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Uncertainty in predicting occupancy patterns 
leads to discrepancies in simulated building 
energy when compared to measured data. 
Typical simulation models represent occupants 
through identical schedules and repetitive 
behavior. However, users’ activity patterns 
comprise numerous variations, especially 
when focusing on interactions in buildings 
on the neighborhood scale. Urban-scale 
simulations inform design decisions, and one 
of the major challenges is identifying repre-
sentable inputs for occupancy behavior. This 
paper presents a framework for modeling 
occupancy and consequent energy loads in 
residential buildings using measured data for 
calibration; it employs a functional cluster-
ing approach to profile energy use, which 
generates inputs for Urban Energy Models 
(UBEMs). The framework is demonstrated on 
a residential neighborhood and reveals that 
the generated inputs can more accurately 
predict community energy load patterns.

Profiling Occupancy 
Patterns to Calibrate 
Urban Building Energy 
Models (UBEMs) 
Using Measured Data 
Clustering



207EL KONTAR & RAKHA

P
E
E
R
 R
E
V
IE

W
 / M

E
A
S
U
R
E
D

Introduction
Buildings in the United States are responsible for the largest share of 
all energy consumption in the country. Consequently, due to global 
climate change, energy conservation in buildings has been receiving 
significant attention. Energy use has also influenced urban planning 
and the development of energy policies at an urban scale. Therefore, 
the roles urban planners and designers play in reducing the negative 
impacts on the built environment are critical. Urban-scale building 
modeling was developed as a way to represent the state of urban 
energy consumption and predict its future evolution.1, 2 

Urban Building Energy Model (UBEM) simulates various per-
formance measures, including operational energy use, in order to 
inform designers, urban planners, and policy makers in their eval-
uation of energy demand and supply strategies, design decisions, 
and performance of urban energy systems.3 Similar to building 
models, the generation of a UBEM requires the definition of data 
inputs for building geometries in addition to a large set of non-
geometric parameters that includes usage schedules and behav-
iors, which affect internal loads. These non-geometric inputs are 
usually reduced by deterministically simplifying the real diversi-
ty of occupant behavior into defined archetypes.4 This results in 
simulations where all occupants perform identical actions, lead-
ing to erroneous hourly demand peaks and ultimately to the mis-
representation of urban energy demands.5 Therefore, uncertainty 
in defining occupancy patterns and behavior is a major cause of 
discrepancies in simulated building energy when compared to 
real measured data.

The International Energy Agency (IEA), Energy in Buildings and 
Communities Program (EBC), Annex 53, has identified occupant 
behavior as one of the main driving factors of energy use in build-
ings.6 Human behavior entails the occupants’ interaction with 
building equipment, lighting, heating, and cooling systems. These 
systems determine the energy use of a building; therefore, the 
behavioral factor in building performance simulation is of signifi-
cant value.7, 8, 9 In brief, occupancy schedules and behavior are a 
necessary input for simulation models to accurately predict ener-
gy use, and models should be able to generate simulations of tem-
poral behavioral patterns to better inform users regarding their 
energy use behaviors.

Previous literature devoted to this issue focused on energy load 
prediction and pattern profiling to represent occupant behavior. 
Profiling the energy load of occupants has been applied qualitatively 
and quantitatively to improve load prediction.10-19 When attempting 

to profile energy, data clustering was utilized to classify and ana-
lyze the energy consumption behavior in buildings.12-17 Common 
clustering methods in determining energy load versus time are: 
K-means, the self-organizing map, and the minimum variance cri-
terion; the fuzzy C-means and combinations of these methods can 
also be found.12, 17, 18 Other more robust approaches are model-
based, including cluster-wise regressions and mixture models. 20 The 
effectiveness of clustering methods varies when applied to different 
data sets, and there is an inherent tradeoff when comparing cluster-
ing methods.20 Therefore, defining a clear analytical purpose aids in 
choosing an appropriate clustering method.20

Identifying patterns of occupant presence and predicting occu-
pancy schedules is another essential step that will allow for the more 
accurate modeling of occupancy energy use behaviors. However, it is 
difficult to observe and predict occupancy schedules, as this involves 
stochastic variables and requires a significant amount of data. Three 
typical methods were used in previous literature to model occupant 
presence. The first method consists of representing occupants as 
groups with fixed schedules.21 These groups are combined after-
ward to represent the schedule of the whole building. In the second 
method, occupant schedules are represented as a probability dis-
tribution.22, 23, 24 The third method consists of analyzing observed 
behavior.25, 26 While these methods improved the modeling of occu-
pant schedules, they are limited in presenting accurate schedules, 
because (1) occupant schedules are highly stochastic; therefore, it is 
inappropriate to simply label occupants to belong to a certain sched-
ule or certain distribution; (2) results are not practical, as they only 
conclude with summarizing rules of occupant presence rather than 
workflows that can present occupancy schedules in future-case 
scenarios; (3) the results lack validation with measured data; and (4) 
observed data attained just from a portion of a building cannot be 
generalized to represent the whole building.27

In order to represent occupant behavior and operational energy 
use accurately, simulation models should be calibrated. Calibration 
is widely used at a building scale and has proven to be successful in 
improving simulation accuracy. In an attempt to define the improve-
ment level of calibration; Samuelson et al. analyzed each of the stan-
dard calibration tasks systematically. These tasks included inputting 
actual weather data, adding unregulated loads, revising process 
loads, and updating a small number of inputs. The results showed that 
the bulk of this improvement came from revising process loads using 
sub-metered data.28 Unfortunately, such calibration tasks are chal-
lenging to apply to UBEMs due to the time and computational power 
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urban scale where the process is constrained by the over-parame-
terized and high computational cost of simulation. While some statis-
tical models for individual parameters can reduce computation time, 
parameter data is not available at an urban scale.40 As a result, most 
UBEMs have so far used deterministic characterization at a detailed 
level supported with the available data.

This paper focuses on addressing the research gap of load pro-
filing in residential urban neighborhoods by connecting occupant 
schedules to behavioral profiles and creating a practical work-
flow to represent patterns of energy loads in a systematic way. 
This methodology allows results to be applied as input data to cali-
brate UBEMs. A framework is presented for modeling occupan-
cy presence and consequent energy loads in residential buildings 
on the urban scale. The work employs a computational clustering 
approach to data from a residential community in Austin, Texas, 
where energy is continuously measured using smart meters. 
The paper’s goal is to determine energy use profiles that repre-
sent occupant presence, as well as activity patterns, by cluster-
ing available hourly energy use data. First, energy use behaviors 
are defined using functional clustering of hourly data for each of 
the building energy use variables (lighting, equipment, cooling and 
heating). The resultant energy use behavior for all the variables is 
then utilized to derive occupancy presence profiles. Profiles from 
the twofold process are then matched to associate occupancy pres-
ence with behavioral patterns on a daily basis. Finally, the outcome 
is translated for use as an input for UBEM simulation software. The 
clustering and input generation process is automated using R, a 
code-driven application, and a UBEM for the residential commu-
nity is developed using the Urban Modeling Interface (UMI) plugin 
for Rhino3D CAD software.41, 42 The UBEM is constructed with 
initial inputs from existing construction and presence/behavioral 
inputs that are generated from the clustering process. The study 
concludes by defining the effect of occupancy on energy consump-
tion and illustrating the importance of hourly changes into simula-
tion tools to enhance the accuracy of outcomes. 

associated with the modeling and calibration process. In UBEMs, 
profiling energy use and behaviors could be represented in various 
ways. In previous limited literature, researchers associated energy 
use with household income.29, 30 Filogamo et al. estimated several 
occupancy parameters from national statistics as a function of aver-
age income.31 However, this deterministic approach does not repre-
sent the variety of behaviors accurately. In a different approach that 
addresses uncertainty, Bayesian calibration has been used to adjust 
urban energy models.32 However, in practice, this method relies on 
excessive computational effort, a high level of expertise, and signifi-
cant labor time. Therefore, there is a gap in the literature on how to 
effectively utilize metered data to calibrate energy models to accu-
rately represent energy use patterns through a practical process.

The majority of previous occupant behavior research focused on 
behavior in offices rather than residential behavior, since the latter is 
hindered by scarce data availability and privacy concerns. However, 
residential behavior accounts for the largest amount of variations 
and randomness.33 In the meantime, smart meter installation in resi-
dential buildings has increased greatly, and it is expected to continue 
to grow due to the recent interest in residential energy consumption 
of newly built neighborhoods.34 Occupant behavior parameters are 
among the most uncertain in energy modeling, yet behavior is one of 
the main drivers of energy use in the residential sector.35, 36 A detailed 
survey of electricity consumption in the United Kingdom monitored 
250 homes, and Godoy-Shimizu et al. found significant variations 
between electrical base loads of households, especially in lighting, 
in which there was a vast difference between the lightest and heavi-
est users.37 Urban models only validate the averaged results on an 
annual basis; therefore, discrepancies in occupant schedules might 
not be apparent due to the aggregation of results. However, when 
generating hourly energy use at a neighborhood scale, represent-
ing every building with identical behavior is expected to be errone-
ous. Modeling techniques that deal with unknown parameters have 
been extensively used to address individual building energy simula-
tions.38, 39 However, it is unclear how to apply these methods at an 
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Data Description
The analysis considers single-family households with metered 
electricity use data and energy audits. These datasets were 
collected as part of the Pecan Street Smart Grid Demonstration 
Project at the Mueller development, located in Austin, Texas, 
and operated by the Pecan Street Research Institute.43 The 
Mueller development, planned to include up to 5700 households, 
currently has 750 single-family homes built after 2007. These 
households use smart meter monitoring that measures energy 
consumption at a 1-minute interval for the whole home, and 6 
to 22 subcircuits and major appliances.44 Exploring the data and 
identifying key audits of the buildings is important in the analy-
sis. Building sizes and type have a major effect on building energy 
use, and since the aim is to define behavioral profiles that repre-
sent a cluster of buildings, the analyzed buildings were grouped 
according to their size and type prior to the clustering process. 
This can be done through a multi-clustering analysis to identify 
important groups within a heterogeneous neighborhood. As a 
result, 67 single-family homes constructed between 2007 and 
2010 with similar sizes and identical construction materials were 
selected for analysis. 

Methodology
The proposed framework is illustrated in Figure 1. Data prepro-
cessing is described, followed by the functional clustering 
approach. The results from clustering are then translated as 
inputs for the model. Finally, the last section discuss the develop-
ment of a calibrated UBEM.

Data Preprocessing
Firstly, the data is processed in three steps: the dataset is orga-
nized and cleaned of corrupt and missing data. Secondly, energy 
use measures collected from sensors are restructured into hourly 
energy consumption from 0:00 till 23:00 for each component of 
a household to reduce data dimensions. Finally, hourly data from 
each household is grouped into four categories of lighting, equip-
ment, heating, and cooling, described in the table below. These 
steps make the data less challenging to analyze and therefore 
helps to accelerate the proposed workflow.

Functional Data Clustering
If collecting sensor energy use readings from N different house-
holds, for the th household, the history of the observed energy 
use pattern is denoted as where T denotes 
a transpose, represents the number of observations, i.e., 
sensor measurements, for unit and 
(the real line) represents the observation time points for unit 
, the time at which energy use is measured. For instance, 

may represent the daily energy consump-
tion structured into hourly use for each household. Note that 
the measurements represent accumulated readings of a sensor 
value over an hour. Based on the energy use profiles collected 
from N different households, functional clustering is utilized to 
define energy use behavior patterns. To address the functional 
nature of the data and identify common energy use patterns, the 
analytical approach utilizes model-based clustering, proposed by 
Bouveyron et al.45 This approach is based on extensive research 
on discriminative analysis, which has been used for clustering in 
univariate, multivariate, and functional settings.46

Let  denote the function that needs clustering. 
The first steps are based on recovering the functional nature of 
the data through a finite basis expansion,

.

where are a set of basis functions with coefficients . The 
coefficients  for function are then assumed 
to belong to a mixture Gaussian distribution, where clustering 
of the time series data is performed in a discriminative func-
tional subspace.

where P denotes probability, is the mixing probability, is the 
standard Gaussian density function,  and  are the mean and cova-
riance matrix of the cluster for the mapping of into the discrim-
inative subspace, where is a matrix representing the mapping to 
the discriminative subspace. Additionally, denotes the covariance 
matrix related to measurement noise. Then the optimal number of 
clusters is selected using a Bayesian Information Criterion (BIC). 

In this clustering analysis, hourly data of each building is plotted 
over 24 hours. Continuous functions of 365 days are plotted for each 
building as repetitive measures. To simplify the clustering analysis in 
the following step, the 365 functions for each day of the year of each 
building are presented as a mean profile. Subsequently, building pro-
files are clustered into K number of groups (see Figure 4), and a mean 
behavioral profile with a confidence interval is plotted as a represen-
tation of each cluster. From the clustering results, the user can iden-
tify the group each building belongs to and determine the number of 
buildings in every clustered group. The user can visualize this func-
tional clustering process. Clustering errors can be sometimes dis-
tinguished by the user who identifies the meaningful patterns that 
computers cannot see, that is, reinterpreting through reasoning. 
The benefit of this method is that it takes advantage of the tempo-
ral dynamic of the data and graphically models it. In addition, the low 

Lighting Lighting energy use from all rooms in the 
house

Equipment

Washing machines, dryers, house fans, 
dishwashers, freezers, ice makers, jacuzzi, 
kitchen appliances, microwaves, ovens, 
pool, pool pump, refrigerator and security 
equipment

Heating Furnace, air handler and stand-alone 
heaters

Cooling Air compressors and window unit air 
conditioners

Table 1. Description of utility type and relevant appliances.
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computational complexity and efficient visualization of the clustered 
systems adds practicality to real applications.

To assess the effectiveness of the clustering analysis, a number 
of cluster validity indices can be used. In our study, the Mean Index 
Adequacy (MIA) is calculated for each clustering analysis and pre-
sented in the Results section. The generated value relies on the 
compactness of each cluster; if the members in the cluster are close 
together, the MIA is low. Refer to Dent et al. for further explanation 
on the mechanisms underlying the MIA.47

The functional data clustering is applied to determine mean 
behavioral profiles for each of lighting, equipment, heating, and cool-
ing energy use on weekdays and weekends separately. These profiles 
are then translated to define usage schedules and behavior inputs.

Generation of Usage Schedules and Behavior Inputs
The translation of behavioral energy use profiles is achieved using 
the formula below. Let be the fraction to be applied to a 
load between time instances and for a specific variable cluster
, where where are lighting, equipment, cooling, 

and heating respectively.

The maximum load is user-defined and represents the maximum 
load that should be applied to a specific building type. However, 
the maximum load can be approximated from the clusters as the 
total energy use at peak times. Deduced schedules from weekdays 
and weekends are combined to form weekly and annual schedules 
of occupancy presence and usage behaviors. The combination of 
a weekday and weekend schedule for specific buildings should be 
informed by identifying the cluster that the building belongs to in 
both the weekend and weekday clustering results.

While modifying schedule settings aims to more precisely repre-
sent the energy use behaviors on an hourly basis, illuminance tar-
gets and heating/cooling set points also have a significant effect 
on defining the overall intensity of the lighting, cooling, and heating 
energy use. For heating and cooling, a set point temperature defines 
the temperature range the occupants will likely try to maintain; the 

temperature below which heating is turned on or the temperature 
above which cooling is turned on. The authors defined a range of 
set points based on ASHRAE 90.1 as a standard, parametrized for 
energy efficiency: heating set points (18°–22°) with 20 ° being the 
mean; cooling set points (24°–27°) with 25.5° being the mean.48 For 
lighting, illuminance targets are set based on Illuminating Engineering 
Society of North America (IESNA) guidelines, where 150 lux is 
required for bedroom and storage, while for kitchens and study 
areas, 300 lux is preferred.49 Therefore, the authors set a range of 
150 lux to 300 lux for illuminance targets. Note that set points sig-
nificantly vary in residential buildings and are relatively challenging 
to determine, especially at a individual building scale. However, the 
defined set points can be represented when simulating energy use at 
the urban scale and help in calibrating the UBEMs. Further research 
should incorporate metered gas data to more accurately define heat-
ing set points, and lighting standards need defining for overall build-
ing use rather than just detached building spaces.

Using the defined range of set points, each behavioral profile will 
be assigned a set point or illuminance target that correspond to its 
energy use intensity. The framework for assigning heating/cooling 
set points and illuminance targets for different clusters is illustrated 
in Figures 2 and 3 and detailed in the steps below. Without loss of 
generalizability, in the steps below it is assumed that the outcome 
of the behavioral clustering analysis was three clusters for heating, 
cooling, and lighting variables.

Step 1: Define set points/illuminance targets as low, medium, and high
Using the energy data from each of the analyzed variables across 
all different hours and building IDs, build the empirical distribution 
and find the corresponding ranges in which cooling energy is used as 
an example, as shown in Figure 2. Note that the quantiles are user-
specified. In this case 0.25, 0.75 and 1 are chosen, which is a natural 
quantile specification. 

Step 2: Assign set points/illuminance targets to clusters
At each hour, determine where each reading of energy use for 
each cluster falls compared to the parametrized specifications (low, 
medium, high) illustrated in Figure 2 above. This procedure is demon-
strated in Figure 3. The resultant graph shows that most energy use 
points fall in the middle zone and a set point of 25° is assigned to the 
corresponding profile.

Occupancy Presence Input Generation
The use of lighting, equipment, and conditioning appliances are 
typically linked to the presence of the users. While most research-
ers have mainly focused on studying the importance of occupant 
interaction with lighting appliances to model the randomness 
of occupancy presence, the relationship of lighting energy use 
and occupancy schedules is more likely dominated by daylighting 
effects.50, 51, 52, 53 Therefore, all energy variables are considered as 
a proxy for occupancy presence in our framework, and occupants’ 
schedules are represented by defining different behaviors of heat-
ing, cooling, equipment, and lighting energy use. For this reason, 
clustering analysis results for each variable are analyzed to deter-
mine presence schedules. The process is applied by conducting 
trend analyses to group different occupancy presence variations. In 
the case study, only one identified trend was translated empirically 

C
o
o
lin

g 
E
n
er
gy
 U
se
 (k
W
h
)

Day (hours)

3

2

1

0

1 12 24 hr

-400

-300

-200

-100

0
2 K=3 4 5 6 7 8 9 10

B
IC

Number  of Clusters

clusters

 P2  15 buildings
 P3  11 buildings

 Total   49 buildings

 P1  23 buildings

C
o
o
lin

g 
E
n
er
gy
 U
se
 (k
W
h
)

Day (hours)

3

2

1

0

1 12 24 hr

-400

-300

-200

-100

0
2 K=3 4 5 6 7 8 9 10

B
IC

Number  of Clusters

clusters

 P2  15 buildings
 P3  11 buildings

 Total   49 buildings

 P1  23 buildings

r  Figure 4. Clustering analysis using cooling energy use data.



211EL KONTAR & RAKHA

P
E
E
R
 R
E
V
IE

W
 / M

E
A
S
U
R
E
D

WEEKENDSWEEKDAYS

0.00.0

1 12 24

1

d1 d2 d3 d4 d5 d6 d7 d1 d2 d3 d4 d5 d6 d7 d1 d2 d3 d4 d5 d6 d7

12 24

0.5

0.0

0.50.5

0.0

0.5

1 12 24

0.0

0.5

1 12 24

0.0

0.5

0.0

0.5

0.0
1 12 241 12 24

0.5

Day (hrs)

1 12 24

Day (hrs)Day (hrs)Day (hrs)

E
n
er
gy
 U
se
 (k
W
h
)

E
n
er
gy
 U
se
 (k
W
h
)

E
n
er
gy
 U
se
 (k
W
h
)

E
n
er
gy
 U
se
 (k
W
h
)

Day (hrs) Day (hrs)

E
U
 (k
W
h
)

E
U
 (k
W
h
)

Day (hrs)
1 12 24

Day (hrs)
1 12 24

Day (hrs)
1 12 24

Day (hrs)

E
U
 (k
W
h
)

E
U
 (k
W
h
)

0.0

0.5

E
U
 (k
W
h
)

0.0

0.5

E
U
 (k
W
h
)

week hours (day 1-7)

oc
cu
pa
nc
y 
%

week hours (day 1-7)

oc
cu
pa
nc
y 
%

week hours (day 1-7)

oc
cu
pa
nc
y 
%

oc
cu
pa
nc
y 
%

weekday (hrs)

oc
cu
pa
nc
y 
%

weekend (hrs)

oc
cu
pa
nc
y 
%

weekday (hrs)

oc
cu
pa
nc
y 
%

weekend (hrs)

oc
cu
pa
nc
y 
%
 

weekday (hrs)

oc
cu
 p
an
cy
 %

weekend (hrs)

BE
H
AV

IO
RA

L
PR

O
FI
LE
S

UB
EM

 T
EM

PL
AT

E
D
ai
ly
 S
ch
ed

ul
es

UB
EM

 T
EM

PL
AT

E
W
ee
kl
y 
Sc
he
du

le
s

CL
US

TE
RI
N
G

AN
AL
YS
IS

clusters

 Profile 3
 Profile 2

 Profile 1

S1 S2S4 S5 S6 S7 S8 S9S3

r  Figure 5. Generating usage schedule inputs from profiling equipment energy use. 



212

T
A
D
 2
 : 
2

Profiling Occupancy Patterns

Heating usage load

0.5

0.0

1 12 24hr

kWh

22

20

18

UBEM input
heating setpoints

UBEM input
usage schedules

Day (hours)

En
er
gy
 U
se
 (k
W
h)

Day (hours)

Day (hours)

Day (hours)

%
 o
f u

sa
ge

%
 o
f u

sa
ge

%
 o
f u

sa
ge

Equipment usage loads 

0.0
1 12 24hr

0.5 kWh

300 lux

200 lux

150 lux
Day (hours)

En
er
gy
 U
se
 (k
W
h)

Day (hours)

%
 o
f u

sa
ge

%
 o
f u

sa
ge

%
 o
f u

sa
ge

Day (hours)

Day (hours)

0.5

0.0

1 12 24hr

kWh

Lighting usage load 

Day (hours)

En
er
gy
 U
se
 (k
W
h)

Day (hours)

Day (hours)

Day (hours)

%
 o
f u

sa
ge

%
 o
f u

sa
ge

%
 o
f u

sa
ge

clustering analysis
3 profiles

Cooling usage load

12 241

2.0 kWh

hr

0.0

25

26

27

UBEM input
cooling setpoints

UBEM input
usage schedules

Day (hours)

En
er
gy
 U
se
 (k
W
h)

Day (hours)

Day (hours)

Day (hours)

%
 o
f u

sa
ge

%
 o
f u

sa
ge

%
 o
f u

sa
ge

clustering analysis
3 profiles

UBEM input
usage schedules

clustering analysis
3 profiles

UBEM input
illuminance target

UBEM input
usage schedules

clustering analysis
3 profiles

r Figure 6. Mean 
behavioral profiles 
deduced from 
clustering analysis, 
translated into usage 
schedules.

into a schedule of occupancy (Figure 7); this example is explained 
in the Results section. While the community population was repre-
sented with only one dominating trend, others may exist that would 
help to deduce more presence profiles. Future research should 
review and further develop this approach. 

Template Generation
In this phase, occupancy presence schedules are matched with 
all possible variations of behavioral/usage schedules along with 
the associated illuminance targets and heating/cooling set points 
to create an input for a UBEM; this input is characteristic of the 
whole population.

UBEM inputs in the form of template libraries are used to 
include the schedules and behaviors. The templates are then 
assigned to the corresponding building’s ID in the UBEM. The use 
of the template contributes the following:

1. Occupancy schedules represent occupancy density and 
presence.

2. Heating behavioral profiles represent the conditioning use 
schedules for heating and are used to specify heating set 
points.

3. Cooling behavioral profiles represent the conditioning use 
schedules for cooling and are used to specify cooling set 
points.

4. Lighting behavioral profiles represent lighting usage sched-
ules and are used to specify illuminance target values.
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schedules. 

5. Equipment behavioral profiles represent plug load usage 
schedules.

Calibration of the model is achieved by using the generated 
inputs that represent behaviors of the neighborhood more accu-
rately. This calibration process is more effective in comparison to 
previous calibration methods that required high computational 
power and time. 

UBEM Development and Simulation
In this final phase, building and developing a UBEM model is 
achieved through three steps: characterization, generation, and 
simulation. First, weather information, buildings and context 
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occupancy schedules of residential buildings. 

geometry, and non-geometric properties should be specified. Data 
inputs for building geometry, construction, material properties, and 
window-to-wall ratio (WWR) are usually provided from a survey of 
existing construction or from municipal archives. The building and 
context geometries information are used to build a three-dimen-
sional model in Rhino3D. This digital massing model provides volu-
metric information of the built environment and is used to calculate 
orientations and areas. The inputs of occupancy schedules, behav-
ioral schedules, heating/cooling set points, and illuminance targets, 
along with material properties and WWR information, should be 
used to refine geometrical and non-geometric settings for the 
templates. After assigning the 3-D massing with all the templates, 
simulations are performed. Users can simulate different scenarios 
and iterations of their proposals. These can be design proposals in 
which the user adjusts geometric parameters, the choice of materi-
als, heating/cooling set points, and illuminance targets, or the user 
can study load shifting strategies by comparing different occu-
pancy and usage schedules to the base parameters defined by the 
clustering method.

Results
A residential community in Austin, Texas, where energy is continu-
ously measured using smart meters, is used as a case study to 
demonstrate this methodology. Following the methodology steps, 
the authors started the preprocessing phase with 67 building data 
sets. After data cleaning, 18 buildings were removed due to data 

corruption and absence of data points, leaving 49 houses suitable 
for further analysis.

After preprocessing the data, behavioral/usage profiles are 
determined by applying a functional clustering analysis to cluster 
each of the variables on weekdays and weekends separately. Figure 
4 shows the clustering process of cooling energy use; the optimal 
number of clusters K is determined to be 3 according to the BIC 
versus K graph.The MIA results for each of cooling, heating, light-
ing, and equipment clustering analysis are 0.22, 0.28, 0.12, and 
0.20 respectively; these results indicate that the clusters generat-
ed for all variables have low variability within each cluster.

Following the methodology of usage schedules, the three mean 
profiles that represent behavioral patterns are translated into 
schedules that represent fractions of energy use for every hour of 
the day. The inputs for weekdays and weekends are then matched 
and combined to create an annual schedule for every possible com-
bination. This process is illustrated in Figure 5, which presents the 
generation of inputs from profiling equipment energy use data; 
S1–S9 represent all the possible combinations of weekday and 
weekend schedules.

Usage schedules are generated by separately profiling lighting, 
heating, cooling, and equipment energy use. Lighting and HVAC 
behavioral profiles are then characterized by the illuminance target 
or heating/cooling set point, which is formulated according to steps 
1 and 2. Figure 6 shows the generated inputs in correspondence 
with their mean profiles. 
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In the next step, an occupancy schedule is deduced from a trend 
analysis of the profiled behavioral patterns. Through analysis of the 
clustered profiles of equipment and lighting energy use, the authors 
identified peak hours of energy use to be in the morning hours 
from 7 a.m. until 10 a.m., and in the afternoon from 6 p.m. until 11 
p.m. The majority of the occupants are inferred to be workers and 
students who leave the house in the morning and return in the eve-
ning. Therefore, weekday and weekend schedules are constructed 
representing this trend (Figure 7) as follows: during weekdays, full 
occupancy decreases gradually from 6 a.m. to 9 a.m., when occupant 
presence stabilizes at a low level during the day and then gradually 
increases from 5 p.m. onward, when occupants return from work or 
school. During the weekend, waking hours and sleeping hours are 
delayed gradually, while the level of occupancy during the day tends 
to be higher. Daily schedules are combined into an annual schedule 
that represents the occupancy of the whole neighborhood.

Next, the occupancy presence schedule is combined with each of 
the usage schedules and behaviors to form several input templates, 
whereby each template corresponds to a cluster of buildings. It is 
important to note that the number of behavioral and presence pro-
files one generates will determine the number of combinations that 
can be included in the general template library. This methodology 
characterizes the urban built environment more accurately, since 
the average usage patterns and occupancy schedules summarize the 
behavior of the whole population.

Finally, a baseline UBEM for this case study is developed using 
the Urban Modeling Interface (UMI) plugin for Rhino3D CAD 
software. UMI’s operational energy simulation is based on an algo-
rithm that abstracts an arbitrarily shaped set of building volumes 
into a group of simplified “shoebox” building energy models and 
uses EnergyPlus as an underlying simulation engine.55 The Austin-
Camp Mabry Actual Meteorological Year (AMY) weather file, 
containing data from 2014 (January 1 to December 31) and pur-
chased from White Box Technologies, was used for the study.56 
Inputs for building geometric data, construction, and materials are 
defined by extracting information from the existing construction of 
the community. 

Starting with this baseline UBEM, two files are created. The 
first is a default file in which all the buildings are assigned the same 

template that includes default occupancy and usage schedules of 
UMI residential default set points and illuminance targets. These 
selected defaults are based on ASHRAE and IESNA: a heating set 
point of 20°, cooling set point of 25°, illuminance target of 200 
lux.48, 49 The selected schedules are based on the Swiss Society of 
Engineers and Architects (SIA) and are shown in the Figure 8.57

 The second file is calibrated so that buildings are grouped 
according to the clustering analysis. Each cluster of buildings is 
assigned with a generated template that corresponds to its occu-
pancy, behavioral energy use patterns, and energy use intensity.

In order to test our designed inputs, simulations from the files 
were generated and compared. Figure 9 shows false color simula-
tion results for total operational energy use in Energy Use Intensity 
(EUI) from the default and calibrated models compared with a 
false-colored 3-D model that shows a real representation of the 
EUI obtained from measured data.

Discussion
Hourly results of cooling, equipment and lighting energy use were 
extracted from the simulated models and plotted as averaged 
profiles over a day. To test the validity of the model, the simula-
tion results of one building are plotted (Figure 10). These results 
include both the UBEM simulated results from the default and 
calibrated files, which were then compared with plots from the 
measured data. 

Based on outcomes illustrated in Figure 10, the relevance of 
using measured data in calibrating UBEMs can be discussed. First 
and most importantly, the model based on functional clustering 
significantly improved the performance of the simulation model to 
match real performance. As shown in Figure 10, the simulated pat-
terns (denoted as ) in cooling, equipment, and lighting energy 
use are notably closer to the measured data (denoted as ymea), with-
in a 10% margin of error, compared to the default model results. 

These results are validated through the Root Mean Square Error 
(RMSE), which is a statistical measure to describe the similarity of 
two data sets. It characterizes the average variance of the elements 
of the simulated profile with respect to the measured profile. 

A small RMSE indicates smaller variance between the compared 
data series, defined as:

EUI kWh/m2
40 400

Calibrated SimulationMeasuredDefault Simulationw Figure 9. Comparing 
measured data with 
default simulation and 
calibrated simulation 
models. (Credit: Rawad 
El Kontar)
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According to the RMSE and through comparison with the mea-
sured data, the authors identified the following improvements 
resulting from the calibration method:

 Ŏ In lighting energy use, the error decreased 
from 32% to 4%.

 Ŏ In equipment energy use, the error decreased 
from 60% to 8%.

 Ŏ In cooling energy use, the error decreased 
from 30% to 7%

In the results, heating energy use was disregarded since the 
use of heating is negligible in the warm climate of Austin, Texas. 
As this example demonstrates, the performance of the cluster-
ing approach is dependent on data availability and the size of 
the sample data from the community, as well as observations of 
contextual issues.

The observation of our study validates that the accuracy of 
simulation models can be improved by identifying behavioral pat-
terns using a measured data-driven approach. Second, the results 
confirm that the proposed modeling framework is able to scale to 
an urban level due to the prediction accuracy provided through 
summarizing the population behavior into a small number of clus-
ters. The resulting daily (24-hour) profiles of occupant energy use 
behavior are the main outcomes of this study. At an urban scale, 
these simulated hourly profiles allow users to more accurately 
inform occupants about their hourly energy use behavior in rela-
tion to community energy performance, and this consequently 
informs load shifting strategies. The simulated results more accu-
rately visualized the building energy demand peaks and primary 
energy load patterns. Thus, urban designers and policy makers can 
more accurately test the performance of potential future case sce-
narios in relationship to existing conditions.

Conclusion
Occupancy presence and behavior have a significant impact on 
building energy consumption. With the growing use of simula-
tion tools to support built environment research and practice, 
misrepresentation of occupant presence and behavior can misin-
form design decisions. The field of UBEMs is still emerging, and 
simulation errors at the scale of multiple buildings can be momen-
tous. This study demonstrates how the use of measured data 
can develop more accurate UBEMs that are particularly useful 
in creating design cases. The method’s robustness is shown 
through the scenario-based approach, which is accessible for 
researchers exploring speculative designs based on numerous 
inputs that follow community trends without relying on exces-
sive computational power, an extraordinary level of expertise, or 
substantial labor time. The impact of the proposed framework is 
demonstrated through the use of functional data clustering that 
creates occupancy-based inputs, which calibrated UBEMs within 
a 10% maximum margin of error. Due to the limitations of the 
process that focused on only one community occupancy trend, 
future research should investigate the impact of multiple occu-
pancy presence trends and their effect on overall community 
performance. Ultimately, this work could aid in the development 
of UBEMs calibrated in real time to assist users, designers, utilities 
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