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Abstract
In this paper, we develop an ultra-weak discontinuous Galerkin method to solve the one-
dimensional nonlinear Schrödinger equation. Stability conditions and error estimates are
derived for the scheme with a general class of numerical fluxes. The error estimates are
based on detailed analysis of the projection operator associated with each individual flux
choice. Depending on the parameters, we find out that in some cases, the projection can be
defined element-wise, facilitating analysis. In most cases, the projection is global, and its
analysis depends on the resulting 2× 2 block-circulant matrix structures. For a large class of
parameter choices, optimal a priori L2 error estimates can be obtained. Numerical examples
are provided verifying theoretical results.

Keywords Ultra-weak discontinuous Galerkin method · Stability · Error estimates ·
Projection · One-dimensional Schrödinger equation

1 Introduction

In this paper, we develop and analyze a discontinuous Galerkin (DG) method for one-
dimensional nonlinear Schrödinger (NLS) equation:

iut + uxx + f (|u|2)u = 0, (1)
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where f (u) is a nonlinear real function and u is a complex function. The Schrödinger equation
is the fundamental equation in quantummechanics, reaching out tomany applications in fluid
dynamics, nonlinear optics and plasma physics. It is also called Schrödinger wave equation
as it can describe how the wave functions of a physical system evolve over time. Many
numerical methods have been applied to solve NLS equations [5,14,17,18,23,28,30]. In [5,
30], several important finite difference schemes are implemented, analyzed and compared.
In [23], the author introduced a pseudo-spectral method for general NLS equations. Many
finite element methods have been tested, such as quadratic B-spline for NLS in [14,28] and
space–time DG method for nonlinear (cubic) Schrödinger equation in [17,18]. In this paper,
we focus on the DG methods, which is a class of finite element methods using completely
discontinuous piecewise function space for test functions and numerical solution, to solve
the Schrödinger equation. The first DG method was introduced by Reed and Hill [24]. A
major development of DG methods is the Runge–Kutta DG (RKDG) framework introduced
for solving hyperbolic conservation laws containing only first order spatial derivatives in a
series of papers [9–13]. Because of the completely discontinuous basis, DG methods have
several attractive properties. It can be used onmany types of meshes, even those with hanging
nodes. The methods have h-p adaptivity and very high parallel efficiency.

Various types of DG schemes for discretizing the second order spatial derivatives have
been used to compute (1). One group of suchmethods is the so-called localDG (LDG)method
invented in [12] for convection–diffusion equations. The algorithm is based on introducing
auxiliary variables and reformulating the equation into its first order form. In [32], an LDG
method using alternating fluxes is developed with L2 stability and proved (k + 1

2 )-th order
of accuracy. Later in [33], Xu and Shu proved optimal accuracy for both the solution and the
auxiliary variables in the LDGmethod for high order wave equations based on refined energy
estimates. In [19], the authors presented an LDG method with exponential time differencing
Runge–Kutta scheme and investigated the energy conservation performance of the scheme.
Another group of method involves treating the second order spatial derivative directly in
the weak formulations, such as IPDG method [15,31] and NIPG method [26,27]. Those
schemes enforce a penalty jump term in theweak formulation, and they have been extensively
applied to acoustic and elasticwave propagations [1,16,25]. As for Schrödinger equations, the
direct DG (DDG) method was applied to Schrödinger equation in [21] and achieved energy
conservation and optimal accuracy. Among all those various formulations, the work in this
paper focus on the ultra-weak DG methods, which can be traced backed to [4], and refer to
those DG methods [29] that rely on repeatedly applying integration by parts so all the spatial
derivatives are shifted from the solution to the test function in the weak formulations. In [7],
Cheng and Shu developed ultra-weak DGmethods for general time dependent problems with
higher order spatial derivatives. In [3], Bona et al. proposed an ultra-weak DG scheme for
generalized KdV equation and performed error estimates.

The focus of this paper is the investigation of a most general form of the numerical flux
functions that ensures stability along with our ultra-weak formulation. The fluxes under con-
sideration include the alternating fluxes, and also the fluxes considered in [21], and therefore
allows for flexibility for the design of the schemes. It is widely known that the choice of
flux can have significant impact on the convergence order of the scheme as evidenced in
DG methods for linear first-order transport equations, two-way wave equations [6], and the
KdV equations [3,7] and many others. The main contribution of the work is a systematic
study of error estimates based on the flux parameters. To this end, we define and analyze
projection operator associated with each specific parameter choice. We assume the depen-
dence of parameters on the mesh size can be freely enforced, therefore many cases shall
follow. We find out that under certain conditions, the projections are “local”, meaning that
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they can be defined element-wise. In the most general setting, the projections are global, and
detailed analysis based on block-circulant matrices are necessary. This type of analysis has
been done in [3,22] for circulant matrices and in [20] for block-circulant matrices, but our
case is more involved due to the 2×2 block-circulant structure, for which several cases need
to be distinguished based on the eigenvalues of the block matrices, and some requires tools
from Fourier analysis. Our analysis reveals that under a large class of parameter choices, our
method is optimally convergent in L2 norm, which is verified by extensive numerical tests
for both the projection operators and the numerical schemes for (1).

The remainder of this paper is organized as follows. In Sect. 2, we introduce an ultra-weak
DG method with general flux definitions for one-dimensional nonlinear Schrödinger equa-
tions and study its stability properties. The main body of the paper, the error estimates, is
contained in Sect. 3. We introduce a new projection operator and analyze its properties in
Sect. 3.1, which is later used in Sect. 3.2 to obtain the convergence results of the schemes.
Numerical validations are provided in Sect. 4. Conclusions are made in Sect. 5. Some tech-
nical details, including proof of most lemmas are collected in the “Appendix”.

2 A DGMethod for One-Dimensional Schrödinger Equations

In this section, we formulate and discuss stability results of a DG scheme for one-dimensional
NLS equation (1) on interval I = [a, b] with initial condition u(x, 0) = u0(x) and periodic
boundary conditions. Here f (u) is a given real function. Our method can be defined for
general boundary conditions, but the error analysis will require slightly different tools, and
therefore we only consider periodic boundary conditions in this paper.

To facilitate the discussion, first we introduce some notations and definitions. For a 1-D
interval I = [a, b], the usual DG meshes are defined as:

a = x 1
2

< x 3
2

< · · · < xN+ 1
2

= b,

I j =
(
x j− 1

2
, x j+ 1

2

)
, x j = 1

2

(
x j− 1

2
+ x j+ 1

2

)
,

and

h j = x j+ 1
2

− x j− 1
2
, h = max

j
h j ,

with mesh regularity requirement h
min h j

< σ , σ is fixed during mesh refinement.
The approximation space is defined as:

V k
h = {vh : vh |I j ∈ Pk(I j ), j = 1, . . . , N },

meaning vh is a polynomial of degree up to k on each cell I j . For a function vh ∈ V k
h , we

use (vh)
−
j− 1

2
and (vh)

+
j− 1

2
to refer to the value of vh at x j− 1

2
from the left cell I j−1 and

the right cell I j respectively. The jump and average are defined as [vh] = v+
h − v−

h and
{vh} = 1

2 (v
+
h + v−

h ) at cell interfaces.
In this paper, we consider a DG scheme motivated by Cheng and Shu [7] and based on

integration by parts twice, or the so-called ultra-weak formulation. In particular, we look for
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the unique function uh = uh(t) ∈ V k
h , t ∈ (0, T ], such that

i
∫

I j
(uh)tvhdx +

∫

I j
uh(vh)xxdx − ûh(vh)

−
x | j+ 1

2
+ ûh(vh)

+
x | j− 1

2

+ ˜(uh)xv
−
h | j+ 1

2
− ˜(uh)xv

+
h | j− 1

2
+
∫

I j
f (|uh |2)uhvhdx = 0 (2)

holds for all vh ∈ V k
h and all j = 1, . . . , N . Here, we require k ≥ 1, because k = 0 yields

an inconsistent scheme. Notice that (2) can be written equivalently in a weak formulation by
performing another integration by parts back as:

i
∫

I j
(uh)tvhdx −

∫

I j
(uh)x (vh)xdx + (u−

h − ûh)(vh)
−
x | j+ 1

2
+ (ûh − u+

h )(vh)
+
x | j− 1

2

+ ˜(uh)xv
−
h | j+ 1

2
− ˜(uh)xv

+
h | j− 1

2
+
∫

I j
f (|uh |2)uhvhdx = 0 (3)

The “hat” and“tilde” terms are the numerical fluxeswe pick for u and ux at cell boundaries,
which are single valued functions defined as:

˜(uh)x = {(uh)x }+α1[(uh)x ]+β1[uh], ûh = {uh}+α2[uh]+β2[(uh)x ], α1, α2 ∈ C, β1, β2 ∈ C,

(4)
where α1, α2, β1, β2 are prescribed parameters. They may depend on the mesh parameter
h. Commonly used fluxes such as the central flux (by setting α1 = α2 = β1 = β2 = 0)
and alternating fluxes (by setting α1 = −α2 = ± 1

2 , β1 = β2 = 0) belong to this flux
family. The direct DG scheme considered in [21] is a special case of our method when
α1 = −α2, β1 = c

h , β2 = 0, c > 0, α1 ∈ R. The IPDG method can also be casted in this
framework as α1 = α2 = β2 = 0, β1 = c

h , c > 0.
Using periodic boundary condition, we can sum up on j for the numerical scheme (2) and

reduce it into the following short-hand notation

aα1,α2,β1,β2(uh, vh) − i
∫

I
f (|uh |2)uhvhdx = 0, (5)

where

aα1,α2,β1,β2(uh, vh) =
∫

I
(uh)tvhdx − i

∫

I
uh(vh)xxdx − i

∑
j

(ûh[(vh)x ]− ˜(uh)x [vh])| j+ 1
2
.

The following theorem contains the results on semi-discrete L2 stability.

Theorem 2.1 (Stability) The solution of semi-discrete DG scheme (2) using numerical
fluxes (4) satisfies L2 stability condition

d

dt

∫

I
|uh |2dx ≤ 0,

if
Imβ2 ≥ 0, Imβ1 ≤ 0, |α1 + α2|2 ≤ −4Imβ1Imβ2. (6)

In particular, when all parameters α1, α2, β1, β2 are restricted to be real, this condition
amounts to

α1 + α2 = 0 (7)

without any requirement on β1, β2.
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Proof From integration by parts, we have, for ∀vh ∈ V k
h

aα1,α2,β1,β2(uh, vh) =
∫

I
(uh)tvhdx + i

∫

I
(uh)x (vh)xdx

+ i
∑
j

([uh(vh)x ] − ûh[(vh)x ] + ˜(uh)x [vh])| j+ 1
2
.

Taking vh = ūh in (5) and compute its conjugate as well, we get

0 = i
∫

I
f (|uh |2)|uh |2dx + i

∫

I
f (|uh |2)|uh |2dx

= aα1,α2,β1,β2(uh, ūh) + aα1,α2,β1,β2(uh, ūh)

= d

dt

∫

I
|uh |2dx − 2Im

∑
j

([uh(ūh)x ] − ûh[(ūh)x ] + ˜(uh)x [ūh])| j+ 1
2
. (8)

Define

A(uh, ūh) =
∑
j

([uh(ūh)x ] − ûh[(ūh)x ] + ˜(uh)x [ūh])| j+ 1
2

=
∑
j

(
{uh}[(ūh)x ] + [uh]{(ūh)x } − ({uh} + α2[uh] + β2[(uh)x ]

)[(ūh)x ]

+ ({(uh)x } + α1[(uh)x ] + β1[uh])[ūh]
)
| j+ 1

2

=
∑
j

(
2Re([uh]{(ūh)x }) − β2|[(uh)x ]|2 + β1|[uh]|2

+ α1[(uh)x ][ūh] − α2[uh][(ūh)x ]
)| j+ 1

2
.

Therefore, ImA(uh, ūh) = ∑
j (−Imβ2|[(uh)x ]|2 + Imβ1|[uh]|2 + Im{(α1 + α2)[ūh]

[(uh)x ]})| j+ 1
2
. Plug it back into (8):

d

dt

∫

I
|uh |2dx+

∑
j

2Imβ2|[(uh)x ]|2−2Imβ1|[uh]|2−2Im{(α1+α2)[ūh][(uh)x ]}| j+ 1
2

= 0.

(9)
If the stability condition (6) is satisfied, we have

d

dt

∫

I
|uh |2dx ≤ 0.

If all parameters are real and (7) is satisfied, then (9) further yields:

d

dt

∫

I
|uh |2dx = 0,

which implies energy conservation. ��

Remark 2.1 For simplicity of the discussion, in the next section, we will only consider real
parameters, i.e. when α1, α2, β1, β2 are real and α1 + α2 = 0.
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3 Error Estimates

In this section, we will derive error estimates of the DG scheme (2) for the model NLS
equation (1). As mentioned before, we consider L2 stable real parameter choices, which
means the numerical fluxes are defined by three parameters as,

˜(uh)x = {(uh)x }+α1[(uh)x ]+β1[uh], ûh = {uh}−α1[uh]+β2[(uh)x ], α1, β1, β2 ∈ R.

(10)
We will focus on the impact of the choice of the parameters α1, β1, β2 on the accuracy of

the scheme. We proceed as follows: first, we define and discuss the properties of projection
operator P�

h in Sect. 3.1. Then, we use the projection error estimates to obtain convergence
result for DG scheme in Sect. 3.2.

3.1 Projection Operator

In this subsection, we perform detailed studies of a projection operator defined as follows.

Definition 3.1 For our DG scheme with flux choice (10), we define the associated projection
operator P�

h for any periodic function u ∈ W 1,∞(I ) to be the unique polynomial P�
h u ∈ V k

h
(when k ≥ 1) satisfying

∫

I j
P�
h u vhdx =

∫

I j
u vhdx ∀vh ∈ Pk−2(I j ), (11a)

̂P�
h u = {P�

h u} − α1[P�
h u] + β2[(P�

h u)x ] = u at x j+ 1
2
, (11b)

˜(P�
h u)x = {(P�

h u)x } + α1[(P�
h u)x ] + β1[P�

h u] = ux at x j+ 1
2
, (11c)

for all j . When k = 1, only conditions (11b)–(11c) are needed.

This definition is to ensure u−̂P�
h u = 0 and ux − ˜(P�

h u)x = 0, which will be used in error
estimates for the scheme. In the following, we analyze the projection when the parameter
choice reduces it to a local projection in Sect. 3.1.1, and then we consider the more general
global projection in Sect. 3.1.2.

3.1.1 Local Projection Results

In general, the projection P�
h is globally defined, and its existence, uniqueness and approxima-

tion properties are quite complicated mathematically. However, with some special parameter
choices, P�

h can be reduced to a local projection, meaning that it can be solved element-wise,
and hence the analysis can be greatly simplified.

For example, with the alternating fluxes α1 = ± 1
2 , β1 = β2 = 0, P�

h can be reduced to P1
h

and P2
h defined below. P�

h = P1
h for parameter choice α1 = 1

2 , β1 = β2 = 0 is formulated
as: for each cell I j , we find the unique polynomial of degree k, P1

h u, satisfying∫

I j
P1
h u vhdx =

∫

I j
u vhdx ∀vh ∈ Pk−2(I j ), (12a)

(P1
h u)− = u at x j+ 1

2
, (12b)

(P1
h u)+x = ux at x j− 1

2
. (12c)
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When k = 1, only conditions (12b)–(12c) are needed.
Similarly, we can define P�

h = P2
h for parameter choice α1 = − 1

2 , β1 = β2 = 0 as: for
each cell I j , we find the unique polynomial of degree k, P2

h u, satisfying
∫

I j
P2
h u vhdx =

∫

I j
u vhdx ∀vh ∈ Pk−2(I j ), (13a)

(P2
h u)+ = u at x j− 1

2
, (13b)

(P2
h u)−x = ux at x j+ 1

2
. (13c)

When k = 1, only conditions (13b)–(13c) are needed.
Similar local projections have been introduced and considered in [7]. It is obvious that

P1
h u, P2

h u can be solved element-wise, and their existence, uniqueness are straightforward.
From a standard scaling argument by Bramble–Hilbert lemma in [8], P1

h and P2
h have the

following error estimates: let u ∈ Wk+1,p(I j )(p = 2,∞), then

‖u − Pν
h u‖L p(I j ) ≤ Chk+1

j |u|Wk+1,p(I j ), p = 2,∞, ν = 1, 2,

‖ux − Pν
h ux‖L p(I j ) ≤ Chkj |u|Wk+1,p(I j ), p = 2,∞, ν = 1, 2,

(14)

where here and below, C is a generic constant that is independent of the mesh size h j , the
parameters α1, β1, β2 and the function u, but may take different value in each occurrence.

Naturally, the next question is that if there are other parameter choices such that P�
h can

be reduced to a local projection. The following lemma addresses this issue.

Lemma 3.1 (The condition for reduction to a local projection) If α2
1 + β1β2 = 1

4 , P
�
h is a

local projection.

Proof The definition (11a) provides k − 1 linearly independent equations for solving P�
h u

on each cell. If (11b)–(11c) can be locally decoupled, P�
h is a local projection. We can

write (11b)–(11c) in vector form as

[
̂P�
h u

˜(P�
h u)x

] ∣∣∣∣
x
j+ 1

2

= A0

[
P�
h u

(P�
h u)x

] ∣∣∣∣
−

x
j+ 1

2

+ B0

[
P�
h u

(P�
h u)x

] ∣∣∣∣
+

x
j+ 1

2

=
⎡
⎣ u

(
x j+ 1

2

)

ux
(
x j+ 1

2

)
⎤
⎦ , (15)

where

A0 =
[ 1
2 + α1 −β2

−β1
1
2 − α1

]
, B0 =

[ 1
2 − α1 β2

β1
1
2 + α1

]
. (16)

Note that A0 + B0 = I2, det A0 = det B0 = −(α2
1 + β1β2 − 1

4 ) and A0B0 = −(det A0)I2.
By assumption α2

1 + β1β2 = 1
4 , if β1 = β2 = 0, then α1 = ± 1

2 and P�
h u = P1

h or P2
h ,

which are local projections. The rest of the cases are

• if β1 
= 0, left multiply (15) by a matrix, we have

[
β1

1
2 + α1

β1 − ( 12 − α1
)
] [

u
ux

] ∣∣∣∣
x
j+ 1

2

=
[
0 0
β1 − ( 12 − α1

)
] [

P�
h u

(P�
h u)x

] ∣∣∣∣
−

x
j+ 1

2

+
[
β1

1
2 + α1

0 0

] [
P�
h u

(P�
h u)x

] ∣∣∣∣
+

x
j+ 1

2

,
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which implies the following decoupled relations

(P�
h u)+ +

1
2 + α1

β1
(P�

h u)+x = u +
1
2 + α1

β1
ux at x j− 1

2
,

(P�
h u)− −

1
2 − α1

β1
(P�

h u)−x = u −
1
2 − α1

β1
ux at x j+ 1

2
.

(17)

• if β2 
= 0, by similar linear transformation, we have
[ 1

2 − α1 β2

− ( 12 + α1
)

β2

] [
u
ux

] ∣∣∣∣
x
j+ 1

2

=
[

0 0
− ( 12 + α1

)
β2

] [
P�
h u

(P�
h u)x

] ∣∣∣∣
−

x
j+ 1

2

+
[ 1
2 − α1 β2

0 0

] [
P�
h u

(P�
h u)x

] ∣∣∣∣
+

x
j+ 1

2

,

which implies

(P�
h u)+x +

1
2 − α1

β2
(P�

h u)+ = ux +
1
2 − α1

β2
u at x j− 1

2
,

(P�
h u)−x −

1
2 + α1

β2
(P�

h u)− = ux −
1
2 + α1

β2
u at x j+ 1

2
.

(18)

(17), (18) are the desired decoupled conditions on each cell I j . Therefore the proof is
complete. ��

This lemma implies that for any parameter satisfyingα2
1+β1β2 = 1

4 , P
�
h is locally defined.

We remark that this condition turns out to be the same as the optimally convergent numerical
flux families in [6] for two-way wave equations, although they arise in different contexts.
Unfortunately, for the general definition of P�

h , unlike P1
h and P2

h , we cannot directly use the
Bramble–Hilbert lemma and the standard scaling argument to obtain optimal approximation
property, since the second and third relations in (17) and (18) may break the scaling.

The next lemma performs a detailed analysis of this local projection when β1 
= 0 or
β2 
= 0. Indeed for some parameter choices, only suboptimal convergence rate is obtained.

Lemma 3.2 (Local projection: existence, uniqueness and error estimates) If α2
1 + β1β2 = 1

4
with β1 
= 0 or β2 
= 0, the local projection P�

h exists and is uniquely defined when

� j = β1 − k2

h j
+ β2

k2(k2 − 1)

h2j

= 0, ∀ j . (19)

In addition, the following error estimates hold for p = 2,∞:

‖P�
h u − u‖L p(I ) ≤ Chk+1|u|Wk+1,∞(I )

⎛
⎜⎜⎜⎜⎝
1 +

max

(
|β1|,min

(∣∣∣ 12−α1

∣∣∣
h ,

∣∣∣ 12+α1

∣∣∣
h

)
,

|β2|
h2

)

min j |� j |

⎞
⎟⎟⎟⎟⎠

.

(20)

Proof The proof of this lemma can be found in the “Appendix A.1”. ��
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If we assume β1 = c/h, β2 = ch, then α1 = constant , and as long as the solvability
condition (19) is satisfied, we have the optimal approximation property for P�

h . Such con-
clusions are not surprising, because (17) and (18) will maintain the correct scaling relation.
However, for other parameter choices, the convergence rate in (20) may be suboptimal. The
estimate (20) is verified by numerical experiments in Tables 1, 2, 3 and 4.

3.1.2 Global Projection Results

In this subsection,we considerα2
1+β1β2 
= 1

4 ,where P
�
h is a global projection. For simplicity,

only uniform mesh is investigated, which makes the coefficient matrix of the linear system
block-circulant. First, we analyze the existence and uniqueness of P�

h .

Lemma 3.3 (Global projection: existence and uniqueness) If α2
1 + β1β2 
= 1

4 , assuming

a uniform mesh of size h, let � := β1 + k2(k2−1)
h2

β2 − 2k2
h (α2

1 + β1β2 + 1
4 ) and � :=

−2k
h (α2

1 + β1β2 − 1
4 ), then we have

Case 1. if |�| > |�|, then P�
h exists and is uniquely defined.

Case 2. if |�| = |�|, then P�
h exists and is uniquely defined if N is odd, and furthermore,

if k is odd, we require � = −�; if k is even, we require � = �.

Case 3. if |�| < |�|, then P�
h exists and is uniquely defined if

(−1)(k+1)N

⎛
⎝�

�
+
√(

�

�

)2

− 1

⎞
⎠

N


= 1.

Proof The proof of this lemma can be found in the “Appendix A.2”. ��
Next, we will focus on error estimates of the projection P�

h based on the three cases as
categorized in Lemma 3.3.

Lemma 3.4 (Global projection: error estimates for Case 1) When the parameter choice
belongs to Case 1 in Lemma 3.3, we have for p = 2,∞,

‖P�
h u − u‖L p(I )

≤ Chk+1|u|Wk+1,∞(I )

(
1 +

( |λ2| + 1

|λ2| − 1

(‖Q1V1‖∞ + h−1‖Q1V2‖∞
)

+ 1

|λ2| − 1

(‖V1‖∞ + h−1‖V2‖∞
) ))

, if � < 0,

‖P�
h u − u‖L p(I )

≤ Chk+1|u|Wk+1,∞(I )

(
1 +

( |λ1| + 1

|λ1| − 1

(‖(I2 − Q1)V1‖∞ + h−1‖(I2 − Q1)V2‖∞
)

+ 1

|λ1| − 1

(‖V1‖∞ + h−1‖V2‖∞
) ))

, if � > 0, (21)

where Q1 is given by (60) or (61) depending on the parameter choices as shown in the proof;
I2 is the 2× 2 identity matrix; V1, V2 are given by (65); and λ1, λ2 are the eigenvalues of Q
as defined in (52).

Proof The proof of this lemma can be found in the “Appendix A.3”. ��
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Fig. 1 A sketch to illustrate the different cases parameterized by the values of A1, A2

Equation (21) provides error bound that can be computed once the parameters α1, β1, β2

are given, yet its dependence on the mesh size h is not fully revealed, particularly when
the parameters α1, β1, β2 also have h-dependence. To clarify such relations, next we will
consider the following common choice of parameters, where α1 has no dependence on h,
β1 = β̃1hA1 , β2 = β̃2hA2 , β̃1, β̃2 are nonzero constants that do not depend on h. If indeed
β1 or β2 is zero, it is equivalent to let A1, A2 → +∞ in the discussions below. We will
discuss if the parameter choice will yield optimal (k + 1)-th order accuracy. To distinguish
different cases, we illustrate the choice of parameters A1, A2 in Fig. 1. For example, Case
1.1 means A1 > −1, A2 > 1, Case 1.5 means A1 = −1, A2 = 1 and Case 1.7.1 means
A1 > −1, A2 = 1. The main results are summarized in Algorithm 1.

Algorithm 1: Interpretation of error estimate (21).

1 if k = 1 and A2 < 1, then
2 P�

h is suboptimal and is (k + A2)-th order accurate,
3 else
4 if limh→0 |λ1, λ2| = 1 with |λ1, λ2| = 1 + O(hδ/2), then
5 P�

h is suboptimal and is (k + 1 − δ)-th order accurate,
6 else
7 P�

h has optimal (k + 1)-th order error estimates.
8 end
9 end

The main reason of order reduction for k = 1, A2 < 1 in Statement 2 (i.e. line 2 of the
algorithm above) is that the term such as 1

|λ2|−1‖Q1V1‖∞ is of O(hA2−1) instead of O(1),
and this will cause (1 − A2)-th order reduction. This happens for Cases 1.3, 1.4 and 1.6.2
when k = 1.

The main reason of order reduction in Statement 5 is because of the terms such as
1

|λ2|−1 ,
|λ2|+1
|λ2|−1 in (21). The fractions 1

|λ2|−1 ,
|λ2|+1
|λ2|−1 cannot be controlled by a constant if

123



782 Journal of Scientific Computing (2019) 78:772–815

limh→0 |λ2| = 1. By definition of λ1, λ2 in (52), we know that
∣∣ �
�

∣∣ → 1 ⇔ |λ1, λ2| → 1.

More precisely, if
∣∣ �
�

∣∣ = 1 + O(hδ), δ > 0, then |λ1, λ2| = 1 + O(hδ/2), then |λ2|+1
|λ2|−1 or

1
|λ2|−1 = O(h−δ/2). The relation �2 −�2 = (b1−b2)(b1 +b2)+c22 also indicates that there

is some cancellation of leading terms in b1 − b2 or b1 + b2, making ‖Q1‖∞ ∼ O(h−δ/2),
multiplying these factors together will result in δ-th order reduction in the error estimation
of P�

h . Note that b1, b2, c2 and Q1 are defined in (50), (51), (48) and (60).
Then we look at what parameter choices make

∣∣ �
�

∣∣ → 1. Since

�

�
=
⎧
⎨
⎩
k + β1+ k2(k2−1)

h2
β2− k2

h

�
k > 1,

1 + β1− 1
h

�
k = 1,

we have

1. Case 1.1 (A1 > −1, A2 > 1) with k = 1, α1 = 0,
∣∣ �
�

∣∣ →
∣∣∣∣
1
2+2α2

1
1
2−2α2

1

∣∣∣∣ = 1.

2. Case 1.6.1 (A1 = −1, A2 > 1) β̃1 = k(k±1)
2 + 2α2

1k(k ∓ 1),
∣∣ �
�

∣∣ →
∣∣∣∣k + β1− k2

h
�

∣∣∣∣ → 1.

3. Case 1.6.2 (A1 = −1, A2 < 1) with k > 1, β̃1 = k(k±1)
2 ,

∣∣ �
�

∣∣ →
∣∣∣∣∣k +

k2(k2−1)β2
h2

�

∣∣∣∣∣ → 1.

4. Case 1.7.1 (A1 > −1, A2 = 1) β̃2 = 1
2k(k∓1) + 2α2

1
k(k±1) ,

∣∣ �
�

∣∣ →
∣∣∣∣∣k +

k2(k2−1)β2
h2

− k2
h

�

∣∣∣∣∣ → 1.

5. Case 1.7.2 (A1 < −1, A2 = 1) β̃2 = 1
2k(k±1) ,

∣∣ �
�

∣∣ →
∣∣∣k + β1

�

∣∣∣ → 1.

Remark 3.1 Weonly considered T given by (54) in the discussion above. By “AppendixA.6”,
we can conclude that under the parameter conditions in Case 1, (b1 + b2)(b1 − b2) = 0 only
can happen if A1 = −1, A2 = 1 with (85) or (86). This is Case 1.5, for which we always
have optimal error estimate.

Remark 3.2 Through numerical tests, we found that (21) is mostly sharp with two exceptions.
When limh→0 |λ1, λ2| = 1, the estimates show that there will be order reduction for error of
P�
h , while in numerical experiments (see e.g. Tables 7, 8), such order reduction is observed

only when limh→0 λ1, λ2 = 1 but not −1. We believe when limh→0 λ1, λ2 = −1, a refined
estimate can be obtained similar to Lemma 3.8 for Case 2. We have not carried out this
estimate in this work.

Another example we find for which (21) is not sharp is k = 2, A1 = −2,−3, A2 =
1, (α1, β̃1, β̃2) = (0.25,−1, 1

12 ), where parameters belong to Case 1.7.2, β̃2 = 1
2k(k+1) and

λ1, λ2 → 1+ O(h−(1+A1)/2). The theoretical results predict accuracy order of (k + 2+ A1)

but numerical experiments in Table 9 show the order to be (k + 3 + A1). Our estimations
can’t resolve this one order difference. This special parameter may trigger a cancellation we
didn’t capture in analysis. We will improve this estimate in our future work.

We can then generalize the approach to Cases 2 and 3.

Lemma 3.5 (Global projection: error estimates for Case 2) When the parameter choice
belongs to Case 2 in Lemma 3.3 and P�

h is well defined, we have

‖P�
h u−u‖L p(I ) ≤Chk+1|u|Wk+1,∞(I )

(
1+h−1

(
1+ h−1‖Q2‖∞

|�|
) (‖V1‖∞ + h−1‖V2‖∞

) )
,

(22)
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where p = 2,∞, Q2 is given by (72) and V1, V2 are given by (65).

Proof The proof of this lemma can be found in the “Appendix A.3”. ��
Remark 3.3 Detailed discussions on the parameter choices for Case 2 are contained in

“Appendix A.7”. Under these conditions, we actually have � = C
(
β1 − k2

h + k2(k2−1)
h2

β2

)
,

and by (66)

‖V1‖∞ + h−1‖V2‖∞ ∼ C

(
1 + max(|β1| ,

∣∣ 1
2 − α1

∣∣ /h)

|�|

)
, (23)

in addition

‖Q2‖∞
|�| ∼ C

max
(
|β1| , 1

h ,
|β2|
h2

)

|�| . (24)

In the best-case scenario, the right hand side of the two equations above are bounded by a
constant. Therefore, (22) yields the accuracy order to be (k − 1) at best.

Lemma 3.6 (Global projection: error estimates for Case 3) When the parameter choice
belongs to Case 3 in Lemma 3.3 and P�

h is well defined, assuming
∣∣1 − λN

1

∣∣ ∼ O(hδ′
),

we have

‖P�
h u − u‖L p(I ) ≤ Chk+1|u|Wk+1,∞(I )

(
1 + h−(δ′+1)‖Q1‖∞

(‖V1‖∞ + h−1‖V2‖∞
))
(25)

where p = 2,∞ and Q1, V1, V2 are given by (60) and (65).

Proof The proof of this lemma can be found in the “Appendix A.3”. ��
Remark 3.4 In the best-case scenario, the term ‖Q1‖∞ and ‖V1‖∞+h−1‖V2‖∞ are bounded
by constants. While the term h−(δ′+1) is of order at least h−1, leading to loss of at least one
order of accuracy.

Lemmas 3.5 and 3.6 only give suboptimal results. In what follows, we aim at improving
the convergence order with stronger assumption on the regularity of the solution by using
additional techniques involving cancellation of errors from neighboring terms and global
approximation by Fourier expansions. We will need the following lemma that resembles
Proposition 3.2 in [3], and also the fast decay property of Fourier coefficients of the exact
solution. The proof of Lemma 3.7 follows the same line as in [3] and is skipped for brevity.

Lemma 3.7 (Detailed error estimates for P1
h ) When P1

h is applied to a periodic and suf-
ficiently smooth function u on uniform mesh, denote η j = (u − P1

h u)+| j+ 1
2
and θ j =

(ux − (P1
h u)x )

−| j+ 1
2
, j = 0, . . . , N − 1, we have:

η j−1 = μhk+1u(k+1)
(
x j− 1

2

)
+ μ2h

k+2u(k+2)
(
x j− 1

2

)
+ C2h

k+3, (26)

θ j = ρhku(k+1)
(
x j− 1

2

)
+ ρ2h

k+1u(k+2)
(
x j− 1

2

)
+ C3h

k+2, (27)

where μ,μ2, ρ and ρ2 are constants that depend only on k. C2 and C3 depend on k and
|u|Wk+3,∞(I j ). Thus, by using Mean-Value Theorem, an additional h can be extracted,

|η j − η j+1| ≤ Chk+2|u|Wk+2,∞(I ), (28)

|θ j − θ j+1| ≤ Chk+1|u|Wk+2,∞(I ). (29)
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With Lemma 3.7 and Fourier analysis, we can prove the following two lemmas with
refined error estimates.

Lemma 3.8 (Global projection: refined error estimates forCase 2)When the parameter choice
belongs to Case 2 in Lemma 3.3 and P�

h is well defined, we have

‖P�
h u − u‖L p(I ) ≤ Chk+1‖u‖Wk+4,∞(I )

(
1 +

(
1 + ‖Q2‖∞

|�|
)

(‖V1‖∞ + h−1‖V2‖∞)

)
,

(30)
where p = 2,∞, Q2 is given by (72), V1, V2 are given by (65).

Proof The proof of this lemma can be found in the “Appendix A.4”. ��
Remark 3.5 The difference between (30) and (22) are the two h−1 factors and the norm of
u, which corresponds to the different regularity requirement for the estimation. It is obvious
that (30) is always a better estimate if the solution is smooth enough.

In most cases, (30) yields optimal accuracy order, except when k = 1, α1 = 0, β1 =
0, β2 = O(hA2), A2 < 1, where the P�

h is only (k+ A2)-th order accurate because
‖Q2‖∞|�| =

|b1+b2||�| = |− −4
h2

β2+ 1
2h |

1
2h

∼ O(hA2−1) in (30). This is verified numerically in Table 11.

Lemma 3.9 (Global projection: refined error estimates forCase 3)When the parameter choice
belongs to Case 3 in Lemma 3.3 and P�

h is well defined, assuming
∣∣1 − λN

1

∣∣ = O(hδ′
) and

|λ1 − 1| = O(hδ/2) with 0 ≤ δ/2 ≤ 1, we have

‖P�
h u − u‖L p(I ) ≤ Chk+1‖u‖Wk+3,∞(I )

(
1 + h−(δ′+δ/2)‖Q1‖∞(‖V1‖∞ + h−1‖V2‖∞)

)
,

(31)
where p = 2,∞, λ1 is the eigenvalue of Q defined in (52), Q1 is given by (60), V1, V2 are
given by (65).

Proof The proof of this lemma can be found in the “Appendix A.5”. ��
Remark 3.6 If 0 ≤ δ/2 ≤ 1, Lemma 3.9 is always a better estimate than Lemma 3.6 when
the solution is smooth enough. If δ/2 > 1, we can show δ/2 = δ′ + 1. This is because
|1 − λ1| = |1 − eiθ | = 2| sin(θ/2)|, and |1 − λN

1 | = |1 − ei Nθ | = 2| sin(Nθ/2)|. When
δ/2 > 1, one can assert that |1 − λ1| ∼ θ, |1 − λN

1 | ∼ Nθ, i.e. δ/2 = δ′ + 1. With this
condition, we notice that Lemma 3.6 yields an reduction of δ-th order in convergence rate
by checking the order of each term as is done for Case 1. This order reduction is consistent
with numerical experiments in Example 4.4. Therefore, there is no need to further improve
the estimates as is done for 0 ≤ δ/2 ≤ 1 in Lemma 3.9.

Now we can summarize the estimation of P�
h for some frequently used flux parameters.

For IPDG scheme with α1 = β2 = 0, β1 = c/h, and DDG scheme discussed in [21] with
α1 = constant, β1 = c/h, β2 = 0, and the more general scale invariant parameter choice
α1 = constant, β1 = c/h, β2 = ch, P�

h always have optimal error estimates. For those
parameters, we can show that the eigenvalues λ1, λ2 are always constants independent of
h, therefore, either by estimates for local projection in Lemma 3.2 or global projection in
Lemmas 3.4, 3.8 and 3.9, we will have optimal convergence rate. Corresponding numerical
results are shown in Tables 2 and 6.

For a natural parameter choice where α1, β1, β2 are all real constants, if β2 
= 0, then P�
h

has first order convergence rate when k = 1 and optimal convergence rate when k > 1 by
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Lemmas 3.2, 3.4, 3.8, 3.9. Corresponding numerical results are shown in Tables 1 and 11.
Lastly, for central flux α1 = α2 = β1 = β2 = 0, this parameter choice belongs to Case 2
when k = 1 and Case 1 when k > 1, thus we can verify that P�

h has optimal convergence
rate by Lemmas 3.4 and 3.8. Corresponding numerical results are shown in Table 10.

3.2 Error Estimates of the DG Scheme

We are now ready to state the main theorem, which is the semi-discrete L2 error estimates
of the DG scheme (2) with numerical flux (10).

Theorem 3.10 Assume that the exact solution u and the nonlinear term f (|u|2) of (1) are
sufficiently smooth with bounded derivatives for any time t ∈ (0, Te] and that the numerical
flux parameters in (10) satisfy the existence conditions of P�

h in Lemmas 3.2 or 3.3. Further-
more, assume εh = u−P�

h u has at least first order convergence rate in L
2 and L∞ norm from

the results in Sect. 3.1. With periodic boundary conditions solution space V k
h (k ≥ 1), the

following error estimation holds for uh, which is the numerical solution of (2) with flux (10):

‖u − uh‖L2(I ) ≤ C�

(‖(u − uh)|t=0‖L2(I ) + ‖(εh)t‖L2(I ) + ‖εh‖L2(I )

)
, (32)

where C� depends on k, ‖ f ‖W 2,∞ , u as well as final time Te, but not on h.
Moreover, the estimates for ‖εh‖L2(I ) has been established in Lemma 3.2 on non-uniform

mesh and in Lemma 3.4–3.9 on uniform mesh for corresponding flux parameters. In other
words, the error of the DG scheme (2) has the same accuracy as P�

h u, as long as P�
h u is

well-defined and the numerical initial condition is chosen sufficiently accurate.

Proof When P�
h exists, we can decompose the error into two parts.

e = u − uh = u − P�
h u + P�

h u − uh := εh + ζh .

By Galerkin orthogonality

0 = aα1,−α1,β1,β2(e, vh) − i
∫

I
f (|u|2)uvhdx + i

∫

I
f (|uh |2)uhvhdx ∀vh ∈ V k

h

= aα1,−α1,β1,β2(εh, vh) + aα1,−α1,β1,β2(ζh, vh) − i
∫

I
f (|u|2)uvhdx

+ i
∫

I
f (|uh |2)uhvhdx .

By letting vh = ζh and taking conjugate of above equation, we have

aα1,−α1,β1,β2(ζh, ζh) + aα1,−α1,β1,β2(ζh, ζh)

= −aα1,−α1,β1,β2(εh, ζh) − aα1,−α1,β1,β2(εh, ζh) − 2
∫

I
f (|u|2)Im(uζh)dx

+ 2
∫

I
f (|uh |2)Im(uhζh)dx . (33)

By Taylor expansion

f (|uh |2) = f (|u|2) + f ′(|u|2)E + 1

2
f̂ ′′E2,
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where f̂ ′′ = f ′′(c), c is a value between |uh |2 and |u|2. E = |uh |2−|u|2 = −2Re(eu)+|e|2.
Therefore, the nonlinear part becomes

∫

I
f (|u|2)Im(uζh)dx −

∫

I
f (|uh |2)Im(uhζh)dx

=
∫

I
f (|uh |2)Im

(
eζh
)+ ( f (|u|2) − f (|uh |2)

)
Im(uζh)dx

= N1 + N2 + N3,

where

N1 =
∫

I
f (|u|2)Im(eζh

)− f ′(|u|2)EIm(uζh)dx,

N2 =
∫

I
f ′(|u|2)EIm(eζh

)− 1

2
f̂ ′′E2Im(uζh)dx,

N3 =
∫

I

1

2
f̂ ′′E2Im

(
eζh
)
dx,

will be estimated separately as follows.

• N1 and N2 terms.
Since eζh = εhζh+|ζh |2,

∣∣EIm(uζh)
∣∣ = ∣∣(−2Re(eu) + |e|2)Im(uζh)

∣∣ ≤ C(‖u‖2L∞(I )+
‖u‖L∞(I )‖e‖L∞(I ))(|εh |2 + |ζh |2), we have

|N1| ≤ C‖ f ‖W 1,∞
(
1 + ‖u‖2L∞(I ) + ‖u‖L∞(I )‖e‖L∞(I )

)
(‖εh‖2L2(I ) + ‖ζh‖2L2(I )),

|N2| ≤ C‖ f ‖W 2,∞‖E‖L∞(I )

(
1 + ‖u‖2L∞(I ) + ‖u‖L∞(I )‖e‖L∞(I )

)
(‖εh‖2L2(I ) + ‖ζh‖2L2(I )).

• N3 term.

|N3| ≤ C‖ f ′′‖L∞‖E‖2L∞(I )

(
‖εh‖2L2(I ) + ‖ζh‖2L2(I )

)
.

To conduct a proper estimate for the nonlinear part, we would like to make an a priori
assumption that, for h small enough,

‖e‖L2(I ) = ‖u − uh‖L2(I ) ≤ h0.5. (34)

By our assumption on P�
h , ‖εh‖L p(I ) ≤ C1h, p = 2,∞, thus ‖ζh‖L2(I ) ≤ C1h0.5 and

‖ζh‖L∞(I ) ≤ C1 by inverse inequality, then ‖e‖L∞(I ) ≤ C1, ‖E‖L∞(I ) ≤ C1. Here and
below, C1 is a generic constant that has no dependence on h, but may depend on u according
to the lemma used to estimate εh .

Therefore, we get the estimate:

|N1| + |N2| + |N3| ≤ C1

(
‖εh‖2L2(I ) + ‖ζh‖2L2(I )

)
, (35)

where C1 depends on ‖ f ‖W 2,∞ and u.
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For linear part of the right hand side in (33), we have

aα1,−α1,β1,β2(εh, ζh) + aα1,−α1,β1,β2(εh, ζh) =
∫

I
(εh)tζh + (εh)tζhdx − i

∫

I
(εh)(ζh)xxdx

+ i
∫

I
(εh)(ζh)xxdx − i

∑
j

(ε̂h[(ζh)x ] −˜(εh)x [ζh])| j+ 1
2

+ i
∑
j

(ε̂h[(ζh)x ] −˜(εh)x [ζh])| j+ 1
2
,

= 2
∫

I
Re
(
(εh)tζh

)
dx .

The last equality holds because of the definition of P�
h u. For the left hand side of (33), by

similar computation in stability analysis we have

aα1,−α1,β1,β2(ζh, ζh) + aα1,−α1,β1,β2(ζh, ζh) = d

dt

∫

I
|ζh |2dx . (36)

Combine these two equations with (35):

d

dt
‖ζh‖2L2(I ) ≤ ‖(εh)t‖2L2(I ) + ‖ζh‖2L2(I ) + C1(‖εh‖2L2(I ) + ‖ζh‖2L2(I )).

Assuming ut , u have sufficient smoothness, then by Gronwall’s inequality, we can get:

‖ζh‖2L2(I ) ≤ C1

(
‖ζh |t=0‖2L2(I ) + ‖(εh)t‖2L2(I ) + ‖(εh)‖2L2(I )

)
,

and we obtain (32).
To complete the proof, we shall justify the a priori assumption. To be more precise,

we consider h0, s.t., ∀h < h0,C�h ≤ 1
2h

0.5, where C� is defined in (32), dependent on
Te, but not on h. Suppose ∃ t∗ = sup{t : ‖u(t∗) − uh(t∗)‖L2(I ) ≤ h0.5}, we would have
‖u(t∗) − uh(t∗)‖L2(I ) = h0.5 by continuity if t∗ is finite. By (32), we obtain ‖e‖L2(I ) ≤
C�h ≤ 1

2h
0.5 if t∗ ≤ Te, which contradicts the definition of t∗. Therefore, t∗ > Te and the a

priori assumption is justified. ��
Remark 3.7 If f is a constant function, we can prove the same error estimates without using
the a priori assumption. Therefore, the assumption that εh = u − P�

h u has at least first order
convergence rate in L2 and L∞ norm is no longer needed.

4 Numerical Experiments

In this section, we present numerical experiments to validate our theoretical results. Particu-
larly, in Sect. 4.1, we provide numerical validations of convergence rate for the projection P�

h
as discussed in Sect. 3.1 with focus on the dependence of the errors on parameters α1, β1, β2.
Section 4.2 illustrates the energy conservation property and validates theoretical convergence
rate of DG scheme for NLS equation (1).

4.1 Numerical Results of the Projection Operator P�
h

Example 4.1 In this example, we focus on local projection where α2
1 +β1β2 = 1

4 , and verify
the conclusions in Lemma 3.2 by considering a smooth test function u = cos(x), x ∈ [0, 2π]
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Table 1 Example 4.1

N L1 error Order L2 error Order L∞ error Order

P1 160 1.98E−02 – 1.56E−02 – 1.81E−02 –

320 9.98E−03 0.99 7.87E−03 0.99 9.20E−03 0.97

640 5.01E−03 0.99 3.95E−03 0.99 4.55E−03 1.02

1280 2.51E−03 1.00 1.98E−03 1.00 2.27E−03 1.00

P2 160 2.18E−06 – 1.91E−06 – 3.73E−06 –

320 2.71E−07 3.01 2.39E−07 3.00 5.14E−07 2.86

640 3.37E−08 3.01 2.97E−08 3.01 6.71E−08 2.94

1280 4.19E−09 3.01 3.69E−09 3.01 7.99E−09 3.07

P3 160 2.82E−09 – 2.45E−09 – 5.67E−09 –

320 1.76E−10 4.00 1.53E−10 4.00 3.76E−10 3.92

640 1.10E−11 4.00 9.50E−12 4.01 2.25E−11 4.06

1280 6.86E−13 4.00 5.93E−13 4.00 1.46E−12 3.95

Error of local projection P�
h u − u on a nonuniform mesh. Flux parameters: α1 = 0.3, β1 = 0.4, β2 = 0.4

on a nonuniform mesh and k = 1, 2, 3 for various sets of parameters (α1, β1, β2). The
nonuniform mesh is generated by perturbing the nodes of a uniform mesh of N cells by at
most 10%.

We first consider two sets of parameters (α1, β1, β2) = (0.3, 0.4, 0.4) and (α1, β1, β2) =
(0.3, 0.4/h j , 0.4h j ). The results with (α1, β1, β2) = (0.3, 0.4, 0.4) are listed in Table 1. By
plugging in the parameters into (20), we have that when k = 1, the projection has suboptimal
first order convergence rate, while for k > 1, optimal (k + 1)-th order convergence rate
should be achieved. For k = 1, � j = β1 − 1

h j
, which does not depend on β2 any more.

This technical difference cause the discrepancy of the convergence order between k = 1 and
k > 1 in Table 1. Results in Table 1 agree well with the theoretical prediction. On the other
hand, when we choose parameters (α1, β1, β2) = (0.3, 0.4/h j , 0.4h j ), by Lemma 3.2, we
should observe optimal convergence rate for all k ≥ 1, and this is verified by the numerical
results in Table 2.

Then, we choose the parameters as (α1, β1, β2) = (0.5, 1, 0) to verify the super-closeness
claim (42), i.e., the difference between P�

h and P1
h can have convergence rates higher than

k + 1. The results are listed in Table 3. The difference of the two projections is indeed of

(k+2)-th order for any k ≥ 1 in all norms. Finally, we take (α1, β1, β2) = (0.5, k2
h j (1+h j )

, 0).
In this case, � j = O(1). The numerical results in Table 4 verify the order reduction to k-th
order accuracy for all k ≥ 1 as predicted by (20).

Example 4.2 In this example, we consider global projection when the parameter choices
belong to Case 1. We consider a smooth test function u = ecos(x) on [0, 2π] with a uniform
mesh of size h = 2π/N and k = 1, 2, 3 for various sets of parameters (α1, β1, β2).

We first test the situation when limh→0 |λ1, λ2| 
= 1 by setting the parameters
(α1, β̃1, β̃2) = (0.25, 1, 1), A1 = −0.5, A2 = 2. Another example is (α1, β1, β2) =
(0, 1

2h , h), for which the eigenvalues λ1, λ2 are constant dependent on k but not h. These
two parameter choices belong to Case 1.1 and Case 1.5, respectively. The numerical results
shown in Tables 5 and 6 verify the optimal (k + 1)-th order convergence rate predicted by
Lemma 3.4.
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Table 2 Example 4.1

N L1 error Order L2 error Order L∞ error Order

P1 160 3.42E−04 – 3.50E−04 – 8.62E−04 –

320 8.55E−05 2.00 8.75E−05 2.00 2.21E−04 1.96

640 2.14E−05 2.00 2.19E−05 2.00 5.45E−05 2.02

1280 5.34E−06 2.00 5.47E−06 2.00 1.36E−05 2.00

P2 160 6.36E−06 – 6.06E−06 – 2.06E−05 –

320 8.17E−07 2.96 7.99E−07 2.92 3.09E−06 2.73

640 1.02E−07 3.00 1.00E−07 2.99 4.51E−07 2.78

1280 1.27E−08 3.01 1.24E−08 3.02 5.12E−08 3.14

P3 160 3.32E−09 – 2.93E−09 – 7.58E−09 –

320 2.08E−10 4.00 1.83E−10 4.00 5.08E−10 3.90

640 1.30E−11 4.00 1.14E−11 4.01 3.04E−11 4.06

1280 8.09E−13 4.00 7.12E−13 4.00 1.99E−12 3.93

Error of local projection P�
h u−u on a nonuniformmesh. Flux parameters:α1 = 0.3, β1 = 0.4/h j , β2 = 0.4h j

Table 3 Example 4.1

N L1 error Order L2 error Order L∞ error Order

P1 160 2.09E−05 – 1.96E−05 – 4.66E−05 –

320 2.56E−06 3.03 2.40E−06 3.03 5.99E−06 2.96

640 3.17E−07 3.01 2.96E−07 3.02 7.17E−07 3.06

1280 3.94E−08 3.01 3.67E−08 3.01 9.11E−08 2.98

P2 160 5.00E−09 – 5.05E−09 – 1.82E−08 –

320 3.14E−10 3.99 3.21E−10 3.98 1.28E−09 3.83

640 1.96E−11 4.00 2.00E−11 4.00 8.56E−11 3.90

1280 1.22E−12 4.01 1.24E−12 4.01 5.02E−12 4.09

P3 160 2.91E−12 – 3.38E−12 – 1.40E−11 –

320 9.11E−14 5.00 1.06E−13 5.00 4.72E−13 4.89

640 2.84E−15 5.00 3.27E−15 5.01 1.40E−14 5.08

1280 8.84E−17 5.00 1.02E−16 5.00 4.63E−16 4.92

Difference of local projection P�
h with P1

h : P
�
h u − P1

h u on a nonuniform mesh. Flux parameters: α1 =
0.5, β1 = 1, β2 = 0

Then we test the situation when limh→0 |λ1, λ2| = 1 by using two sets of parame-
ters (α1, β̃1, β̃2) = (0.25, k(k−1)

2 + k(k+1)
8 , 1), A1 = −1, A2 = 2, 3, and (α1, β̃1, β̃2) =

(0.25, 2
k(k−1) , 1), A1 = −2,−3, A2 = 1.Thefirst set of parameters belongs toCase 1.6.1 and

we can verify that limh→0 λ1, λ2 = (−1)k .Lemma 3.4 and Algorithm 1 imply (k+2− A2)th
convergence order. The numerical results listed in Table 7 show that the expected order reduc-
tion only happens when limh→0 λ1, λ2 = 1, but not for limh→0 λ1, λ2 = −1. The second
set of parameters belongs to Case 1.7.2 and we can verify that limh→0 λ1, λ2 = (−1)k+1.

Lemma 3.4 and Algorithm 1 imply (k + 2+ A1)th convergence order. The numerical results
listed in Table 8 also show that order reduction is only observed when limh→0 λ1, λ2 = 1.
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Table 4 Example 4.1

N L1 error Order L2 error Order L∞ error Order

P1 160 1.33E−02 – 1.20E−02 – 2.28E−02 –

320 6.46E−03 1.04 5.87E−03 1.03 1.14E−02 1.00

640 3.19E−03 1.02 2.90E−03 1.02 5.55E−03 1.03

1280 1.58E−03 1.01 1.44E−03 1.01 2.76E−03 1.01

P2 160 1.31E−05 – 1.28E−05 – 3.68E−05 –

320 3.19E−06 2.04 3.13E−06 2.03 9.85E−06 1.90

640 7.85E−07 2.02 7.71E−07 2.02 2.51E−06 1.97

1280 1.95E−07 2.01 1.91E−07 2.01 6.06E−07 2.05

P3 160 1.72E−08 – 1.89E−08 – 6.49E−08 –

320 2.08E−09 3.05 2.28E−09 3.05 8.28E−09 2.97

640 2.54E−10 3.03 2.80E−10 3.03 9.88E−10 3.07

1280 3.14E−11 3.02 3.46E−11 3.01 1.25E−10 2.98

Error of local projection P�
h u−u on a nonuniformmesh. Flux parameters: α1 = 0.5, β1 = k2

h j (1+h j )
, β2 = 0

Table 5 Example 4.2

N L1 error Order L2 error Order L∞ error Order

P1 160 0.10E−03 – 0.69E−03 – 0.89E−03 –

320 0.26E−04 1.93 0.18E−03 1.93 0.23E−03 1.94

640 0.67E−05 1.98 0.46E−04 1.97 0.58E−04 1.98

1280 0.17E−05 1.99 0.12E−04 1.99 0.15E−04 2.00

P2 160 0.63E−06 – 0.52E−05 – 0.87E−05 –

320 0.88E−07 2.85 0.71E−06 2.88 0.11E−05 2.95

640 0.11E−07 2.95 0.91E−07 2.97 0.14E−06 3.00

1280 0.14E−08 2.99 0.11E−07 2.99 0.17E−07 3.01

P3 320 0.64E−10 – 0.49E−09 – 0.72E−09 –

640 0.45E−11 3.82 0.35E−10 3.80 0.52E−10 3.79

1280 0.29E−12 3.93 0.23E−11 3.91 0.34E−11 3.92

2560 0.19E−13 3.97 0.15E−12 3.96 0.22E−12 3.96

Error of global projection P�
h u−u. Flux parameters (Case 1.1):α1 = 0.25, β̃1 = 1, β̃2 = 1, A1 = −0.5, A2 =

2

Lastly, we test (α1, β̃1, β̃2) = (0.25,−1, 1
12 ) with k = 2, A1 = −2,−3, A2 = 1, where

our theoretical results predict accuracy order of (k + 2 + A1), but numerical experiments
show the order to be (k + 3 + A1) in Table 9. This is one of the exceptions that Lemma 3.4
is not sharp and has been commented in Remark 3.2.

Example 4.3 In this example, we consider global projection when the parameter choices are
central-like fluxes belonging to Cases 1 and 2, for smooth function u = ecos(x) on [0, 2π]
with a uniform mesh of size h = 2π/N and k = 1, 2, 3.

For central flux (α1, β1, β2) = (0, 0, 0), � = − k2
2h ,� = k

2h . If k > 1, |�|
|�| = k > 1, it

belongs to Case 1, and if k = 1, � = −� and it belongs to Case 2. We conclude that P�
h
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Table 6 Example 4.2

N L1 error Order L2 error Order L∞ error Order

P1 320 0.11E−03 – 0.63E−03 – 0.38E−03 –

640 0.28E−04 2.00 0.16E−03 2.00 0.95E−04 2.00

1280 0.70E−05 2.00 0.39E−04 2.00 0.24E−04 2.00

2560 0.18E−05 2.00 0.98E−05 2.00 0.60E−05 2.00

P2 320 0.11E−06 – 0.71E−06 – 0.62E−06 –

640 0.14E−07 3.00 0.89E−07 3.00 0.77E−07 3.00

1280 0.18E−08 3.00 0.11E−07 3.00 0.96E−08 3.00

2560 0.22E−09 3.00 0.14E−08 3.00 0.12E−08 3.00

P3 320 0.38E−10 – 0.25E−09 – 0.22E−09 –

640 0.24E−11 4.00 0.16E−10 4.00 0.14E−10 4.00

1280 0.15E−12 4.00 0.99E−12 4.00 0.86E−12 4.00

2560 0.92E−14 4.00 0.62E−13 4.00 0.54E−13 3.99

Error of global projection P�
h u − u. Flux parameters (Case 1.5): α1 = 0, β1 = 1

2h , β2 = h

Table 7 Example 4.2

N L1 error Order L2 error Order L∞ error Order

P1 640 0.75E−05 – 0.52E−04 – 0.66E−04 –

A2 = 2 1280 0.19E−05 1.97 0.13E−04 1.97 0.17E−04 1.97

β̃1 = 1
4 2560 0.48E−06 1.99 0.34E−05 1.98 0.42E−05 1.99

5120 0.12E−06 1.99 0.84E−06 1.99 0.11E−05 1.99

P2 640 0.15E−06 – 0.12E−05 0.23E−05 –

A2 = 2 1280 0.39E−07 1.94 0.32E−06 1.93 0.61E−06 1.94

β̃1 = 7
4 2560 0.98E−08 1.97 0.82E−07 1.97 0.16E−06 1.97

5120 0.25E−08 1.98 0.21E−07 1.98 0.39E−07 1.99

P2 640 0.14E−04 – 0.12E−03 – 0.21E−03 –

A2 = 3 1280 0.71E−05 1.00 0.58E−04 1.00 0.11E−03 1.00

β̃1 = 7
4 2560 0.35E−05 1.00 0.29E−04 1.00 0.54E−04 1.00

5120 0.18E−05 1.00 0.15E−04 1.00 0.27E−04 1.00

P3 320 0.12E−09 – 0.95E−09 – 0.20E−08 –

A2 = 2 640 0.78E−11 3.99 0.60E−10 3.99 0.13E−09 3.99

β̃1 = 9
2 1280 0.49E−12 3.99 0.38E−11 3.99 0.80E−11 3.99

2560 0.31E−13 4.00 0.24E−12 3.99 0.51E−12 3.97

Error of global projection P�
h u − u. Flux parameters (Case 1.6.1): α1 = 0.25, β̃1 = k(k−1)

2 + k(k+1)
8 , β̃2 =

1.0, A1 = −1, A2 = 2, 3. Note here limh→0 λ1, λ2 = (−1)k
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Table 8 Example 4.2

N L1 error Order L2 error Order L∞ error Order

P2 320 0.28E−07 – 0.21E−06 – 0.24E−06 –

A1 = −3 640 0.35E−08 3.00 0.27E−07 3.00 0.31E−07 3.00

β̃2 = 1
4 1280 0.44E−09 3.00 0.33E−08 3.00 0.38E−08 3.00

2560 0.55E−10 3.00 0.41E−09 3.00 0.48E−09 3.00

P3 320 0.70E−08 – 0.57E−07 – 0.12E−06 –

A1 = −2 640 0.94E−09 2.90 0.77E−08 2.90 0.16E−07 2.91

β̃2 = 1
12 1280 0.12E−09 2.95 0.99E−09 2.95 0.20E−08 2.95

2560 0.15E−10 2.98 0.13E−09 2.98 0.26E−09 2.98

P3 320 0.16E−06 – 0.13E−05 – 0.24E−05 –

A1 = −3 640 0.40E−07 2.00 0.32E−06 2.00 0.61E−06 2.00

β̃2 = 1
12 1280 0.10E−07 2.00 0.79E−07 2.00 0.15E−06 2.00

2560 0.25E−08 2.00 0.20E−07 2.00 0.38E−07 2.00

Error of global projection P�
h u − u. Flux parameters (Case 1.7.2): α1 = 0.25, β̃1 = 1, β̃2 = 1

2k(k−1) , A1 =
−2, −3, A2 = 1. Note here limh→0 λ1, λ2 = (−1)k+1

Table 9 Example 4.2

N L1 error Order L2 error Order L∞ error Order

P2 320 0.72E−07 2.99 0.56E−06 2.98 0.94E−06 2.97

A1 = −2 640 0.90E−08 2.99 0.71E−07 2.99 0.12E−06 2.99

β̃2 = 1
12 1280 0.11E−08 3.00 0.89E−08 3.00 0.15E−07 2.99

2560 0.14E−09 3.00 0.11E−08 3.00 0.19E−08 3.00

P2 320 0.80E−06 2.01 0.63E−05 2.01 0.12E−04 2.01

A1 = −3 640 0.20E−06 2.00 0.16E−05 2.00 0.30E−05 2.00

β̃2 = 1
12 1280 0.50E−07 2.00 0.39E−06 2.00 0.75E−06 2.00

2560 0.13E−07 2.00 0.98E−07 2.00 0.19E−06 2.00

Error of global projection P�
h u−u. Flux parameters (Case 1.7.2): α1 = 0.25, β̃1 = −1, β̃2 = 1

2k(k+1) , A1 =
−2, −3, A2 = 1. Note that limh→0 λ1, λ2 = (−1)k = 1

exists and is unique for k = 1 when N is odd and k > 1 for arbitrary N . P�
h has optimal error

estimates as proved in Lemmas 3.4 and 3.8. Our numerical test in Table 10 demonstrates
optimal convergence rate for all k.

A similar flux is (α1, β1, β2) = (0, 0, 1). Lemma 3.8 yields first order convergence rate
when k = 1 as discussed in Remark 3.5.When k = 2, 3, similar to central flux, this parameter
choice belongs to Case 1, showing optimal convergence rate. The numerical test in Table 11
verifies the theoretical results.

Example 4.4 In this example, we consider global projection when the parameter choices
belong to Case 3 for the smooth function u = ecos(x) on [0, 2π] with uniform mesh size
h = 2π/N and k = 1, 2, 3.

An example of Case 3 is shown in Table 12, where the parameters are (α1, β̃1, β̃2) =
(0.25,−1, 1

2k(k−1) ), A1 = −2,−3, A2 = 1, similar to the parameters in Table 8. The
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Table 10 Example 4.3

N L1 error Order L2 error Order L∞ error Order

P1 93 0.12E−03 – 0.74E−03 – 0.55E−03 –

279 0.13E−04 2.00 0.82E−04 2.00 0.61E−04 2.00

837 0.15E−05 2.00 0.91E−05 2.00 0.68E−05 2.00

2511 0.17E−06 2.00 0.10E−05 2.00 0.76E−06 2.00

P2 160 0.11E−05 – 0.85E−05 – 0.10E−04 –

320 0.14E−06 3.00 0.11E−05 3.00 0.13E−05 2.99

640 0.17E−07 3.00 0.13E−06 3.00 0.16E−06 3.00

1280 0.22E−08 3.00 0.17E−07 3.00 0.20E−07 3.00

P3 160 0.11E−08 – 0.83E−08 – 0.11E−07 –

320 0.68E−10 4.00 0.52E−09 4.00 0.68E−09 4.00

640 0.42E−11 4.00 0.32E−10 4.00 0.42E−10 4.00

1280 0.27E−12 4.00 0.20E−11 4.00 0.26E−11 4.00

Error of global projection P�
h u − u. (Central flux) Flux parameters: α1 = 0, β1 = 0, β2 = 0

Table 11 Example 4.3

N L1 error Order L2 error Order L∞ error Order

P1 93 0.21E−01 – 0.12E+00 – 0.68E−01 –

279 0.72E−02 1.00 0.40E−01 1.00 0.23E−01 1.00

837 0.24E−02 1.00 0.13E−01 1.00 0.75E−02 1.00

2511 0.80E−03 1.00 0.44E−02 1.00 0.25E−02 1.00

P2 160 0.11E−05 – 0.86E−05 – 0.10E−04 –

320 0.14E−06 3.00 0.11E−05 3.00 0.13E−05 3.00

640 0.17E−07 3.00 0.13E−06 3.00 0.16E−06 3.00

1280 0.22E−08 3.00 0.17E−07 3.00 0.20E−07 3.00

2560 0.27E−09 3.00 0.21E−08 3.00 0.25E−08 3.00

P3 160 0.27E−08 – 0.23E−07 – 0.36E−07 –

320 0.17E−09 4.00 0.14E−08 4.00 0.22E−08 4.00

640 0.11E−10 4.00 0.89E−10 4.00 0.14E−09 4.00

1280 0.66E−12 4.00 0.55E−11 4.00 0.87E−11 4.00

Error of global projection P�
h u − u. Flux parameters: α1 = 0, β1 = 0, β2 = 1

asymptotic behavior of λ1, λ2 when h approaches 0 is indeed similar to Table 8, that is,
|λ1, λ2| = 1 + O(h−(A1+1)/2) and limh→0 λ1, λ2 = (−1)k+1. Same as previous examples,
order reductions are only observed when limh→0 λ1, λ2 = 1, that is for k = 3.

We use this example to compare the error bounds obtained in Lemmas 3.6 and 3.9. When
A1 = −2, δ = −(A1 + 1) = 1, we can verify

∣∣1 − λN
1

∣∣ ∼ O(1), i.e., δ′ = 0, thus by
Lemma 3.9, the convergence rate of P�

h is k, which agrees with the simulation and is better
than the one in Lemma 3.6 by half order. When A1 = −3, δ = −(A1 + 1) = 2, δ′ = 0,
Lemmas 3.6 and 3.9 both show a convergence rate of k−1. These estimations are confirmed
by the numerical results in Table 12 when k = 3.
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Table 12 Example 4.4

N L1 error Order L2 error Order L∞ error Order

P2 320 0.28E−07 – 0.21E−06 – 0.24E−06 –

A1 = −3 640 0.35E−08 3.00 0.27E−07 3.00 0.31E−07 3.00

β̃2 = 1
4 1280 0.44E−09 3.00 0.33E−08 3.00 0.38E−08 3.00

2560 0.55E−10 3.00 0.41E−09 3.00 0.48E−09 3.00

P3 320 0.70E−08 – 0.57E−07 – 0.12E−06 –

A1 = −2 640 0.94E−09 2.90 0.77E−08 2.90 0.16E−07 2.91

β̃2 = 1
12 1280 0.12E−09 2.95 0.99E−09 2.95 0.20E−08 2.95

2560 0.15E−10 2.98 0.13E−09 2.98 0.26E−09 2.98

P3 320 0.16E−06 – 0.13E−05 – 0.24E−05 –

A1 = −3 640 0.40E−07 2.00 0.32E−06 2.00 0.61E−06 2.00

β̃2 = 1
12 1280 0.10E−07 2.00 0.79E−07 2.00 0.15E−06 2.00

2560 0.25E−08 2.00 0.20E−07 2.00 0.38E−07 2.00

Error of global projection P�
h u − u. Flux parameters (Case 3, and similar to Case 1.7.2 in Table 8): α1 =

0.25, β̃1 = −1, β̃2 = 1
2k(k−1) , A1 = −2, −3, A2 = 1. Note here limh→0 λ1, λ2 = (−1)k+1

We performed more numerical results of Case 3, and all are similar to those of Case 1 as
long as the eigenvalues λ1, λ2 are approaching 1 at the same rate. Hence, we will not show
more examples about Case 3.

4.2 Numerical Results of the DG Scheme

In this subsection, we show the numerical results of the DG scheme applied to the NLS
equation. For the time discretization, we use third order IMEX Runge–Kutta method [2] and
fix �t = 1/10000, which is small enough to guarantee that the spatial errors dominate. To
be more precise, we treat the DG discretization of linear term uxx implicitly and nonlinear
term f (|u|2)u explicitly.

Example 4.5 In this example, we verify the energy conservation property of our scheme by
considering the following linear equation

iut + uxx = 0,

with the progressive plane wave solution: u(x, t) = Aexp(i(x − t)), with A = 1.

We use L2 projection as the numerical initial condition. In the discussion of stability
condition, we derive that when Imβ2 ≥ 0, Imβ1 ≤ 0, |α1 + α2|2 ≤ −4Imβ1Imβ2, our
scheme for Schrödinger equation is stable. Furthermore, when α1 + α2 = 0, β1, β2 are
real numbers, the scheme is energy conservative. In this example, we compare two different
parameter choices to verify the energy conservation property. The parameter choices are
(α1, α2, β1, β2) = (0.25,−0.25, 1 − i, 1 + i), and (α1, α2, β1, β2) = (0.25,−0.25, 1, 1)
when k = 2, N = 40, ending time T = 100. Both are numerically stable flux parameters. For
the first set of parameters, we expect energy decay due to the contributions from the imaginary
part of β1, β2 as in (9). For the second set of parameter, energy should be conserved.

In Fig. 2, we verify that as t increases from 0 to 100, the flux with only real parameters
preserve ‖uh‖L2(I ), while the flux with complex numbers have much larger errors. More
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Fig. 2 Example 4.5. Absolute difference of ‖uh(t, ·)‖L2(I ) with ‖uh(0, ·)‖L2(I ) with two sets of parameters
(α1, α2, β1, β2) = (0.25,−0.25, 1−i, 1+i) (denoted by “imag”) and (α1, α2, β1, β2) = (0.25,−0.25, 1, 1)
(denoted by “real”) when k = 2, N = 40, ending time Te = 100

precisely, for real parameters, ‖uh(0, ·)‖L2(I ) − ‖uh(100, ·)‖L2(I ) = 7.9E-09, for complex
parameters, ‖uh(0, ·)‖L2(I ) − ‖uh(100, ·)‖L2(I ) = 5.7E-04.

Example 4.6 Accuracy test for NLS equation

iut + uxx + |u|2u + |u|4u = 0, (37)

which admits a progressive plane wave solution: u(x, t) = Aexp(i(cx − ωt)), where ω =
c2 − |A|2 − |A|4 with c = 1, A = 1.

For numerical initial condition, P�
h is usedwhen applicable, otherwise standard L2 projection

is applied. On uniformmesh, we use four sets of parameters. The numerical errors and orders
are shown in Tables 13, 14, 15, 16, 17 and 18, where corresponding projection results are
listed in Tables 1, 2, 10, 11, 7 and 9 respectively. Our numerical experiments show that
the order of convergence for the scheme is the same as the order of error estimates for the
projection P�

h .
We would like to make some additional comments on Tables 15 and 16, whose parameter

choices belong to Case 2 when k = 1. The existence of P�
h requires N to be odd for this case.

However, this assumption is not needed for the optimal convergence rate of the numerical
scheme for (37) as shown in Tables 15 and 16. Similar comments have been made in [3].

Example 4.7 A simulation for the NLS equation

iut + uxx + 2|u|2u = 0 (38)

with double-soliton collision

u(x, t) = sech(x+10−4t) exp(i(2(x+10)−3t))+sech(x−10+4t) exp(i(−2(x−10)−3t)).
(39)
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Table 13 Example 4.6

N L1 error Order L2 error Order L∞ error Order

P1 40 2.86E−02 – 2.48E−02 – 3.92E−02 –

80 1.26E−02 1.18 1.02E−02 1.28 1.56E−02 1.33

160 6.34E−03 1.00 4.99E−03 1.03 6.77E−03 1.20

320 3.18E−03 1.00 2.56E−03 0.96 3.47E−03 0.96

640 1.58E−03 1.01 1.27E−03 1.01 1.85E−03 0.91

P2 40 2.22E−04 – 2.13E−04 – 6.06E−04 –

80 1.99E−05 3.48 2.13E−05 3.33 7.28E−05 3.06

160 3.17E−06 2.65 3.03E−06 2.81 9.01E−06 3.02

320 3.49E−07 3.18 3.34E−07 3.18 1.23E−06 2.87

P3 40 1.54E−06 – 1.35E−06 – 3.29E−06 –

80 4.96E−08 4.96 4.36E−08 4.95 1.29E−07 4.67

160 2.81E−09 4.14 2.60E−09 4.07 8.37E−09 3.95

320 1.61E−10 4.13 1.57E−10 4.05 7.68E−10 3.45

Error in L1, L2 and L∞ norm for solving NLS equation (37) on a nonuniform mesh using flux parameters
(corresponding to Table 1) α1 = 0.3, β1 = β2 = 0.4, ending time Te = 0.3

Table 14 Example 4.6

N L1 error Order L2 error Order L∞ error Order

P1 40 7.47E−03 – 6.50E−03 – 1.29E−02 –

80 2.10E−03 1.83 1.76E−03 1.89 4.22E−03 1.62

160 4.82E−04 2.12 4.18E−04 2.07 1.16E−03 1.86

320 1.21E−04 1.99 1.05E−04 1.99 2.87E−04 2.01

640 3.12E−05 1.96 2.71E−05 1.95 7.40E−05 1.96

P2 40 5.14E−04 – 5.37E−04 – 1.74E−03 –

80 6.81E−05 2.92 7.00E−05 2.94 2.99E−04 2.54

160 8.04E−06 3.08 8.06E−06 3.12 3.58E−05 3.06

320 9.53E−07 3.08 9.75E−07 3.05 3.92E−06 3.19

640 1.68E−07 2.50 1.61E−07 2.60 4.90E−07 3.00

P3 40 1.30E−06 – 1.25E−06 – 4.09E−06 –

80 5.74E−08 4.51 6.00E−08 4.38 2.60E−07 3.98

160 4.44E−09 3.69 4.12E−09 3.86 1.49E−08 4.13

320 2.25E−10 4.30 2.13E−10 4.28 9.65E−10 3.94

Error in L1, L2 and L∞ norm for solving NLS equation (37) on a nonuniform mesh using flux parameters
(corresponding to Table 2) α1 = 0.3, β1 = 0.4h j , β2 = 0.4/h j , ending time Te = 1

We use periodic boundary condition and L2 projection initialization to run the simulation
for double-soliton collision solution. The two waves propagate in opposite directions and
collide at t = 2.5, after that, the two waves separate. Such behaviors are accurately captured
by our numerical simulations, see Fig. 3 for details.
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Table 15 Example 4.6

N L1 error Order L2 error Order L∞ error Order

P1 40 0.28E−02 – 0.22E−02 – 0.27E−02 –

80 0.71E−03 2.00 0.56E−03 2.00 0.67E−03 2.02

160 0.18E−03 2.00 0.14E−03 2.00 0.17E−03 2.01

320 0.45E−04 2.00 0.35E−04 2.00 0.41E−04 2.00

640 0.11E−04 2.00 0.88E−05 2.00 0.10E−04 2.00

P2 40 0.13E−03 – 0.11E−03 – 0.16E−03 –

80 0.16E−04 2.99 0.14E−04 2.99 0.20E−04 3.00

160 0.21E−05 3.00 0.18E−05 3.00 0.25E−05 3.01

320 0.26E−06 3.00 0.22E−06 3.00 0.31E−06 3.00

640 0.32E−07 3.00 0.27E−07 3.00 0.39E−07 3.00

P3 40 0.22E−06 – 0.18E−06 – 0.24E−06 –

80 0.16E−07 3.76 0.13E−07 3.80 0.13E−07 4.16

160 0.10E−08 4.00 0.79E−09 4.00 0.84E−09 4.00

320 0.62E−10 4.00 0.49E−10 4.00 0.52E−10 4.00

640 0.39E−11 3.99 0.31E−11 3.99 0.33E−11 3.96

Error in L1, L2 and L∞ norm for solving NLS equation (37) using central flux (corresponding to Case 2 in
Table 10) α1 = β1 = β2 = 0, ending time Te = 1

Table 16 Example 4.6

N L1 error Order L2 error Order L∞ error Order

P1 40 0.17E+00 – 0.13E+00 – 0.14E+00 –

80 0.92E−01 0.90 0.72E−01 0.89 0.75E−01 0.87

160 0.48E−01 0.94 0.38E−01 0.94 0.38E−01 0.97

320 0.24E−01 0.97 0.19E−01 0.97 0.19E−01 0.98

640 0.12E−01 0.98 0.97E−02 0.98 0.98E−02 0.99

P2 40 0.13E−03 – 0.11E−03 – 0.17E−03 –

80 0.16E−04 3.00 0.14E−04 3.00 0.20E−04 3.02

160 0.21E−05 3.00 0.18E−05 3.00 0.25E−05 3.01

320 0.26E−06 3.00 0.22E−06 3.00 0.31E−06 3.01

640 0.32E−07 3.00 0.27E−07 3.00 0.39E−07 3.00

P3 40 0.68E−06 – 0.56E−06 – 0.83E−06 –

80 0.42E−07 4.00 0.35E−07 4.01 0.51E−07 4.01

160 0.26E−08 4.00 0.22E−08 4.00 0.32E−08 4.00

320 0.16E−09 4.00 0.14E−09 4.00 0.20E−09 4.00

640 0.10E−10 4.00 0.85E−11 4.00 0.13E−10 4.00

Error in L1, L2 and L∞ norm for solving NLS equation (37) using flux parameters (corresponding to Case 2
in Table 11): α1 = β1 = 0, β2 = 1, ending time Te = 1
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Table 17 Example 4.6

N L1 error Order L2 error Order L∞ error Order

P1 40 0.41E−02 – 0.37E−02 – 0.72E−02 –

A2 = 2 80 0.12E−02 1.77 0.10E−02 1.82 0.21E−02 1.80

β̃1 = 1
4 160 0.31E−03 1.93 0.25E−03 2.05 0.39E−03 2.39

320 0.87E−04 1.86 0.69E−04 1.87 0.10E−03 1.94

640 0.23E−04 1.93 0.18E−04 1.94 0.26E−04 1.97

P2 40 0.49E−04 – 0.49E−04 – 0.13E−03 –

A2 = 2 80 0.83E−05 2.55 0.73E−05 2.74 0.14E−04 3.23

β̃1 = 7
4 160 0.31E−05 1.44 0.29E−05 1.32 0.65E−05 1.12

320 0.95E−06 1.69 0.92E−06 1.69 0.20E−05 1.70

640 0.26E−06 1.85 0.25E−06 1.86 0.55E−06 1.87

P2 40 0.36E−03 – 0.34E−03 – 0.74E−03 –

A2 = 3 80 0.21E−03 0.78 0.20E−03 0.76 0.43E−03 0.77

β̃1 = 7
4 160 0.11E−03 0.92 0.11E−03 0.92 0.23E−03 0.92

320 0.56E−04 1.00 0.53E−04 1.00 0.11E−03 0.99

640 0.28E−04 1.00 0.27E−04 1.00 0.58E−04 1.00

P3 40 0.19E−05 – 0.19E−05 – 0.43E−05 –

A2 = 2 80 0.43E−07 5.50 0.38E−07 5.65 0.84E−07 5.66

β̃1 = 9
2 160 0.15E−08 4.88 0.15E−08 4.68 0.26E−08 5.00

320 0.91E−10 4.00 0.90E−10 4.02 0.17E−09 3.94

640 0.58E−11 3.96 0.57E−11 3.99 0.11E−10 3.98

Error in L1, L2 and L∞ norm for solving NLS equation (37) using flux parameters (corresponding to Case
1.6.1 in Table 7): α1 = 0.25, β̃1 = k(k−1)

2 + k(k+1)
8 , β̃2 = 1.0, A1 = −1, A2 = 2, 3, ending time Te = 1

Table 18 Example 4.6

N L1 error Order L2 error Order L∞ error Order

P2 40 0.60E−04 – 0.54E−04 – 0.95E−04 –

A1 = −2 80 0.76E−05 2.99 0.68E−05 2.98 0.12E−04 2.96

β̃1 = 1
12 160 0.96E−06 3.00 0.85E−06 3.00 0.15E−05 2.99

320 0.12E−06 3.00 0.11E−06 3.00 0.19E−06 2.99

640 0.15E−07 3.00 0.13E−07 3.00 0.24E−07 3.00

P2 40 0.95E−04 – 0.85E−04 – 0.15E−03 –

A1 = −3 80 0.21E−04 2.22 0.18E−04 2.20 0.33E−04 2.18

β̃1 = 1
12 160 0.49E−05 2.08 0.44E−05 2.07 0.79E−05 2.06

320 0.12E−05 2.02 0.11E−05 2.02 0.20E−05 2.02

640 0.29E−06 2.02 0.27E−06 2.02 0.48E−06 2.02

Error in L1, L2 and L∞ norm for solving NLS equation (37) using flux parameters (corresponding to Case
1.7.2 in Table 9): α1 = 0.25, β̃1 = −1, β̃2 = 1

2k(k+1) , A1 = −2, −3, A2 = 1, ending time Te = 1
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Fig. 3 Example 4.7. Double soliton collision graphs at t = 0, 2.5, 5 and a x − t plot of the numerical solution.
N = 250, P2 elements with periodic boundary conditions on [-25,25]. Central flux (α1 = β1 = β2 = 0) is
used

5 Conclusions and FutureWork

In this paper, we studied the ultra-weak DG method with a general class of numerical fluxes
for solving one-dimensional nonlinear Schrödinger equation with periodic boundary con-
ditions. Semi-discrete L2 stability and error estimates are obtained when the polynomial
degree k ≥ 1. Focusing on the real parameters, we performed detailed investigation of
the associated projection operators. Our analysis assume the dependence of parameters on
the mesh size h can be freely enforced, hence several cases follow. A variety of analytic
tools are employed, including decoupling of global projection into local projection, analy-
sis of block-circulant matrix and Fourier analysis. We acquire error bounds that are sharp
in most cases from numerical verifications. Future work includes improvement of the error
bounds for some suboptimal cases, superconvergence studies and generalization to higher-
dimensions.
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A Appendix

A.1 Proof of Lemma 3.2

First, we consider the case when β1 
= 0. Define the difference operator Wu = P�
h u − P1

h u,
then (17) implies:

∫

I j
Wu vhdx = 0 ∀vh ∈ Pk−2(I j ),

Wu+ +
1
2 + α1

β1
(Wu)+x = u − (P1

h u)+ at x j− 1
2
,

Wu− −
1
2 − α1

β1
(Wu)−x = −

1
2 − α1

β1

(
ux − (P1

h u
)−
x

)
at x j+ 1

2
.

(40)

For l ≥ 0, let Pl(ξ) be the l-th order Legendre polynomials on [−1,1], with ξ = 2(x−x j )
h j

on I j , and define Pj,l(x) = Pl(
2(x−x j )

h j
) = Pl(ξ). Then Wu can be expressed as:

Wu(x) =
k∑

l=0

a j,l Pj,l(x) =
k∑

l=0

a j,l Pl(ξ).

By the first equation in (40) and orthogonality of Legendre polynomials, one can get:

a j,l = 0, l = 0, . . . , k − 2, j = 1, . . . , N .

We can then move on to solve for a j,k−1 and a j,k on each cell directly by the second and
third equations in (40). By properties of Legendre polynomials: Pl(±1) = (±1)l , P ′

l (±1) =
1
2 (±1)l−1l(l + 1), the following 2 × 2 linear system holds on each cell I j :

M j

[
a j,k−1

a j,k

]
=
[
φ j

ψ j

]
,

where

M j =
[
(M j )11 (M j )12
(M j )21 (M j )22

]
=
⎡
⎣(−1)k−1 + (−1)k

1
2 +α1
β1

k(k−1)
h j

(−1)k + (−1)k−1
1
2 +α1
β1

k(k+1)
h j

1 − 1
2 −α1
β1

k(k−1)
h j

1 − 1
2 −α1
β1

k(k+1)
h j

⎤
⎦

and φ j = (u − (P1
h u)+)|x

j− 1
2
and ψ j = − 1

2−α1
β1

(ux − (P1
h u)−x )|x

j+ 1
2
.

We can calculate the determinant of the matrix M j to be 2(−1)k−1 + 2(−1)k k2
β1h j

+
2(−1)k−1 β2k2(k2−1)

β1h2j
= 2(−1)k−1� j/β1. Hence, when � j 
= 0, ∀ j , P�

h exists and is unique.

We now move on to estimate the a j,k−1, a j,k . Clearly,

a j,k−1 = 1

detM j
((M j )22φ j − (M j )12ψ j )

a j,k = 1

detM j
(−(M j )21φ j + (M j )11ψ j ),

and from the projection property of P1
h , |φ j | ≤ Chk+1

j |u|Wk+1,∞(I j ), |ψ j | ≤ Chkj |
1
2−α1
β1||u|Wk+1,∞(I j ). The error estimates can be obtained based on the following cases.
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• If k = 1, then

a j,0 = 1

2� j

((
β1 −

(
1

2
− α1

)
2

h j

)
(u − P1

h u)+|x
j− 1

2

−
(
1

2
− α1 − 2β2

h j

)
(ux − (P1

h u)x )
−|x

j+ 1
2

)
,

a j,1 = 1

2� j

(
−β1(u − P1

h u)+|x
j− 1

2
−
(
1

2
− α1

)
(ux − (P1

h u)x )
−|x

j+ 1
2

)
.

Thus we have estimates

|a j,0| ≤ Ch2j |u|W 2,∞(I j )

|� j | max

(∣∣∣∣β1 − 1 − 2α1

h j

∣∣∣∣ ,
∣∣∣∣∣
1
2 − α1

h j
− 2β2

h2j

∣∣∣∣∣

)
,

|a j,1| ≤ Ch2j |u|W 2,∞(I j )

|� j | max

(
|β1|,

∣∣∣∣∣
1
2 − α1

h j

∣∣∣∣∣

)
.

Then,

‖P�
h u − P1

h u‖L∞(I j ) = ‖a j,0P0(ξ) + α j,1P1(ξ)‖L∞(I j )

≤ Ch2j |u|W 2,∞(I j )

|� j | max

(
|β1|,

∣∣∣∣∣
1
2 − α1

h j

∣∣∣∣∣ ,
∣∣∣∣∣
β2

h2j

∣∣∣∣∣

)
. (41)

Combining with the error estimates for P1
h and the mesh regularity assumption, we get

‖P�
h u − u‖L p(I ) ≤ Ch2|u|W 2,∞(I )

⎛
⎜⎜⎜⎜⎝
1 +

max

(
|β1|,

∣∣∣ 12−α1

∣∣∣
h ,

|β2|
h2

)

min j |� j |

⎞
⎟⎟⎟⎟⎠

, p = 2,∞.

• If k > 1, then we need to discuss the case when β2 = 0 or β2 
= 0.
If β2 = 0, then α1 = ± 1

2 . When α1 = 1
2 , we have ψ j = 0, and

|a j,k−1| ≤ Chk+1
j |u|Wk+1,∞(I j )

|β1|
|� j | ,

|a j,k | ≤ Chk+1
j |u|Wk+1,∞(I j )

|β1|
|� j | .

Therefore,

‖P�
h u − P1

h u‖L∞(I j ) ≤ Chk+1
j |u|Wk+1,∞(I j )

|β1|
|� j | , (42)

implying a supercloseness between P�
h and P1

h if β1/� j = o(1). In summary, we have

‖P�
h u − u‖L p(I ) ≤ Chk+1|u|Wk+1,∞(I )

(
1 + |β1|

min j |� j |
)

, p = 2,∞.

When α1 = − 1
2 , we then should compare the projection with P2

h instead of P1
h . We skip

the details of the calculations. The conclusion is similar, i.e.

‖P�
h u − P2

h u‖L∞(I j ) ≤ Chk+1
j |u|Wk+1,∞(I j )

|β1|
|� j | ,
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and

‖P�
h u − u‖L p(I ) ≤ Chk+1|u|Wk+1,∞(I )

(
1 + |β1|

min j |� j |
)

, p = 2,∞.

If β2 
= 0, similar to previous case, we can show

|a j,0| ≤ Chk+1
j |u|Wk+1,∞(I j )

|� j | max

(
|β1|,

∣∣∣∣∣
1
2 − α1

h j

∣∣∣∣∣ ,
∣∣∣∣∣
β2

h2j

∣∣∣∣∣

)
,

|a j,1| ≤ Chk+1
j |u|Wk+1,∞(I j )

|� j | max

(
|β1|,

∣∣∣∣∣
1
2 − α1

h j

∣∣∣∣∣ ,
∣∣∣∣∣
β2

h2j

∣∣∣∣∣

)
.

Therefore,

‖P�
h u − u‖L∞(I j ) ≤ Chk+1

j |u|Wk+1,∞(I j )

⎛
⎜⎜⎝1 +

max

(
|β1|,

∣∣∣∣
1
2−α1
h j

∣∣∣∣ ,
∣∣∣∣ β2h2j
∣∣∣∣
)

|� j |

⎞
⎟⎟⎠

and it leads to

‖P�
h u − u‖L p(I ) ≤ Chk+1|u|Wk+1,∞(I )

⎛
⎜⎜⎝1 +

max

(
|β1|, | 12−α1|

h ,
|β2|
h2

)

min j |� j |

⎞
⎟⎟⎠ , p = 2,∞.

Finally, when β1 = 0, β2 
= 0, α1 = ± 1
2 , we have the following estimates

‖P�
h u − u‖L p(I ) ≤ Chk+1|u|Wk+1,∞(I )

(
1 + |β2|

h2 min j |� j |
)

, p = 2,∞.

Summarizing all the estimates, we have shown (20) for all cases.

A.2 Proof of Lemma 3.3

We adopt similar notations as in the proof of Lemma 3.2. Define ξ = 2(x−x j )
h , and let

P�
h u(x)|I j =

k∑
l=0

γ j,l Pj,l(x) =
k∑

l=0

γ j,l Pl(ξ).

By (11a) and orthogonality of Legendre polynomials, one can get:

γ j,l = 2l + 1

2

∫ 1

−1
u

(
x j + h

2
ξ

)
Pl(ξ)dξ, l = 0, . . . , k − 2, j = 1, . . . , N .

We can then move on to solve for γ j,k−1 and γ j,k from (11b)–(11c). At x j+ 1
2
,

[
̂P�
h u

˜(P�
h u)x

]
=

k∑
l=0

γ j,l A0

[
Pl(1)
2
h P

′
l (1)

]
+ γ j+1,l B0

[
Pl(−1)
2
h P

′
l (−1)

]
=
⎡
⎣ u

(
x j+ 1

2

)

ux
(
x j+ 1

2

)
⎤
⎦ , (43)

where A0, B0 are defined in (16).
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Combining (43) for all j and using the periodic boundary condition will result in the
following 2N × 2N linear system

M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1,k−1

γ1,k
· · ·

γN−1,k−1

γN−1,k

γN ,k−1

γN ,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1

ψ1

· · ·
φN − 1
ψN − 1

φN

ψN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

where M = circ(A, B, 02, . . . , 02), denoting a 2N × 2N block-circulant matrix with first
two rows as (A, B, 02, . . . , 02), with 02 as a 2 × 2 zero matrix, and

A = A0

[
Pk−1(1) Pk(1)
2
h P

′
k−1(1)

2
h P

′
k(1)

]
, (45)

B = B0

[
Pk−1(−1) Pk(−1)
2
h P

′
k−1(−1) 2

h P
′
k(−1)

]
,

[
φ j

ψ j

]
=
⎡
⎣ u

(
x j+ 1

2

)

ux
(
x j+ 1

2

)
⎤
⎦−

k−2∑
l=0

(
γ j,l A0

[
Pl(1)
2
h P

′
l (1)

]
+ γ j+1,l B0

[
Pl(−1)
2
h P

′
l (−1)

])
, (46)

where A0, B0 are defined in (16). We can calculate that

det A = det B = −2k

h

(
α2
1 + β1β2 − 1

4

)
:= � 
= 0. (47)

It is clear that the existence and uniqueness of P�
h is equivalent to det M 
= 0. By a direct

computation, det M = det AN det(I2 − QN ), where I2 denotes the 2 × 2 identity matrix,
and

Q = −A−1B = (−1)k+1

�

[
c1 + c2 b1 + b2
b1 − b2 c1 − c2

]
,

with

c1 = β1 + k2(k2 − 1)

h2
β2 − 2k2

h

(
α2
1 + β1β2 + 1

4

)
:= �, (48)

c2 = k

h
(2α1), (49)

b1 = −β1 − k2(k2 + 1)

h2
β2 + 2k2

h

(
α2
1 + β1β2 + 1

4

)
, (50)

b2 = −2k3

h2
β2 + 2k

h

(
α2
1 + β1β2 + 1

4

)
. (51)

The eigenvalues of Q are

λ1 = (−1)(k+1)

�
(� +

√
�2 − �2), λ2 = (−1)(k+1)

�
(� −

√
�2 − �2). (52)

Since det Q = det B/ det A = 1, we have the relations λ1λ2 = 1 and

b21 − b22 = �2 − �2 − c22. (53)
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Belowwe will discuss the existence and uniqueness of P�
h based on three cases depending

on the relation of � and �.

Case 1. If |�| > |�|, thenλ1,2 are real and different. Therefore, we can perform eigenvalue
decomposition of Q,

Q = T DT−1,

where

D =
[
λ1 0
0 λ2

]
,

and

T =
[

1 − b1+b2
c2+

√
�2−�2

b1−b2
c2+

√
�2−�2 1

]
, T−1 = 1

det T

[
1 b1+b2

c2+
√

�2−�2

− b1−b2
c2+

√
�2−�2 1

]
, (54)

where det T = 2
√

�2−�2

c2+
√

�2−�2 , except for the case when (b1 − b2)(b1 + b2) = 0 and c2 < 0,

where

T =
[

1 − b1+b2
2c2

b1−b2
2c2

1

]
, T−1 =

[
1 b1+b2

2c2
− b1−b2

2c2
1

]
. (55)

In both situations, we have

det M = det AN det

(
I2 −

[
λN
1 0
0 λN

2

])
= det AN det

([
1 − λN

1 0
0 1 − λN

2

])
.

det M 
= 0 if and only if (λ1)
N 
= 1 and (λ2)

N 
= 1. This is clearly true since |λ1, λ2| 
= 1.
Case 2. If |�| = |�|, then λ1 = λ2 = (−1)k+1 �

�
and we have two repeated eigenvalues.

Perform Jordan decomposition:
[
c1 + c2 b1 + b2
b1 − b2 c1 − c2

]
= T

[
c1 1
0 c1

]
T −1,

and

T =
[

c2 1
b1 − b2 0

]
, if b1 
= b2,

T =
[
2b1 0
0 1

]
, if b1 = b2. (56)

We define

J =
[
c1 1
0 c1

]
, J = (−1)k+1

�

[
c1 1
0 c1

]
=
[
λ1

(−1)k+1

�

0 λ1

]
,

then

Q j = T J jT −1, J j =
[
λ
j
1 κ j

0 λ
j
1

]
,

I2 − QN = T
[
1 − (λ1)

N −κN
0 1 − (λ1)

N

]
T −1,

where κ j = (−1)(k+1) j

� j j� j−1.
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In both situations, det M 
= 0 if and only if (λ1)
N 
= 1, meaning that we require N to be

odd and further, if k is odd, we require � = −�; if k is even, we require � = �. In both
cases, λ1 = λ2 = −1.

Case 3. If |�| < |�|, then λ1,2 are complex, |λ1,2| = 1, λ1 = λ2, still Q is diagonalizable,
and similar to Case 1, det M 
= 0 turns to (λ1)

N 
= 1 and (λ2)
N = (λ1)N 
= 1, i.e. we require

(−1)(k+1)N

⎛
⎝�

�
+
√(

�

�

)2

− 1

⎞
⎠

N


= 1.

A.3 Proof of Lemmas 3.4–3.6

A.3.1 Proof of Lemma 3.4

In the proof, we still use the difference operator Wu = P�
h u − P1

h u = ∑k
l=0 α j,l Pj,l(x) =∑k

l=0 α j,l Pl(ξ), with α j,l = 0, l = 0, . . . , k − 2, j = 1, . . . , N , and

M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1,k−1

α1,k

· · ·
αN−1,k−1

αN−1,k

αN ,k−1

αN ,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ1
ι1
· · ·

τN−1

ιN−1

τN
ιN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (57)

where
[
τ j
ι j

]
=
[ 1
2 − α1 −β2

β1
1
2 − α1

] [
η j

θ j

]
,

[
η j

θ j

]
=
[
u − (P1

h u)+
ux − (P1

h u)−x

]

j+ 1
2

.

We will now analyze the inverse of the matrix M . It is known that the inverse of a
nonsingular circulant matrix is also circulant, so is a block-circulant matrix. In particular,

M−1 = circ(r0, r1, . . . , rN−1) ⊗ A−1

where ⊗ means Kronecker product for block matrices and r j is a 2 × 2 matrix defined as,

r j = Q j (I2 − QN )−1, j = 0, . . . , N − 1

= T D j (I2 − DN )−1T−1,

D j (I2 − DN )−1 =
⎡
⎢⎣

λ
j
1

1−λN
1

0

0
λ
j
2

1−λN
2

⎤
⎥⎦ :=

[
d j
1 0
0 d j

2

]
, and d j

2 = −dN− j
1 . (58)

For the convenience of further analysis, we separate r j in terms of d j
1 and d j

2 ,

r j = d j
1 T

[
1 0
0 0

]
T−1 + d j

2 T

[
0 0
0 1

]
T−1

:= d j
1 Q1 + d j

2 (I2 − Q1), (59)
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where

Q1 = 1

2
√

�2 − �2

[
c2 + √

�2 − �2 b1 + b2
b1 − b2 −c2 + √

�2 − �2

]
, (60)

when T is given by (54), and

Q1 = 1

2c2

[
2c2 b1 + b2

b1 − b2 0

]
, (61)

when T is given by (55).

For Case 1, eigenvalues λ1,2 are real.
∑N−1

j=0 |d j
1,2| = 1

1−|λ1,2|
1−|λ1,2|N
|1−λN

1,2|
. Without loss of

generality, we assume |λ1| < 1 < |λ2|, which is equivalent to � < 0, then

N−1∑
j=0

|d j
1 | ≤ 1

1 − |λ1| = |λ2|
|λ2| − 1

, (62)

N−1∑
j=0

|d j
2 | ≤ 1

|λ2| − 1
. (63)

We let

[
� j

� j

]
:= A−1

[
τ j
ι j

]
= η j V1 + θ j V2, j = 1, . . . , N (64)

where

V1 = 1

�

⎡
⎣−β1 + k(k+1)

h

(( 1
2 − α1

)2 + β1β2

)

β1 − k(k−1)
h

(( 1
2 − α1

)2 + β1β2

)
⎤
⎦ ,

V2 = 1

�

[
α2
1 + β1β2 − 1

4− (α2
1 + β1β2 − 1

4

)
]

=
[− h

2k
h
2k

]
, (65)

‖V1‖∞ ≤ C

(
1 + max(|β1|, | 12 − α1|/h)

|�|

)
, ‖V2‖∞ ≤ Ch (66)

from basic algebraic calculations. Therefore,

[
αm,k−1

αm,k

]
=

N−1∑
j=0

r j

[
� j+m

� j+m

]
, m = 1, . . . , N , (67)

where by periodicity, when j + m > N , � j+m = � j+m−N ,� j+m = � j+m−N .
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In summary, we obtain the estimation when |λ1| < 1 < |λ2|,
∥∥∥∥
[
αm,k−1

αm,k

]∥∥∥∥∞
≤

N−1∑
j=0

(|d j
1 | + |d j

2 |)
(
max

j

∣∣η j
∣∣ ‖Q1V1‖∞ + max

j
|θ j |‖Q1V2‖∞

)

+
N−1∑
j=0

|d j
2 |
(
max

j
|η j |‖V1‖∞ + max

j
|θ j |‖V2‖∞

)
,

≤ Chk+1|u|Wk+1,∞(I )

( |λ2| + 1

|λ2| − 1

(‖Q1V1‖∞ + h−1‖Q1V2‖∞
)

+ 1

|λ2| − 1

(‖V1‖∞ + h−1‖V2‖∞
) )

, m = 1, . . . , N . (68)

Thus, the estimates for the difference between P�
h and P1

h are

‖P�
h u − P1

h u‖L p(I ) ≤ Chk+1|u|Wk+1,∞(I )

( |λ2| + 1

|λ2| − 1

(‖Q1V1‖∞ + h−1‖Q1V2‖∞
)

+ 1

|λ2| − 1

(‖V1‖∞ + h−1‖V2‖∞
) )

. (69)

Similar estimates can be proved when � > 0 and |λ1| > 1 > |λ2|,
‖P�

h u − P1
h u‖L p(I )

≤ Chk+1|u|Wk+1,∞(I )

( |λ1| + 1

|λ1| − 1

(‖(I2 − Q1)V1‖∞ + h−1‖(I2 − Q1)V2‖∞
)

+ 1

|λ1| − 1

(‖V1‖∞ + h−1‖V2‖∞
) )

, (70)

and (21) is obtained.

A.3.2 Proof of Lemma 3.5

Since P�
h is well defined, we know that λN

1 = −1. Therefore, we can obtain

I2 − QN = T
[
2 N

�

0 2

]
T −1, (I2 − QN )−1 = T

[ 1
2 − N

4�
0 1

2

]
T −1,

r j = Q j (I2 − QN )−1 = (−1) j

2
I2 + (−1) j

−N + 2 j

4�
Q2, (71)

where

Q2 = T
[
0 1
0 0

]
T −1 =

[
c2 b1 + b2

b1 − b2 −c2

]
. (72)

Therefore, we have for m = 0, . . . , N − 1:
∥∥∥∥
[
αm,k−1

αm,k

]∥∥∥∥∞
≤ CN

(
1 + N

|�| ‖Q2‖∞
)
max

j

∥∥∥∥
[
� j

� j

]∥∥∥∥∞
,

≤ Chk |u|Wk+1,∞(I )

(
1 + h−1‖Q2‖∞

|�|
) (‖V1‖∞ + h−1‖V2‖∞

)
.

Similar to Lemma 3.4, we can estimate ‖P�
h u − P1

h u‖L p(I ) and (22) follows.
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A.3.3 Proof of Lemma 3.6

In Case 3, λ1,2 are conjugate to each other and |λ1,2| = 1. Therefore, δ′ ≥ 0, and

N−1∑
j=0

|d j
1 | =

N−1∑
j=0

∣∣∣∣∣
λ
j
1

1 − λN
1

∣∣∣∣∣ = N

|1 − λN
1 | =

N−1∑
j=0

|d j
2 |.

Similar to (68), we obtain

∥∥∥∥
[
αm,k−1

αm,k

]∥∥∥∥∞
≤

N−1∑
j=0

(|d j
1 | + |d j

2 |)
(
max

j
|η j |‖Q1V1‖∞ + max

j
|θ j |‖Q1V2‖∞

)

+
N−1∑
j=0

|d j
2 |
(
max

j
|η j |‖V1‖∞ + max

j
|θ j |‖V2‖∞

)
,

≤ Chk+1|u|Wk+1,∞(I )h
−(δ′+1) (‖Q1V1‖∞ + h−1‖Q1V2‖∞ + ‖V1‖∞ + h−1‖V2‖∞

)

≤ Chk+1|u|Wk+1,∞(I )h
−(δ′+1)‖Q1‖∞

(‖V1‖∞ + h−1‖V2‖∞
)

and we reach the estimation (25).

A.4 Proof of Lemma 3.8

From (64) and (67), we have

[
αm,k−1

αm,k

]
=

N−1∑
j=0

r j

[
� j+m

� j+m

]
, m = 1, . . . , N ,

=: U1V1 +U2V2,

where U1 = ∑N−1
j=0 r jη j+m,U2 = ∑N−1

j=0 r jθ j+m . We first estimate U1, then U2 can be
estimated in a similar way. From (71),

U1 = 1

2
I2

N−1∑
j=0

(−1) jη j+m + Q2

2�

N−1∑
j=0

(−1) j
−N + 2 j

2
η j+m . (73)

By Lemma 3.7, the first term in (73) can be estimated by

∣∣∣∣∣∣
N−1∑
j=0

(−1) jη j+m

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

N−1
2∑

j ′=0

(η2 j ′+m − η2 j ′+1+m) + ηN−1+m

∣∣∣∣∣∣∣

≤ N − 1

2
Chk+2|u|Wk+2,∞(I ) + Chk+1|u|Wk+1,∞(I )

≤ Chk+1‖u‖Wk+2,∞(I ), (74)
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because N must be odd from Lemma 3.3. The second term in (73) can be estimated by
using (26),

∣∣∣∣∣∣
N−1∑
j=0

(−1) j
−N + 2 j

2
η j+m − μhk+1Sk+1 − μ2h

k+2Sk+2

∣∣∣∣∣∣

≤ C
N−1∑
j=0

∣∣∣∣
−N + 2 j

2

∣∣∣∣ hk+3|u|Wk+3,∞(I ) ≤ Chk+1|u|Wk+3,∞(I ), (75)

where Sk+1, Sk+2 are defined as:

Sk+ν :=
N−1∑
j=0

(−1) j
−N + 2 j

2
u(k+ν)

(
x j+m+ 1

2

)
, ν = 1, 2.

We assume u ∈ Wk+4,1(I ). Then u(k+1) ∈ W 3,1(I ), is periodic, and has the following
Fourier series expansion u(k+1)(x) = ∑∞

n=−∞ f̂ (n)e2π inx/L , L = b − a, where its fourier

coefficient f̂ (n) satisfies: ∣∣∣ f̂ (n)

∣∣∣ ≤ C
|u|Wk+4,1(I )

1 + |n|3 . (76)

Since x j+ 1
2

= j�x = j L
N , j = 0, . . . , N −1, then u(k+1)(x j+ 1

2
) = ∑∞

n=−∞ f̂ (n)ω jn with

ω = ei
2π
N . Then

Sk+1 =
N−1∑
j=0

(−1) j
−N + 2 j

2

∞∑
n=−∞

f̂ (n)ω( j+m)n .

Due to (76),
∑ | f̂ (n)| is convergent and we can switch the order of summation, which

results in

Sk+1 =
∞∑

n=−∞
f̂ (n)W (n), where W (n) = −2ω(m+1)n

(1 + ωn)2
. (77)

Since N is odd, ωn = e2π i
n
N 
= −1,∀n.Hence,W (n) and Sk+1 are well defined. Because

W (n) is N -periodic, it’s helpful to split Sk+1 into blocks of size N as

Sk+1 =
∞∑

l=−∞
Slk+1, where Slk+1 =

lN+ N−1
2∑

n=lN− N−1
2

f̂ (n)W (n).
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Let’s estimate S0k+1 first. For |n| ≤ [ 3N8 ], |W (n)| = 2
|1+ωn |2 ≤ 2

|1+ei3π/4|2 = 2
2−√

2
. For

other n, |W (n)| ≤ |W ( N−1
2 )| = 2

|1+ω(N−1)/2|2 ≤ CN 2 from Taylor expansions.

|S0k+1| ≤

[
3N
8

]
∑

n=−
[
3N
8

]

∣∣∣ f̂ (n)W (n)

∣∣∣+
n=−

[
3N
8

]
−1∑

− N−1
2

∣∣∣ f̂ (n)W (n)

∣∣∣+
N−1
2∑

n=
[
3N
8

]
+1

∣∣∣ f̂ (n)W (n)

∣∣∣

≤ 2

2 − √
2

[
3N
8

]
∑

n=−
[
3N
8

]

∣∣∣ f̂ (n)

∣∣∣+ CN 2

n=−
[
3N
8

]
−1∑

− N−1
2

∣∣∣ f̂ (n)

∣∣∣+ CN 2

N−1
2∑

n=
[
3N
8

]
+1

∣∣∣ f̂ (n)

∣∣∣

≤ 2

2 − √
2

[
3N
8

]
∑

n=−
[
3N
8

]

∣∣∣ f̂ (n)

∣∣∣+ CN 2 1

1 + ( 3N8
)3
(
N

4
+ 2

)
|u|Wk+4,1(I )

≤ C

⎛
⎜⎝

N−1
2∑

n=− N−1
2

1

1 + |n|3 + 1
( 3
8

)3

⎞
⎟⎠ |u|Wk+4,1(I ).

Then, in a similar way,

|Slk+1| ≤ C

⎛
⎜⎝

lN+ N−1
2∑

n=lN− N−1
2

1

1 + |n|3 + 1
(|l| + 3

8

)3

⎞
⎟⎠ |u|Wk+4,1(I ).

Therefore,

|Sk+1| ≤ C

( ∞∑
n=−∞

1

1 + |n|3 +
∞∑

l=−∞

1
(|l| + 3

8

)3
)

|u|Wk+4,1(I ) ≤ C |u|Wk+4,1(I ). (78)

By similar Fourier expansion technique, we can show

|Sk+2| ≤ CN |u|Wk+4,1(I ) = Ch−1|u|Wk+4,1(I ). (79)

Combine (78), (79) with (73), (74) and (75), we get

‖U1‖∞ ≤ Chk+1‖u‖Wk+4,∞(I )

(
1 + ‖Q2‖∞

|�|
)

. (80)

Similarly, by (29) and the Fourier expansion technique

‖U2‖∞ ≤ Chk‖u‖Wk+4,∞(I )

(
1 + ‖Q2‖∞

|�|
)

. (81)

Therefore,
∥∥∥∥
[
αm,k−1

αm,k

]∥∥∥∥∞
≤ ‖U1‖∞ ‖V1‖∞ + ‖U2‖∞ ‖V2‖∞ ,

≤ Chk+1‖u‖Wk+4,∞(I )

(
1 + ‖Q2‖∞

|�|
)

(‖V1‖∞ + h−1‖V2‖∞), m = 1, . . . , N ,

and (30) is obtained.
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A.5 Proof of Lemma 3.9

From the discussion in Lemma 3.3, we can write λ1,2 = e±iθ and assume θ ∈ (0, π). First,
we want to make clear of the conditions on δ, δ′. Since |λ1| = |λN

1 | = 1, we have δ, δ′ ≥ 0.
Because 1−λN

1 = (ωn)N − (eiθ )N = (ωn − eiθ )(
∑N−1

l=0 (ωn)N−1−l(eiθ )l), thus
∣∣1 − λN

1

∣∣ ≤
N
∣∣ωn − eiθ

∣∣ ,∀n. With the assumption
∣∣1 − λN

1

∣∣ ∼ Chδ′
, we get

∣∣ωn − eiθ
∣∣ ≥ Chδ′+1.

Particularly, when n = 0, we have |1 − λ1| ≥ Chδ′+1, hence δ/2 ≤ δ′ + 1.
Similar to (67) in Case 1, we can get

[
αm,k−1

αm,k

]
=

N−1∑
j=0

r j

[
� j+m

� j+m

]
, m = 1, . . . , N ,

=: U1V1 + U2V2,

where

U1 = Q1

N−1∑
j=0

η j+md
j
1 + (I2 − Q1)

N−1∑
j=0

η j+md
j
2 , d j

1 = ei jθ

1−ei Nθ ,

U2 = Q1

N−1∑
j=0

θ j+md
j
1 + (I2 − Q1)

N−1∑
j=0

θ j+md
j
2 , d j

2 = −dN− j
1 = −ei(N− j)θ

1−ei Nθ .

We introduce:

S1 = 1

1 − ei Nθ

N−1∑
j=0

ei jθu(k+1)
(
x j+m+ 1

2

)
,

S2 = −1

1 − ei Nθ

N−1∑
j=0

ei(N− j)θu(k+1)
(
x j+m− 1

2

)
.

Then by Lemma 3.7:
∣∣∣U1 − μhk+1Q1S1 − μhk+1(I2 − Q1)S2

∣∣∣ ≤ Chk+1(1 + ‖Q1‖∞)|u|Wk+2,∞(I ),∣∣∣U2 − ρhkQ1S1 − ρhk(I2 − Q1)S2
∣∣∣ ≤ Chk(1 + ‖Q1‖∞)|u|Wk+2,∞(I ).

Therefore,

|Uν | ≤ Chk+2−ν
(
(1 + ‖Q1‖∞)|u|Wk+2,∞ + ‖Q1‖∞(1 + max(|S1| , |S2|))

)
, ν = 1, 2.

(82)
By using similar Fourier expansion: u(k+1)(x j+ 1

2
) = ∑∞

n=−∞ f̂ (n)ω jn . Since now we

assume u ∈ Wk+3,∞(I ),
∣∣∣ f̂ (n)

∣∣∣ ≤ C 1
1+|n|2 |u|Wk+3,1(I ).

S1 = 1

1 − ei Nθ

∞∑
n=−∞

f̂ (n)

N−1∑
j=0

ei jθω( j+m)n =
∞∑

n=−∞
f̂ (n)W1(n),

S2 = −1

1 − ei Nθ

∞∑
n=−∞

f̂ (n)

N−1∑
j=0

ei(N− j)θω( j+m−1)n =
∞∑

n=−∞
f̂ (n)W2(n),
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where from simple algebra

W1(n) = ωmn

1 − eiθωn
, W2(n) = ω(m−1)n

1 − e−iθωn
.

From the discussion at the beginning of the proof, we have |W2(n)| = |λ1 − ωn |−1 ≤
Ch−(δ′+1), and similarly |W1(n)| ≤ Ch−(δ′+1). Since S1 and S2 can be estimated in the
same way, we only show details for S2 in what follows. Similar to the proof of Lemma 3.8,
we split S2 into blocks of size N ,

S2 =
∞∑

l=−∞
Sl
2, where Sl

2 =
(l+1)N−1∑
n=lN

f̂ (n)W2(n).

With the assumption that 0 ≤ δ/2 ≤ 1, there ∃ n0 ∼ O(hδ/2−1) s.t. 2π n0
N ≤ θ < 2π n0+1

N .

Let n1 = �n0/2�, n2 = 2n0 − n1, then for n1 ≤ n ≤ n2,
∣∣∣ f̂ (n)

∣∣∣ ≤ C 1
1+n21

|u|Wk+3,1(I ). For

other n, |W2(n)| ≤ |W2(n1)| ≤ 1
2|sin(πn1/N−θ/2)| ≤ Ch−δ/2. Thus,

∣∣S0
2

∣∣ ≤ Ch−δ/2

⎛
⎝

n1−1∑
n=0

+
N−1∑

n=n2+1

∣∣∣ f̂ (n)

∣∣∣
⎞
⎠+ Ch−(δ′+1)

n2∑
n=n1

∣∣∣ f̂ (n)

∣∣∣

≤ C

(
h−δ/2

N−1∑
n=0

1

1 + |n|2 + h−(δ′+1)(n2 − n1 + 1)
1

1 + n21

)
|u|Wk+3,1(I )

≤ C

(
h−δ/2

N−1∑
n=0

1

1 + |n|2 + h−(δ′+1)hδ/2−1h2−δ

)
|u|Wk+3,1(I )

≤ C

(
h−δ/2

N−1∑
n=0

1

1 + |n|2 + h−δ′−δ/2

)
|u|Wk+3,1(I ).

Using similar approaches, for l 
= 0,

∣∣∣Sl
2

∣∣∣ ≤ C

⎛
⎝h−δ/2

(l+1)N−1∑
n=lN

1

1 + |n|2 + h−δ′+δ/2 1

|n1/N + l|2

⎞
⎠ |u|Wk+3,1(I ).

Summing up, we reach the estimation

|S2| ≤ C

⎛
⎝h−δ/2

∞∑
n=−∞

1

1 + |n|2 + h−δ′−δ/2 + h−δ′+δ/2
∑

l∈N,l 
=0

1

|l|2

⎞
⎠ |u|Wk+3,1(I )

≤ Ch−δ′−δ/2|u|Wk+3,1(I ). (83)

Similarly, we obtain
|S1| ≤ Ch−δ′−δ/2|u|Wk+3,1(I ). (84)

Combine (83), (84) and (82), we get

|Uν | ≤ Chk+2−ν(1 + h−(δ′+δ/2)‖Q1‖∞)‖u‖Wk+3,∞(I ), ν = 1, 2,

and (31) follows.
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A.6 Detailed Discussions on the Choice of the TMatrix as in (54) or (55)

We discuss what parameters result in |b1 ± b2| = 0, under the assumption that α1 has no
dependence on h, β1 = β̃1hA1 , β2 = β̃2hA2 , β̃1, β̃2 are nonzero constants that do not depend
on h.

b1 − b2 =
(

−β1 + k(k − 1)

2h

)(
1 − β2

2k(k − 1)

h

)
+ k(k − 1)

h
2α2

1

=
(

−β̃1h
A1 + k(k − 1)

2
h−1

)(
1 − 2k(k − 1)β̃2h

A2−1
)

+ k(k − 1)2α2
1h

−1,

b1 + b2 =
(

−β1 + k(k + 1)

2h

)(
1 − β2

2k(k + 1)

h

)
+ k(k + 1)

h
2α2

1

=
(

−β̃1h
A1 + k(k + 1)

2
h−1

)(
1 − 2k(k + 1)β̃2h

A2−1
)

+ k(k + 1)2α2
1h

−1.

If b1 − b2 = 0,∀h < h0, then

• α1 
= 0, then A1 = −1, A2 = 1 and β̃1, β̃2 satisfies
(

−β̃1 + k(k − 1)

2

)
(1 − 2k(k − 1)β̃2) + k(k − 1)2α2

1 = 0. (85)

Similarly, for b1 + b2 = 0,∀h < h0, then

• α1 
= 0, A1 = −1, A2 = 1 and β̃1, β̃2 satisfies
(

−β̃1 + k(k + 1)

2

)
(1 − 2k(k + 1)β̃2) + k(k + 1)2α2

1 = 0. (86)

A.7 Detailed Discussions on Case 2

Parameter choices for |�| = |�| imply

� ± � = β1 + k2(k2 − 1)

h2
β2 + k(k ± 1)

h
(−2α2

1 − 2β1β2) + −k2 ± k

2h

=
(

β1 − k(k ∓ 1)

2h

)(
1 − 2β2

k(k ± 1)

h

)
− k(k ± 1)

h
2α2

1 = 0,

which indicates

• if α1 
= 0, then b1 ± b2 can be greatly simplified as follows.

– If � + � = 0, then k is odd from Lemma 3.3, and

b1 + b2 = k

h

(
1 − β2

2k(k + 1)

h

)
,

b1 − b2 = − 2

k + 1

(
β1 − k(k − 1)

2h

)
,

� = − 1

k + 1

(
β1 − k2

h
+ k2(k2 − 1)

h2
β2

)
.
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– If � − � = 0, then k is even from Lemma 3.3, and

b1 + b2 = 2

k − 1

(
β1 − k(k + 1)

2h

)
,

b1 − b2 = − k

h

(
1 − β2

2k(k − 1)

h

)
,

� = − 1

k − 1

(
β1 − k2

h
+ k2(k2 − 1)

h2
β2

)
, k > 1.

• If α1 = 0, then

β1 = k(k ± 1)

2h
, or β2 = h

2k(k ± 1)
. (87)
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