.74 0.97 4.33
DoGNets
Shallow Isotropic 62 0.85 (0.1)↑ 0.83 0.88 0.96 3.33
Shallow Anisotropic 107 0.83 (0.08)↑ 0.88 0.78 0.94 3.33
Deep Isotropic 140 0.88 (0.15)↑ 0.83 0.95 0.93 3.33
Deep Anisotropic 230 0.71 (0.0) 0.80 0.63 0.90 7.33
Manually tuned methods
Nieland 2014 [38] - 0.64 (0.27)↑ 0.66 0.62 0.44 2.
Simhal 2017 [32] - 0.65 (0.0) 0.81 0.55 0.55 13.

Table 4. The quantitative validation of DoGNet trained on [Collman15] cAT dataset
and applied to [Weiler14] dataset. Differences with F1 scores on [Collman15] cAT
dataset are shown in parentheses.

Thus, we first performed a coarse alignment by resizing [Collman15] images and 388

applying linear transforms to the intensities of each channel so that the magnification 389

factors, means, and standard deviations of the intensity distributions were matched. 390

The architectures trained on [Collman15] were then evaluated on [Weiler14]. 391

Qualitative examples of this cross-dataset transfer are shown in Figure 3. For 392

quantitative validation we generated manual annotations of two randomly selected 393

regions of the [Weiler14] dataset using the same software that we have used for [PRISM] 394

annotation. We observed that the levels of agreement between the results of the 395

DoGNet Shallow Anisotropic trained on [Collman15] dataset and each of the experts 396

were similar to the level of inter-expert agreement (in terms of the F1 score). 397

The results of this cross-dataset validation are shown in Table 4. Importantly, while 398

the performance of compared methods, did not diminish dramatically. In fact, the 399

DoGNets actually improved in their performance, which we attribute to the fact that in 400

the Weiler dataset all expert annotations were based on FM images, rendering the 401

analysis more straightforward in comparison with the [Collman15] synapses that are 402

visible in EM data but not in the FM data that were not included. 403

Synthetic dataset 404

In order to further evaluate our approach rigorously in a fully controlled setting, we also 405

applied it to a synthetic dataset. The goal of the evaluation of DoGNet using synthetic 406

data was to estimate the quality of synapse detection compared with baseline 407

procedures for distinct levels of signal-to-noise ratio; including the presence of spurious 408

synapses; and for different presynaptic-to-postsynaptic markers displacements on image 409

planes to emulate the 3D structure of synapse. Further, this systematic evaluation using 410

synthetic data addresses questions regarding meta-parameter choice, methodological 411

limitations, and the justification of neural network usage for synapse detection tasks. 412

Because the number of training samples was unlimited, deep networks with a large 413

number of parameters were unlikely to overfit the data. 414

Our dataset models three entities: true synapses, spurious synapses that emulates 415

false bindings, and random noise. We emulated true synapses and spurious synapses 416

using Gaussian probability density functions placed in different image planes with 417

additive white noise, where each image plane refers to a specific protein marker such as 418

synapsin, vGlut, PSD-95, vGat or gephyrin. To assess the generalized performance of 419
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different architectures, in our synthetic experiments we simulated both excitatory and 420

inhibitory synapses. 421

Spurious synapses are made to emulate false bindings in combination with random 422

noise in order to act as a distraction for the classifier to evaluate its robustness. An 423

actual synapse has intensity peaks at least in one presynaptic and in one postsynaptic 424

image plane, while spurious synapses have peaks only in presynaptic or postsynaptic 425

channels, but never in both. An example of a true excitatory synapse might be a signal 426

that has a punctum in synapsin, vGlut and PSD-95 markers separated by a distance 427

less than a half of a micron. An inhibitory synapse would have punctae in synapsin, 428

vGat and gephyrin. The displacement in markers punctae, caused by the 3D structure 429

of synapses, makes the process of differentiation between actual and spurious synapses 430

considerably more challenging, thereby rendering the simulation more realistic. The 431

intensity of the synaptic signal were emulated using Log-Normal distribution with zero 432

mean and σ = 0.1. 433

Modeling synapses using isotropic Gaussians in our synthetic dataset enables the 434

initial evaluation of purely isotropic DoGNets. First the sensitivity of the approach to 435

signal-to-noise ratio was evaluated (Fig 4). Results indicate that small convolutional 436

neural networks are sensitive to initialization and may become trapped in local minima, 437

whereas DoGNet performance was more robust, although DoGNets initialized randomly 438

rather than using our initialization scheme also suffered from local minima. Importantly, 439

deeper architectures were capable of handling larger displacements between punctae 440

(Fig 5). This result is anticipated because multi-layer architectures have larger receptive 441

fields and capture more non-linearities, allowing the capture of more complex relations 442

in the data. For example, in the presence of substantial displacements, at least one 443

additional convolution layer followed by an element-wise multiplication was needed to 444

perform a logical AND operation between pre and post synaptic channels after blob 445

detection [32]. 446

We also present a study of training with limited examples. We have evaluated 447

trainable methods (Direct, FCN, U-Net, Shallow Isotropic, Deep Isotropic) on fixed size 448

crop without any augmentation in search of minimal size of image region when each 449

method starts work suitable the signal-to-noise ration was sent to approx 4.5 and the 450

maximal displacement to two pixels. We present the results of this study in (Fig 6). We 451

show that Shallow and Deep DoGNets are able to learn a simple signal like a 452

multiplexed blob form only few samples. 453

Fig 4. Method sensitivity to signal-to-noise ratio. A comparison of
manually-tuned methods, deep architecture baselines, and DoGNets. The bar chart
shows differences in methods in area-under-curve (AUC) measure for different
signal-to-noise ratios. DoGNets are more robust to noise than manually tuned methods,
with low variation in AUC between DoGNet runs.

Fig 5. Methods sensitivity to punctae displacement. With increasing
displacement, it is more difficult to discriminate between true synapses and spurious
synapses. The quality of the segmentation map produced by DoGNets decreases more
slowly than that of other methods.

Discussion 454

We introduce an efficient architecture (DoGNet) for the automatic detection of neuronal 455

synapses in both cultured primary neurons and brain tissue slices from multiplexed 456
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Fig 6. Methods sensitivity to small numbers of training examples.
Comparison of different trainable architecture baselines with DoGNets for various
amount of training data. In this experiment, the training sets corresponded to patches
of different sizes, ranging from 45× 45 pixels (with approximately 12 synapses) to
128× 128 (with approximately 96 synapses). The maximal displacement was set to two
pixels, the signal-to-noise ratio was fixed to 3.0, and no augmentation such as random
cropping was applied. Shallow DoGNets need only few examples to reach acceptable
performance. With a sufficient number of examples the baseline architecture can
perform as well as or better than DoGNets.

fluorescence images. Under some conditions, the accuracy of DoGNet accuracy 457

approaches the level of agreement between human annotations. DoGNet also 458

outperforms ConvNets when the number of training examples is limited. Importantly, 459

the DoGNet approach is capable of efficiently integrating a number of different input 460

images from multiplexed microscopy data with a larger number of channels, which can 461

be prohibitively difficult for human experts to accomplish efficiently. This allows for the 462

detection of synapses in large datasets and facilitates downstream quantitative analysis 463

of synaptic features including brightness or intensity, size, and asymmetry. 464

The robust automated detection of synapses is important for downstream synapse 465

classification, particularly as multiplexed imaging modalities such as PRISM are applied 466

to larger-scale genetic and compound screens, which rely on phenotypic classification of 467

synapses to understand the molecular basis of neurological diseases. By integrating 468

features of synapses detected using machine learning techniques, the proposed method 469

can be used to classify synapses to study their identities and spatial distributions. In 470

conjunction with dendrite and axon tracking [39], this approach may be used to build 471

connectivity maps, tracing synaptic connections for each individual neuron. 472

DoGNet is computationally efficient during both training and inference. Training 473

the simplest model Simple Isotropic required only 7.37 seconds on an NVidia TitanX 474

GPU and 37.84 seconds on Intel i7 CPU for 2000 epochs, which is several times faster 475

than training U-Net and FCN ConvNets. Each epoch is an array of ten patches 64× 64 476

pixels randomly cropped from the training set. The inference process for a 1000× 1000 477

image requires only 0.001 second on a Titan-X GPU and only 0.1 second on Intel i7 478

CPU. Most of this time is consumed by post-processing, making it suitable for both 479

high-throughput studies and small-scale experiments without GPU acceleration. The 480

proposed architecture is not specific to synaptic images, and can be applied to other 481

cellular or tissue features where objects of interest show punctate spatial patterning, 482

such as single molecule annotation in super-resolution imaging and single-particle 483

tracking, detection of exocytic vesicles, and detection of puncta in mRNA FISH and in 484

situ sequencing datasets [20,21]. In cases where high precision estimates of puncta 485

features, such as their spatial extent and centroid positions exists, it may be beneficial 486

to follow DoGNet segmentation with dedicated point spread function (PSF) fitting 487

methods such as Maximum Likelihood Estimation or Least Squares fitting. In this case, 488

DoGNet could be used to improve and streamline initial segmentation tasks that 489

generally occur prior to more robust PSF fitting methods in analysis pipelines [40,41]. 490

Despite the preceding strengths, the proposed method also has several limitations, 491

most of which are common to supervised methods. First, DoGNet is useful for synapses 492

because synapse sizes are on the order of the resolution of the light microscope, and 493

thus present as diffraction limited spots. However, this approach would be unsuitable to 494

more complex, larger objects such as nuclei, bacterial cells, or possibly large organelles. 495

In summary, DoGNets are limited to the class of 2D signals with a convex shape and 496

limited radius (blobs). A second limitation is the dependency on the proper parameter 497

initialization scheme. For DoGNets, which have fewer parameters, improper 498
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initialization of a single parameter, for example setting σ close to zero, can cause the 499

entire network to diverge. In contrast, ConvNets with a larger number of parameters 500

can more easily recover from improper initialization. Notwithstanding, we have found 501

that our initialization scheme for DoGNets works reliably across multiple runs and 502

distinct datasets. For practical use, shallow DoGNet seems to be more reliable than 503

deep DoGNets. We note that shallow DoGNet can still become a part of more complex 504

networks. 505

We have also shown the ability of DoGNets to transfer across datasets by training 506

them on one AT dataset [Collman15 ] and applying them to another, distinct dataset 507

[Weiler14 ]. This type of transfer may prove useful in the detection of synapses with 508

high confidence by training DoGNet on either cAT data sets such as [Collman15 ] [16] or 509

highly multiplexed datasets such as [PRISM ] [6], which are more difficult to acquire 510

experimentally but facilitate synapse annotation with higher certainty. Specifically, 511

electron microscopy allows for highly robust synaptic annotation through conserved 512

features of the synaptic cleft and the post-synaptic density, whereas multiplexed 513

fluorescence data allow for accurate annotation of synapses through the colocalization of 514

multiple synaptic markers. 515

Conclusion 516

We present DoGNet – a new architecture for blob detection. While DoGNets are 517

applied here to synapse detection in multiplexed fluorescence and electron microscopy 518

datasets, they are more broadly applicable to other blob detection tasks in biomedical 519

image analysis. 520

Due to their low number of parameters, DoGNets can be trained in a matter of 521

minutes, and are suitable for non-GPU architectures because the application of a 522

pretrained DoGNet amounts to a sequence of Gaussian filtering and elementwise 523

operations. In our experiments, DoGNets were able to robustly detect millions of 524

synapses within several minutes in a fully automated manner, with accuracy comparable 525

to human annotations. This computational efficiency and robustness may prove 526

essential for the application of multiplexed imaging to high-throughput experimentation 527

including genetic and drug screens of neuronal and other cellular systems. 528

Supporting information 529

S1 Text. Baseline network architectures. 530

S2 Fig. Results of Shallow Isotropic DoGNet on PRISM dataset. The top 531

image is the original one, the middle is the probability map produced by DoGNet and 532

on the bottom is the overlay of detected synapses on the original image. Detected 533

synapses are denoted with a red arrow, indicating their orientation concerning pre- and 534

postsynaptic sides. The ground truth synapses locations are depicted using white 535

crosses. Yellow bounding box highlights the densely annotated region. 536

S3 Fig. Results of Deep Anisotropic DoGNet on the Weiler14 dataset. 537

S4 Fig. Results of Deep Isotropic DoGNet on the Collman15 dataset. 538
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