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Abstract

In this paper, we develop an ultra-weak discontinuous Galerkin method to solve the one-
dimensional nonlinear Schrodinger equation. Stability conditions and error estimates are
derived for the scheme with a general class of numerical fluxes. The error estimates are
based on detailed analysis of the projection operator associated with each individual flux
choice. Depending on the parameters, we find out that in some cases, the projection can be
defined element-wise, facilitating analysis. In most cases, the projection is global, and its
analysis depends on the resulting 2 x 2 block-circulant matrix structures. For a large class of
parameter choices, optimal a priori L error estimates can be obtained. Numerical examples
are provided verifying theoretical results.

Keywords Ultra-weak discontinuous Galerkin method - Stability - Error estimates -
Projection - One-dimensional Schrodinger equation
1 Introduction

In this paper, we develop and analyze a discontinuous Galerkin (DG) method for one-
dimensional nonlinear Schrédinger (NLS) equation:

iy + gy + f(u*u =0, (1
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where f(u) is anonlinear real function and u is a complex function. The Schrédinger equation
is the fundamental equation in quantum mechanics, reaching out to many applications in fluid
dynamics, nonlinear optics and plasma physics. It is also called Schrédinger wave equation
as it can describe how the wave functions of a physical system evolve over time. Many
numerical methods have been applied to solve NLS equations [5,14,17,18,23,28,30]. In [5,
30], several important finite difference schemes are implemented, analyzed and compared.
In [23], the author introduced a pseudo-spectral method for general NLS equations. Many
finite element methods have been tested, such as quadratic B-spline for NLS in [14,28] and
space—time DG method for nonlinear (cubic) Schrédinger equation in [17,18]. In this paper,
we focus on the DG methods, which is a class of finite element methods using completely
discontinuous piecewise function space for test functions and numerical solution, to solve
the Schrodinger equation. The first DG method was introduced by Reed and Hill [24]. A
major development of DG methods is the Runge—Kutta DG (RKDG) framework introduced
for solving hyperbolic conservation laws containing only first order spatial derivatives in a
series of papers [9-13]. Because of the completely discontinuous basis, DG methods have
several attractive properties. It can be used on many types of meshes, even those with hanging
nodes. The methods have %-p adaptivity and very high parallel efficiency.

Various types of DG schemes for discretizing the second order spatial derivatives have
been used to compute (1). One group of such methods is the so-called local DG (LDG) method
invented in [12] for convection—diffusion equations. The algorithm is based on introducing
auxiliary variables and reformulating the equation into its first order form. In [32], an LDG
method using alternating fluxes is developed with L? stability and proved (k + %)—th order
of accuracy. Later in [33], Xu and Shu proved optimal accuracy for both the solution and the
auxiliary variables in the LDG method for high order wave equations based on refined energy
estimates. In [19], the authors presented an LDG method with exponential time differencing
Runge—Kutta scheme and investigated the energy conservation performance of the scheme.
Another group of method involves treating the second order spatial derivative directly in
the weak formulations, such as IPDG method [15,31] and NIPG method [26,27]. Those
schemes enforce a penalty jump term in the weak formulation, and they have been extensively
applied to acoustic and elastic wave propagations [1,16,25]. As for Schrodinger equations, the
direct DG (DDG) method was applied to Schrodinger equation in [21] and achieved energy
conservation and optimal accuracy. Among all those various formulations, the work in this
paper focus on the ultra-weak DG methods, which can be traced backed to [4], and refer to
those DG methods [29] that rely on repeatedly applying integration by parts so all the spatial
derivatives are shifted from the solution to the test function in the weak formulations. In [7],
Cheng and Shu developed ultra-weak DG methods for general time dependent problems with
higher order spatial derivatives. In [3], Bona et al. proposed an ultra-weak DG scheme for
generalized KdV equation and performed error estimates.

The focus of this paper is the investigation of a most general form of the numerical flux
functions that ensures stability along with our ultra-weak formulation. The fluxes under con-
sideration include the alternating fluxes, and also the fluxes considered in [21], and therefore
allows for flexibility for the design of the schemes. It is widely known that the choice of
flux can have significant impact on the convergence order of the scheme as evidenced in
DG methods for linear first-order transport equations, two-way wave equations [6], and the
KdV equations [3,7] and many others. The main contribution of the work is a systematic
study of error estimates based on the flux parameters. To this end, we define and analyze
projection operator associated with each specific parameter choice. We assume the depen-
dence of parameters on the mesh size can be freely enforced, therefore many cases shall
follow. We find out that under certain conditions, the projections are “local”, meaning that
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they can be defined element-wise. In the most general setting, the projections are global, and
detailed analysis based on block-circulant matrices are necessary. This type of analysis has
been done in [3,22] for circulant matrices and in [20] for block-circulant matrices, but our
case is more involved due to the 2 x 2 block-circulant structure, for which several cases need
to be distinguished based on the eigenvalues of the block matrices, and some requires tools
from Fourier analysis. Our analysis reveals that under a large class of parameter choices, our
method is optimally convergent in L2 norm, which is verified by extensive numerical tests
for both the projection operators and the numerical schemes for (1).

The remainder of this paper is organized as follows. In Sect. 2, we introduce an ultra-weak
DG method with general flux definitions for one-dimensional nonlinear Schrédinger equa-
tions and study its stability properties. The main body of the paper, the error estimates, is
contained in Sect. 3. We introduce a new projection operator and analyze its properties in
Sect. 3.1, which is later used in Sect. 3.2 to obtain the convergence results of the schemes.
Numerical validations are provided in Sect. 4. Conclusions are made in Sect. 5. Some tech-
nical details, including proof of most lemmas are collected in the “Appendix”.

2 A DG Method for One-Dimensional Schrédinger Equations

In this section, we formulate and discuss stability results of a DG scheme for one-dimensional
NLS equation (1) on interval / = [a, b] with initial condition u(x, 0) = ug(x) and periodic
boundary conditions. Here f(u) is a given real function. Our method can be defined for
general boundary conditions, but the error analysis will require slightly different tools, and
therefore we only consider periodic boundary conditions in this paper.

To facilitate the discussion, first we introduce some notations and definitions. For a 1-D
interval I = [a, b], the usual DG meshes are defined as:

and

with mesh regularity requirement ﬁh/ < o, o is fixed during mesh refinement.
The approximation space is defined as:

Vi ={vn s onlg; € PRU), j =1, ..., N},

meaning vy, is a polynomial of degree up to k on each cell /;. For a function v;, € V,f, we
use (vh); , and (vh);r , to refer to the value of v at X1 from the left cell /;_; and
—2 -2
the right cell /; respectively. The jump and average are defined as [v,] = v;lL — v, and
{un} = %(v; + v;,) at cell interfaces.
In this paper, we consider a DG scheme motivated by Cheng and Shu [7] and based on

integration by parts twice, or the so-called ultra-weak formulation. In particular, we look for
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the unique function u, = uj(t) € V,f, t € (0, T'], such that

i/ (uh)tvth-i-/ up(vp)xxdx —ﬁh(vh);|j+% +ﬁh(Uh)j|j,%

IJ
+ nxvy 11— (uh)xv;flj_% + // funPyupvpdx =0 @
J
holds for all v, € V}f andall j =1, ..., N. Here, we require k > 1, because k = 0 yields

an inconsistent scheme. Notice that (2) can be written equivalently in a weak formulation by
performing another integration by parts back as:

i/I (up)rvpdx _/1 (up)x (n)xdx + (uy = dn) (Va1 1+ (n = M;{)(vh)jlj_%
i i

_ T+
+ (un)xv, |j+% — (up)xvy |,

%+/[ F(un|*)upvpdx =0 3)

The “hat” and*““tilde” terms are the numerical fluxes we pick for u and u, at cell boundaries,
which are single valued functions defined as:

@) = {n) +onl@n)d+Bilunl, in = {wn} +eolunl+Balwn)y], a1, €C, B, o e(%
where o1, @2, B1, B, are prescribed parameters. They may depend on the mesh parameter
h. Commonly used fluxes such as the central flux (by setting o1 = ap = B = p2 = 0)
and alternating fluxes (by setting o1 = —apy = i%, B1 = P2 = 0) belong to this flux
family. The direct DG scheme considered in [21] is a special case of our method when
o] = —og, f1 = %, Br =0,c > 0,1 € R. The IPDG method can also be casted in this
framework as oy = ap = 2 =0, B1 = %, c > 0.

Using periodic boundary condition, we can sum up on j for the numerical scheme (2) and
reduce it into the following short-hand notation

s n Gt V1) — i / FQunPunvndx = 0, )
1
where

Az, p1,2 (Uns V) = /I(uh)zvhdx—i/luh(vh)xxdx —i Z(ﬁh[(vh)x] - m[vh])IH%-

J

The following theorem contains the results on semi-discrete L? stability.

Theorem 2.1 (Stability) The solution of semi-discrete DG scheme (2) using numerical
fluxes (4) satisfies L? stability condition

d 2
— dx <0,
dtflluhl x <

Impy >0, Impy <0, |a) +@3|*> < —4ImpImps. (©6)

if

In particular, when all parameters a1, an, B1, B2 are restricted to be real, this condition
amounts to
ap+ay =0 @

without any requirement on By, B2.
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Proof From integration by parts, we have, for Vv, € V,f

Aqy 0,81, (Un> Vi) = /(uh)tvhdx +i /(uh)x(vh)xdx
! !

i 3 (0n)x] = il on)e] + @n)x[oaD 1

J

Taking v, = uy, in (5) and compute its conjugate as well, we get

0 =i/1f<|uh|2>|uh|2dx +if1f(|uh|2>|uh|2dx

= day,an,81,60 WUh, W) + oy, o (U, Uk)

-4 2dx — 21 i il (it ()it 8
= E/IIMhI X — m;([“h(”h)x] — tplGn)x] + un)xlitn Dy 1 ®)

Define

Al i) = Y ((wn(@in)a] = il Gin)e] + Gun)lin ),
J
= 3 (G0 ) @)1+ [n )G} = ((n) + c2lan] + BaCun)c 1)L )]
J

+ ()} + o [un)e] + ﬁl[uh]>[ﬁh])| j+l
= > (2Re(unl{(@n): ) — Ball@n): 1> + Billunll?
J
+ o [(up)x1lin] — aZ[uh][(ﬁh)x])|j+%-

Therefore, ImA(up, i) = Y ;(=Impa|[(u):11* + ImpBi|lunl® + Im{(ey + @3)lin]
[(uh)X]ijr%' Plug it back into (8):

d
T /1 Jn e+ 20m B[ [un)c] = 20mpy [ = 2Im{ (e +@) 14 L w)x By = 0.
J

)
If the stability condition (6) is satisfied, we have
d 2
— dx <0.
& [ <
If all parameters are real and (7) is satisfied, then (9) further yields:
d 2
— dx =0,
o fI lup|"dx
which implies energy conservation. O

Remark 2.1 For simplicity of the discussion, in the next section, we will only consider real
parameters, i.e. when o, a0z, B, B2 are real and o + a2 = 0.
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3 Error Estimates

In this section, we will derive error estimates of the DG scheme (2) for the model NLS
equation (1). As mentioned before, we consider L? stable real parameter choices, which
means the numerical fluxes are defined by three parameters as,

up)x = {p)xy o [@p) ]+ Bilunl,  dn = {upy—onlupl+Bol(un):l, o1, 1, B2 € R.

(10)

We will focus on the impact of the choice of the parameters o1, 81, B2 on the accuracy of

the scheme. We proceed as follows: first, we define and discuss the properties of projection

operator Py in Sect. 3.1. Then, we use the projection error estimates to obtain convergence
result for DG scheme in Sect. 3.2.

3.1 Projection Operator

In this subsection, we perform detailed studies of a projection operator defined as follows.

Definition 3.1 For our DG scheme with flux choice (10), we define the associated projection
operator Pj for any periodic function u € W1-2°(I) to be the unique polynomial Pju e V}f‘
(when k > 1) satistying

/ Plu vydx :/ uvpdx Y, € PK2(1)), (11a)
1j 1j

Pru = {Pju} — ai[Pyul + B2[(Pju)y] = u at Xyl (11b)

(Pru)y = {(Ppu)x} + a1 [(Pu)c] + il Pyul = u, at Xjtls (I'lc)

for all j. When k = 1, only conditions (11b)—(11c) are needed.

This definition is to ensure u —fh*; = Oand uy — (Pyu), = 0, which will be used in error
estimates for the scheme. In the following, we analyze the projection when the parameter
choice reduces it to a local projection in Sect. 3.1.1, and then we consider the more general
global projection in Sect. 3.1.2.

3.1.1 Local Projection Results

In general, the projection P is globally defined, and its existence, uniqueness and approxima-
tion properties are quite complicated mathematically. However, with some special parameter
choices, P;: can be reduced to a local projection, meaning that it can be solved element-wise,
and hence the analysis can be greatly simplified.

For example, with the alternating fluxes o = :i:%, B1=p2=0, P;: can be reduced to Ph1
and th defined below. P} = Ph1 for parameter choice o] = %, B1 = B2 = 0 is formulated
as: for each cell /;, we find the unique polynomial of degree k, Phlu, satisfying

/ Pluvpdx :/ uvpdx Yo, € PX2(1)), (12a)
1 1
Ly —
(Pou)” =u atxﬂ_%, (12b)
(Plw)F = u, atx;_. (120¢)
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When k = 1, only conditions (12b)—(12c) are needed.
Similarly, we can define P; = th for parameter choice o) = —%, B1 = B2 = 0 as: for
each cell /;, we find the unique polynomial of degree k, P,%u, satisfying

/ PPu vpdx =/ u vpdx Yo, € PX72(1)), (13a)
1j 1
(Plw)t =u atx, 1, (13b)
J=2
(PRu); = u, atx;, 1. (13¢)

When k = 1, only conditions (13b)—(13c) are needed.

Similar local projections have been introduced and considered in [7]. It is obvious that
Ph1 u, thu can be solved element-wise, and their existence, uniqueness are straightforward.
From a standard scaling argument by Bramble—Hilbert lemma in [8], Ph1 and th have the
following error estimates: let u € Wk“”’(lj)(p =2, 00), then

lu— PYullpea;) < Ch];+l|u|wk+1,p(1j), p=200 v=12, "
lux — Pyuxlie;) < Ch1;|u|wk+l,p(1j), p=2,00,v=1,2,

where here and below, C is a generic constant that is independent of the mesh size &, the
parameters a7, B1, B2 and the function u, but may take different value in each occurrence.

Naturally, the next question is that if there are other parameter choices such that P} can
be reduced to a local projection. The following lemma addresses this issue.

Lemma 3.1 (The condition for reduction to a local projection) If a% + B1B = }T, Prisa
local projection.

Proof The definition (11a) provides k — 1 linearly independent equations for solving P;u
on each cell. If (11b)—(11c) can be locally decoupled, Pj is a local projection. We can
write (11b)—(11c¢) in vector form as

f*\ * * + ulx. 1
[ R 8 2
(Ph u)x Xj+% ( hu)x j+% ( h )x X1 Ux (x]+%>
where . .
5 +ar —p 5—ar B
Ag =12 , By=1|2 . 16
’ [—/31 é—m] ’ [ﬁl é+m] (1o

Note that Ay + By = I, det A9 = det By = —(a12 + B1B2 — i) and AgBg = —(det Ag) I».
By assumption a% + 182 = %, if 1 = Bo =0, then o] = :i:% and Pfu = Ph1 or th,
which are local projections. The rest of the cases are

o if B1 # 0, left multiply (15) by a matrix, we have

Bi — (3 —an) ] lus]l, | LB = (5 —en)] [(Pru)s
jt7

Xl
n B1 %4—0!1 Pru
00 |lPru

+

)

X1
jt3
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which implies the following decoupled relations

1
N o 5 + oy
(Pru)y™ 4 2 (Phu)j:u+2ﬁl Uy atx; i,
1 (17
P s P 7 —al
(Pyu)™ — 5 (Pou)y =u— 5 Uy at)c]Jrj
e if By # 0, by similar linear transformation, we have
[y | Y N Ty [N
(%"‘al) Ux ]|y . _(%'i‘al) B2 (P}ru)x X
j+7% j+73
" %—ozl B Pru * ’
0 0] [(Pyux]], 1
itz
which implies
1
-« 5=
(Pl:u);—"—z I(Pitu)+=ux+2ﬂ lu atxj,%a
2
i L Ly (18)
5> +a
(Pru)y — 2 L (Pu) ™ =ue — 2 —u atx, ).
B2 B2 Itz
(17), (18) are the desired decoupled conditions on each cell ;. Therefore the proof is
complete. O

This lemma implies that for any parameter satisfying a% +pB1B2 = 4 , Py islocally defined.
We remark that this condition turns out to be the same as the optimally convergent numerical
flux families in [6] for two-way wave equations, although they arise in different contexts.
Unfortunately, for the general definition of P}, unlike Ph1 and th, we cannot directly use the
Bramble—Hilbert lemma and the standard scaling argument to obtain optimal approximation
property, since the second and third relations in (17) and (18) may break the scaling.

The next lemma performs a detailed analysis of this local projection when B; # 0 or
B2 # 0. Indeed for some parameter choices, only suboptimal convergence rate is obtained.

Lemma 3.2 (Local projection: existence, uniqueness and error estimates) If oclz + B1B2 = %
with B1 # 0 or B2 # 0, the local projection Pj; exists and is uniquely defined when

K2 K2k —1
Dy=pi— ot ﬂz¥#0 vj. (19)
hj ]

In addition, the following error estimates hold for p = 2, co:

max <|,31| mln(‘lzal‘, h

minj |F/|

=
+
2
S~—
= ‘E
>
N~——

||P1:M - l/i”Ll’([) < Chk+l|u|wk+l.oo(1) 1 +

(20)

Proof The proof of this lemma can be found in the “Appendix A.1”. O
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If we assume 81 = c/h, Bo = ch, then o) = constant, and as long as the solvability
condition (19) is satisfied, we have the optimal approximation property for Pj;. Such con-
clusions are not surprising, because (17) and (18) will maintain the correct scaling relation.
However, for other parameter choices, the convergence rate in (20) may be suboptimal. The
estimate (20) is verified by numerical experiments in Tables 1, 2, 3 and 4.

3.1.2 Global Projection Results

In this subsection, we consider a12+51 By # % , where P} is a global projection. For simplicity,
only uniform mesh is investigated, which makes the coefficient matrix of the linear system
block-circulant. First, we analyze the existence and uniqueness of P;.

Lemma 3.3 (Global projection: existence and uniqueness) If otlz + BB # %, assuming
a uniform mesh of size h, let ' := B; + %ﬂz - 2;<TZ(O[% + B1B2 + %) and A =
772]6(05% + B1B2 — %), then we have

Case 1. if |I'| > |Al, then P} exists and is uniquely defined.

Case 2. if |I'| = | A, then P} exists and is uniquely defined if N is odd, and furthermore,
if k is odd, we require T = —A; if k is even, we require I' = A.

Case 3. if |I'| < |Al, then P} exists and is uniquely defined if

N
r r\?
— DN —) -1 1.
(=D A + A #
Proof The proof of this lemma can be found in the “Appendix A.2”. O

Next, we will focus on error estimates of the projection P} based on the three cases as
categorized in Lemma 3.3.

Lemma 3.4 (Global projection: error estimates for Case 1) When the parameter choice
belongs to Case 1 in Lemma 3.3, we have for p = 2, 00,

| Pyu—ulle(n
[A2] + 1
[A2] =1

< Chk+l|u|wk+l~oo(1)<1 + ( (101 Villoo + 1101 Vallso)

+ (||v1||oo+h*‘||v2||oo))), ifT <0,

1
[A2| — 1
| Pyu —ullpe(r

Ml+1 _
sCh"+‘|u|Wk+1.oom(l+(:Aj: — (12 = QDVillos + 7112 = Q1) V2 lo0)
F o (Wil + 7 Vall) ) ). T > 0 e
|)\'1|_1 o o0 ) k]

where Q1 is given by (60) or (61) depending on the parameter choices as shown in the proof;
I, is the 2 x 2 identity matrix; Vi, Va are given by (65); and A1, Ay are the eigenvalues of Q
as defined in (52).

Proof The proof of this lemma can be found in the “Appendix A.3”. O
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[Case 1.2] [Case 1.6.1] |[Case 1.]]
I

_________ [Case 1.7.2]_ _[Case 1.5] _|Case 1.7. 1 _ _ _ _ _ _ _.
I

I
[Case 1.3] [Case 1.6.2] [Case 1.9
T

1
1

-3 -2 =1

Al

Fig. 1 A sketch to illustrate the different cases parameterized by the values of Ay, Ay

Equation (21) provides error bound that can be computed once the parameters o1, 81, 52
are given, yet its dependence on the mesh size & is not fully revealed, particularly when
the parameters o1, B1, B2 also have h-dependence. To clarify such relations, next we will
consider the following common choice of parameters, where oy has no dependence on A,
B = ﬁlhAl B = ﬁzh 2 ﬁl ﬁz are nonzero constants that do not depend on /. If indeed
B1 or By is zero, it is equivalent to let Aj, Ay — 400 in the discussions below. We will
discuss if the parameter choice will yield optimal (k + 1)-th order accuracy. To distinguish
different cases, we illustrate the choice of parameters Ay, A, in Fig. 1. For example, Case
1.1 means A > —1,A> > 1, Case 1.5 means A = —1, A» = 1 and Case 1.7.1 means
Aj > —1, A> = 1. The main results are summarized in Algorithm 1.

Algorithm 1: Interpretation of error estimate (21).

1ifk=1and A>» < 1, then

2 ‘ Py is suboptimal and is (k + A2)-th order accurate,

3 else

4 | iflimy_o A1, A2] = 1 with |A1, Ao = 1 + O(h%/?), then
5 ‘ Py is suboptimal and is (k + 1 — §)-th order accurate,
6 else

7 ‘ Py has optimal (k + 1)-th order error estimates.

8 end

9 end

The main reason of order reduction for k = 1, Ay < 1 in Statement 2 (i.e. line 2 of the
algorithm above) is that the term such as ﬁ 101 Villso is of O(hA2~1) instead of O(1),
and this will cause (1 — A»)-th order reduction. This happens for Cases 1.3, 1.4 and 1.6.2
when k = 1.

The main reason of order reduction in Statement 5 is because of the terms such as

ﬁ, &;t} in (21). The fractions ‘ )\2171’ Iﬁilf} cannot be controlled by a constant if
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limj—0 [A2| = 1. By definition of A1, A2 in (52), we know that || — 1 & [A, 22| — L.
More precisely, if || = 14+ 0(:%),5 > 0, then |11, 2| = 1+ O(h%/?), then 2} or
ﬁ = O(h—%?). Therelation I'2 — A% = (b; — ba)(b1 +b2) + c% also indicates that there
is some cancellation of leading terms in by — by or by + by, making || Q1 llec ~ O(h™%/?),
multiplying these factors together will result in §-th order reduction in the error estimation
of P;. Note that by, bs, ¢z and Q are defined in (50), (51), (48) and (60).

— 1. Since

Then we look at what parameter choices make |%

K21 K2
ﬁﬁTﬁz—T

I Jk+ k>1,
A Bi—1
we have
. r L4202
1. Case 1.1 (A} > —1,Ay > ) withk =1,a; =0, K’ — |2 20{; =1.
27"
- _2
2. Case 1.6.1 (Aj = —1, Ay > 1) f1 = *&E0 102k w 1), |1 ] — ’k+ il NS
. K2 -1p)
3. Case 1.62 (Aj = —1, Ay < D withk > 1, fy = 0 | 5| & e —2 1 .
- 202 2a2-vp 2
4. Case1.7.1(A1>—1,A2:1)52:m+k(k7i11), L= e+ —2 L.
5. Case 172 (A1 < —1, Ay = 1) i = yilery. | 5] — ‘k+% S 1

Remark 3.1 We only considered T given by (54) in the discussion above. By “Appendix A.6”,
we can conclude that under the parameter conditions in Case 1, (b1 + b2) (b1 — b2) = 0 only
can happen if A; = —1, A» = 1 with (85) or (86). This is Case 1.5, for which we always
have optimal error estimate.

Remark 3.2 Through numerical tests, we found that (21) is mostly sharp with two exceptions.
When limy, ¢ |1, A2| = 1, the estimates show that there will be order reduction for error of
P,j , while in numerical experiments (see e.g. Tables 7, 8), such order reduction is observed
only when limj, 0 A1, 2> = 1 but not —1. We believe when limj,_,o A1, 2> = —1, a refined
estimate can be obtained similar to Lemma 3.8 for Case 2. We have not carried out this
estimate in this work.

Another example we find for which (21) is not sharp is k = 2, A} = =2, -3, Ay =
1, (a1, ,8], ,8~2) = (0.25, —1, %), where parameters belong to Case 1.7.2, ,3~2 = m and
A, A2 — 14+ O(h~1+4D/2) The theoretical results predict accuracy order of (k +2+ Ay)
but numerical experiments in Table 9 show the order to be (k + 3 4+ Aj). Our estimations
can’t resolve this one order difference. This special parameter may trigger a cancellation we
didn’t capture in analysis. We will improve this estimate in our future work.

We can then generalize the approach to Cases 2 and 3.

Lemma 3.5 (Global projection: error estimates for Case 2) When the parameter choice
belongs to Case 2 in Lemma 3.3 and P} is well defined, we have

h= 1102l

||P,;u—u||Lp(,)50h’<+1|u|wk+1,wm<1+h—‘ (1+ T

) (IVilloo + A" ||v2||oo)),
(22)

@ Springer



Journal of Scientific Computing (2019) 78:772-815 783

where p = 2, 00, Q> is given by (72) and V1, V, are given by (65).
Proof The proof of this lemma can be found in the “Appendix A.3”. O

Remark 3.3 Detailed discussions on the parameter choices for Case 2 are contained in
2012
“Appendix A.7”. Under these conditions, we actually have I' = C (,31 - % + /‘(];172_1),82) ,

d by (66
and by (60) Ll .
T ’

max(|f1],

IVilloo + A7 [ Vallos ~ C (1 +

in addition
1021100 CmaX(lﬂllv%’%)
N I '

In the best-case scenario, the right hand side of the two equations above are bounded by a
constant. Therefore, (22) yields the accuracy order to be (k — 1) at best.

(24)

Lemma 3.6 (Global projection: error estimates for Case 3) When the parameter choice
belongs to Case 3 in Lemma 3.3 and P} is well defined, assuming ’1 - )\11\7’ ~ O(h%),
we have

1P = oty = CH ulyirer (14 BTN oo (Vi oo + A1 V2lloo) )(25)
where p = 2, 00 and Q1, Vi, V, are given by (60) and (65).
Proof The proof of this lemma can be found in the “Appendix A.3”. O

Remark 3.4 In the best-case scenario, the term || Q1 ||oo and || Vi ||oc +4 || V2|l 0o are bounded
by constants. While the term 2~ 1 is of order at least 2!, leading to loss of at least one
order of accuracy.

Lemmas 3.5 and 3.6 only give suboptimal results. In what follows, we aim at improving
the convergence order with stronger assumption on the regularity of the solution by using
additional techniques involving cancellation of errors from neighboring terms and global
approximation by Fourier expansions. We will need the following lemma that resembles
Proposition 3.2 in [3], and also the fast decay property of Fourier coefficients of the exact
solution. The proof of Lemma 3.7 follows the same line as in [3] and is skipped for brevity.

Lemma 3.7 (Detailed error estimates for Ph1 ) When Phl is applied to a periodic and suf-

ficiently smooth function u on uniform mesh, denote n; = (u — qulu)+|j+% and 0 =
(uyx — (Phlu)x)’|j+%, j=0,...,N—1, we have:

N1 = phtH D (xj_%) + pphF 20D (x,'_%) + Gk, (26)

0; = phku(k—H) (xj%) +p2hk+1u(k+2) (xi*%) + C3hk+2, 27)

where |, (12, p and pa are constants that depend only on k. Cy and C3 depend on k and
|1 yrit3.00( 1) Thus, by using Mean-Value Theorem, an additional h can be extracted,

Inj — njs1l < CH2ul sy, (28)

10; — 0j1] < CHF M ulyrszoe gy (29)
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With Lemma 3.7 and Fourier analysis, we can prove the following two lemmas with
refined error estimates.

Lemma 3.8 (Global projection: refined error estimates for Case 2) When the parameter choice
belongs to Case 2 in Lemma 3.3 and Py is well defined, we have

* 102l _
1P = ullLry < CR ullypsase ) <1 + (1 ) (Villee £ "Valleo) ) »
(30)
where p = 2,00, Q3 is given by (72), V1, V» are given by (65).
Proof The proof of this lemma can be found in the “Appendix A.4”. O

Remark 3.5 The difference between (30) and (22) are the two 2! factors and the norm of
u, which corresponds to the different regularity requirement for the estimation. It is obvious
that (30) is always a better estimate if the solution is smooth enough.

In most cases, (30) yields optimal accuracy order, except when k = 1,01 = 0, 1 =
0,8 = O (h*?), Ay < 1, where the Py is only (k + A)-th order accurate because ”Qlj\“'m =
g1
|b1‘X|b2| = i ’?2 wl O (h*2~1) in (30). This is verified numerically in Table 11.

2h

Lemma 3.9 (Global projection: refined error estimates for Case 3) When the parameter choice
belongs to Case 3 in Lemma 3.3 and Py is well defined, assuming |1 - A11V| = 0Wh?) and
A1 — 1] = O with 0 < §/2 < 1, we have

1P =l < CH ullyassy (14721010 IVilse + 51 1Vallo))
(31)
where p = 2, 00, A is the eigenvalue of Q defined in (52), Q1 is given by (60), V1, V> are
given by (65).

Proof The proof of this lemma can be found in the “Appendix A.5”. O

Remark 3.6 If 0 < §/2 < 1, Lemma 3.9 is always a better estimate than Lemma 3.6 when
the solution is smooth enough. If §/2 > 1, we can show §/2 = § + 1. This is because
I1— 2] = [1 =€ = 2sin(@/2)], and [1 — AY| = |1 — V| = 2|sin(N6/2)|. When
8/2 > 1, one can assert that |1 — Aq| ~ 60, |1 — )L{V| ~ N0, ie. §/2 = §' + 1. With this
condition, we notice that Lemma 3.6 yields an reduction of §-th order in convergence rate
by checking the order of each term as is done for Case 1. This order reduction is consistent
with numerical experiments in Example 4.4. Therefore, there is no need to further improve
the estimates as is done for 0 < §/2 < 1 in Lemma 3.9.

Now we can summarize the estimation of P} for some frequently used flux parameters.
For IPDG scheme with o1 = 82 = 0, 81 = ¢/h, and DDG scheme discussed in [21] with
o) = constant, B = c/h, B2 = 0, and the more general scale invariant parameter choice
a1 = constant, By = c/h, By = ch, Ph* always have optimal error estimates. For those
parameters, we can show that the eigenvalues X, X, are always constants independent of
h, therefore, either by estimates for local projection in Lemma 3.2 or global projection in
Lemmas 3.4, 3.8 and 3.9, we will have optimal convergence rate. Corresponding numerical
results are shown in Tables 2 and 6.

For a natural parameter choice where o1, 81, B2 are all real constants, if B> # 0, then P}’
has first order convergence rate when k£ = 1 and optimal convergence rate when k > 1 by
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Lemmas 3.2, 3.4, 3.8, 3.9. Corresponding numerical results are shown in Tables 1 and 11.
Lastly, for central flux oy = ap = 1 = B2 = 0, this parameter choice belongs to Case 2
when k = 1 and Case 1 when k > 1, thus we can verify that P has optimal convergence
rate by Lemmas 3.4 and 3.8. Corresponding numerical results are shown in Table 10.

3.2 Error Estimates of the DG Scheme

We are now ready to state the main theorem, which is the semi-discrete L? error estimates
of the DG scheme (2) with numerical flux (10).

Theorem 3.10 Assume that the exact solution u and the nonlinear term f(|u|2) of (1) are
sufficiently smooth with bounded derivatives for any time t € (0, T,] and that the numerical
Slux parameters in (10) satisfy the existence conditions of P} in Lemmas 3.2 or 3.3. Further-
more, assume €, = u— Pju has at least first order convergence rate in L? and L* norm from
the results in Sect. 3.1. With periodic boundary conditions solution space V,{‘ (k > 1), the
following error estimation holds for uy,, which is the numerical solution of (2) with flux (10):

lu —unllz2cy < Co (1 —um)li=oll2¢ry + 1Enill 2y + Nenllz2ar) - (32)
where C, depends on k, || f |20, u as well as final time T,, but not on h.

Moreover, the estimates for | € || 2y has been established in Lemma 3.2 on non-uniform
mesh and in Lemma 3.4-3.9 on uniform mesh for corresponding flux parameters. In other
words, the error of the DG scheme (2) has the same accuracy as Pju, as long as Pyu is
well-defined and the numerical initial condition is chosen sufficiently accurate.

Proof When P exists, we can decompose the error into two parts.
e=u—up=u— Piu+ Piu—uy:=e,+.
By Galerkin orthogonality
0= agy.—ay.py.po (€ V1) — i / Ful)uvpdx +i / FlupPupvpdx Yoy € VF
I I
= ad],—al,ﬂl,ﬁz(eh, Uh) + adl,—al,ﬂl,ﬁz(gha Uh) —i / f(ll/tlz)l/tl)hdx
I
+i / F(lun | upvpdx.
I

By letting v, = ¢ and taking conjugate of above equation, we have

Agy,—ay,pr.p2 (Ghs E) + oy, —a1. 1.8 (Cns 51)

= —doy,—ay,B1,B2 (Eh, 5) — Aoy, —ay,B1,B2 (Eh, ;711) - 2/[ f(|”|2)1m(ua)dx
+2 f FupHImupgy)dx. (33)
1

By Taylor expansion
1 4
Flun)® = fQu®) + f(uE + Ef”Ez,
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where f” = f”(c), cisavalue between |up|? and |u|?. E = |up |2 —|ul* = —2Re(ein) +|e|?.
Therefore, the nonlinear part becomes

/1 FQuP)ImuTydx — /1 FQun P ImuZndx

= /1 Fun1HIm(en) + (£ (ul®) = funl®))Imugy)dx
= Nl +N2 +N3,

where
N1 = [ FQuP)im(eB) = £ Gul) EtmEyyds
No = [ i) Etm(e) - L Em @i,
Ny = /1 3P E (e,

will be estimated separately as follows.

e N and N, terms. o o
Since ey = engh+1¢n 1>, [EIm(uin)| = |(=2Re(em) + e[ Im(ugp)| < C(lullf )+

lulloonyllell ooy (lenl® + 1£n1%), we have

NIL= Cllfllwre (1 T3y + Tl lell o) lenlZagy + 1812,

N2l < Cllfllye NE ey (1 Tl + Nl llellzan ) GlenlZa + 1600132 )-
e Nj term.
N3l < ClLF" e IE NG eoqry (llenllZap, + a3
3= L Loy \N€hll 2y hlip2y ) -

To conduct a proper estimate for the nonlinear part, we would like to make an a priori
assumption that, for 2 small enough,

0.
lell 2y = Nl = unll 2y < 1. (34)
By our assumption on P, |lexllLry < Cih, p = 2,00, thus [|¢al 2y < C1h%° and
I¢kllLoy < C1 by inverse inequality, then |le||zoc(;y < Ci, [|Ellrey < Ci. Here and
below, C is a generic constant that has no dependence on /, but may depend on u according

to the lemma used to estimate €j,.
Therefore, we get the estimate:

G+ N2+ W1 < € (llenlagy + 1nl2ag,) ) (35)
where C; depends on || f|| 2. and u.
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For linear part of the right hand side in (33), we have

Aoy —ayB1.ps (€hs Sh) + Aoy —ar 1o (€ n) = /I(Gh)t§7+ (en)iCndx —i/I(Eh)(a)xxdx

+i/1@(§h)xxdx i Y@@~ ExlTdl )
j

+i D @I@)] = em [Tl

J
=2 /1 Re((en)stn)dx.

The last equality holds because of the definition of Pjfu. For the left hand side of (33), by
similar computation in stability analysis we have

_ — d
aalq—alxﬁl-52(§h7 tn) + Aoy, —ay,B1,p2 (&nyCn) = E / |§h|2dx~ (36)
1

Combine these two equations with (35):

d 2 2 2 2 2
E”Q’”LZ(I) = ”(eh)t”LZ(]) + ”;h ||L2(I) + C](lleh”LZ([) + ”é-h”LZ(]))

Assuming u;, u have sufficient smoothness, then by Gronwall’s inequality, we can get:

1811172, < Ci (||ch|t:o||iz(,) +lleni 7o + ||(eh>||iz(,)) :

and we obtain (32).

To complete the proof, we shall justify the a priori assumption. To be more precise,
we consider ho, s.t., VA < hg, Cyh < %hoj, where C, is defined in (32), dependent on
T,, but not on h. Suppose 31* = sup{t : [[u(t*) — up (™)l 2¢) < 193}, we would have
@) — un(t)L2qy = h%> by continuity if 7* is finite. By (32), we obtain lell 2y <
C.h < %ho.s if r* < T,, which contradicts the definition of #*. Therefore, t* > 7, and the a
priori assumption is justified. O

Remark 3.7 1f f is a constant function, we can prove the same error estimates without using
the a priori assumption. Therefore, the assumption that €, = u — Pjfu has at least first order
convergence rate in L2 and L® norm is no longer needed.

4 Numerical Experiments

In this section, we present numerical experiments to validate our theoretical results. Particu-
larly, in Sect. 4.1, we provide numerical validations of convergence rate for the projection Py
as discussed in Sect. 3.1 with focus on the dependence of the errors on parameters «1, f1, f2.
Section 4.2 illustrates the energy conservation property and validates theoretical convergence
rate of DG scheme for NLS equation (1).

4.1 Numerical Results of the Projection Operator P;,‘

Example 4.1 In this example, we focus on local projection where a% +B1B2 = %, and verify

the conclusions in Lemma 3.2 by considering a smooth test function u = cos(x), x € [0, 2]
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Table 1 Example 4.1

N L error Order L2 error Order L error Order
pl 160 1.98E—02 - 1.56E—02 - 1.81E—-02 -
320 9.98E—03 0.99 7.87TE—03 0.99 9.20E—03 0.97
640 5.01E—-03 0.99 3.95E-03 0.99 4.55E—-03 1.02
1280 2.51E—-03 1.00 1.98E—03 1.00 2.27E—-03 1.00
P2 160 2.18E—06 - 1.91E—06 - 3.73E—06 -
320 2. 71E—-07 3.01 2.39E—-07 3.00 5.14E-07 2.86
640 3.37E-08 3.01 2.97E—08 3.01 6.71E—08 2.94
1280 4.19E—09 3.01 3.69E—09 3.01 7.99E—09 3.07
p3 160 2.82E—09 - 2.45E—-09 - 5.67E—09 -
320 1.76E—10 4.00 1.53E—10 4.00 3.76E—10 3.92
640 1.10E—11 4.00 9.50E—12 4.01 2.25E—11 4.06
1280 6.86E—13 4.00 5.93E—13 4.00 1.46E—12 3.95

Error of local projection P; u — u on a nonuniform mesh. Flux parameters: «; = 0.3, g1 = 0.4, 5, = 0.4

on a nonuniform mesh and k = 1,2, 3 for various sets of parameters («p, 1, f2). The
nonuniform mesh is generated by perturbing the nodes of a uniform mesh of N cells by at
most 10%.

We first consider two sets of parameters («p, 81, 82) = (0.3, 0.4, 0.4) and (a1, B1, f2) =
(0.3,0.4/h,0.4h;). The results with (a1, 1, B2) = (0.3, 0.4, 0.4) are listed in Table 1. By
plugging in the parameters into (20), we have that when k = 1, the projection has suboptimal
first order convergence rate, while for k > 1, optimal (k + 1)-th order convergence rate
should be achieved. Fork = 1,T; = B — % which does not depend on > any more.
This technical difference cause the discrepancy of the convergence order between k = 1 and
k > 11in Table 1. Results in Table 1 agree well with the theoretical prediction. On the other
hand, when we choose parameters (a1, 81, 82) = (0.3,0.4/h;,0.4h;), by Lemma 3.2, we
should observe optimal convergence rate for all k > 1, and this is verified by the numerical
results in Table 2.

Then, we choose the parameters as (a1, 81, B2) = (0.5, 1, 0) to verify the super-closeness
claim (42), i.e., the difference between P}: and Ph1 can have convergence rates higher than
k + 1. The results are listed in Table 3. The difference of the two projections is indeed of

(k+2)-th order for any k > 1 in all norms. Finally, we take (o1, 81, 82) = (0.5, hj(fij’hj)’ 0).
In this case, I'; = O(1). The numerical results in Table 4 verify the order reduction to k-th

order accuracy for all k > 1 as predicted by (20).

Example 4.2 In this example, we consider global projection when the parameter choices
belong to Case 1. We consider a smooth test function u = 5™ on [0, 2] with a uniform
mesh of size h = 27 /N and k = 1, 2, 3 for various sets of parameters («1, 1, £2).

We first test the situation when limj_.o|A1, A2] # 1 by setting the parameters
(a1, B1. B2) = (0.25,1,1), A = —0.5, Ay = 2. Another example is (a1, B1, ) =
(0, ﬁ h), for which the eigenvalues 1, A, are constant dependent on k but not 4. These
two parameter choices belong to Case 1.1 and Case 1.5, respectively. The numerical results
shown in Tables 5 and 6 verify the optimal (k + 1)-th order convergence rate predicted by
Lemma 3.4.
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Table 2 Example 4.1
N L error Order L2 error Order L error Order
P! 160 3.42E—04 - 3.50E—04 - 8.62E—04 -
320 8.55E—05 2.00 8.75E—05 2.00 2.21E—-04 1.96
640 2.14E—05 2.00 2.19E—05 2.00 5.45E—05 2.02
1280 5.34E—06 2.00 5.47E—06 2.00 1.36E—05 2.00
P2 160 6.36E—06 - 6.06E—06 - 2.06E—05 -
320 8.17E—07 2.96 7.99E—-07 2.92 3.09E—06 2.73
640 1.02E—07 3.00 1.00E—07 2.99 4.51E-07 2.78
1280 1.27E—08 3.01 1.24E—08 3.02 5.12E—08 3.14
P3 160 3.32E—09 - 2.93E—09 - 7.58E—09 -
320 2.08E—10 4.00 1.83E—10 4.00 5.08E—10 3.90
640 1.30E—11 4.00 1.14E—11 4.01 3.04E—11 4.06
1280 8.09E—13 4.00 7.12E—13 4.00 1.99E—12 3.93
Error of local projection P,;’u—u onanonuniform mesh. Flux parameters: ) = 0.3, 81 = 0.4/h;, B = 0.4h;
Table 3 Example 4.1
N L error Order L2 error Order L®° error Order
P! 160 2.09E—05 - 1.96E—05 - 4.66E—05 -
320 2.56E—06 3.03 2.40E—06 3.03 5.99E—-06 2.96
640 3.17E—07 3.01 2.96E—07 3.02 7.17E-07 3.06
1280 3.94E—08 3.01 3.67E—08 3.01 9.11E—08 2.98
P2 160 5.00E—09 - 5.05E—09 - 1.82E—08 -
320 3.14E-10 3.99 3.21E-10 3.98 1.28E—09 3.83
640 1.96E—11 4.00 2.00E—11 4.00 8.56E—11 3.90
1280 1.22E—12 4.01 1.24E—12 4.01 5.02E—12 4.09
P3 160 291E—12 - 3.38E—12 - 1.40E—11 -
320 9.11E—14 5.00 1.06E—13 5.00 4.72E—13 4.89
640 2.84E—15 5.00 3.27E—15 5.01 1.40E—14 5.08
1280 8.84E—17 5.00 1.02E—16 5.00 4.63E—16 4.92
Difference of local projection P;; with P;E: Pgu — Phlu on a nonuniform mesh. Flux parameters: o] =
05,81=1,8=0
Then we test the situation when limy,_,¢ |A1, A2| = 1 by using two sets of parame-
ters (a1, B, ) = (0.25, KD L KEED 1y Ay = 1,4, = 2,3, and (a1, B1, f2) =
(0.25, ﬁ 1), Ay = =2, =3, A = 1. Thefirst set of parameters belongs to Case 1.6.1 and

we can verify thatlim,_o A1, o = (— DX, Lemma 3.4 and Algorithm 1 imply (k42— A>)th
convergence order. The numerical results listed in Table 7 show that the expected order reduc-
tion only happens when lim;,_,g A1, A = 1, but not for limy_.o A1, 22> = —1. The second
set of parameters belongs to Case 1.7.2 and we can verify that limy,_,o A1, Ay = (=DktL,
Lemma 3.4 and Algorithm 1 imply (k +2 4 A;)th convergence order. The numerical results
listed in Table 8 also show that order reduction is only observed when limy,_,g A1, Ay = 1.
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Table4 Example 4.1

N L error Order L2 error Order L error Order
pl 160 1.33E—-02 - 1.20E—02 - 2.28E—02 -
320 6.46E—03 1.04 5.87E—03 1.03 1.14E-02 1.00
640 3.19E-03 1.02 2.90E—03 1.02 5.55E-03 1.03
1280 1.58E—03 1.01 1.44E—-03 1.01 2.76E—03 1.01
P2 160 1.31E-05 - 1.28E—05 - 3.68E—05 -
320 3.19E-06 2.04 3.13E—06 2.03 9.85E—06 1.90
640 7.85E—07 2.02 7.71E-07 2.02 2.51E—-06 1.97
1280 1.95E-07 2.01 1.91E—-07 2.01 6.06E—07 2.05
p3 160 1.72E—08 - 1.89E—-08 - 6.49E—08 -
320 2.08E—09 3.05 2.28E—09 3.05 8.28E—09 2.97
640 2.54E—10 3.03 2.80E—10 3.03 9.88E—10 3.07
1280 3.14E—11 3.02 3.46E—11 3.01 1.25E—10 2.98

2
Error of local projection P; u — u on anonuniform mesh. Flux parameters: «; = 0.5, 1 = W, =0
J i

Table 5 Example 4.2

N L' error Order L2 error Order L error Order
P! 160 0.10E—03 - 0.69E—03 - 0.89E—03 -
320 0.26E—04 1.93 0.18E—03 1.93 0.23E—-03 1.94
640 0.67E—05 1.98 0.46E—04 1.97 0.58E—04 1.98
1280 0.17E—05 1.99 0.12E—04 1.99 0.15E—04 2.00
P2 160 0.63E—06 - 0.52E—-05 - 0.87E—05 -
320 0.88E—07 2.85 0.71E—06 2.88 0.11E—-05 2.95
640 0.11E—-07 2.95 0.91E—-07 297 0.14E—06 3.00
1280 0.14E—08 2.99 0.11E—-07 2.99 0.17E—07 3.01
p3 320 0.64E—10 - 0.49E—09 - 0.72E—09 -
640 0.45E—11 3.82 0.35E—-10 3.80 0.52E—10 3.79
1280 0.29E—12 3.93 0.23E—-11 391 0.34E—11 3.92
2560 0.19E—13 3.97 0.15E—12 3.96 0.22E—12 3.96
Error of global projection P}:‘ufu.Fluxparameters (Case1.1):0; =025, 81 =1, =1,A; =—0.5, 4, =
2
Lastly, we test (a1, B1, f2) = (0.25, —1, 1) withk = 2, Aj = —2, =3, A, = 1, where

our theoretical results predict accuracy order of (k + 2 + Ap), but numerical experiments
show the order to be (k + 3 + Aj) in Table 9. This is one of the exceptions that Lemma 3.4
is not sharp and has been commented in Remark 3.2.

Example 4.3 In this example, we consider global projection when the parameter choices are
central-like fluxes belonging to Cases 1 and 2, for smooth function u = €<% on [0, 27]
with a uniform mesh of size h = 2w /N and k = 1, 2, 3.

For central flux (a1, 81, 82) = (0,0,0), "' = —%,A = 21(7 Ifk > 1, % =k >1,it
belongs to Case 1, and if k = 1, ' = —A and it belongs to Case 2. We conclude that P}:
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Table 6 Example 4.2
N L error Order L2 error Order L error Order
P! 320 0.11E—03 - 0.63E—03 - 0.38E—03 -
640 0.28E—04 2.00 0.16E—03 2.00 0.95E—04 2.00
1280 0.70E—05 2.00 0.39E—04 2.00 0.24E—04 2.00
2560 0.18E—05 2.00 0.98E—05 2.00 0.60E—05 2.00
P2 320 0.11E—06 - 0.71E—06 - 0.62E—06 -
640 0.14E—07 3.00 0.89E—07 3.00 0.77E—07 3.00
1280 0.18E—08 3.00 0.11E—07 3.00 0.96E—08 3.00
2560 0.22E—09 3.00 0.14E—08 3.00 0.12E—08 3.00
P3 320 0.38E—10 - 0.25E—09 - 0.22E—09 -
640 0.24E—11 4.00 0.16E—10 4.00 0.14E—10 4.00
1280 0.15E—12 4.00 0.99E—12 4.00 0.86E—12 4.00
2560 0.92E—14 4.00 0.62E—13 4.00 0.54E—13 3.99
Error of global projection P;l' u — u. Flux parameters (Case 1.5): a1 =0, 1 = ﬁ, Br=h
Table 7 Example 4.2
N L' error Order L2 error Order L error Order
P! 640 0.75E—05 - 0.52E—04 - 0.66E—04 -
Ay =2 1280 0.19E—-05 1.97 0.13E—-04 1.97 0.17E—04 1.97
) = % 2560 0.48E—06 1.99 0.34E—-05 1.98 0.42E—05 1.99
5120 0.12E—06 1.99 0.84E—06 1.99 0.11E—05 1.99
P2 640 0.15E—06 - 0.12E—05 0.23E—05 -
Ay =2 1280 0.39E—07 1.94 0.32E—06 1.93 0.61E—06 1.94
) = % 2560 0.98E—08 1.97 0.82E—07 1.97 0.16E—06 1.97
5120 0.25E—08 1.98 0.21E—07 1.98 0.39E—07 1.99
P2 640 0.14E—04 - 0.12E—03 - 0.21E—03 -
Ay =3 1280 0.71E—05 1.00 0.58E—04 1.00 0.11E—03 1.00
) = % 2560 0.35E—-05 1.00 0.29E—04 1.00 0.54E—04 1.00
5120 0.18E—05 1.00 0.15E—04 1.00 0.27E—04 1.00
P3 320 0.12E—09 - 0.95E—09 - 0.20E—08 -
Ay =2 640 0.78E—11 3.99 0.60E—10 3.99 0.13E—-09 3.99
) = % 1280 0.49E—12 3.99 0.38E—11 3.99 0.80E—11 3.99
2560 0.31E—13 4.00 0.24E—12 3.99 0.51E—12 3.97

Error of global projection P}: u — u. Flux parameters (Case 1.6.1): o1 = 0.25, ﬁ] =

1.0, A} = —1, A = 2, 3. Note here limy,_,g A, Ay = (—l)k

k(k—1 kk+1) 7
(D) | kD g
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Table 8 Example 4.2

N L' error Order L2 error Order L®° error Order
P2 320 0.28E—07 - 0.21E—06 - 0.24E—06 -
Ay =-3 640 0.35E—08 3.00 0.27E—07 3.00 0.31E—07 3.00
B = )T 1280 0.44E—09 3.00 0.33E—08 3.00 0.38E—08 3.00
2560 0.55E—10 3.00 0.41E—09 3.00 0.48E—09 3.00
p3 320 0.70E—08 - 0.57E—07 - 0.12E—06 -
A =-2 640 0.94E—09 2.90 0.77E—08 2.90 0.16E—07 291
5 = ﬁ 1280 0.12E—09 2.95 0.99E—09 2.95 0.20E—08 2.95
2560 0.15E—10 2.98 0.13E—-09 2.98 0.26E—09 2.98
P3 320 0.16E—06 - 0.13E—05 - 0.24E—-05 -
A =-3 640 0.40E—07 2.00 0.32E—06 2.00 0.61E—06 2.00
3 = 11—2 1280 0.10E—07 2.00 0.79E—07 2.00 0.15E—06 2.00
2560 0.25E—08 2.00 0.20E—07 2.00 0.38E—07 2.00

Error of global projection Pju — u. Flux parameters (Case 1.7.2): o) = 0.25, Br=1p = m Al =
—2, -3, Ay = 1. Note here limj,_,¢ A1, Ao = (—1)k+H1

Table 9 Example 4.2

N LY error Order L2 error Order L error Order
P2 320 0.72E—07 2.99 0.56E—06 2.98 0.94E—06 2.97
A =-2 640 0.90E—08 2.99 0.71E—07 2.99 0.12E—06 2.99
5 = 11—2 1280 0.11E—08 3.00 0.89E—08 3.00 0.15E—07 2.99

2560 0.14E—09 3.00 0.11E—08 3.00 0.19E—08 3.00
P2 320 0.80E—06 2.01 0.63E—05 2.01 0.12E—04 2.01
A =-3 640 0.20E—06 2.00 0.16E—05 2.00 0.30E—05 2.00
b= % 1280 0.50E—07 2.00 0.39E—06 2.00 0.75E—06 2.00

2560 0.13E—07 2.00 0.98E—07 2.00 0.19E—06 2.00

Error of global projection Ph*u —u. Flux parameters (Case 1.7.2): a1 = 0.25, Br=—-1,6= m, Al =
—2, -3, Ay = 1. Note that limj_,g A1, Ay = (=)} =1

exists and is unique for k = 1 when N is odd and k > 1 for arbitrary N. P}’ has optimal error
estimates as proved in Lemmas 3.4 and 3.8. Our numerical test in Table 10 demonstrates
optimal convergence rate for all .

A similar flux is (o1, B1, f2) = (0,0, 1). Lemma 3.8 yields first order convergence rate
when k = 1 asdiscussed in Remark 3.5. When k& = 2, 3, similar to central flux, this parameter
choice belongs to Case 1, showing optimal convergence rate. The numerical test in Table 11
verifies the theoretical results.

Example 4.4 In this example, we consider global projection when the parameter choices
belong to Case 3 for the smooth function 1 = €™ on [0, 277] with uniform mesh size
h=2rx/Nandk =1,2,3.

An example of Case 3 is shown in Table 12, where the parameters are (o, 51, 52) =
0.25, —1, m), Ay = —2,-3, A = 1, similar to the parameters in Table 8. The
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Table 10 Example 4.3
N L error Order L2 error Order L error Order
P! 93 0.12E—03 - 0.74E—03 - 0.55E—03 -
279 0.13E—04 2.00 0.82E—04 2.00 0.61E—04 2.00
837 0.15E—05 2.00 0.91E—05 2.00 0.68E—05 2.00
2511 0.17E—06 2.00 0.10E—05 2.00 0.76E—06 2.00
P2 160 0.11E—05 - 0.85E—05 - 0.10E—04 -
320 0.14E—06 3.00 0.11E—05 3.00 0.13E—05 2.99
640 0.17E—07 3.00 0.13E—06 3.00 0.16E—06 3.00
1280 0.22E—08 3.00 0.17E—07 3.00 0.20E—07 3.00
P3 160 0.11E—08 - 0.83E—08 - 0.11E—07 -
320 0.68E—10 4.00 0.52E—09 4.00 0.68E—09 4.00
640 0.42E—11 4.00 0.32E—-10 4.00 0.42E—10 4.00
1280 0.27E—12 4.00 0.20E—11 4.00 0.26E—11 4.00
Error of global projection P;l‘ u — u. (Central flux) Flux parameters: «;1 =0, 81 =0, 8, =0
Table 11 Example 4.3
N L error Order L2 error Order L° error Order
p! 93 0.21E—-01 - 0.12E+00 - 0.68E—01 -
279 0.72E—02 1.00 0.40E—01 1.00 0.23E—01 1.00
837 0.24E—02 1.00 0.13E-01 1.00 0.75E—02 1.00
2511 0.80E—03 1.00 0.44E—02 1.00 0.25E—02 1.00
P2 160 0.11E—05 - 0.86E—05 - 0.10E—04 -
320 0.14E—06 3.00 0.11E—05 3.00 0.13E—05 3.00
640 0.17E—07 3.00 0.13E—06 3.00 0.16E—06 3.00
1280 0.22E—08 3.00 0.17E—07 3.00 0.20E—07 3.00
2560 0.27E—09 3.00 0.21E—08 3.00 0.25E—08 3.00
P3 160 0.27E—08 - 0.23E—07 - 0.36E—07 -
320 0.17E—09 4.00 0.14E—08 4.00 0.22E—08 4.00
640 0.11E—10 4.00 0.89E—10 4.00 0.14E—09 4.00
1280 0.66E—12 4.00 0.55E—11 4.00 0.87E—11 4.00

Error of global projection Pjyu — u. Flux parameters: &y =0, 1 =0, 2 = 1

asymptotic behavior of Aj, Ao when & approaches O is indeed similar to Table 8, that is,
A1, Aa| = 14+ O(h~M1FD/2y and limy_.g A1, A2 = (—1)*T!. Same as previous examples,
order reductions are only observed when limy,_,9 A1, Ao = 1, that is for k = 3.

Ay

We use this example to compare the error bounds obtained in Lemmas 3.6 and 3.9. When

2,8 = —(A; + 1) = 1, we can verify [1 —A)| ~ O(1), i.e., 8 = 0, thus by
Lemma 3.9, the convergence rate of P/: is k, which agrees with the simulation and is better
than the one in Lemma 3.6 by half order. When A| = =3, = —(A; +1) =2,8 =0,
Lemmas 3.6 and 3.9 both show a convergence rate of k — 1. These estimations are confirmed
by the numerical results in Table 12 when k = 3.
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Table 12 Example 4.4

N L' error Order L2 error Order L®° error Order
P2 320 0.28E—07 - 0.21E—06 - 0.24E—06 -
Ay =-3 640 0.35E—08 3.00 0.27E—07 3.00 0.31E—07 3.00
B = )T 1280 0.44E—09 3.00 0.33E—08 3.00 0.38E—08 3.00
2560 0.55E—10 3.00 0.41E—09 3.00 0.48E—09 3.00
p3 320 0.70E—08 - 0.57E—07 - 0.12E—06 -
A =-2 640 0.94E—09 2.90 0.77E—08 2.90 0.16E—07 291
5 = ﬁ 1280 0.12E—09 2.95 0.99E—09 2.95 0.20E—08 2.95
2560 0.15E—10 2.98 0.13E—-09 2.98 0.26E—09 2.98
P3 320 0.16E—06 - 0.13E—05 - 0.24E—-05 -
A =-3 640 0.40E—07 2.00 0.32E—06 2.00 0.61E—06 2.00
3 = 11—2 1280 0.10E—07 2.00 0.79E—07 2.00 0.15E—06 2.00
2560 0.25E—08 2.00 0.20E—07 2.00 0.38E—07 2.00

Error of global projection P;l' u — u. Flux parameters (Case 3, and similar to Case 1.7.2 in Table 8): o] =
0.25, f1 = —1, b = qpg=1y> A1 = =2, =3, A2 = 1. Note here limj, .o A1, 2p = (= DFF!

We performed more numerical results of Case 3, and all are similar to those of Case 1 as
long as the eigenvalues A1, A, are approaching 1 at the same rate. Hence, we will not show
more examples about Case 3.

4.2 Numerical Results of the DG Scheme

In this subsection, we show the numerical results of the DG scheme applied to the NLS
equation. For the time discretization, we use third order IMEX Runge—Kutta method [2] and
fix At = 1/10000, which is small enough to guarantee that the spatial errors dominate. To
be more precise, we treat the DG discretization of linear term u,, implicitly and nonlinear
term f (Ju|*)u explicitly.

Example 4.5 1n this example, we verify the energy conservation property of our scheme by
considering the following linear equation

iug + uyxy =0,
with the progressive plane wave solution: u(x, t) = Aexp(i(x —1t)), with A = 1.

We use L2 projection as the numerical initial condition. In the discussion of stability
condition, we derive that when Imp, > 0,Imp; < 0, |o; + &2]*> < —4ImpBImps, our
scheme for Schrodinger equation is stable. Furthermore, when o1 + «p = 0, B, B2 are
real numbers, the scheme is energy conservative. In this example, we compare two different
parameter choices to verify the energy conservation property. The parameter choices are
(a1, a2, B1, B2) = (0.25,—-0.25,1 — i, 1 + i), and (o, a2, B1, B2) = (0.25, -0.25,1, 1)
whenk = 2, N = 40, ending time 7 = 100. Both are numerically stable flux parameters. For
the first set of parameters, we expect energy decay due to the contributions from the imaginary
part of B1, B2 as in (9). For the second set of parameter, energy should be conserved.

In Fig. 2, we verify that as ¢ increases from O to 100, the flux with only real parameters
preserve |lup |l z2(ry, while the flux with complex numbers have much larger errors. More
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Fig.2 Example 4.5. Absolute difference of |juy, (7, ')”L2(1) with [Ju, (0, ')”L2(1) with two sets of parameters
(a1, a2, B1, B2) = (0.25, —0.25, 1 —i, 14i) (denoted by “imag”) and (a1, a2, B1, B2) = (0.25, —0.25, 1, 1)
(denoted by “real”) when k = 2, N = 40, ending time 7, = 100

precisely, for real parameters, [[uj (0, )llz2py — un(100, ) g2y = 7.9E-09, for complex
parameters, [|un (0, )2y — lun(100, )2y = 5.7TE-04.

Example 4.6 Accuracy test for NLS equation
g+ e + |ulu+ Jul*u = 0, (37)

which admits a progressive plane wave solution: u(x, t) = Aexp(i(cx — wt)), where w =
2 — AP — |A*withc=1,A = 1.

For numerical initial condition, Pj; is used when applicable, otherwise standard L? projection
is applied. On uniform mesh, we use four sets of parameters. The numerical errors and orders
are shown in Tables 13, 14, 15, 16, 17 and 18, where corresponding projection results are
listed in Tables 1, 2, 10, 11, 7 and 9 respectively. Our numerical experiments show that
the order of convergence for the scheme is the same as the order of error estimates for the
projection Pj.

We would like to make some additional comments on Tables 15 and 16, whose parameter
choices belong to Case 2 when k = 1. The existence of P} requires N to be odd for this case.
However, this assumption is not needed for the optimal convergence rate of the numerical
scheme for (37) as shown in Tables 15 and 16. Similar comments have been made in [3].

Example 4.7 A simulation for the NLS equation
ity + ey +2ulPu =0 (38)
with double-soliton collision

u(x,t) = sech(x+10—41) exp(i 2(x+10)—31))+sech(x —10+4¢) exp(i (—2(x—10)—3¢)).
(39)
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Table 13 Example 4.6

N L error Order L2 error Order L error Order
pl 40 2.86E—02 - 2.48E—02 - 3.92E—-02 -
80 1.26E—02 1.18 1.02E—-02 1.28 1.56E—02 1.33
160 6.34E—03 1.00 4.99E—-03 1.03 6.77E—03 1.20
320 3.18E—03 1.00 2.56E—03 0.96 3.47E-03 0.96
640 1.58E—03 1.01 1.27E—-03 1.01 1.85E—-03 0.91
P2 40 2.22E—-04 - 2.13E—04 - 6.06E—04 -
80 1.99E—05 3.48 2.13E-05 3.33 7.28E—05 3.06
160 3.17E-06 2.65 3.03E—06 2.81 9.01E—06 3.02
320 3.49E-07 3.18 3.34E-07 3.18 1.23E-06 2.87
p3 40 1.54E—06 - 1.35E—06 - 3.29E—06 -
80 4.96E—08 4.96 4.36E—08 4.95 1.29E—-07 4.67
160 2.81E—09 4.14 2.60E—09 4.07 8.37E—-09 3.95
320 1.61E—10 4.13 1.57E—10 4.05 7.68E—10 3.45

Error in L!, L2 and L norm for solving NLS equation (37) on a nonuniform mesh using flux parameters
(corresponding to Table 1) o1 = 0.3, 81 = B = 0.4, ending time 7, = 0.3

Table 14 Example 4.6

N L error Order L2 error Order L error Order
P! 40 7.47E—-03 - 6.50E—03 - 1.29E—-02 -
80 2.10E—-03 1.83 1.76E—03 1.89 4.22E—03 1.62
160 4.82E—04 2.12 4.18E—04 2.07 1.16E—03 1.86
320 1.21E-04 1.99 1.05SE—04 1.99 2.87E—04 2.01
640 3.12E-05 1.96 2.71E—05 1.95 7.40E—05 1.96
p? 40 5.14E—04 - 5.37E—04 - 1.74E—03 -
80 6.81E—05 2.92 7.00E—05 2.94 2.99E—04 2.54
160 8.04E—06 3.08 8.06E—06 3.12 3.58E—-05 3.06
320 9.53E—07 3.08 9.75E—-07 3.05 3.92E—-06 3.19
640 1.68E—07 2.50 1.61E—07 2.60 4.90E—07 3.00
P3 40 1.30E—06 - 1.25E-06 - 4.09E—06 -
80 5.74E—08 451 6.00E—08 4.38 2.60E—07 3.98
160 4.44E—09 3.69 4.12E—-09 3.86 1.49E—-08 4.13
320 2.25E—10 4.30 2.13E—10 4.28 9.65E—10 3.94

Error in L, L2 and L® norm for solving NLS equation (37) on a nonuniform mesh using flux parameters

(corresponding to Table 2) ) = 0.3, B; = 0.4h;, B = 0.4/h, ending time T, = 1

We use periodic boundary condition and L? projection initialization to run the simulation
for double-soliton collision solution. The two waves propagate in opposite directions and
collide at ¢ = 2.5, after that, the two waves separate. Such behaviors are accurately captured
by our numerical simulations, see Fig. 3 for details.
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Table 15 Example 4.6
N L' error Order L2 error Order L®° error Order
P! 40 0.28E—02 - 0.22E—02 - 0.27E—02 -
80 0.71E—03 2.00 0.56E—03 2.00 0.67E—03 2.02
160 0.18E—03 2.00 0.14E—-03 2.00 0.17E—03 2.01
320 0.45E—04 2.00 0.35E—04 2.00 0.41E—04 2.00
640 0.11E—04 2.00 0.88E—05 2.00 0.10E—04 2.00
P2 40 0.13E—03 - 0.11E—03 - 0.16E—03 -
80 0.16E—04 2.99 0.14E—04 2.99 0.20E—04 3.00
160 0.21E—05 3.00 0.18E—05 3.00 0.25E—-05 3.01
320 0.26E—06 3.00 0.22E—06 3.00 0.31E—06 3.00
640 0.32E—07 3.00 0.27E-07 3.00 0.39E—07 3.00
P3 40 0.22E—06 - 0.18E—06 - 0.24E—06 -
80 0.16E—07 3.76 0.13E—07 3.80 0.13E—07 4.16
160 0.10E—08 4.00 0.79E—09 4.00 0.84E—09 4.00
320 0.62E—10 4.00 0.49E—10 4.00 0.52E—10 4.00
640 0.39E—11 3.99 0.31E—11 3.99 0.33E—11 3.96

Errorin L', L2 and L norm for solving NLS equation (37) using central flux (corresponding to Case 2 in

Table 10) «1 = B1 = B2 = 0, ending time 7T, = 1

Table 16 Example 4.6

N L error Order L2 error Order L®° error Order
P! 40 0.17E+00 - 0.13E+00 - 0.14E+00 -
80 0.92E—01 0.90 0.72E—01 0.89 0.75E—01 0.87
160 0.48E—01 0.94 0.38E—01 0.94 0.38E—01 0.97
320 0.24E—01 0.97 0.19E-01 0.97 0.19E—01 0.98
640 0.12E—01 0.98 0.97E—02 0.98 0.98E—02 0.99
p? 40 0.13E-03 - 0.11E—03 - 0.17E—03 -
80 0.16E—04 3.00 0.14E—04 3.00 0.20E—04 3.02
160 0.21E—05 3.00 0.18E—05 3.00 0.25E—-05 3.01
320 0.26E—06 3.00 0.22E—06 3.00 0.31E—06 3.01
640 0.32E—07 3.00 0.27E—-07 3.00 0.39E—07 3.00
P3 40 0.68E—06 - 0.56E—06 - 0.83E—06 -
80 0.42E—07 4.00 0.35E—07 4.01 0.51E—07 4.01
160 0.26E—08 4.00 0.22E—08 4.00 0.32E—08 4.00
320 0.16E—09 4.00 0.14E—09 4.00 0.20E—09 4.00
640 0.10E—10 4.00 0.85E—11 4.00 0.13E—10 4.00

Errorin L!, L2 and L norm for solving NLS equation (37) using flux parameters (corresponding to Case 2
in Table 11): @1 = B1 =0, B2 = 1, ending time 7, = 1
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Table 17 Example 4.6

N L' error Order L2 error Order L®° error Order
P! 40 0.41E—-02 - 0.37E—-02 - 0.72E—02 -
Ay =2 80 0.12E—02 1.77 0.10E—02 1.82 0.21E—-02 1.80
B = % 160 0.31E—03 1.93 0.25E—03 2.05 0.39E—03 2.39
320 0.87E—04 1.86 0.69E—04 1.87 0.10E—03 1.94
640 0.23E—-04 1.93 0.18E—04 1.94 0.26E—04 1.97
p? 40 0.49E—04 - 0.49E—04 - 0.13E—03 -
Ay =2 80 0.83E—05 2.55 0.73E—05 2.74 0.14E—-04 3.23
ﬂ~1 = % 160 0.31E—-05 1.44 0.29E—05 1.32 0.65E—05 1.12
320 0.95E—06 1.69 0.92E—06 1.69 0.20E—05 1.70
640 0.26E—06 1.85 0.25E—-06 1.86 0.55E—06 1.87
P2 40 0.36E—03 - 0.34E—03 - 0.74E—03 -
Ay =3 80 0.21E—03 0.78 0.20E—03 0.76 0.43E—03 0.77
B = % 160 0.11E—03 0.92 0.11E—03 0.92 0.23E—03 0.92
320 0.56E—04 1.00 0.53E—-04 1.00 0.11E—03 0.99
640 0.28E—04 1.00 0.27E—04 1.00 0.58E—04 1.00
P3 40 0.19E—05 - 0.19E—05 - 0.43E—05 -
Ay =2 80 0.43E—-07 5.50 0.38E—07 5.65 0.84E—07 5.66
~1 = % 160 0.15E—08 4.88 0.15E—08 4.68 0.26E—08 5.00
320 0.91E—10 4.00 0.90E—10 4.02 0.17E—09 3.94
640 0.58E—11 3.96 0.57E—11 3.99 0.11E—-10 3.98

Error in L1, L2 and L® norm for solving NLS equation (37) using flux parameters (corresponding to Case
1.6.1in Table 7): @ = 0.25, f; = KEZD 4 KEED (5, 10,41 = —1, 4y = 2,3, ending time T, = 1

Table 18 Example 4.6

N L error Order L2 error Order L° error Order
P2 40 0.60E—04 - 0.54E—-04 - 0.95E—04 -
A =-2 80 0.76E—05 2.99 0.68E—05 2.98 0.12E—04 2.96
B = % 160 0.96E—06 3.00 0.85E—06 3.00 0.15E—-05 2.99
320 0.12E—-06 3.00 0.11E—-06 3.00 0.19E—06 2.99
640 0.15E—-07 3.00 0.13E—-07 3.00 0.24E—07 3.00
p? 40 0.95E—04 - 0.85E—04 - 0.15E—-03 -
Al =-3 80 0.21E—04 2.22 0.18E—04 2.20 0.33E—04 2.18
/3~1 = ﬁ 160 0.49E—05 2.08 0.44E—05 2.07 0.79E—05 2.06
320 0.12E—-05 2.02 0.11E—-05 2.02 0.20E—05 2.02
640 0.29E—06 2.02 0.27E—06 2.02 0.48E—06 2.02

Error in L1, L2 and L® norm for solving NLS equation (37) using flux parameters (corresponding to Case

1.7.2 in Table 9): o] = 0.25, f] =
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T=0 T=25

Fig.3 Examgle 4.7. Double soliton collision graphs atr = 0, 2.5, 5 and a x — ¢ plot of the numerical solution.
N =250, P“ elements with periodic boundary conditions on [-25,25]. Central flux («] = B = B2 = 0) is
used

5 Conclusions and Future Work

In this paper, we studied the ultra-weak DG method with a general class of numerical fluxes
for solving one-dimensional nonlinear Schrédinger equation with periodic boundary con-
ditions. Semi-discrete L? stability and error estimates are obtained when the polynomial
degree k > 1. Focusing on the real parameters, we performed detailed investigation of
the associated projection operators. Our analysis assume the dependence of parameters on
the mesh size h can be freely enforced, hence several cases follow. A variety of analytic
tools are employed, including decoupling of global projection into local projection, analy-
sis of block-circulant matrix and Fourier analysis. We acquire error bounds that are sharp
in most cases from numerical verifications. Future work includes improvement of the error
bounds for some suboptimal cases, superconvergence studies and generalization to higher-
dimensions.
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A Appendix
A.1 Proof of Lemma 3.2

First, we consider the case when 81 # 0. Define the difference operator Wu = Pju — Ph1 u,
then (17) implies:

Wuvpdx =0 Yy, € Pkiz(lj),
1
1
= _l’_a
Wit + ZTII(WM);: =u—(Pluy* atx; 1, (40)
1 1
- 2174 7% 1\~
Wu 5 u), =— 5 (ux—(Phu)x) atxj+%.
2xxy)

Forl > 0, let P;(£) be the I-th order Legendre polynomials on [— 1,1], with & =

on [;, and define P; ;(x) = (Z(X x’)) P;(&). Then Wu can be expressed as:

k
Wu(x) = Zaj,sz,z(x) =Y a;1P&).
=0 =0

By the first equation in (40) and orthogonality of Legendre polynomials, one can get:
aj; =0, 1=0,....,k—=2, j=1,...,N.

We can then move on to solve for a; x| and a; x on each cell directly by the second and
third equations in (40). By properties of Legendre polynomials: P;(£1) = (£ DY, Pl’ (1) =
%(j:l)l “l i + 1), the following 2 x 2 linear system holds on each cell /;:

aj p—1 P
ol =)

M) (M,)lz]: {( DF1 4 (DR (g (ko 22 bk

where

M =
J [(Mj)zl (M) 1 — *;0‘1 k(lz 1 1 — *;al k(lZH)
1 J 1 J

1_
and ¢ = (u = (Py) ")l and ¥y = =25 e = (Pl
k2

We can calculate the determinant of the matrix M to be 2(—Dk1 4 2(—1)kﬁl—hj +
2(— 1)k~ IM 2(—1)"_1Fj/,31. Hence, when I'; # 0, Vj, P exists and is unique.

Bi h
We now move on to estimate the a; x—1, a; ;. Clearly,

aji—1 = ————((Mj)nd; — (Mj)2y;)

det M

aje=———(=M;j)1¢; + Mpuy;),

det M

1_
and from the projection property of P!, lpjl < Ch];+1|u|Wk+l,00([j), Uil < Ch]]‘. 2/310”
[lu|wrs.00 1) The error estimates can be obtained based on the following cases.
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e Ifk =1, then

ajo= : B — l—Oll 2 (M—Pu)l
TN 2 hj h -3

1 2p -
_<2—L¥1—hjz>(x (Phlu)x) |xj+%>’

| 1 -
a1 =1 <—ﬂ1(u =Pt - (5 - cxl) (ux = (Pju)x) |xj+%> :

Thus we have estimates
Chul o) 1—2a1| |[4=a1 28
|aj,0|§ﬁmax B — A ) zh' _hT s
J J J j
Ch3uly2e(r) 1 g
jaj1l = — - max | 1B, |2 —] |
1T j
Then,
I Pru— Plullos;y = llajoPo®) + aj1 Pr&) L))
Ch2|M|W200(1) L o] ﬁz
< %max 1811, -] (41)
I j h%

Combining with the error estimates for Ph1 and the mesh regularity assumption, we get

‘%7‘”‘ 182
max [ 1811, e, 131

Pru — < Ch*|ulyaoopy | 1 =2 .
1Py —ullieray = Ch lulyrooqy [ 1+ min; |T;| P
e If k > 1, then we need to discuss the case when 8> = 0 or 82 # 0.
If B = 0, then & = +1. When a; = L, we have y/; = 0, and
A k+1 181l
laj k1] < Chj |M|Wk+]’°o(1j)ﬁ’
jaj il < ChY T ul e, DT L
IT;1
Therefore,
Bil @

||P]:M — Phll/t”Loo(]j) < Chl;+l|u|Wk+l,00([j)ﬁ,
J

implying a supercloseness between P’ and P}E if B1/T'; = o(1). In summary, we have

|81l
Piu—u < CH** Nulyrstooy (1 + ———— ), p=2,00.
| P, lLey < lulwirrooy | 1+ min; ||

When o) = 2, we then should compare the projection with Ph instead of Ph We skip
the details of the calculations. The conclusion is similar, i.e.

|11

2 k+1
||P,:'u — Ph u||Loo(1_,.) =< Cl’l] |M|Wk+1.00([j)ﬂ,
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and

&)7 b =2, 00,

Pu—u < CH*M ) yrstoo 1
|| h ||LI’(1) = | |W+ 05 minj |l_‘j|

If B> # 0, similar to previous case, we can show

k+1
| B Chj"l‘ |u|wk+1.00([j) |/3 | %_Oll ,82
ajol < ax 11 P2 ’
J T hj hi
k+1
) < S My 2] |8
aj] < X 11 72 ’
J |F‘/'| hj h§
Therefore,
Lo
max<|ﬂ1|, 2;,/' ) %)
k+1 . .
1P = ullqyy < ChG oy | 1+ Tl
and it leads to
[5—al
max <|,31 [, ZTI %)
1P = ullLeay < CH ulyiriooy [ 14 min; [T e

Finally, when 81 =0, 2 # 0,01 = :l:%, we have the following estimates

162 ) 2 0.

Pu—u < Ch*u 00 1+ —5—7"——
|| h ||LP(I) = | |Wk+1 ) 12 minj |Fj|

Summarizing all the estimates, we have shown (20) for all cases.

A.2 Proof of Lemma 3.3

We adopt similar notations as in the proof of Lemma 3.2. Define £ = z(x;X-/ )

, and let

k k
Pru), =Y viaPii(x) =Y yiPi).

1=0 1=0
By (11a) and orthogonality of Legendre polynomials, one can get:

2041 (! h )
vig==——| u x,-+55 Pi(€)ds, 1=0,....,k—2, j=1,...,N.
—1

We can then move on to solve for y; x—1 and y; ; from (11b)—(11c). At xH%,

PO, pen_[eta) ]
[ipz/(l)] riiBo |:1%P1/(—1)i| - Uy <Xj+% @

Pru ‘
|:/—’l_/j| = Z]/.,'JA()

(Pyu)x 1=0

where Ag, By are defined in (16).
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Combining (43) for all j and using the periodic boundary condition will result in the
following 2N x 2N linear system

[ Vik—1 ] o ]
Y1k Y
Miynajk—1|=|¢nv—1 44)
YN—1,k Yy —1
YN k-1 oN
wik | L ¥~
where M = circ(A, B,0,,...,0;), denoting a 2N x 2N block-circulant matrix with first
two rows as (A, B, 0y, ...,0;), with 0 as a 2 x 2 zero matrix, and
Pk (D Pk(l) }
A=A 45
0[ () 2P )
Pe_1(=1) P(—1) ]
B = BO / ’
[iP“(—l) 7 P(=D)

k-2
¢ | _ “(xj+%> _ < , [ Pi(1) } A [ Pi(—1) ])
[%} ~ . (x ) Z ViAo %P/(l) + ¥j+1.1Bo %P/(—l) , (46)

j+3 1=0
where Ag, By are defined in (16). We can calculate that
=2k ( , 1
detA:detB:T ozl—i-ﬂlﬂz—z = A #0. 47)
It is clear that the existence and uniqueness of P; is equivalent to det M # 0. By a direct

computation, det M = det AN det(l, — QV), where I, denotes the 2 x 2 identity matrix,
and

_ _a-lp_ (=D ey + e by + by
Q=-A"B=—4 by —byc1—c
with
K2(k* — 1) 2k% [, 1
cl =/31+Tﬂz—7<al +,31ﬂ2+1> =T, (48)
k
= 2(2051), (49)
B+ 1) 2k% [, 1
by=-p— ——— — -, 50
1 Bi 2 B+ i (al +ﬂlﬂ2+4> (50)
2k3 2k [, 1
bzz—ﬁng‘f‘? o +,31ﬂ2+1 . (51
The eigenvalues of Q are
&+D) _1&+D
Al = = ) ————— (T +VI2-A2%), im= %(F — V2= A2). (52)

Since det Q = det B/ det A = 1, we have the relations A;A, = 1 and

b — b3 =T2 - A* -3 (53)
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Below we will discuss the existence and uniqueness of P} based on three cases depending
on the relation of I" and A.

Case 1.If |I"| > |A[, then A » arereal and different. Therefore, we can perform eigenvalue
decomposition of Q,

Q=TDT ',
where
M 0
D= |:0 )\2] ’
and
1 —bidhy | 1 __bitby
/T2_A2 — /T2_A2
T = |: b1—by cotVIE=A i|7T = det T |:_ b1—by crtvI==A i|s (54)
c2+V/T2—A2 c2+V/T2—A2
where det 7 = 62+7 % except for the case when (b1 — b)(b; + by) = 0and c; < 0,
) —
where
1 _bi+by | 1 bi1+by
T=|p_p f”z TN =, 2;2 . (55)
2¢) T 20

In both situations, we have

ANV o0 -2V 0
_ N _ 1 — N 1
det M = det A" det <12 |: 0 )‘]2V:|> det A™ det <[ 0 1—)@’})'

det M # 0 if and only if DN # 1 and )N # 1. This is clearly true since |A1, A2| # 1.
Case 2. If || = |A|, then 1} = 4, = (—1)FH! % and we have two repeated eigenvalues.
Perform Jordan decomposition:

[Cl+cz b1+b2:| :T|:Cl I]T,l

by —byci —cp 0 ¢
and
_ c 1 .
T = [b1 by O]’ ifby # by,
2b; 0 .
T = [ 01 1], itb) = by. (56)
We define
g 1 7= (=D ey 1] A (_IKHI
L0’ A Oci] [0 A |
then
Q.i — TJ'/T_I Tl = -)‘{ kj
; 02 ;
N _ | N —ky —1
koo ‘T[ o 1-anV]T
where k; = %jlﬁj_l.
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In both situations, det M # 0 if and only if (A1) # 1, meaning that we require N to be
odd and further, if & is odd, we require I' = —A; if k is even, we require ' = A. In both
cases, A; = Ar = —1.

Case 3.If [T'| < |A], then A > are complex, [A1 2| = 1,41 = A2, still Q is diagonalizable,
and similar to Case 1, det M # O turns to (A W # 1l and )N =N # 1,i.e. we require

N

r r\?2
_y*+DN [ 2 i 1
(=D A+ A #

A.3 Proof of Lemmas 3.4-3.6
A.3.1 Proof of Lemma 3.4

In the proof, we still use the difference operator Wu = Pju — Phlu = Zf:o ajPji(x) =
o Pi(§), withe;; =0, [=0,...,k—2, j=1,...,N,and

[ arg— ] 7|
ok U
Mlay—1k—1|=|TN-1|, (57
AN -1,k LN—1
AN, k—1 N
avk | L v |

where

A e O A e
= 1 ) = 1\~ .
Lj B 3 —ai]lf 0 ux = (Pyu)y |51
We will now analyze the inverse of the matrix M. It is known that the inverse of a
nonsingular circulant matrix is also circulant, so is a block-circulant matrix. In particular,
M = circ(ro, 71, ..., rn—1) ® Al

where ® means Kronecker product for block matrices and r; is a 2 x 2 matrix defined as,

ri=0/(L-0M7" j=0,....N-1
=TD/ (I, — DMy~ '771,

A .
) 0 J . .
DIl — DNy = 1—0*7 g | [”g ;j], and &) = a7l (58)
2
1=y

For the convenience of further analysis, we separate r; in terms of di/ and dé s

i |10 i~ 100
i -1 j ~1
= air 17tz [0

= d] Q1 +dj (I — Q). (59)

@ Springer



806 Journal of Scientific Computing (2019) 78:772-815

where

0 = 1 cr +T2 — A2 b1+ by (60)
RN by—by  —ca+ T2 =A%)’
when T is given by (54), and
1 2co b1+ by
= — , 61

when T is given by (55).

1 1—[a 0N
=2l 1=y,

generality, we assume |A1| < 1 < |Az|, which is equivalent to I" < 0, then

. Without loss of

For Case 1, eigenvalues A1 2 are real. Zj.\’z—ol |d{2| =

N—

._.

@) = o = 2 (62)
s —| il hal—
N-—1
1
Idjl . T (63)
s 22| —
We let
[“1] = A [T'/]:n,»vﬁuejvz, j=1,...,N (64)
@j Ly
where
2
v | _ﬂl+w<(%—al) +ﬂlﬂz>
1= - _ 2
A ﬂl—W((%—dl) +ﬂ1,32)
L[ o?+pipo—1 —
v2=—[ ! =12 (65)
A L= (e + 8182 —3) %
max (|1, 13 — a1l/h)
||v1||oosc2(1+ |A2| . IVallw < Ch (66)

from basic algebraic calculations. Therefore,

]+m

N—
O k=1 St =1,...,N 67
[%k] sz [ ] m=1,..N, (67)

where by periodicity, when j +m > N, Ejyy = Ejm-nN, Ojym = Ojpm—n.
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In summary, we obtain the estimation when |A{| < 1 < |[A2],

N—1
‘ ["""’“} ’ < Y (d{|+1d3) (max n;] 101 V1lloo + max |9,,-|||Q1v2||oo)
A,k 00 =0 J J
N-1
+ > 1d]| (max 7111 Villoo + max |0,-|||vz||oo) ,
20 J J
[Aa] + 1 _
< Chk+1|u|wk+1.w(1)(w—_l(||Q1V1||oo+h 1101 Valloo)
tom (Wil +57 1V2l) ). m= 1N 69)

Thus, the estimates for the difference between P;:‘ and Ph] are

N [A2] + 1 _
| Piu = Pyullray < Ch"“|u|wk+n.oom(—|k2| — (121 Villoo + H11Q1 Valloo)
e (IVilloo + 57" 1Vallc) )- (69)
A2l =1

Similar estimates can be proved when I' > O and [A1]| > 1 > |Az],

| Pru— Piullre

[A1l+1 _
< Chk+1|u|wk+nm(1>(w—_l (112 = QD) Villoso + A7 (12 = Q1) Vallco)
+ (IVilloo + " 1V2loc) ) (70)
Al —1
and (21) is obtained.
A.3.2 Proof of Lemma 3.5
Since P;: is well defined, we know that A{V = —1. Therefore, we can obtain
L-0oY=T 2 75 (h-0Nl=T > —ir 7!
2 0 2 b 2 O % )
. _ —1)/ =N +2j
= oih-oVy = E i TN 71
ri=Q (hL—0") > 2+ (=1 T 02, (71)
where
_ 01|, -1 ¢ bi+b
QZ_T[OO]T _[bl—bz - ] 72)
Therefore, we have form =0,..., N — 1:
U k—1 N OF
’ <CN|(14+ —] O )max [’:H ,
Ham,k]w ( o) T e
h 02000

< ChMulyroioo ) (1 + ) (IVilloo + A7 I Vallog) -

1N

Similar to Lemma 3.4, we can estimate || Pyu — Ph1 ullr (1) and (22) follows.
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A.3.3 Proof of Lemma 3.6

In Case 3, A are conjugate to each other and |1 2| = 1. Therefore, 8’ > 0, and

=
N

M

J
|1—AN| Z|d

N
I—A =

~.
Il
(=}

Similar to (68), we obtain

[amk I}H Z(|d’|+|d’|) (maxlfl/|||Q1V1 oo + max|6; |||Q1v2||oo)

Om k

+ Z 13| (mjax In;11Vilo + max |6 |||v2||oo) :
j=0

< CH Y ul st A~ CHD (101 Villloo + h 71 1Q1 Valloo + Vi lloo + A7 [ Valloo)
< CH* a0y B~ 0110 (Vi lloo + 57 1 Valloo)

and we reach the estimation (25).

A.4 Proof of Lemma 3.8
From (64) and (67), we have
o N- = .
[:;,,f;l] ZO [(:)‘ji:], m=1,...,N,
ULV +Ua Vo,

where U; = Zy;ol rinjm, Uz = 2?1;01 ;0 m. We first estimate Uy, then U, can be
estimated in a similar way. From (71),

N—-1
1 Qz N+2
Ui =50 Y (=10 + § ( N (73)
j=0

By Lemma 3.7, the first term in (73) can be estimated by

N-1
2

Z(an/er —Mmj+14m) + IN-14m

j'=0

N -1

=< TChk+2|M|Wk+2,00([) + Chk+1|u|Wk+l,00([)

< CH Y lullyrrz.oo ) (74)

N-1
D (=1 njim
j=0
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because N must be odd from Lemma 3.3. The second term in (73) can be estimated by
using (26),

N—1 .

—N+2j
> (=1 — My = B S — ok S
Jj=0

N-—1 .
—N+2
<cy T]‘ W3l yassoory < CR Nl s ), (75)
Jj=0
where Si+1, Sk+2 are defined as:
N—1
. —N+2j (k+v)
Sy 1= ZO(—l)J#u v (xj+m+%>, v=1,2.
iz

We assume u € W*t41(I). Then u®**1 e W31(1), is periodic, and has the following
Fourier series expansion u**1 (x) = > o f (n)e?™inx/L [ = b — g, where its fourier
coefficient f (n) satisfies:
|M|Wk+4.](])

76
1+ |n3 (76)

| <c

n=—0o0

Sincexj+% = jAx =j%, j =0,...,N—l,thenu(k"'l)(xH%) =y f(n)w/" with

-2
w = ¢e' V. Then

N—1 . 00
_N4+2 . 4
Skt = E (_1)1# E Fywtitmn,
]:O n=—o00

Due to (76), Y _ | f (n)| is convergent and we can switch the order of summation, which

results in
0 R _2w(m+l)n
Skri= Y fmW(@), where W(n)zm.

n=—0oo

(77)

Since N is odd, 0" = N # —1,Vn. Hence, W (n) and Sy are well defined. Because
W (n) is N-periodic, it’s helpful to split Sy into blocks of size N as

- IN+ AL
Sty = Z S,IH_], where S,IH_] = Z S)W(n).
I=—0c0 n=IN-Y-1
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, : 0 3N __2 2 _ 2
Let’s estimate S | first. For [n| < [ ], IW(n)| = EwAg < T AE = 3205 For
N—1 2 :
other n, [W(n)| < [W(=5-)| = o7z < CN? from Taylor expansions.

[%} n=7[%]71 x
S0l Y [fowm|+ Y [fowem|+ Y [fowe)
n:—[%" 7N2—1 n:[%\’].H
2 [%] R n=— % -1 A % )
2-42 2 ‘f(”).JFCAﬂ > ].f(n)‘+c1v2 > ‘f(n)‘
11:_[3 ] 7N2— n:[%\’]_,_l
ki
2 . | v
2-2 ) ‘f(n).+CN21+(3§V)3 (Z+2> lutl a1y

]

IA

=

o)

[E—

IA

“‘2

1 N 1
T 173 " /3\3
1+ |n| (%)

IA
-

ulyranry.
e
Then, in a similar way,

IN+ YL

|Sllc+1| <C Z

N-1
n=IN—"5=

1
_l’_
P (4 3)°

| yrrarpy-

Therefore,

[ee) o0

1 1
N SR
n;ooH'”P 1;0(|l|+§)3

By similar Fourier expansion technique, we can show

|M|Wk+4.](1) < C|lek+4,l(1). (78)

|Skral < CNlulyusa gy = Ch™ ulyean ). (79)

Combine (78), (79) with (73), (74) and (75), we get
1U1lloo < CH M lullyissceqry (1 .1 Q|§'|'°°) : (80)

Similarly, by (29) and the Fourier expansion technique
1U2ll0 < Ch*[lull sy (1 + ” Q|12,|||°°> : (81)

Therefore,

Um,k—1
U k 00

< CH* Ml yisaoo ) (1 +

= Wil lleo + 1021l00 1 V21l 0o »

1921l
N

)(I|V1 loo +h HVallow), m=1,...,N,

and (30) is obtained.
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A.5 Proof of Lemma 3.9

From the discussion in Lemma 3.3, we can write A1 2 = e and assume 6 € (0, 7). First,
we want to make clear of the conditions on &, §’. Since |A{| = |)le| =1, we have 8,8 > 0.
Because 1 -—)L/lv = (@ = ()N = (0" —eie)(Z;VZBI(C‘)/")Nflfl(eie)l), thus 11— )»f'/’ <
N |o" — ¢'?|, Vn. With the assumption |1 — )L{V| ~ ChY, we get |w" — e’(" > Ch¥ 1,
Particularly, when n = 0, we have |1 — A{| > Ch‘s/"'l, hence §/2 < & + 1.

Similar to (67) in Case 1, we can get

N-1 —_
Xm k—1| _ | Sj+m _
|:cx ]— E rj|:®' , m=1,...,N,
m,k Jjt+m

j=0
= U1V +Ur V>,
where
N—1 _ N—1 ' _ »
Uy =01 njtmd] + (= Q1) Y njimds, 4] = =,
=0 j=0
N—1 N—1 .
‘ . . Nei e
Up =01 Ojimd] +(a— Q1) Y 0j1md], dy =—d ' =="rr.
=0 j=0
We introduce:
! N—1
_ ij0 (k+1)
Si1 = 1 _ ¢iN® Z e u (xj+m+%>’
j=0
| Nl
- - i(N=j)0, (k+1)
S = 1 _ ¢iN® Z ¢ u (xj+m—%)‘
j=0

Then by Lemma 3.7:
\ul — ph* 018 — ph* (1 — Q1>sz\ < CHM YA+ 11 Q1 lloo) [l a0 )
[t — pi* Q181 = ph* (12 = 0S| = CHE UL+ 101 ootz .
Therefore,

| < CH P27 (1 + Q1 lloo) [l yiszoo + [ Q1 lloo(1 + max(ISil, 1S20))), v =1,2.
(82)

> f(mw’". Since now we

. . . . . . k 1 _
By using similar Fourier expansion: u*+ )(xj +1 )= 0

k+3.00 F 1
assume u € WA (1), | fn)| < €l

1 o0 N-—1 o0
_ ; ijo  (j+m)n __ R
Si=1—ng 2 f(n)z(:)e’ WU = N fmyWi(n),
p=

n=—0oo n=—oo

n=—0oo n=—0o0

-1 ° N . . >
S1= s 2 S0 Y dNTIUII = KT W),
j=0

@ Springer



812 Journal of Scientific Computing (2019) 78:772-815

where from simple algebra

mn w(m—l)n
W) = g Y0 = T
From the discussion at the beginning of the proof, we have |Wh(n)| = |11 — a)”|_l <

Ch=@+D and similarly W (n)] < Ch~@+D_ Since S; and S, can be estimated in the
same way, we only show details for S in what follows. Similar to the proof of Lemma 3.8,
we split S into blocks of size N,

(+1)N—1
Z Sh, where Sh= Z FWa ().
l=—00 n=IN

With the assumption that 0 < §/2 < I, there3ng ~ O(h*/>~")s.t.27% < g < 27”0,
Let n; = |ng/2]),na2 = 2ng — ny, then forn; < n < ny, ’f(n)‘ < Cl_:7|u|wk+3<l(1). For
1

other n, Wa(m)| < W) < smmyn=ayay < Ch~*2. Thus,

np—1
9| < ch2 | 3 4 Z o] | +cnm@ D Z |Fon)|
n=0  n=np+1 n=ni

N—1
1 1
<C|h"? +h *““%u—n1+n it e
( I§)1+|n|2 1+n? WE=AD)
N—1 1
C (h—m > TFiE +h @ +‘>h5/2—‘h2—5> lul i )
n=0

N—-1
_ Z 1 s
= C (h 8/2 TW +h 8 5/2) |M|Wk+3.1(1).
n=0

Using similar approaches, for [ # 0,

IA

[+1)N—1
‘sl‘<c h—5/2( 2): ! gL || yyissn
1 S THInP /N1 ) o

Summing up, we reach the estimation

o0
_ 1 _
SRl UEEY e T SRR Y W lulyesa )
oo n 1eN,I#0
< Ch_a/_8/2|u|wk+3,l(1). (83)
Similarly, we obtain
1511 <= Ch= =32 ul yasan . (84)

Combine (83), (84) and (82), we get
Uyl < CHF2" A+ B2 0 o) ullyrsseys v =12,

and (31) follows.
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A.6 Detailed Discussions on the Choice of the T Matrix as in (54) or (55)
We discuss what parameters result in |y &= by| = 0, under the assumption that o1 has no

dependence on &, f; = ﬂ]hAl , B = ﬂzhAZ, /3~1, /3~2 are nonzero constants that do not depend
on h.

by —by = <_/3] + Rk — 1)) (1 —ﬁzzk(k_ D) + Kk — 1)20:%

2h h h
= <—51hA' +

k(k — 1)
2
k(k+1) 2k(k + 1) k(k +1)
2h ><1_ﬁ2 h >+ h

h‘l) (1 — 2k(k — 1)5211*‘2—‘) + k(k — 1)2a?h71,

2
207

by +by = <—ﬂ1 +
= <—51hA' + L2+1)1f1) (1 — 2k(k + 1)Ezh*‘2*l) +k(k + D2adh".

If by — by =0,Vh < hp, then

e oy #0,then Ay = —1, A =1 and ,3], ,3~2 satisfies

~  k(k—1) - 2
—B1 + > (I = 2k(k — DB2) +k(k — 1)207 = 0. (85)
Similarly, for by + b, = 0, Vh < ho, then
o o] £0, A = —1, Ay = 1and B, B> satisfies

< -  k(k+1)
2

—Bi+ ) (1 = 2k(k + DB2) + k(k + 122} = 0. (86)

A.7 Detailed Discussions on Case 2

Parameter choices for [I'| = |A| imply
riA_IB+k2(k2—1)ﬁ+k(kj:1)( o zﬁﬁ)+—k2ik
A w2 2 h %1~ R 2h
k(k F1) k(k+1) k(k 1) ,
= — 1-2 — 202 =0
<’3‘ 2 )( S ) =0

which indicates

e if oy # 0, then by & by can be greatly simplified as follows.
— If ' + A =0, then k is odd from Lemma 3.3, and

b1+b2:§<1_5zw),

h h
by —by =— 2 (ﬁl—k(k_1)>,
k+1 2h
e (- B D)
k+1 h h?
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— If ' — A =0, then k is even from Lemma 3.3, and

_ 2 k(k+1)
bl+b2—k_1<,31 o )

k 2k(k — 1
bl—bzz—ﬁ(l—ﬂz¥),

h
1 KOKRKE=-1
A=—— -+ B8, k>1.
=1 (ﬂl e ﬁz) >
e Ifa; =0, then

k(k+1) h
=" R — 7
Bi O B2 TAE 87)

References

1. Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin
finite element methods for the second-order wave equation. J. Sci. Comput. 27(1), 5-40 (2006)

2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit—explicit Runge—Kutta methods for time-dependent partial
differential equations. Appl. Numer. Math. 25(2-3), 151-167 (1997)

3. Bona, J., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin-methods for the
generalized Korteweg—de Vries equation. Math. Comput. 82(283), 1401-1432 (2013)

4. Cessenat, O., Despres, B.: Application of an ultra weak variational formulation of elliptic pdes to the
two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35(1), 255-299 (1998)

5. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrédinger equa-
tion. J. Comput. Phys. 148(2), 397-415 (1999)

6. Cheng, Y., Chou, C.-S., Li, F, Xing, Y.: L2 stable discontinuous Galerkin methods for one-dimensional
two-way wave equations. Math. Comput. 86(303), 121-155 (2017)

7. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial dif-
ferential equations with higher order derivatives. Math. Comput. 77(262), 699-730 (2008)

8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applica-
tions, vol. 4. North-Holland Publishing Co., Amsterdam (1978)

9. Cockburn, B., Hou, S., Shu, C.-W.: The Runge—Kutta local projection discontinuous Galerkin finite
element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545-581
(1990)

10. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge—Kutta local projection discontinuous Galerkin finite
element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90-113
(1989)

11. Cockburn, B., Shu, C.-W.: TVB Runge—Kutta local projection discontinuous Galerkin finite element
method for conservation laws. II. General framework. Math. Comput. 52(186), 411-435 (1989)

12. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection—
diffusion systems. STAM J. Numer. Anal. 35(6), 2440-2463 (1998)

13. Cockburn, B., Shu, C.-W.: The Runge—Kutta discontinuous Galerkin method for conservation laws V:
multidimensional systems. J. Comput. Phys. 141(2), 199-224 (1998)

14. Dag, I.: A quadratic b-spline finite element method for solving nonlinear Schrédinger equation. Comput.
Methods Appl. Mech. Eng. 174(1-2), 247-258 (1999)

15. Douglas J., Dupont T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Glowin-
ski, R., Lions, J.L. (eds.) Computing Methods in Applied Sciences. Lecture Notes in Physics, vol 58.
Springer, Berlin, Heidelberg (1976)

16. Grote, M.J., Schneebeli, A., Schotzau, D.: Discontinuous Galerkin finite element method for the wave
equation. STAM J. Numer. Anal. 44(6), 2408-2431 (2006)

17. Karakashian, O., Makridakis, C.: A space—time finite element method for the nonlinear Schrodinger
equation: the discontinuous Galerkin method. Math. Comput. 67(222), 479-499 (1998)

18. Karakashian, O., Makridakis, C.: A space—time finite element method for the nonlinear Schrodinger
equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36(6), 1779-1807 (1999)

@ Springer



Journal of Scientific Computing (2019) 78:772-815 815

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

32.

33.

Liang, X., Khalig, A.Q.M., Xing, Y.: Fourth order exponential time differencing method with local
discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations. Commun. Comput.
Phys. 17(2), 510-541 (2015)

Liu, H.: Optimal error estimates of the direct discontinuous Galerkin method for convection—diffusion
equations. Math. Comput. 84(295), 2263-2295 (2015)

Lu, W, Huang, Y., Liu, H.: Mass preserving discontinuous Galerkin methods for Schrodinger equations.
J. Comput. Phys. 282, 210-226 (2015)

Meng, X., Shu, C.-W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on
upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85(299), 1225-1261 (2016)
Pathria, D., Morris, J.L.: Pseudo-spectral solution of nonlinear Schrodinger equations. J. Comput. Phys.
87(1), 108-125 (1990)

Reed, W.H., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical report, Los
Alamos Scientific Lab., N. Mex. (USA) (1973)

Riviere, B., Wheeler, M.E.: Discontinuous finite element methods for acoustic and elastic wave problems.
Contemp. Math. 329, 271-282 (2003)

Riviere, B., Wheeler, M.F,, Girault, V.: Improved energy estimates for interior penalty, constrained and
discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3(3), 337-360 (1999)
Riviere, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on
discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902-931 (2001)
Sheng, Q., Khaliqg, A., Al-Said, E.: Solving the generalized nonlinear Schrodinger equation via quartic
spline approximation. J. Comput. Phys. 166(2), 400-417 (2001)

Shu, C.-W.: Discontinuous Galerkin methods for time-dependent convection dominated problems: basics,
recent developments and comparison with other methods. In: Barrenechea, G., Brezzi, F., Cangiani, A.,
Georgoulis, E. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numer-
ical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114.
Springer, Cham (2016)

Taha, T.R., Ablowitz, M.I.: Analytical and numerical aspects of certain nonlinear evolution equations. II.
Numerical, nonlinear Schrodinger equation. J. Comput. Phys. 55(2), 203-230 (1984)

. Wheeler, M.E.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer.

Anal. 15(1), 152-161 (1978)

Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrodinger equations. J. Com-
put. Phys. 205(1), 72-97 (2005)

Xu, Y., Shu, C.-W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for
high order wave equations. STAM J. Numer. Anal. 50(1), 79-104 (2012)

@ Springer



	An Ultra-weak Discontinuous Galerkin Method for Schrödinger Equation in One Dimension
	Abstract
	1 Introduction
	2 A DG Method for One-Dimensional Schrödinger Equations
	3 Error Estimates
	3.1 Projection Operator
	3.1.1 Local Projection Results
	3.1.2 Global Projection Results

	3.2 Error Estimates of the DG Scheme 

	4 Numerical Experiments
	4.1 Numerical Results of the Projection Operator Ph
	4.2 Numerical Results of the DG Scheme

	5 Conclusions and Future Work
	A Appendix
	A.1 Proof of Lemma 3.2 
	A.2 Proof of Lemma 3.3 
	A.3 Proof of Lemmas 3.4–3.6 
	A.3.1 Proof of Lemma 3.4
	A.3.2 Proof of Lemma 3.5
	A.3.3 Proof of Lemma 3.6

	A.4 Proof of Lemma 3.8 
	A.5 Proof of Lemma 3.9 
	A.6 Detailed Discussions on the Choice of the T Matrix as in (54) or (55) 
	A.7 Detailed Discussions on Case 2 

	References




