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Introduction

Buildings inthe United States are responsible for the largest share of
all energy consumption in the country. Consequently, due to global
climate change, energy conservation in buildings has been receiving
significant attention. Energy use has also influenced urban planning
and the development of energy policies at an urban scale. Therefore,
the roles urban planners and designers play in reducing the negative
impacts on the built environment are critical. Urban-scale building
modeling was developed as a way to represent the state of urban
energy consumption and predict its future evolution.?

Urban Building Energy Model (UBEM) simulates various per-
formance measures, including operational energy use, in order to
inform designers, urban planners, and policy makers in their eval-
uation of energy demand and supply strategies, design decisions,
and performance of urban energy systems.® Similar to building
models, the generation of a UBEM requires the definition of data
inputs for building geometries in addition to a large set of non-
geometric parameters that includes usage schedules and behav-
iors, which affect internal loads. These non-geometric inputs are
usually reduced by deterministically simplifying the real diversi-
ty of occupant behavior into defined archetypes. This results in
simulations where all occupants perform identical actions, lead-
ing to erroneous hourly demand peaks and ultimately to the mis-
representation of urban energy demands.® Therefore, uncertainty
in defining occupancy patterns and behavior is a major cause of
discrepancies in simulated building energy when compared to
real measured data.

The International Energy Agency (IEA), Energy in Buildings and
Communities Program (EBC), Annex 53, has identified occupant
behavior as one of the main driving factors of energy use in build-
ings.® Human behavior entails the occupants’ interaction with
building equipment, lighting, heating, and cooling systems. These
systems determine the energy use of a building; therefore, the
behavioral factor in building performance simulation is of signifi-
cant value.”® 7 In brief, occupancy schedules and behavior are a
necessary input for simulation models to accurately predict ener-
gy use, and models should be able to generate simulations of tem-
poral behavioral patterns to better inform users regarding their
energy use behaviors.

Previous literature devoted to this issue focused on energy load
prediction and pattern profiling to represent occupant behavior.
Profiling the energy load of occupants has been applied qualitatively
and quantitatively to improve load prediction.’®* When attempting

to profile energy, data clustering was utilized to classify and ana-
lyze the energy consumption behavior in buildings.*>* Common
clustering methods in determining energy load versus time are:
K-means, the self-organizing map, and the minimum variance cri-
terion; the fuzzy C-means and combinations of these methods can
also be found.' 18 Other more robust approaches are model-
based, including cluster-wise regressions and mixture models.?° The
effectiveness of clustering methods varies when applied to different
datasets, and there is aninherent tradeoff when comparing cluster-
ing methods.?° Therefore, defining a clear analytical purpose aids in
choosing an appropriate clustering method.”®

Identifying patterns of occupant presence and predicting occu-
pancy schedules is another essential step that will allow for the more
accurate modeling of occupancy energy use behaviors. However, it is
difficult to observe and predict occupancy schedules, as this involves
stochastic variables and requires a significant amount of data. Three
typical methods were used in previous literature to model occupant
presence. The first method consists of representing occupants as
groups with fixed schedules.?! These groups are combined after-
ward to represent the schedule of the whole building. In the second
method, occupant schedules are represented as a probability dis-
tribution.?? 2324 The third method consists of analyzing observed
behavior.?>?¢ While these methods improved the modeling of occu-
pant schedules, they are limited in presenting accurate schedules,
because (1) occupant schedules are highly stochastic; therefore, it is
inappropriate to simply label occupants to belong to a certain sched-
ule or certain distribution; (2) results are not practical, as they only
conclude with summarizing rules of occupant presence rather than
workflows that can present occupancy schedules in future-case
scenarios; (3) the results lack validation with measured data; and (4)
observed data attained just from a portion of a building cannot be
generalized to represent the whole building.?”

In order to represent occupant behavior and operational energy
use accurately, simulation models should be calibrated. Calibration
is widely used at a building scale and has proven to be successful in
improving simulation accuracy. In an attempt to define the improve-
ment level of calibration; Samuelson et al. analyzed each of the stan-
dard calibration tasks systematically. These tasks included inputting
actual weather data, adding unregulated loads, revising process
loads, and updating a small number of inputs. The results showed that
the bulk of this improvement came from revising process loads using
sub-metered data.?® Unfortunately, such calibration tasks are chal-
lenging to apply to UBEMSs due to the time and computational power
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associated with the modeling and calibration process. In UBEMs,
profiling energy use and behaviors could be represented in various
ways. In previous limited literature, researchers associated energy
use with household income.?”*° Filogamo et al. estimated several
occupancy parameters from national statistics as afunction of aver-
age income.®* However, this deterministic approach does not repre-
sent the variety of behaviors accurately. In a different approach that
addresses uncertainty, Bayesian calibration has been used to adjust
urban energy models.>? However, in practice, this method relies on
excessive computational effort, a high level of expertise, and signifi-
cant labor time. Therefore, there is a gap in the literature on how to
effectively utilize metered data to calibrate energy models to accu-
rately represent energy use patterns through a practical process.
The majority of previous occupant behavior research focused on
behavior in offices rather than residential behavior, since the latter is
hindered by scarce data availability and privacy concerns. However,
residential behavior accounts for the largest amount of variations
and randomness.®® In the meantime, smart meter installation in resi-
dential buildings has increased greatly, and it is expected to continue
to grow due to the recent interest in residential energy consumption
of newly built neighborhoods.** Occupant behavior parameters are
among the most uncertain in energy modeling, yet behavior is one of
the main drivers of energy use in the residential sector.®>° A detailed
survey of electricity consumption in the United Kingdom monitored
250 homes, and Godoy-Shimizu et al. found significant variations
between electrical base loads of households, especially in lighting,
in which there was a vast difference between the lightest and heavi-
est users.®” Urban models only validate the averaged results on an
annual basis; therefore, discrepancies in occupant schedules might
not be apparent due to the aggregation of results. However, when
generating hourly energy use at a neighborhood scale, represent-
ing every building with identical behavior is expected to be errone-
ous. Modeling techniques that deal with unknown parameters have
been extensively used to address individual building energy simula-
tions.®® 37 However, it is unclear how to apply these methods at an

specific hour, e.g., h20 = the energy use value at
hour 20.

P1 plotted on the normal distribution

urban scale where the process is constrained by the over-parame-
terized and high computational cost of simulation. While some statis-
tical models for individual parameters can reduce computation time,
parameter data is not available at an urban scale.*° As a result, most
UBEMs have so far used deterministic characterization at a detailed
level supported with the available data.

This paper focuses on addressing the research gap of load pro-
filing in residential urban neighborhoods by connecting occupant
schedules to behavioral profiles and creating a practical work-
flow to represent patterns of energy loads in a systematic way.
This methodology allows results to be applied as input data to cali-
brate UBEMs. A framework is presented for modeling occupan-
cy presence and consequent energy loads in residential buildings
on the urban scale. The work employs a computational clustering
approach to data from a residential community in Austin, Texas,
where energy is continuously measured using smart meters.
The paper’s goal is to determine energy use profiles that repre-
sent occupant presence, as well as activity patterns, by cluster-
ing available hourly energy use data. First, energy use behaviors
are defined using functional clustering of hourly data for each of
the building energy use variables (lighting, equipment, cooling and
heating). The resultant energy use behavior for all the variables is
then utilized to derive occupancy presence profiles. Profiles from
the twofold process are then matched to associate occupancy pres-
ence with behavioral patterns on a daily basis. Finally, the outcome
is translated for use as an input for UBEM simulation software. The
clustering and input generation process is automated using R, a
code-driven application, and a UBEM for the residential commu-
nity is developed using the Urban Modeling Interface (UMI) plugin
for Rhino3D CAD software.*"4? The UBEM is constructed with
initial inputs from existing construction and presence/behavioral
inputs that are generated from the clustering process. The study
concludes by defining the effect of occupancy on energy consump-
tion and illustrating the importance of hourly changes into simula-
tion tools to enhance the accuracy of outcomes.
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Data Description

The analysis considers single-family households with metered
electricity use data and energy audits. These datasets were
collected as part of the Pecan Street Smart Grid Demonstration
Project at the Mueller development, located in Austin, Texas,
and operated by the Pecan Street Research Institute.”® The
Mueller development, planned to include up to 5700 households,
currently has 750 single-family homes built after 2007. These
households use smart meter monitoring that measures energy
consumption at a 1-minute interval for the whole home, and 6
to 22 subcircuits and major appliances.** Exploring the data and
identifying key audits of the buildings is important in the analy-
sis. Building sizes and type have a major effect on building energy
use, and since the aim is to define behavioral profiles that repre-
sent a cluster of buildings, the analyzed buildings were grouped
according to their size and type prior to the clustering process.
This can be done through a multi-clustering analysis to identify
important groups within a heterogeneous neighborhood. As a
result, 67 single-family homes constructed between 2007 and
2010 with similar sizes and identical construction materials were
selected for analysis.

Methodology

The proposed framework is illustrated in Figure 1. Data prepro-
cessing is described, followed by the functional clustering
approach. The results from clustering are then translated as
inputs for the model. Finally, the last section discuss the develop-
ment of a calibrated UBEM.

Data Preprocessing

Firstly, the data is processed in three steps: the dataset is orga-
nized and cleaned of corrupt and missing data. Secondly, energy
use measures collected from sensors are restructured into hourly
energy consumption from 0:00 till 23:00 for each component of
a household to reduce data dimensions. Finally, hourly data from
each household is grouped into four categories of lighting, equip-
ment, heating, and cooling, described in the table below. These
steps make the data less challenging to analyze and therefore
helps to accelerate the proposed workflow.

Table 1. Description of utility type and relevant appliances.

Lighting energy use from all rooms in the
house

Washing machines, dryers, house fans,
dishwashers, freezers, ice makers, jacuzzi,
kitchen appliances, microwaves, ovens,
pool, pool pump, refrigerator and security
equipment

Furnace, air handler and stand-alone
heaters

Air compressors and window unit air
conditioners
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Functional Data Clustering
If collecting sensor energy use readings from N different house-
holds, for the i th household, the history of the observed energy
use pattern is denoted as ¥i = {yi (i), ---‘Yi(tim)}TV\/hel’e T denotes
a transpose,  represents the number of observations, i.e.,
sensor measurements, for unit i € {1,...,N}and {tip ¢ = 1, ..pi} C R
(the real line) represents the observation time points for unit
i, the time at which energy use is measured. For instance,
t € {0:00,1: 00,..,23: 00} may represent the daily energy consump-
tion structured into hourly use for each household. Note that
the measurements represent accumulated readings of a sensor
value over an hour. Based on the energy use profiles collected
from N different households, functional clustering is utilized to
define energy use behavior patterns. To address the functional
nature of the data and identify common energy use patterns, the
analytical approach utilizes model-based clustering, proposed by
Bouveyron et al.*> This approach is based on extensive research
on discriminative analysis, which has been used for clustering in
univariate, multivariate, and functional settings.*¢

Let {y,(0), .., yn(©)} denote the function that needs clustering.
The first steps are based on recovering the functional nature of
the data through a finite basis expansion,

yi(t) = Z Wi (t),
=

where ¢;(t) are a set of basis functions with coefficients wi;. The
coefficients w; = (wu,..,w;) for functionyi®are then assumed
to belong to a mixture Gaussian distribution, where clustering
of the time series data is performed in a discriminative func-
tional subspace.

K

P(0) = ) (@it + ),
k=1

where P denotes probability, T« is the mixing probability, ¢is the
standard Gaussian density function,#kand £, are the mean and cova-
riance matrix of the gt cluster for the mapping of @ into the discrim-
inative subspace, where 1 is a matrix representing the mapping to
the discriminative subspace. Additionally, A denotes the covariance
matrix related to measurement noise. Then the optimal number of
clusters K is selected using a Bayesian Information Criterion (BIC).
In this clustering analysis, hourly data of each building is plotted
over 24 hours. Continuous functions of 365 days are plotted for each
building as repetitive measures. To simplify the clustering analysis in
the following step, the 365 functions for each day of the year of each
building are presented as a mean profile. Subsequently, building pro-
files are clustered into K number of groups (see Figure 4),and amean
behavioral profile with a confidence interval is plotted as a represen-
tation of each cluster. From the clustering results, the user caniden-
tify the group each building belongs to and determine the number of
buildings in every clustered group. The user can visualize this func-
tional clustering process. Clustering errors can be sometimes dis-
tinguished by the user who identifies the meaningful patterns that
computers cannot see, that is, reinterpreting through reasoning.
The benefit of this method is that it takes advantage of the tempo-
ral dynamic of the data and graphically models it. In addition, the low



TAD2:2

Profiling Occupancy Patterns

clusters
/Y P1 23buildings
/~\J P2 15buildings
Number of Clusters /~ P3 11buildings

B K=33 40 e 7 8 Total 49 buildings

>
588

[N
7/

Cooling Energy Use (kWh)

1 12 24 hr
Day (hours)
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computational complexity and efficient visualization of the clustered
systems adds practicality to real applications.

To assess the effectiveness of the clustering analysis, a number
of cluster validity indices can be used. In our study, the Mean Index
Adequacy (MIA) is calculated for each clustering analysis and pre-
sented in the Results section. The generated value relies on the
compactness of each cluster; if the members in the cluster are close
together, the MIAis low. Refer to Dent et al. for further explanation
on the mechanisms underlying the MIA.+/

The functional data clustering is applied to determine mean
behavioral profiles for each of lighting, equipment, heating, and cool-
ing energy use on weekdays and weekends separately. These profiles
are then translated to define usage schedules and behavior inputs.

Generation of Usage Schedules and Behavior Inputs

The translation of behavioral energy use profiles is achieved using
the formula below. Let F.(t,t,) be the fraction to be applied to a
load between time instances t1 and tz for a specific variable cluster
ve,where v € {l,e,c, hk}where L e, c, h are lighting, equipment, cooling,
and heating respectively.

tz
E(ty,t;) = f Yye (). dt /Max Load
t

The maximum load is user-defined and represents the maximum
load that should be applied to a specific building type. However,
the maximum load can be approximated from the clusters as the
total energy use at peak times. Deduced schedules from weekdays
and weekends are combined to form weekly and annual schedules
of occupancy presence and usage behaviors. The combination of
a weekday and weekend schedule for specific buildings should be
informed by identifying the cluster that the building belongs to in
both the weekend and weekday clustering results.

While modifying schedule settings aims to more precisely repre-
sent the energy use behaviors on an hourly basis, illuminance tar-
gets and heating/cooling set points also have a significant effect
on defining the overall intensity of the lighting, cooling, and heating
energy use. For heating and cooling, a set point temperature defines
the temperature range the occupants will likely try to maintain; the
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temperature below which heating is turned on or the temperature
above which cooling is turned on. The authors defined a range of
set points based on ASHRAE 90.1 as a standard, parametrized for
energy efficiency: heating set points (18°-22°) with 20 ° being the
mean; cooling set points (24°-27°) with 25.5° being the mean.*® For
lighting, illuminance targets are set based on llluminating Engineering
Society of North America (IESNA) guidelines, where 150 lux is
required for bedroom and storage, while for kitchens and study
areas, 300 lux is preferred.*” Therefore, the authors set a range of
150 lux to 300 lux for illuminance targets. Note that set points sig-
nificantly vary in residential buildings and are relatively challenging
to determine, especially at a individual building scale. However, the
defined set points can be represented when simulating energy use at
the urban scale and help in calibrating the UBEMs. Further research
should incorporate metered gas data to more accurately define heat-
ing set points, and lighting standards need defining for overall build-
ing use rather than just detached building spaces.

Using the defined range of set points, each behavioral profile will
be assigned a set point or illuminance target that correspond to its
energy use intensity. The framework for assigning heating/cooling
set points and illuminance targets for different clusters is illustrated
in Figures 2 and 3 and detailed in the steps below. Without loss of
generalizability, in the steps below it is assumed that the outcome
of the behavioral clustering analysis was three clusters for heating,
cooling, and lighting variables.

Step 1: Define set points/illuminance targets as low, medium, and high
Using the energy data from each of the analyzed variables across
all different hours and building 1Ds, build the empirical distribution
and find the corresponding ranges in which cooling energy is used as
an example, as shown in Figure 2. Note that the quantiles are user-
specified. Inthis case 0.25,0.75 and 1 are chosen, which is a natural
quantile specification.

Step 2: Assign set points/illuminance targets to clusters

At each hour, determine where each reading of energy use for
each cluster falls compared to the parametrized specifications (low,
medium, high) illustrated in Figure 2 above. This procedure is demon-
strated in Figure 3. The resultant graph shows that most energy use
points fall in the middle zone and a set point of 25 is assigned to the
corresponding profile.

Occupancy Presence Input Generation

The use of lighting, equipment, and conditioning appliances are
typically linked to the presence of the users. While most research-
ers have mainly focused on studying the importance of occupant
interaction with lighting appliances to model the randomness
of occupancy presence, the relationship of lighting energy use
and occupancy schedules is more likely dominated by daylighting
effects.”%°1°253 Therefore, all energy variables are considered as
aproxy for occupancy presence in our framework, and occupants’
schedules are represented by defining different behaviors of heat-
ing, cooling, equipment, and lighting energy use. For this reason,
clustering analysis results for each variable are analyzed to deter-
mine presence schedules. The process is applied by conducting
trend analyses to group different occupancy presence variations. In
the case study, only one identified trend was translated empirically
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into a schedule of occupancy (Figure 7); this example is explained
in the Results section. While the community population was repre-
sented with only one dominating trend, others may exist that would
help to deduce more presence profiles. Future research should
review and further develop this approach.

Template Generation

In this phase, occupancy presence schedules are matched with
all possible variations of behavioral/usage schedules along with
the associated illuminance targets and heating/cooling set points
to create an input for a UBEM; this input is characteristic of the
whole population.

UBEM inputs in the form of template libraries are used to
include the schedules and behaviors. The templates are then
assigned to the corresponding building’s ID in the UBEM. The use
of the template contributes the following:

1. Occupancy schedules represent occupancy density and

presence.

2. Heating behavioral profiles represent the conditioning use
schedules for heating and are used to specify heating set
points.

3. Cooling behavioral profiles represent the conditioning use
schedules for cooling and are used to specify cooling set
points.

4. Lighting behavioral profiles represent lighting usage sched-
ules and are used to specify illuminance target values.
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Calibration of the model is achieved by using the generated
inputs that represent behaviors of the neighborhood more accu-
rately. This calibration process is more effective in comparison to
previous calibration methods that required high computational
power and time.

UBEM Development and Simulation

In this final phase, building and developing a UBEM model is
achieved through three steps: characterization, generation, and
simulation. First, weather information, buildings and context
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geometry, and non-geometric properties should be specified. Data
inputs for building geometry, construction, material properties, and
window-to-wall ratio (WWR) are usually provided from a survey of
existing construction or from municipal archives. The building and
context geometries information are used to build a three-dimen-
sional model in Rhino3D. This digital massing model provides volu-
metric information of the built environment and is used to calculate
orientations and areas. The inputs of occupancy schedules, behav-
joral schedules, heating/cooling set points, and illuminance targets,
along with material properties and WWR information, should be
used to refine geometrical and non-geometric settings for the
templates. After assigning the 3-D massing with all the templates,
simulations are performed. Users can simulate different scenarios
and iterations of their proposals. These can be design proposals in
which the user adjusts geometric parameters, the choice of materi-
als, heating/cooling set points, and illuminance targets, or the user
can study load shifting strategies by comparing different occu-
pancy and usage schedules to the base parameters defined by the
clustering method.

Results

Aresidential community in Austin, Texas, where energy is continu-
ously measured using smart meters, is used as a case study to
demonstrate this methodology. Following the methodology steps,
the authors started the preprocessing phase with 67 building data
sets. After data cleaning, 18 buildings were removed due to data

corruption and absence of data points, leaving 49 houses suitable
for further analysis.

After preprocessing the data, behavioral/usage profiles are
determined by applying a functional clustering analysis to cluster
each of the variables on weekdays and weekends separately. Figure
4 shows the clustering process of cooling energy use; the optimal
number of clusters K is determined to be 3 according to the BIC
versus K graph.The MIA results for each of cooling, heating, light-
ing, and equipment clustering analysis are 0.22, 0.28, 0.12, and
0.20respectively; these results indicate that the clusters generat-
ed for all variables have low variability within each cluster.

Following the methodology of usage schedules, the three mean
profiles that represent behavioral patterns are translated into
schedules that represent fractions of energy use for every hour of
the day. The inputs for weekdays and weekends are then matched
and combined to create an annual schedule for every possible com-
bination. This process is illustrated in Figure 5, which presents the
generation of inputs from profiling equipment energy use data;
S1-S9 represent all the possible combinations of weekday and
weekend schedules.

Usage schedules are generated by separately profiling lighting,
heating, cooling, and equipment energy use. Lighting and HVAC
behavioral profiles are then characterized by the illuminance target
or heating/cooling set point, which is formulated according to steps
1 and 2. Figure 6 shows the generated inputs in correspondence
with their mean profiles.
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> Figure 9. Comparing Default Simulation

measured data with
default simulation and
calibrated simulation
models. (Credit: Rawad
El Kontar)

In the next step, an occupancy schedule is deduced from a trend
analysis of the profiled behavioral patterns. Through analysis of the
clustered profiles of equipment and lighting energy use, the authors
identified peak hours of energy use to be in the morning hours
from 7 a.m. until 10 a.m., and in the afternoon from 6 p.m. until 11
p.m. The majority of the occupants are inferred to be workers and
students who leave the house in the morning and return in the eve-
ning. Therefore, weekday and weekend schedules are constructed
representing this trend (Figure 7) as follows: during weekdays, full
occupancy decreases gradually from 6 a.m. to 9 a.m., when occupant
presence stabilizes at a low level during the day and then gradually
increases from 5 p.m. onward, when occupants return from work or
school. During the weekend, waking hours and sleeping hours are
delayed gradually, while the level of occupancy during the day tends
to be higher. Daily schedules are combined into an annual schedule
that represents the occupancy of the whole neighborhood.

Next, the occupancy presence schedule is combined with each of
the usage schedules and behaviors to form several input templates,
whereby each template corresponds to a cluster of buildings. It is
important to note that the number of behavioral and presence pro-
files one generates will determine the number of combinations that
can be included in the general template library. This methodology
characterizes the urban built environment more accurately, since
the average usage patterns and occupancy schedules summarize the
behavior of the whole population.

Finally, a baseline UBEM for this case study is developed using
the Urban Modeling Interface (UMI) plugin for Rhino3D CAD
software. UMI’s operational energy simulation is based on an algo-
rithm that abstracts an arbitrarily shaped set of building volumes
into a group of simplified “shoebox” building energy models and
uses EnergyPlus as an underlying simulation engine.>® The Austin-
Camp Mabry Actual Meteorological Year (AMY) weather file,
containing data from 2014 (January 1 to December 31) and pur-
chased from White Box Technologies, was used for the study.”®
Inputs for building geometric data, construction, and materials are
defined by extracting information from the existing construction of
the community.

Starting with this baseline UBEM, two files are created. The
first is a default file in which all the buildings are assigned the same
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template that includes default occupancy and usage schedules of
UM residential default set points and illuminance targets. These
selected defaults are based on ASHRAE and IESNA: a heating set
point of 20°, cooling set point of 25° illuminance target of 200
lux.*¢-4? The selected schedules are based on the Swiss Society of
Engineers and Architects (SIA) and are shown in the Figure 8.%7
The second file is calibrated so that buildings are grouped
according to the clustering analysis. Each cluster of buildings is
assigned with a generated template that corresponds to its occu-
pancy, behavioral energy use patterns, and energy use intensity.

In order to test our designed inputs, simulations from the files
were generated and compared. Figure 9 shows false color simula-
tion results for total operational energy use in Energy Use Intensity
(EUI) from the default and calibrated models compared with a
false-colored 3-D model that shows a real representation of the
EUI obtained from measured data.

Discussion

Hourly results of cooling, equipment and lighting energy use were
extracted from the simulated models and plotted as averaged
profiles over a day. To test the validity of the model, the simula-
tion results of one building are plotted (Figure 10). These results
include both the UBEM simulated results from the default and
calibrated files, which were then compared with plots from the
measured data.

Based on outcomes illustrated in Figure 10, the relevance of
using measured data in calibrating UBEMs can be discussed. First
and most importantly, the model based on functional clustering
significantly improved the performance of the simulation model to
match real performance. As shown in Figure 10, the simulated pat-
terns (denoted as ¥sim) in cooling, equipment, and lighting energy
use are notably closer to the measured data (denoted as ymeq), with-
ina 10% margin of error, compared to the default model results.

These results are validated through the Root Mean Square Error
(RMSE), which is a statistical measure to describe the similarity of
two data sets. It characterizes the average variance of the elements
of the simulated profile with respect to the measured profile.

A small RMSE indicates smaller variance between the compared
data series, defined as:
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According to the RMSE and through comparison with the mea-
sured data, the authors identified the following improvements
resulting from the calibration method:

+ In lighting energy use, the error decreased

from 32% to 4%.

+ Inequipment energy use, the error decreased
from 60% to 8%.

+ In cooling energy use, the error decreased
from 30%to 7%

In the results, heating energy use was disregarded since the
use of heating is negligible in the warm climate of Austin, Texas.
As this example demonstrates, the performance of the cluster-
ing approach is dependent on data availability and the size of
the sample data from the community, as well as observations of
contextual issues.

The observation of our study validates that the accuracy of
simulation models can be improved by identifying behavioral pat-
terns using a measured data-driven approach. Second, the results
confirm that the proposed modeling framework is able to scale to
an urban level due to the prediction accuracy provided through
summarizing the population behavior into a small number of clus-
ters. The resulting daily (24-hour) profiles of occupant energy use
behavior are the main outcomes of this study. At an urban scale,
these simulated hourly profiles allow users to more accurately
inform occupants about their hourly energy use behavior in rela-
tion to community energy performance, and this consequently
informs load shifting strategies. The simulated results more accu-
rately visualized the building energy demand peaks and primary
energy load patterns. Thus, urban designers and policy makers can
more accurately test the performance of potential future case sce-
narios in relationship to existing conditions.

Conclusion

Occupancy presence and behavior have a significant impact on
building energy consumption. With the growing use of simula-
tion tools to support built environment research and practice,
misrepresentation of occupant presence and behavior can misin-
form design decisions. The field of UBEMs is still emerging, and
simulation errors at the scale of multiple buildings can be momen-
tous. This study demonstrates how the use of measured data
can develop more accurate UBEMs that are particularly useful
in creating design cases. The method'’s robustness is shown
through the scenario-based approach, which is accessible for
researchers exploring speculative designs based on numerous
inputs that follow community trends without relying on exces-
sive computational power, an extraordinary level of expertise, or
substantial labor time. The impact of the proposed framework is
demonstrated through the use of functional data clustering that
creates occupancy-based inputs, which calibrated UBEMs within
a 10% maximum margin of error. Due to the limitations of the
process that focused on only one community occupancy trend,
future research should investigate the impact of multiple occu-
pancy presence trends and their effect on overall community
performance. Ultimately, this work could aid in the development
of UBEMs calibrated in real time to assist users, designers, utilities
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companies, and others in making informed decisions that reduce
the environmental impact of communities, neighborhoods, and
cities using measured data.
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