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Abstract 

Numerical modeling of viscoelastic properties is critical to developing the structure-property 

relationship of polymer nanocomposites. While it is recognized that the altered polymer region 

near filler particles, the interphase, significantly contributes to enhancements of composite 

properties, the spatial distribution of interphase properties is rarely considered due to lack of local 

property measurements. In recent years, the Atomic Force Microscopy (AFM) technique has 

begun to make local property measurements of the interphase available. In the light of the 

increasing availability of AFM data, in this work a new interphase representation for modeling the 

viscoelastic properties of polymer nanocomposites is proposed. The proposed interphase 

representation disentangles the interphase behavior by two separate components – single-body 

interphase gradient and multi-body compound effect, whose functional forms are learned via data 
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mining. The proposed interphase representation is integrated into a Finite Element model, and the 

effects of each component of the interphase representations are numerically studied. In addition, 

the advantages of the proposed interphase representation are demonstrated by comparison to a 

prior simulation work in which only a uniform effective property of the interphase is considered. 

Moreover, the proposed interphase representation is utilized to solve the inverse problem of 

inferring spatial distribution of local properties using Bayesian Inference on experimental data.       

 

Key words: Polymer nanocomposites, Interphase, Finite Element Analysis, Viscoelasticity, Data 

Mining 

 

1. Introduction 

Polymer nanocomposites have attracted much attention in materials science due to their 

superior properties and great potential in engineering applications. Prior studies [1-8] have shown 

that in polymer nanocomposites, the incorporation of a small amount of nanoscale inclusions 

renders significant enhancements of their mechanical, dielectric and thermal properties, while 

retaining low density and ease of processing. This combination of multi-property enhancement 

and facile manufacture make polymer nancomposites a promising multi-functional material in 

industry. A variety of constituents (e.g. silica[9], clay[10] and graphite[11]) and morphologies (e.g. 

spherical particle[12] or nanotube[13]) of nano-inclusions have been investigated to meet different 

engineering demands in prior works. 

In addition to attributes offered to the composite by the nano-inclusions themselves, the 

region of polymer near the particles, termed the interphase, contributes dramatically to the overall 

material response. Both geometric and chemical constraints at the nanofiller-polymer interface 
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alter the mobility of the local and interconnected polymer chains, resulting in significant changes 

to the physical properties of this interphase domain[14-17]. Most notably, even in nanocomposites 

with very low loadings (e.g. 1 wt % filler), the percolating nature of polymer chain response can 

lead to a substantial interphase volume fraction, and thereby contribute to the bulk composite 

properties. For example, it is demonstrated in [12] that the existence of ~2 vol% well dispersed 

nanotubes will produce 81.4 vol% interphase areas assuming an interphase thickness 3 times the 

diameter of nanotube. 

In recent years, experimental efforts have been devoted to studying effects of interphases 

on the bulk properties of polymer nanocomposites. For instance, Seiler et al. [14] applied Electric 

Force Microscopy (EFM) to verify the existence and to estimate the thickness of interphase in 

silicon nanocomposites. Ciprari et al. [18] utilized data from thermal gravimetric analysis (TGA), 

transmission electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to 

study the structure and density of interphase for six nanocomposite systems. In addition to such 

experimental investigations, theoretical models have also been proposed to analyze the impacts of 

interphase for composites. Review articles by Hashin[19] and Christensen[20] cover fundamental 

mathematical models developed in early years for composite material behaviors without 

considering interphase, including the popular Mori-Tanaka method[21]. Fisher and Brinson[22] 

further improve the combination of the Mori-Tanaka method and Benveniste’s method[23] by 

assuming an interphase region between filler aggregates and polymer to investigate the mechanical 

property of viscoelastic composite. Other analytical approaches for analytically modeling the 

interphase includes Deng et al. [24], in which the particle-interphase regions are mechanically 

equated to effective particles by applying a volume fraction weighted super-position of particles 

and matrix, and Ji et al. [25] where a simple linear gradient change of elastic moduli in the 
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interphase was assumed.  While having demonstrated the success in evaluating the structure-

property relationship of polymer nanocomposites, the existing models are limited by only 

considering the microstructure in a coarse or average sense. 

Promoted by the developments of modern computational methods, Finite Element (FE) 

modeling provides an inexpensive alternative to the traditional experimental approaches and 

micromechanics models. A number of works have utilized FE methods to study the effects of 

interphase in composites. For instance, Zhu et al. [27] developed a FE model to predict the elastic 

properties of polymer nanocomposites and showed good agreement with experimental 

measurements. In Boutaleb et al. [26], a micromechanical analytical interphase model, in which 

interphase regions are also assumed, is proposed for studying and modeling the stiffness of 

polymer composites via Finite Element Analysis. Another promising example is Read et al. [28], 

which presents a FE model for predicting the viscoelastic property of polymer blends whose 

polymer constituents are immiscible and the property distribution is discrete. Our earlier works 

[12, 29-32] also illustrated FE models to study effects of interphase on viscoelastic property of 

polymer nanocomposites. In one pair of papers, [12, 29] we presented a FE model in which 

uniform interphase properties are assumed, and the effects of interphase volume fraction and 

particle agglomeration, respectively, are explored. Built upon this uniform interphase FE model, 

studies regarding choice of Representative Volume Element (RVE) [30], statistical assembly of 

Statistical Volume Elements [31] and inference of appropriate interphase parameters from 

experiments [32] have been pursued. Despite these successes, it is noteworthy that in these works 

[12, 29-32], the effective interphase property has been modeled by one or two uniformly 

distributed interphase layers surrounding the filler aggregates. This simplified assumption of the 

interphase domain is made due to lack of local measurements of interphase properties.   
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In recent years, the development of Atomic Force Microscopy (AFM) nano-indentation 

instrumentation has provided a feasible solution to measure the mechanical property of interphase 

domains in the nanoscale. In Downing et al.[33], it is illustrated that the size of the interphase and 

its stiffness could be measured using phase imaging AFM. In addition, Cheng et al.[34] 

demonstrated the feasibility of using AFM nano-indentation to characterize local elastic modulus 

on a film-substrate model composite. Zhang et al. [35] created a set of substrate-polymer-substrate 

samples, varying the distances between substrates, and discovered both the interphase gradient 

decay and interactions between interphases produced by different substrates. The availability of 

AFM data, together with the recent development of statistical tools for analyzing and quantifying 

microstructures [36], make it feasible to describe interphase behaviors continuously (in contrast to 

the discretized/uniform representations as used in prior works) and take the spatial effects of 

interphase and microstructural dispersions into account. In this regard, this work presents a new 

descriptive interphase representation for modeling the properties of polymer nanocomposites, with 

an explicit implementation for viscoelastic material response. The approach, however, is general 

and applicable to other physical properties. The proposed interphase representation disentangles 

the complex interphase behavior into two continuous interphase functions, namely the single-body 

interphase gradient and the multi-body interphase compound effect. The single-body interphase 

gradient describes the spatial distribution of the material property within the interphase created by 

one single filler aggregate, while the multi-body interphase compound effect quantifies the 

interacting behavior of interphases created by different aggregates. The functional formulations of 

these interphase functions are learned via mining a set of AFM data in [35], and they are 

implemented into a pixelated plain strain FE model. Numerical studies are conducted to investigate 

the effects of each interphase function on the bulk viscoelastic property of the polymer composites. 
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By a comparative study with prior simulation work [12, 29, 30], the advantage of the proposed 

interphase representation and the corresponding FE model is demonstrated.  

The remainder of the paper is organized as follows: in Section 2, the proposed interphase 

representations are first defined. We then illustrate how the proposed interphase representation can 

be implemented in FE modeling of the viscoelastic properties of polymer nanocomposites. In 

addition, a Bayesian Inference (BI) approach, which is an essential tool for inferring the interphase 

representation mathematically, is introduced. In Section 3, the explicit functional forms of the 

interphase representation are identified via data mining, followed by a series of numerical studies 

to demonstrate the effects of the interphase representations. The advantages of the proposed 

interphase representation are then studied via a comparative study using BI with the prior 

interphase modeling work [12]. Moreover, by utilizing a set of experimental data, the spatial 

distribution of local viscoelastic property is investigated via solving the inverse problem by BI. In 

Section 4, we draw conclusions and discuss future work. 

 

2. Method 

2.1 Interphase Representation 

While it is well recognized that the existence of interphase significantly contributes to the bulk 

viscoelastic properties of polymer nanocomposites, there is not a descriptive interphase 

representation that takes the spatial distribution of interphase properties into account. This 

deficiency is primarily because: 1). In early years, local measurements of the polymer properties 

at 10’s of nanometer resolution were not available and thus there was insufficient experimental 

evidence to support a detailed interphase representation, and 2). The interphase effects on the 

polymer nanocomposites are a coupled interaction of both spatial property distribution and 
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microstructural dispersions. Therefore, it is difficult to exclude the influence of complex 

microstructural dispersions and isolate the interphase spatial distribution alone. To address this 

entanglement, Cheng et al. [34] manufactured a special film-substrate structured “model” 

composite sample and utilized AFM to study the local property of interphase created by single 

filler aggregates. Zhang et al. [35] extended this work by producing a series of substrate-film-

substrate model composite samples with different film thicknesses. These works eliminated the 

effects of microstructure dispersion and demonstrated that 1) the stiffness of the interphase decays 

as the distance from the filler interface increases. 2) closer pairs of substrates result in an increased 

stiffness in the interphase region, beyond simple superposition of two single-surface effects. In the 

light of these experimental observations, in this work, we propose a new gradient interphase 

representation for modeling the viscoelastic property of polymer nanocomposites. Specifically, 

two interphase functions, namely single-body interphase gradient and multi-body interphase 

compound effect, are proposed to reflect and quantify the experimental findings.  
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Figure 1. The illustration of interphase functions. (a) Single-body interphase gradient. (b) 

Multi-body compound effect. The blue dashed line represents the single-body interphase 

gradient created by one single aggregate and the red curve shows how the compound effect 

makes an impact on the resultant interphase property. 

2.1.1 Single-body Interphase Gradient 

 It is found in Cheng et al.[34] and Zhang et al. [35] that the local elastic property of 

interphase decays as the distance from filler surface increases. Based on this observation, we 

propose the first component of interphase representation, namely single-body interphase gradient, 

to describe the dependence of interphase property on the distance from a single filler aggregate. 

As shown in Figure 1(a), the single-body interphase gradient describes the gradually decaying 

effects in the interphase created by one single filler aggregate. No interaction between interphases 

created by different aggregates are considered in the single-body interphase assumption. For the 

elastic property, the single-body interphase gradient is expressed as, 

 𝐸𝑑 = 𝐹(𝑑; 𝚽),    d ≤ 𝐿0 (1) 
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where 𝐸𝑑 is the elastic modulus at a distance d from filler surface, F(∙) is the functional form of 

the interphase gradient defined by a set of hyper-parameters 𝚽, and L0 is the interphase thickness 

which is usually determined by some threshold value on the mechanical property enhancement. 

To identify the functional form of the single-body interphase gradient function for viscoelastic 

properties, while recent works [37, 38] have shown the feasibility of directly measuring the local 

viscoelasticity via AFM, the methodologies to capture quantitative viscoelasticity from AFM 

instrumentation is still under development. Additionally, in [39] the microstructural geometries 

used are too complex to disentangle the coupling effects of microstructure and interphase gradient. 

Therefore, the analogy between the elastic modulus and the magnitude of the complex modulus is 

utilized in this work to extend the interphase gradient from elasticity as in [35] to viscoelasticity. 

The functional form of the single-body interphase gradient function 𝐹(∙) can be expressed as, 

 
|𝐸𝑑,𝑓

∗ |̅̅ ̅̅ ̅̅ ̅ =
|𝐸𝑑,𝑓

∗ |

|𝐸+∞,𝑓
∗ |

= 𝐹(𝑑, 𝑓; 𝚽),    𝑑 ≤ 𝐿0 
 (1) 

where 𝐸𝑑,𝑓
∗  is the complex modulus of the interphase at a distance d from the filler aggregate,  

|𝐸𝑑,𝑓
∗ |  represents the magnitude of the complex modulus, and |𝐸𝑑,𝑓

∗ |̅̅ ̅̅ ̅̅ ̅  indicates that modulus 

normalized by the magnitude of the complex modulus of the matrix |𝐸+∞,𝑓
∗ |. In addition, 𝑓 is the 

frequency at which the viscoelasticity is measured, and 𝐿0 is the interphase thickness and 𝚽 is a 

set of hyper-parameters in the functional form of the interphase decay. For the examples in this 

work, elastic AFM data is used, such that the F determined is independent of frequency and the 

frequency dependence for |𝐸𝑑,𝑓
∗ |̅̅ ̅̅ ̅̅ ̅  arises solely due to the matrix viscoelastic modulus. However, 

as reliable viscoelastic AFM data becomes available, the interphase gradient function F can be 

revised to contain frequency dependencies explicitly as indicated in Eqn. (2). 
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2.1.2 Multi-body Compound Effect 

In defining the single-body interphase gradient, it is prescribed that only the interphase 

created by one single aggregate is considered. While it seems that this definition could quantify 

the experimental findings in [34], it would fail to describe the interacting effects of interphases 

observed by Zhang et al. [35]. The single body gradient would also fail to capture interaction 

effects in complex microstructure dispersions, where every particle has many close neighbors and 

thus many potential interaction effects. Therefore, we propose the second component of interphase 

representation, namely multi-body (interphase) compound effect, to describe the interaction 

phenomenon in the interphase areas that are affected by multiple filler aggregates. The multi-body 

interphase compound effect decays to the single body effect if the filler aggregates are sufficiently 

far from each other, and it occurs when the interphases created by different aggregates interact as 

depicted in Figure 1(b). The multi-body interphase compound effect is not limited to simply 

additive response and an extended interphase region for interacting particles can be larger than that 

for isolated particles, as observed in [35].  To model the viscoelasticity of the interphase for multi-

body effects, the analogy between the elastic modulus as in [35] and the magnitude of the complex 

modulus introduced in Section 2.1.1 is utilized again and the form of the multi-body compound 

effect 𝐺(∙) is expressed as, 

 |𝐸𝒙,𝑓
∗̅̅ ̅̅ ̅| = 𝐺(|𝐸𝑑1,𝑓

∗̅̅ ̅̅ ̅̅ |, |𝐸𝑑2,𝑓
∗̅̅ ̅̅ ̅̅ |, … , |𝐸𝑑𝑛,𝑓

∗̅̅ ̅̅ ̅̅ ̅|;  𝛀) (2) 

where |𝐸𝒙,𝑓
∗̅̅ ̅̅ ̅| is the normalized magnitude of the complex modulus at location x, 𝑓 is the frequency 

at which the viscoelasticity is measured, 𝑑𝑖(𝑖 = 1,2, … , 𝑛) represents the nearest distances from 

location x to the nearby filler aggregate #i, n is determined by a user-specified, sufficiently large 

cut-off distance, and 𝛀 is a set of hyper-parameters in the functional form of the compound effect.  
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2.2 Implementing the Proposed Interphase Representation in Finite Element Modeling 

2.2.1 Finite Element Model 

To examine the influences of the proposed interphase representation functions (i.e. single-

body interphase gradient and multi-body compound effect), a pixelated viscoelastic 2D plain strain 

model is developed.  Different from our prior work [12] in which a conforming mesh is utilized, 

the pixelated model in this work discretizes the microstructure with elements of rectangular shapes, 

which as a consequence avoids potential meshing errors and provides higher flexibility in 

assigning complex interphase property distributions. In addition, periodic boundary conditions are 

applied in assigning the interphases (shown in Figure 2) and constraining the boundary 

displacements as, 

 𝒖(𝑋1, 0) + 𝑼𝟐 = 𝒖(𝑋1, 𝐿)

𝒖(0, 𝑋2) + 𝑼𝟏 = 𝒖(𝐿, 𝑋2)
 (3) 

where L is the length of the square edge, 𝒖(𝑖, 𝑗) is the displacement at location (𝑖, 𝑗), and 𝑼𝟏 and 

𝑼𝟐 depend on the particular loading applied on the cell. 

 

Figure 2. The illustration of the periodic boundary assignments of interphase 

 

2.2.2 Interphase property 
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In prior numerical simulations for polymer nanocomposites [29, 30, 32, 40, 41], the 

effective property of the interphase is often assumed to be directly related to the property of the 

polymer matrix. Therefore, the interphase property is modeled by applying a transformation on the 

master curve of matrix. For instance, to simulate the dielectric property of polymer composites 

[41], the interphase property has been obtained through a transformation process controlled by five 

parameters, while to model the viscoelastic property[12, 30], a shifting and/or broadening 

conversion of the matrix property has been assumed. In this work, we assume that in the interphase 

created by a single filler aggregate, the local viscoelastic property of an infinitesimal area in the 

interphase is related to the bulk property by a shift of 𝑆 decades in relaxation time, and the shifting 

factor S is dependent on the distance away from the filler surface. For the interphase locations 

affected by multiple filler aggregates, the interphase property is determined using the multi-body 

compound effect to combine the theoretical single-body interphase properties. Figure 3 illustrates 

these assumptions of interphase viscoelastic property conceptually. 
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Figure 3. The illustration of the assumptions of the interphase viscoelastic properties (a) 

left – the two locations A and B in the interphase are identified; right – the corresponding 

viscoelastic properties (tan𝜹 peak) for A and B. Since A is closer to the filler than B, the 

shifting factor SA is greater than SB. (b) left – location A again experience a single-body 

effect from the left filler, but point P, at the same distance from the left filler as point A, is 

located also close to the right filler in the interacting interphase region. For point P, the 

distances from two filler aggregates dC and dD are identified and used to determine the 

resultant property using single-body and multi-body effects; right – the “virtual” property 

for point P is  found by first inferring single-body interphase gradient by dC (SC) and dD 

(SD). Scompound for point P is then determined using the multi-body compound effect 

function 𝑮(∙) in Eqn. 3 (detailed inference is illustrated in Section 3.2). 

It should be also noted that according to the guideline suggested by Cheng et al. [34], the 

interphase thickness, L0, is defined as the distance from substrate surface to the point where the 

interphase property drops to 105% of the matrix property. This definition of interphase thickness 
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𝐿0 is also utilized in this work when the interphase representation is implemented in FE model.  In 

other words, a particular location is considered as interphase if its magnitude of the complex 

modulus is greater than 105% of that of the matrix. Using this criteria, locations which are outside 

the range of single-body interphase thickness from the aggregates can still be inside the range for 

the multi-body effect.  

2.3 Bayesian Inference (BI) for identifying the hyper-parameters in the interphase 

representation 

For polymer nanocomposites, techniques such as DMA for acquiring the bulk viscoelastic 

properties are comparatively mature and inexpensive while probing the local viscoelastic 

properties within the interphase using AFM is still under development, time consuming and 

relatively rare. Therefore, in this work, we apply a Bayesian Inference based approach [32] to 

inversely infer a reasonable distribution of properties within the interphase region. In this approach, 

AFM data on “model” composites is firstly utilized to learn the functional forms of the two 

interphase functions, in which the values of hyper-parameters (𝚽, 𝛀) are unknown. The functional 

forms of the interphase representation are then implemented into the FE model and Bayesian 

Inference is conducted to identify the values of (𝚽, 𝛀)  that best match the simulated bulk 

composite property with the objective property. In a first demonstration, a virtual target property 

is computed using the prior uniform interphase model and is used as the objective to identify the 

equivalent gradient interphase representation. In the second demonstration, the gradient interphase 

modeling approach is applied to experimental data to investigate the spatial distribution of 

interphase properties.  The first demonstration serves as a validation of the algorithms developed 

while the second demonstration shows the ability of the approach to describe experimental 

composite data with continuous interphase functions as developed in this paper.  
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Figure 4 The workflow of the Bayesian Inference approach for identifying the values of the 
hyper-parameters Φ and Ω. 

Figure 4 illustrates the workflow of the Bayesian Inference approach to identify the hyper-

parameters’ values in the gradient interphase representation.  Before the inference process, the 

properties of individual constituents (particle aggregates and polymer matrix), the bulk property 

of the composite and its microstructural dispersion is known, and the functional forms with 

unknown parameters (𝚽, 𝛀)  of the single-interphase gradient and multi-body interphase 

compound effect are identified via data mining on the AFM data. The objective of the Bayesian 

inference is to identify the appropriate values of (𝚽, 𝛀) that match the simulated bulk composite 

property with experimental data. The Bayesian Inference starts with the specification of the ranges 

of the hyper-parameters 𝚽  and 𝛀 , which in the context of interphase modeling confines the 

strength of single-interphase gradient property and interphase interactions. After that, the initial 

values 𝚽𝟎 and 𝛀𝟎, which determines the corresponding single-body interphase gradient and multi-

body compound effect, are randomly generated from the prescribed ranges. The interphase 

representation is then fed into FE analysis to simulate the viscoelastic property. While it is 

theoretically possible to conduct a full grid search on all possible solutions 𝑿 = (𝚽, 𝛀) and 

evaluate the difference between the simulation property and the objective property (we denote the 
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difference as 𝒚), it is computationally cheaper to infer the relationship of 𝑿 and 𝒚 via Gaussian 

Process metamodeling. 

Gaussian Process model, also known as Kriging model, is a statistical model that interpolates 

the observations and supplies quantification of uncertainty for the metamodel prediction at each 

estimation point. Essentially, Gaussian Process models the data points {𝑿, 𝒚} and the estimations 

{𝑿′, 𝒚′} using 

 
[

𝒚

𝒚′] ~𝒩 (𝟎, [
Cov(𝑿, 𝑿) Cov(𝑿, 𝑿′)

Cov(𝑿′, 𝑿) Cov(𝑿′, 𝑿′)
]) (4) 

 

in which Cov(𝑨, 𝑩) represents the covariance matrix between 𝑨 and 𝑩, defined by 𝐂𝐨𝐯(𝐴, 𝐵) =

𝔼(𝑨𝑩𝑻) − 𝔼(𝑨)𝔼(𝑩𝑻). Conditioning on the data 𝐷 = {𝑿, 𝒚}, the posterior 𝑃(𝒚′|𝑿, 𝑿′, 𝒚) yields 

a Gaussian distribution where, 

 𝝁 = 𝐂𝐨𝐯(𝑿, 𝑿′)𝐂𝐨𝐯(𝑿, 𝑿′)−1𝒚

𝚺 = 𝐂𝐨𝐯(𝑿′, 𝑿′) − 𝐂𝐨𝐯(𝑿, 𝑿′)𝐂𝐨𝐯(𝑿, 𝑿)−1𝐂𝐨𝐯(𝑿′, 𝑿)
 

(5) 

 

Gaussian Process metamodeling establishes a surrogate model that quantifies the statistical 

mean and uncertainties in the unexplored region. By considering the mean estimation and the 

uncertainties, the next candidate point 𝑿𝑡+1 that could potentially improve the performance would 

be identified based on the current dataset (𝑿0:𝑡, 𝒚0:𝑡). In proposing the next candidate point, several 

criteria have been used. For instance, [32] utilizes Expected Improvement (EI) while Li and Yang 

et al. [42, 43] applies the GP-Hedge criteria which combines three scores -- EI, lower confidence 

bound (LCB) and probability of improvement (PI). In this work, EI is utilized to propose the next 

candidate point 𝑿𝑡+1 = (𝚽𝒕+𝟏, 𝛀𝒕+𝟏) to explore. 

 

3 Results 
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Utilizing the ideas and the related techniques presented in the prior section, the detailed 

analysis for identifying the functional forms of interphase gradients is demonstrated in this section. 

Specifically, the functional forms with unknown parameter set (𝚽, 𝛀)  of the interphase gradients 

are firstly explored via data mining on AFM data (Section 3.1). Then the correspondence between 

the interphase gradient and shifting factors in the frequency domain for viscoelasticity is illustrated 

in Section 3.2 to demonstrate how the proposed interphase gradient is implemented into Finite 

Element modeling. Lastly, Section 3.3 presents the numerical analysis of the impacts of (𝚽, 𝛀) 

parameters (Section 3.3.1 and Section 3.3.2), as well as the numerical validations using Bayesian 

Inference by taking the prior uniform interphase model (Section 3.3.3) and an experimental data 

(Section 3.3.4) as optimization objectives. 

3.1 Data mining to identify the functional forms of interphase representation 

Experimental data on model samples provides clear, quantitative data on interphase gradients 

near surfaces [34, 35], and even illustrates a compound interaction effect. Herein we utilize the 

AFM data in [35] to identify appropriate functional forms of the interphase representation. 

3.1.2 Single-body interphase gradient 

Zhang et al.[35] present AFM data on modulus gradients on carefully designed model 

composites with variable spacing between substrates. Four PMMA samples with distances of 

520nm, 256nm, 156nm and 60nm between the silica substrates were used. It is found that 520nm 

is sufficiently large to ensure that interphases created by the two substrates do not interact with 

each other. Therefore, the data of the 520nm sample is utilized to probe the functional form of 

single-body interphase gradient in this work. Data analysis reveals that the single-body interphase 

gradient follows an exponential decay and its functional forms could be expressed as:  

 𝐸𝑑
̅̅ ̅ = 𝛼′𝑒−𝛽′𝑑 + 1 (6) 
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where 𝐸𝑑
̅̅ ̅ is the normalized modulus, 𝛼′ and 𝛽′ are hyper-parameters and 𝑑 is the distance from 

filler surface. The fits of the data are illustrated in Fig. 5.  

 

Figure 5 Regressions of the AFM experimental data. The regression of 520 nm sample is 
utilized for investigating the functional form of the single-body interphase gradient (𝛼′ =

5.14, 𝛽′ = 0.079), while the 156nm sample (𝛼′ = 7.07, 𝛽′ = 0.077) will be utilized later in the study of 
multi-body compound effect in Section 3.1.3. 

 

In order to extend these data on elastic interphase values into modeling the viscoelastic properties, 

we utilize the analogy between elastic modulus and the magnitude of complex modulus. The 

normalized magnitude of the complex modulus of the interphase in polymer nanocomposite is thus 

expressed as, 

 
|𝐸𝑑,𝑓

∗ |̅̅ ̅̅ ̅̅ ̅ =
|𝐸𝑑,𝑓

∗ |

|𝐸+∞,𝑓
∗ |

= 𝛼𝑒−𝛽𝑑 + 1 
(7) 

where |𝐸𝑑,𝑓
∗ |̅̅ ̅̅ ̅̅ ̅ is the normalized magnitude of the complex modulus at distance 𝑑 from the filler 

under frequency 𝑓, and |𝐸+∞,𝑓
∗ | is the magnitude of complex modulus of polymer matrix. It is also 

noted that in this extension from elasticity to viscoelasticity, it is assumed that the frequency 

dependence of the interphase property 𝐸𝑑,𝑓
∗  is identical to that of the matrix property 𝐸+∞,𝑓

∗ .  This 

functional form explicitly specifies the hyper-parameters defined in Eqn. 2 by 𝚽 = (𝛼, 𝛽). It 

should be noted that, while both Eqns. 7 and 8 are exponential, the hyper-parameters (𝛼, 𝛽) and 
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(𝛼′, 𝛽′) are not necessarily identical. In a later section (3.2) we will utilize the concept of relaxation 

time shift factors (Section 2.2.2) to relate the complex modulus parameters obtained from the 

elastic experiments to corresponding changes in the full viscoelastic properties of the material.  

 

3.1.3 Multi-body compound effect 

The compound effect describes the phenomenon that when two filler aggregates are close 

to each other, their interphases could interact providing additional enhancement of the property of 

the interphase area between the aggregates. The work by Zhang et al. [35] quantitatively 

demonstrates this effect and in this work we use data from the 520 nm and 156nm sample to 

mathematically describe the multi-body compound effect.  

As per [35], the filler substrates in the 520nm sample is considered to be far enough to 

avoid interphase interaction, while the 156nm sample is observed to have increased interphase 

property incurred by interphase interaction. Therefore, Eqn. 7 is first used to learn the single body 

interphase gradient from the 520nm sample, defined as 𝐸𝑑
̅̅ ̅ = 𝐹(𝑑) as in the previous section.  For 

the 156 nm sample, for a location which has a distance of 𝑑1 from the left substrate, the distance 

from the right substrate is (156 − 𝑑1) nm. At this location, the theoretical normalized elastic 

moduli affected by either side are 𝐸𝑑1
̅̅ ̅̅̅ = 𝐹(𝑑1) and 𝐸𝑑2

̅̅ ̅̅̅ = 𝐹(𝑑2) = 𝐹(156 − 𝑑1) respectively. At 

the same time, using the data from the 156nm sample and Eqn. 7, an exponential decay function 

(shown in Fig. 5) 𝐸𝑑
𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐸𝑑

156𝑛𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐻(𝑑) = 𝐺(𝐹(𝑑)) is also obtained. It is noted that 𝐻(𝑑) 

reflects the observed experimental effects of single-body interphase gradient 𝐹(∙) and two-body 

compound effect 𝐺(∙), and it is directly dependent on the distance d from the substrate surface in 

the AFM sample. In contrast, 𝐺(∙) is the mathematical function of compound effect that is not 

observable from experiments and is not distance dependent. Because of the symmetry of the 
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substrate-polymer-substrate model composite sample, it is straightforward to take 𝐻(𝑑) as the 

compound property when 0 < 𝑑 ≤ 78𝑛𝑚 , and take 𝐻(156 − 𝑑)  when 78 < 𝑑 < 156𝑛𝑚. By 

varying 𝑑1, a dataset (𝐸𝑑1
̅̅ ̅̅̅, 𝐸𝑑2

̅̅ ̅̅̅, 𝐸𝑑1

𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) = (𝐸𝑑1
̅̅ ̅̅̅, 𝐸𝑑2

̅̅ ̅̅̅, 𝐸𝑑1

156𝑛𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅)  is collected and the compound 

effect 𝐺(∙) could be learned by 𝐸𝑑1

𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐺(𝐸𝑑1
̅̅ ̅̅̅, 𝐸𝑑2

̅̅ ̅̅̅). 

While the compound effect is learned from the AFM experimental data in which only two 

filler substrates are included, it is desired to develop a generalized form for describing the 

interphase impacted by multiple (n>2) filler aggregates. In this generalization, the functional form 

of the compound effect 𝐺(∙) (Eqn. 3) should satisfy some constraints: 1) the functional form has 

to be symmetric with respect to 𝐸𝑑1
̅̅ ̅̅̅, 𝐸𝑑2

̅̅ ̅̅̅,…, 𝐸𝑑𝑛
̅̅ ̅̅ ̅.. Otherwise, interchanging 𝐸𝑑𝑖

̅̅ ̅̅  and 𝐸𝑑𝑗
̅̅ ̅̅  (𝑖 ≠ 𝑗) 

would result in different compound properties. 2). The functional form should be monotonically 

decreasing with respect to distances 𝑑𝑖  from aggregates. 3). The inclusion of the single-body 

interphase gradient 𝐸𝑑𝑖
̅̅ ̅̅  created by aggregate #i should lead to the enhancement of compound 

property. Mathematically, this latter constraint is expressed as, 

 𝐺(|𝐸𝑑1
̅̅ ̅̅̅|, |𝐸𝑑2

̅̅ ̅̅̅|) < 𝐺(|𝐸𝑑1
̅̅ ̅̅̅|, |𝐸𝑑2

̅̅ ̅̅̅|, |𝐸𝑑3
̅̅ ̅̅̅|) < 𝐺(|𝐸𝑑1

̅̅ ̅̅̅|, |𝐸𝑑2
̅̅ ̅̅̅|, … , |𝐸𝑑𝑛

̅̅ ̅̅ ̅|) (8) 

  

 

Figure 6 Linear regression for functional form of compound effect 



 21 

Several mathematical forms that satisfy these three constraints (e.g. the sum or the sum of 

the squares of the normalized elastic modulus) are extracted and the relationship between these 

features and the compound property is analyzed. A linear relationship (Fig. 6) between the 

compound normalized elastic modulus and the term ∑ (𝐸𝑑𝑖
̅̅ ̅̅𝑛

𝑖=1 − 1) is identified as, 

 
𝐸𝑥

𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 1 = 𝜂′[∑(𝐸𝑑𝑖
̅̅ ̅̅

𝑛

𝑖=1

− 1)] + 𝜉′ 
(9) 

 

where the location 𝑥 determines the surface distances 𝑑𝑖, while 𝜂′ = 1.08, 𝜉′ = 0.06 and 𝑛 = 2 

for the fitted regression. Conceptually, (𝐸𝑑𝑖
̅̅ ̅̅ − 1) represents the virtual enhancement of elastic 

modulus produced by filler aggregate #i, and ( 𝐸𝑥
𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 1)  indicates the combined 

enhancement of the elastic modulus above the matrix property by all the surrounding filler 

aggregates. 𝜂′ is a parameter describing the interactive behavior between interphases created by 

different aggregates and 𝜉′ is a compensating factor to correct the under/over-estimation. By 

analogy, the compound effect for viscoelastic property is assumed to be, 

 
|𝐸𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑,𝑓

∗ |̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 1 = 𝜂[∑(|𝐸𝑑𝑖,𝑓
∗ |̅̅ ̅̅ ̅̅ ̅̅

𝑛

𝑖=1

− 1)] + 𝜉 
 (10) 

 

With this formulation, the parameter set 𝛀 in Eqn. 3 is specified by 𝛀 = (𝜂, 𝜉).  

  

3.2 Determination of the shifting factors at each location in the interphase 

To implement the FE simulations of the composite properties using a gradient interphase 

concept, we must determine the shifting factor at each location of the polymer material. This 

shifting factor at any location in the interphase is determined by: 1) identifying the number of 

aggregates n that may affect this location by specifying a sufficiently large cut-off distance. 2). For 
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each filler aggregate #i (i=1…N), computing the theoretical single-body interphase gradient |𝐸𝑑𝑖,𝑓
∗ |̅̅ ̅̅ ̅̅ ̅̅  

using Eqn. 8, 3). Applying the compound effect (Eqn. 11) to combine |𝐸𝑑𝑖,𝑓
∗ |̅̅ ̅̅ ̅̅ ̅̅  to 

obtain |𝐸𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑,𝑓
∗ | , and 4) as illustrated in Fig. 7, |𝐸𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑,𝑓

∗ |̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is essentially the vertical 

enhancement of the normalized magnitude of complex modulus at frequency 𝑓. The corresponding 

shifting factor, Sintph, can then be identified according to |𝐸𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑,𝑓
∗ |̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ as illustrated in Fig. 7.  

 

Figure 7 An illustration of the conversion between the normalized magnitude of complex 
modulus and shifting factor for interphase. |𝑬𝒄𝒐𝒎𝒑𝒐𝒖𝒏𝒅,𝒇

∗ |̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is the normalized magnitude of 
complex modulus at frequency estimated by multi-body compound effect. 

 

3.3 Numerical studies of the interphase effects 

In the prior sections, the proposed interphase representation is first presented, followed by a 

data-driven exploration of the mathematical forms of the representations.  In this section, we first 

explore the parametric influences of the hyper-parameters in the proposed interphase 

representations. After that, we study the equivalent spatial distributions of the interphase 

representations for a prior numerical model with uniform interphase assumption, by applying a 

Bayesian Inference method. Last, the proposed interphase representation is applied to describe the 

spatial distribution of interphase property of an experimental sample of polymer composite.  

3.3.1 The effects of single-body interphase gradient 
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The effects of single-body interphase gradient are first investigated. Using the circle 

packing algorithm in [44], a dilute microstructure (Fig. 8(a)) is generated to avoid the interaction 

between interphases created by different filler aggregates – in this case only the single interphase 

effect will be relevant around each particle. The values of the two parameters 𝛼 and 𝛽 from Eqn. 

8 in the single-body interphase gradient are altered individually and the comparisons between the 

simulated viscoelastic properties by altering 𝛼 and 𝛽 are shown in Fig. 9(a) & (b). It is observed 

that 𝛽, the term in the exponent in Eqn. 8, has greater effects on the bulk property than 𝛼. This 

effect is illustrated visually in Fig. 9(c) & (d), where the distributions of shifting factors are shown. 

The contour plots of shift factor magnitude demonstrate that increasing the value of 𝛼 only affects 

the property of the interphase regions closely surrounding the filler aggregate, and thus causing 

only small differences from the bulk composite property. In contrast, varying the 𝛽 value can 

substantially extend the interphase region (Fig. 9(d)) and more significantly affect the bulk 

composite property. 

 

Figure 8 Microstructures used for studying the effects of interphase representation. (a) a dilute 
microstructure (VF=0.29%) for studying single-body interphase gradient, (b) a moderately 

loaded microstructure (VF=1.77%) for studying multi-body compound effect, (c) Transmission 
Electron Microscopy (TEM) image of Polystyrene-silica composite, and (d) the binarized image 

(VF=1.83%) of (c) using Niblack algorithm[45, 46].  
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Figure 9 Effects of single-body interphase gradient. (a) the comparison between the 
simulated viscoelastic properties by different 𝜶, (b) the comparison between the simulated 
viscoelastic properties by different 𝜷, (c) the distribution of shifting factor magnitude when 
altering 𝜶, and (d) the change of shifting factor distribution when altering 𝜷. The color map 
represents the value of the shift factor, S (see Figure 3); e.g. in (c) a shift of 1 decade from 

the matrix properties is reflected by a color value of 1. 

3.3.2 The effects of multi-body interphase compound effect 

With the effects of single-body interphase gradient as a baseline, the influence of multi-

body interphase compound effect is also investigated. In this numerical study, a moderately loaded 

microstructure (Fig. 8(b)) is generated and different settings of interphase compound effect are 

tested. Specifically, the generalization of compound effect from two filler AFM experimental 

samples to multiple filler geometries (discussed in Section 3.1) is applied to allow the interaction 

between multiple filler aggregates. The cut-off radius for considering a specific location impacted 

by a filler is set to 100 pixels for this example (half length of the microstructure), while the 

exponential form of the single-body interphase gradient (Eqn. 7 &8) indicates that only the closest 

particle will have significant impact to the property at a given material point. The use of a large 
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potential influence window (defined by the cut-off distance) in the algorithm is more general and 

allows the interaction functions to effectively handle the level of influence of closer and more 

distant particles. Fig. 10 (a) & (b) show the comparisons between the simulated composite 

properties with different 𝜂, 𝜉 values. From Fig. 10(a) & (b), it is found that increasing 𝜂 could 

lower the magnitude of the tan (𝛿) peak and shift it to lower frequency. In contrast, altering 𝜉 shifts 

the tan (𝛿) curve does not significantly change its magnitude. This effect is visually illustrated by 

viewing the shift factors in Fig. 10(c) & (d): (c) shows that increasing 𝜂 enhances the interactions 

between interphases, which affects the tan (𝛿) curve in both horizontal and vertical directions. In 

comparison, changing 𝜉 results in an increment of shifting factor magnitude, which leads to a 

shifting of the bulk property.  

 

Figure 10. Effects of multi-body interphase compound effect. (a) the comparison between 
the simulated viscoelastic properties by different 𝜼, (b) the comparison between the 
simulated viscoelastic properties by different 𝝃, (c) the distribution of shifting factor 

magnitudes when altering 𝜼 and (d) the distribution of shifting factor magnitudes when 
altering 𝝃. The color map represents the value of the shift factor, S (see Figure 3); e.g. in (c) 
a shift of 1 decade from the matrix properties is reflected by the color value indicated for 1. 
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3.3.3 Numerical comparison to uniform interphase modeling 

In our prior work [12], without the access to the experimental measurement of local 

mechanical property, it was assumed that the interphase property was related to the matrix property 

in frequency domain by a simple two decade shift in relaxation times. In this section, a comparative 

study is conducted to demonstrate that the proposed gradient interphase representation can not 

only predict the bulk property of the composite as the prior one but also supply additional 

interphase information. First, a microstructure of Polystyrene(PS)-Silica composite is chosen (Fig. 

8(d)) and the master curve of PS referenced at 120C degree is utilized as the matrix property. We 

assume that the functional forms of the interphase representations that we learned from earlier 

analysis is applicable to this example. The target bulk viscoelastic property is simulated by the 

prior uniform interphase model, in which interphase property is assumed to be shifted from matrix 

property by 2 decades. In this simulation, the thickness of interphase is set as 30 pixels (146nm, 

while the particle diameters are 40nm on average). Second, we iteratively run the FE model with 

gradient interphase under the Bayesian Inference framework to achieve equivalence of bulk 

properties predicted using a gradient interphase with those from the target uniform interphase case. 

In these simulations, 100Hz is used as the reference frequency 𝑓  in Eqn. 8 and Eqn. 11 for 

estimating the shifting factor for each location in the interphase. In addition, the cut-off distance 

for considering the impact from a filler is again set as 100 pixels (~480nm) and the ranges for the 

hyper-parameters are specified as 𝛼 ∈ [4, 6.5], 𝛽 ∈ [0.06, 0.1], 𝜂 ∈ [0.8, 1,2] and 𝜉 ∈ [−0.5, 0.5] 

and the objective function is set as, 

𝜀 = ∑ [tan (𝛿)𝑢𝑛𝑖𝑓𝑜𝑟𝑚 − tan(𝛿)𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡]2
𝑓=𝑓𝑖

𝑚
𝑖=1  (12) 

where 𝑓𝑖s are the frequencies that the viscoelastic property is evaluated at, and the number of 

frequencies to evaluate, 𝑚, is set as 30 in this numerical study. 
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Then the values of (𝚽, 𝛀) that minimize 𝜀  are identified using the Bayesian Inference 

approach for 50 iterations, as illustrated in Section 2.4.  

 

Figure 11 The comparison between the FE models using uniform interphase and gradient 
interphase via Bayesian Inference. (a) the distribution of shifting factor magnitude for the 

uniform interphase FE model. The interphase property is uniformly distributed and 
shifted from matrix property by 2 decades, (b) the distribution of shifting factor 

magnitudes for the proposed gradient interphase FEA model, (c) the comparison between 
the matrix property and the simulated properties of the two models, and (d) the history of 

Bayesian Inference. 

After the Bayesian Inference, it is found that the values of (𝛼, 𝛽, 𝜂, 𝜉) to achieve the model 

equivalence (error = 0.03) are (4.22, 0.09, 0.80, -0.50) respectively. Key observations from these 

simulations are: 1) compared to the previous uniform interphase model (Fig. 11(a)), the proposed 

gradient interphase representation (Fig. 11(b)) can effectively model the interphase property with 

physically realistic gradients, while achieving the same bulk composite property (Fig. 11(c)). 2) 

The Bayesian Inference approach is capable of exploring the optimal solution efficiently and 

reducing the number of FE simulations (Fig. 11(d)). 3). From Fig. 11(b), it is found that the 

interphase areas that are affected by many filler aggregates are significantly strengthened. 4) Using 

Eqn. 8 and the criteria of interphase thickness determination (105% of the matrix property) 

describe in Section 2.2, the interphase thickness in the proposed model is obtained as 54.84 pixels. 

The total interphase thickness in the gradient interphase case is larger than that of the uniform 
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interphase model because single-body interphase gradient drops exponentially as the distance 

increases, naturally extending its domain.  

 

3.3.4 Numerical Verification with Experimental Data 

 In Section 3.3.3, the prior uniform interphase modeling approach is utilized to produce a 

virtual objective of the material viscoelastic property, and the equivalent gradient interphase 

representation is learned via Bayesian Inference. In this section we demonstrate the descriptive 

capability of the proposed interphase representation by directly utilizing experimental data for a 

composite in [47] and investigate how the proposed gradient interphase representation could 

describe the distribution of local properties within the microstructure.  

 In this demonstration, the microstructure of the composite (Fig. 12(a)) is extracted and 

binarized (Fig. 12(b)). Meanwhile, the temperature sweeps of the viscoelastic properties of the 

matrix and composite in that work are also converted to frequency dependent spectrums (the green 

and the blue curves in Fig. 12(d)) using Willams-Landel-Ferry equation[48]. These data, together 

with the identified mathematical forms of the proposed interphase gradient representations in 

Section 3.1, is then fed into the Bayesian Inference framework discussed in Section 2.3 to match 

the simulated bulk property to the experimental data. After the Bayesian Interference computations, 

the values of the hyper-parameters in the functional forms of the interphase representations are 

identified and the spatial distribution of local properties within the microstructure can be visualized. 

It is also noted that, since the microstructure in this numerical validation has different length scale 

from the previous one used in Section 3.3.3, the ranges of the hyper-parameters in the Bayesian 

optimization are adjusted accordingly as 𝛼 ∈ [1.5, 6.5], 𝛽 ∈ [0.12, 0.25], 𝜂 ∈ [0.5, 1,1] and 𝜉 ∈

[−1.5, 1.0], and Eqn. 12 is kept as the objective function.  
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Figure 12. The results of numerical validation of the proposed gradient interphase 

representation on experimental data from [47]. (a) Microstructure image gathered from 

[47] (b) binary image of the microstructure. (c) the distribution of shifting factor 

magnitudes for the proposed gradient interphase FEA model. (d) the comparison between 

the matrix property, experimental measurements of the composite property and the 

simulated property. (e) the history of Bayesian Inference. 

 As shown in Figure 12(d), after employing the Bayesian Inference method, the simulated 

property of the composite agrees well with the experimental measurements (error = 0.04). The 

corresponding values of the hyper-parameters are  (𝛼, 𝛽, 𝜂, 𝜉) = (2.37, 0.15, 0.5, 0.0185). Figure 

12 demonstrates that 1). the proposed FE model can effectively model the spatial distribution of 

the local properties in the microstructure (Figure 12(c)), while matching with the experimental 

viscoelastic property data. 2). The Bayesian Inference framework can efficiently explore the space 

of the hyper-parameters and identify these values of hyper-parameters. 3) Using Eqn. 7 and the 



 30 

criteria of interphase thickness determination (105% of the matrix property) describe in Section 

2.2, the interphase thickness in the proposed model is obtained as 26.10 pixels, which corresponds 

to 166nm. While this interphase thickness identified in this work is of the same magnitude as found 

in our prior work (~100 nm in [34]), it is slightly greater than that in [34]. This finding could be 

due to 1) the difference between elastic and viscoelastic properties: the interphase thickness in [34] 

was inferred using elastic property while in this work the magnitude of complex modulus is utilized. 

Different properties could perform slightly differently in reflecting the interphase thickness. 2) 

Numerical error introduced by coarsened meshing: in our FE model, the original microstructure 

which has a resolution of 700x700 pixels is coarsened to a voxelated meshing (200x200) for 

computational efficiency, and this coarsening process may introduce numerical errors.  

 It should be also noted that while the functional form of the compound effect is learned 

based on the experimental data with two overlapped interphases (Section 3.1.2), our method can 

handle the interaction between interphases produced by multiple particle aggregates. Figure 13 

illustrates the distribution of the number of interacting interphases in the microstructure for the 

two validations conducted in this work. It is observed that in the region where many particle 

aggregates are densely distributed, it is possible that a particular location is affected by more than 

10 nearby aggregates. This again verifies the capability of our method in handling multi-body 

(greater than 2) compound effect and complex microstructure dispersions.  
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Figure 13. The distributions of the number of overlapped interphases in the two test cases 

of this work. (a) & (b) correspond to the microstructures in Figure 11 & 12 respectively. 

 

4 Conclusion and Future Work 

Based upon AFM experimental observations of local polymer interphase properties, we 

proposed here a new gradient interphase representation. The proposed interphase representation 

contains two components, single-body interphase gradient, which represents the effects of single 

filler aggregates, and multi-body compound effect, which describes the interaction between 

interphases created by multiple filler aggregates. The proposed interphase representation is 

implemented in Finite Element simulation and numerical studies are conducted to investigate the 

effects of each interphase representation components. In addition, the proposed interphase 

representation is compared numerically with previously developed uniform interphase model via 

FE modeling and Bayesian Inference. It is demonstrated that the proposed interphase can achieve 

the equivalent property prediction capability as the prior method, and also supply more reasonable 

interphase gradient information. In addition to the numerical validation on virtual material property, 

it is also shown that the proposed interphase representation could facilitate the exploration of 
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spatial property distribution within the interphase by utilizing Bayesian Inference on experimental 

measurements. 

While this work presents the complete process of utilizing AFM experimental 

measurements of local interphase properties in inferring spatial distribution of interphase via Finite 

Element modeling, several potential directions could be pursued to further extend this work. First, 

in this work, the mathematical form of compound effect is learned from the AFM experimental 

data in which only two filler substrates are included, and the generalization of the compound effect 

for multiple (n>2) interphase interaction is not rigorously validated. AFM model composites with 

a great variance of complex geometries, if available, would reveal the impacts of microstructural 

descriptors for multiple interphase cases, and they would potentially lead to a more precise 

functional form of the compound effect.  Then this sophisticated interphase representations could 

be utilized to predict the properties of given composites in addition to the inference of interphase 

properties presented in this work. Second, while the discussion in this work is limited to modeling 

the viscoelastic property of polymer nanocomposites, similar interphase representation could also 

be developed in the similar manner for other material properties of interest (e.g. dielectric property 

if local dielectric property within interphase is available). Lastly, the proposed interphase 

representation could be implemented in 3D FE modeling. 
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