
https://doi.org/10.1007/s00145-018-9306-z
J Cryptol

Locally Decodable and Updatable Non-malleable Codes
and Their Applications

Dana Dachman-Soled∗
University of Maryland, College Park, USA

danadach@ece.umd.edu

Feng-Hao Liu†
Florida Atlantic University, Boca Raton, USA

fenghao.liu@fau.edu

Elaine Shi‡
Cornell University, Ithaca, USA

runting@gmail.com

Hong-Sheng Zhou§
Virginia Commonwealth University, Richmond, USA

hszhou@vcu.edu

Communicated by Stefan Wolf.

Received 9 April 2017 / Revised 17 October 2018

Abstract. Non-malleable codes, introduced as a relaxation of error-correcting codes
by Dziembowski, Pietrzak, andWichs (ICS ’10), provide the security guarantee that the
message contained in a tampered codeword is either the same as the original message
or is set to an unrelated value. Various applications of non-malleable codes have been
discovered, and one of the most significant applications among these is the connection
with tamper-resilient cryptography. There is a large body of work considering security
against various classes of tampering functions, as well as non-malleable codes with
enhanced features such as leakage resilience. In this work, we propose combining the
concepts of non-malleability, leakage resilience, and locality in a coding scheme. The
contribution of this work is threefold:

∗Supported in part by NSF CAREER Award #CNS-1453045 and by a Ralph E. Powe Junior Faculty
Enhancement Award.

†Supported in part byNSF award #CNS-1657040. This workwas done, while the authorwas a postdoctoral
researcher at the University of Maryland.

‡Supported in part by NSF award #CNS-1601879, a Packard Fellowship, and a DARPA Safeware Grant
(subcontractor under IBM). This work was done, while the author was an assistant professor at the University
of Maryland.

§Supported in part by NSF award #CNS-1801470.

© International Association for Cryptologic Research 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-018-9306-z&domain=pdf

D. Dachman-Soled et al.

1. As a conceptual contribution, we define a new notion of locally decodable and updatable
non-malleable code that combines the above properties.

2. We present two simple and efficient constructions achieving our new notion with different
levels of security.

3. We present an important application of our new tool—securing RAM computation against
memory tampering and leakage attacks. This is analogous to the usage of traditional non-
malleable codes to secure implementations in the circuit model against memory tampering
and leakage attacks.

Keywords. Non-malleable codes, Leakage-resilient, Locally decodable.

1. Introduction

The notion of non-malleable codes was defined by Dziembowski et al. [29] as a relax-
ation of error-correcting codes. Informally, a coding scheme is non-malleable against
a tampering function if by tampering with the codeword, the function can either keep
the underlying message unchanged or change it to an unrelated message. Designing
non-malleable codes is not only an interesting mathematical task, but also has impor-
tant implications in cryptography; for example, Coretti et al. [19] showed an efficient
construction of a multi-bit CCA secure encryption scheme from a single-bit one via
non-malleable codes. Agrawal et al. [7] showed how to use non-malleable codes to
build non-malleable commitments. Most notably, the notion has a deep connection with
security against so-called physical attacks; indeed, using non-malleable codes to achieve
security against physical attacks was the original motivation of the work [29]. Due to
this important application, research on non-malleable codes has become an important
agenda and drawn much attention in both coding theory and cryptography.
Briefly speaking, physical attacks target implementations of cryptographic algorithms

beyond their input/output behavior. For example, researchers have demonstrated that
leaking/tampering with sensitive secrets such as cryptographic keys, through timing
channel, differential power analysis, and various other attacks, can be devastating [6,11,
12,39,47,48,53], and therefore the community has focused on developing new mech-
anisms to defend against such strong adversaries [20–26,28,33–35,37,38,41–43,46,
51,52,54]. Dziembowski et al. [29] showed a simple and elegant mechanism to secure
implementations against memory tampering attacks by using non-malleable codes—
instead of storing the secret (in the clear) on a device, one instead stores an encoding of
the secret. The security of the non-malleable code guarantees that the adversary cannot
learn more than what can be learnt via black box access to the device, even though the
adversary may tamper with memory.
In a subsequent work, Liu and Lysyanskaya [50] extended the notion to capture leak-

age resilience as well—in addition to non-malleability, the adversary cannot learn any-
thing about the underlyingmessage evenwhile obtaining partial leakage of the codeword.
By using the approach outlined above, one can achieve security guarantees against both
tampering and leakage attacks. In recent years, researchers have been studying various
flavors of non-malleable codes; for example some work has focused on constructions
against different classes of tampering functions, some has focused on different addi-
tional features (e.g., continual attacks, rates of the scheme), and some focused on other
applications [3,7,15–17,27,30,32].

Locally Decodable and Updatable Non-malleable Codes

In this paper, we focus on another important feature inspired from the field of coding
theory—locality.More concretely,we consider a coding scheme that is locally decodable
and updatable. As introduced by Katz and Trevisan [44], local decodability means that
in order to retrieve a portion of the underlying message, one does not need to read
through the whole codeword. Instead, one can just read a few locations at the codeword.
Similarly, local updatability means that in order to update some part of the underlying
messages, one only needs to update some parts of the codeword. Locally decodable
codes have many important applications in private information retrieval [18] and secure
multi-party computation [40], and have deep connections with complexity theory; see
[57]. Achieving local decodability and updatability simultaneously makes the task more
challenging.Recently,Chandran et al. [13] constructed a locally decodable and updatable
code in the setting of error-correcting codes. They also show an application to dynamic
proofs of retrievability. Motivated by the above results, we further ask the following
intriguing question:

Canwebuild a coding schemeenjoyingall three properties, i.e., non-malleability,
leakage resilience, and locality? If so, what are its implications in cryptog-
raphy?

Our Results In light of the above questions, our contribution is threefold:

– (Notions)We propose new notions that combine the concepts of non-malleability,
leakage resilience, and locality in codes. First, we formalize a new notion of locally
decodable and updatable non-malleable codes (against one-time attacks). Then,
we extend this new notion to capture leakage resilience under continual attacks.

– (Constructions) We present two simple constructions achieving our new notions.
The first construction is highly efficient—in order to decode (update) one block of
the encoded messages, only two blocks of the codeword must be read (written)—
but is only secure against one-time attacks. The second construction achieves se-
curity against continual attacks, while requiring log(n) number of reads (writes)
to perform one decode (update) operation, where n is the number of blocks of the
underlying message.

– (Application) We present an important application of our new notion—achieving
tamper and leakage resilience in the random accessmachine (RAM)model.We first
define a newmodel that captures tampering and leakage attacks in the RAMmodel,
and then give a generic compiler that uses our new notion as a main ingredient.
The compiled machine will be resilient to leakage and tampering on the random
access memory. This is analogous to the usage of traditional non-malleable codes
to secure implementations in the circuit model.

1.1. Techniques

In this section, we present a technical overview of our results.

Locally Decodable Non-malleable Codes Our first goal is to consider a combination
of concepts of non-malleability and local decodability. Recall that a coding scheme is
non-malleable with respect to a tampering function f if the decoding of the tampered
codeword remains the same or becomes some unrelated message. To capture this idea,

D. Dachman-Soled et al.

the definition in the work [29] requires that there exists a simulator (with respect to such
f) who outputs same∗ if the decoding of the tampered codeword remains the same as
the original one, or he outputs a decoded message, which is unrelated to the original
one. In the setting of local decodability, we consider encodings of blocks of messages
M = (m1,m2, . . . ,mn), and we are able to retrieve mi by running decenc(M)(i), where
the decoding algorithm gets oracle access to the codeword.
The combination faces a subtlety that we cannot directly use the previous definition:

suppose a tampering function f onlymodifies one block of the codeword, then it is likely
that dec remains unchanged for most places. (Recall a decwill only read a few blocks of
the codeword, so itmay not detect themodification.) In this case, the (overall) decoding of
f (C) (i.e., (dec f (C)(1), . . . ,dec f (C)(n))) can be highly related to the original message,
which intuitively means it is highly malleable.
To handle this issue, we consider a more fine-grained experiment. Informally, we

require that for any tampering function f (within some class), there exists a simulator
that computes a vector of decodedmessages m⃗∗, a set of indices I ⊆ [n]. Here I denotes
the coordinates of the underlying messages that have been tampered with. If I = [n],
then the simulator thinks that the decoded messages are m⃗∗, which should be unrelated
to the original messages. On the other hand, if I ! [n], the simulator thinks that all
the messages not in I remain unchanged, while those in I become ⊥. This intuitively
means the tampering function can do only one of the following cases:

1. It destroys a block (or blocks) of the underlying messages while keeping the other
blocks unchanged, or

2. If it modifies a block of the underlying messages to some unrelated string, then it
must havemodified all blocks of the underlyingmessages to encodings of unrelated
messages.

Our construction of locally decodable non-malleable code is simple—we use the idea
similar to the key encapsulationmechanism/data encapsulationmechanism (KEM/DEM)
framework. LetNMC be a regular non-malleable code, andE be a secure (symmetric key)
authenticated encryption. Then to encode blocks of messages M = (m1, . . . ,mn), we
first sample a secret key sk of E , and output (NMC.enc(sk), E .Encryptsk(m1, 1), . . . ,
E .Encryptsk(mn, n)). The intuition is clear: if the tampering function does not change
the first block, then by security of the authenticated encryption, any modification of the
rest will become ⊥. (Note that here we include a tag of positions to prevent permutation
attacks.) On the other hand, if the tampering function modified the first block, it must
be decoded to an unrelated secret key sk′. Then by semantic security of the encryption
scheme, the decoded values of the rest must be unrelated. The code can be updated
locally: in order to update mi to some m′

i , one just need to retrieve the 1st and (i + 1)st

blocks. Then he just computes a fresh encoding of NMC.enc(sk) and the ciphertext
E .Encryptsk(m′

i), and writes back to the same positions.

Extensions to Leakage Resilience against Continual Attacks We further consider
a notion that captures leakage attacks in the continual model. First we observe that
suppose the underlying non-malleable code is also leakage resilient [50], the above
construction also achieves one-time leakage resilience. Using the same argument of Liu
and Lysyanskaya [50], if we can refresh the whole encoding, we can show that the

Locally Decodable and Updatable Non-malleable Codes

construction is secure against continual attacks. However, in our setting, refreshing the
whole codeword is not counted as a solution since this is in the opposite of the spirit of
our main theme—locality. The main challenge is how to refresh (update) the codeword
locally while maintaining tamper and leakage resilience.
To capture the local refreshing and continual attacks, we consider a new model where

there is an updater U who reads the whole underlying messages and decides how to
update the codeword (using the local update algorithm). The updater is going to interact
with the codeword in a continual manner, while the adversary can launch tampering and
leakage attacks between two updates. To define security we require that the adversary
cannot learn anything of the underlying messages via tampering and leakage attacks
from the interaction.
We note that if there is no update procedure at all, then no coding scheme can be

secure against continual leakage attacks if the adversary can learn the whole codeword
bit by bit. In our model, the updater and the adversary take turns interacting with the
codeword—the adversary tampers with and/or gets leakage of the codeword, and then
the updater locally updates the codeword, and the process repeats. See Sect. 2 for the
formal model.
Then we consider how to achieve this notion. First we observe that the construction

above is not secure under continual attacks: suppose by leakage the adversary can get a
full ciphertext E .Encryptsk(mi , i) at some point, and then the updater updates the under-
lyingmessage tom′

i . In the next round, the adversary can apply a rewind attack that mod-
ifies the codeword back with the old ciphertext. Under such attack, the underlying mes-
sages have been modified to some related messages. Thus the construction is not secure.
One way to handle this type of rewind attacks is to tie all the blocks of ciphertexts

together with a “time stamp” that prevents the adversary from replacing the codeword
with old ciphertexts obtained from leakage. A straightforward way is to hash all the
blocks of encryptions using a collision-resistant hash function and also encode this
value into the non-malleable code, i.e., C = (NMC.enc(sk, v), E .Encrypt(1,m1),

. . . , E .Encrypt(n,mn)), where v = h(E .Encrypt(1,m1), . . . , E .Encrypt(n,mn)). In-
tuitively, suppose the adversary replaces a block E .Encrypt(i,mi) by some old cipher-
texts, then it would be caught by the hash value v unless he tampered with the non-
malleable code as well. But if he tampers with the non-malleable code, the decoding
will be unrelated to sk, and thus the rest of ciphertexts become “un-decryptable.” This
approach prevents the rewind attacks, yet it does not preserve the local properties, i.e., to
decode a block, one needs to check the consistency of the hash value v, which needs to
read all the blocks of encryptions. To prevent the rewind attacks while maintaining local
decodability/updatability, we use the Merkle tree technique, which allows local checks
of consistency.
The final encoding outputs (NMC.enc(sk, v), E .Encrypt(1,m1), . . . , E .Encrypt

(n,mn), T), where T is the Merkle tree of (E .Encrypt(1,m1), . . . , E .Encrypt
(n,mn)), and v is its root. (It can also be viewed as a hash value.) To decode a po-
sition i , the algorithm reads the 1st, and the (i + 1)st blocks together with a path in the
tree. If the path is inconsistent with the root, then output⊥. To update, one only needs to
re-encode the first block with a new root, and update the (i + 1)st block and the tree. We
note that Merkle tree allows local updates: if there is only one single change at a leaf,
then one can compute the new root given only a path passing through the leaf and the

D. Dachman-Soled et al.

root. So the update of the codeword can be done locally by reading the 1st, the (i + 1)st

blocks and the path. We provide a detailed description and analysis in Sect. 3.3.

Concrete Instantiations In our construction above, we rely on an underlying non-
malleable code NMC against some class of tampering functions F and leakage resilient
against some class of leakage functions G. The resulting encoding scheme is a locally
decodable and updatable coding scheme which is continual non-malleable against some
class F of tampering functions and leakage resilient against some class G of leakage
functions, where the class F is determined by F and the class G is determined by G.
In order to understand the relationship between these classes, it is helpful to recall the
structure of the output of the final encoding scheme. The final encoding scheme will
output 2n + 1 blocks x1, . . . , x2n+1 such that the first block x1 is encoded using the
underlying non-malleable code NMC. As a first attempt, we can define F to consist of
tampering functions f (x1, . . . , x2n+1) = (f1(x1), f2(x2, . . . , x2n+1)), where f1 ∈ F
and f2 is any polynomial-sized circuit. However, it turns out that we are resilient against
an even larger class of tampering functions! This is because the tampering function f1
can actually depend on all the values x2, . . . , x2n+1 of blocks 2, . . . , (2n+1). Similarly,
for the class of leakage functions, as a first attempt, we can define G to consist of
leakage functions g(x1, . . . , x2n+1) = (g1(x1), g2(x2, . . . , x2n+1)), where g1 ∈ G and
g2 is any polynomial-sized circuit. However, again we can achieve even more because
the tampering function g1 can actually depend on all the values x2, . . . , x2n+1. For a
formal definition of the classes of tampering and leakage functions that we handle, see
Theorem 3.10.
Finally, we give a concrete example of what the resulting classes look like using the

NMC construction of Liu and Lysyanskaya [50] as the building block. Recall that their
construction achieves both tamper and leakage resilience for split-state functions. Thus,
the overall tampering function f restricted in the first block (i.e., f1) can be any (poly-
sized) split-state function. On the other hand f restricted in the rest (i.e., f2) can be any
poly-sized function. The overall leakage function g restricted in the first block (i.e., g1)
can be a (poly-sized) length-bounded split-state function; g, on the other hand, can leak
all the other parts. See Sect. 3.4 for more details.

Application toTamperandLeakage-ResilientRAMModel ofComputationWhereas
regular non-malleable codes yield secure implementations against memory tampering in
the circuit model, our new tool yields secure implementations againstmemory tampering
(and leakage) in the RAM model.
In our RAM model, the data and program to be executed are stored in the random

access memory. Through a CPU with a small number of (non-persistent) registers,1

execution proceeds in clock cycles: in each clock-cycle memory addresses are read
and stored in registers, a computation is performed, and the contents of the registers are
written back tomemory. In our attackmodel,we assume that theCPUcircuitry (including
the non-persistent registers) is secure—the computation itself is not subject to physical

1These non-persistent registers are viewed as part of the circuitry that stores some transient states, while
the CPU is computing at each cycle. The number of these registers is small, and the CPU needs to erase the
data in order to reuse them, so they cannot be used to store a secret key that is needed for a long term of
computation.

Locally Decodable and Updatable Non-malleable Codes

attacks. On the other hand, the random access memory and the memory addresses are
prone to leakage and tampering attacks. We remark that if the CPU has secure persistent
registers that store a secret key, then the problem becomes straightforward: security can
be achieved using encryption and authentication together with oblivious RAM [36]. We
emphasize that in our model, persistent states of the CPU are stored in the memory,
which are prone to leakage and tampering attacks. As our model allows the adversary
to learn the access patterns the CPU made to the memory, together with the leakage
and tampering power on the memory, the adversary can somewhat learn the messages
transmitted over the bus or tamper with them (depending on the attack classes allowed
on the memory). For simplicity of presentation, we do not define attacks on the bus, but
just remark that these attacks can be implicitly captured by learning the access patterns
and attacking the memory.2

In our formal modeling, we consider a next instruction function !, a database D
(stored in the random access memory), and an internal state (using the non-persistent
registers). The CPU will interact (i.e., read/write) with the memory based on !, while
the adversary can launch tamper and leakage attacks during the interaction.
Our compiler is very simple, given theORAMtechnique and our newcodes as building

blocks. Informally speaking, given any next instruction function ! and database D, we
first use ORAM technique to transform them into a next instruction function !̃ and a
database D̃. Next, we use our local non-malleable code (enc,dec,update) to encode D̃
into D̂; the compiled next instruction function !̂ does the following: run !̃ to compute
the next “virtual” read/write instruction, and then run the local decoding or update
algorithms to perform the physical memory access.
Intuitively, the inner ORAM protects leakage of the address patterns, and the outer

local non-malleable codes prevent an attacker frommodifying the contents of memory to
some different but related value. Since at each cycle the CPU can only read and write at
a small number of locations of the memory, using regular non-malleable codes does not
work. Our new notion of locally decodable and updatable non-malleable codes exactly
solves these issues!

1.2. Related Work

Different flavors of non-malleable codes were studied [2,3,7,8,15–17,27,29,30,32,50].
We can use these constructions to secure implementations against memory attacks in
the circuit model and also as our building block for the locally decodable/updatable
non-malleable codes. See also Sect. 3.4 for further exposition.

Securing circuits or CPUs against physical attacks is an important task, but out of
the scope of this paper. Some partial results can be found in previous work [20,21,23–
26,28,33,34,37,38,41–43,46,49,51,52,54–56].

In an independent and concurrentwork, Faust et al. [31] also considered securingRAM
computation against tampering and leakage attacks. We note that both their model and
techniques differ considerably from ours. In the following, we highlight some of these
differences. The main focus of [31] is constructing RAM compilers for keyed functions,

2There are some technical subtleties to simulate all leakage/tampering attacks on the values passing the
bus using memory attacks (and addresses). We defer the rigorous treatment to future work.

D. Dachman-Soled et al.

denotedGK, to allow secure RAMemulation of these functions in the presence of leakage
and tampering. In contrast, our work focuses on constructing compilers that transform
any dynamic RAMmachine into a RAMmachine secure against leakage and tampering.
Due to this different perspective, our compiler explicitly utilizes an underlying ORAM
compiler, while they assume that the memory access pattern of input function G is
independent of the secret state K (e.g., think of G as the circuit representation of the
function). In addition to the split-state tampering and leakage attacks considered by both
papers, [31] do not assume that memory can be overwritten or erased, but require the
storage of a tamper-proof program counter.With regard to techniques, they use a stronger
version of non-malleable codes in the split-state setting (called continual non-malleable
codes [30]) for their construction. Finally, in their construction, each memory location is
encoded using an expensive non-malleable encoding scheme, while in our construction,
non-malleable codes are used only for a small portion of the memory, while highly
efficient symmetric key authenticated encryption is used for the remainder.

1.3. Subsequent Work

Subsequent to the publication of our work, a significant progress has been made on con-
structions of improved (split-state) non-malleable codes (cf. [1,4,5]) and these construc-
tions can then be plugged into our construction which generically constructs locally de-
codable and updatable non-malleable codes from an underlying (regular) non-malleable
codes.
Finally, Chandran et al. [14] presented constructions of information-theoretic locally

decodable and updatable non-malleable codes, which do not require computational as-
sumptions. Their constructions, however, do not extend to the continual leakage setting
and so should be compared with our one-time construction (see Sect. 3.2). In this set-
ting, their constructions require non-constant locality, whereas our constructions achieve
constant locality.

2. Locally Decodable and Updatable Non-malleable Codes

In this section, we first review the concepts of non-malleable (leakage resilient) codes.
Then we present our new notion that combines non-malleability, leakage resilience, and
locality.

2.1. Preliminary

Definition 2.1. (Coding Scheme) Let ", "̂ be sets of strings, and κ, κ̂ ∈ N be some
parameters. A coding scheme consists of two algorithms (enc,dec) with the following
syntax:

– The encoding algorithm (perhaps randomized) takes input a block of message in
" and outputs a codeword in "̂.

– The decoding algorithm takes input a codeword in "̂ and outputs a block ofmessage
in ".

Locally Decodable and Updatable Non-malleable Codes

We require that for any message m ∈ ", Pr[dec(enc(m)) = m] = 1, where the
probability is taken over the choice of the encoding algorithm. In binary settings, we
often set " = {0, 1}κ and "̂ = {0, 1}κ̂ .

Definition 2.2. (Non-malleability [29]) Let k be the security parameter, and F be
some family of functions. For each function f ∈ F , and m ∈ ", define the tampering
experiment:

Tamper f
m

def=
{
c ← enc(m), c̃ := f (c), m̃ := dec(c̃).

Output : m̃.

}
,

where the randomness of the experiment comes from the encoding algorithm. We say a
coding scheme (enc,dec) is non-malleable with respect to F if for each f ∈ F , there
exists a ppt simulator S such that for any message m ∈ ", we have

Tamper f
m ≈ IdealS,m

def=
{

m̃ ∪ {same∗} ← S f (·).
Output : m if that is same∗; otherwise m̃.

}

Here the indistinguishability can be either computational or statistical.

We can extend the notion of non-malleability to leakage resilience (simultaneously)
as the work of Liu and Lysyanskaya [50].

Definition 2.3. (Non-malleability and Leakage Resilience [50]) Let k be the security
parameter, F , G be some families of functions. For each function f ∈ F , g ∈ G, and
m ∈ ", define the tamper-leak experiment:

TamperLeak f,g
m

def=
{
c ← enc(m), c̃ := f (c), m̃ := dec(c̃).

Output : (m̃, g(c)).

}
,

where the randomness of the experiment comes from the encoding algorithm. We say
a coding scheme (enc,dec) is non-malleable and leakage resilience with respect to F
and G if for any f ∈ F , g ∈ G, there exists a ppt simulator S such that for any message
m ∈ ", we have

TamperLeak f,g
m ≈ IdealS,m

def=
{

(m̃ ∪ {same∗}, ℓ) ← S f (·),g(·).
Output : (m, ℓ) if that is same∗; otherwise (m̃, ℓ).

}

Here the indistinguishability can be either computational or statistical.

2.2. New Definitions: Codes with Local Properties

In this section, we consider coding schemes with extra local properties—decodability
and updatability. Intuitively, this gives a way to encode blocks of messages, such that

D. Dachman-Soled et al.

in order to decode (retrieve) a single block of the messages, one only needs to read a
small number of blocks of the codeword; similarly, in order to update a single block of
the messages, one only needs to update a few blocks of the codeword.

Definition 2.4. (Locally Decodable and Updatable Code) Let ", "̂ be sets of strings,
and n, n̂, p, q be some parameters. An (n, n̂, p, q) locally decodable and updatable cod-
ing scheme consists of three algorithms (enc,dec,update) with the following syntax:

– The encoding algorithm enc (perhaps randomized) takes input an n-block (in ")
message and outputs an n̂-block (in "̂) codeword.

– The (local) decoding algorithm dec takes input an index in [n], reads at most p
blocks of the codeword, and outputs a block of message in". The overall decoding
algorithm simply outputs (dec(1),dec(2), . . . ,dec(n)).

– The (local) updating algorithm update (perhaps randomized) takes inputs an index
in [n] and a string in " ∪ {ϵ} and reads/writes at most q blocks of the codeword.
Here the string ϵ denotes the procedure of refreshing without changing anything.

Let C ∈ "̂n̂ be a codeword. For convenience, we denote decC ,updateC as the
processes of reading/writing individual block of the codeword, i.e., the codeword oracle
returns or modifies individual block upon a query. Here we view C as a random access
memory where the algorithms can read/write to the memory C at individual different
locations.

Remark 2.5. Throughout this paper, we only consider non-adaptive decoding and up-
dating, which means the algorithms dec and update compute all their queries at the
same time before seeing the answers, and the computation only depends on the input
i (the location). In contrast, an adaptive algorithm can compute a query based on the
answer from previous queries. After learning the answer to such query, then it can make
another query. We leave it as an interesting open question to construct more efficient
schemes using adaptive queries.

Then we define the requirements of the coding scheme.

Definition 2.6. (Correctness) An (n, n̂, p, q) locally decodable and updatable coding
scheme (with respect to ", "̂) satisfies the following properties. For any message M =
(m1,m2, . . . ,mn) ∈ "n , let C = (c1, c2, . . . , cn̂) ← enc(M) be a codeword output by
the encoding algorithm. Then we have:

– for any index i ∈ [n], Pr[decC (i) = mi] = 1, where the probability is over the
randomness of the encoding algorithm.

– for any update procedure with input (j,m′) ∈ [n]×" ∪ {ϵ}, let C ′ be the resulting
codeword by running updateC (j,m′). Then we have Pr[decC ′

(j) = m′] = 1,
where the probability is over the encoding and update procedures. Moreover, the
decodings of the other positions remain unchanged.

Remark 2.7. The correctness definition can be directly extended to handle any sequence
of updates.

Locally Decodable and Updatable Non-malleable Codes

Next, we define several flavors of security about non-malleability and leakage re-
silience.
One-time Non-malleability First we consider one-time non-malleability of locally de-
codable codes, i.e., the adversary only tampers with the codeword once. This extends
the idea of the non-malleable codes (as in Definition 2.2). As discussed in introduction,
we present the following definition to capture the idea that the tampering function can
only do either of the following cases:

– It destroys a block (or blocks) of the underlying messages while keeping the other
blocks unchanged, or

– If it modifies a block of the underlying messages to some unrelated string, then it
must have modified all blocks of the underlying messages to encodings of unrelated
messages.

Definition 2.8. (Non-malleability of LocallyDecodableCodes)An (n, n̂, p, q)-locally
decodable coding scheme with respect to ", "̂ is non-malleable against the tampering
function class F if for all f ∈ F , there exists some simulator S such that for any M =
(m1, . . . ,mn) ∈ "n , the experiment Tamper f

M is (computationally) indistinguishable
to the following ideal experiment IdealS,M :

– (I, m⃗∗) ← S(1k), where I ⊆ [n], m⃗′ ∈ "n . (Intuitively I means the coordinates
of the underlying message that have been tampered with.)

– If I = [n], define m⃗ = m⃗∗; otherwise set m⃗|I = ⊥, m⃗|Ī = M |Ī , where x⃗ |I
denotes the coordinates x⃗[v] where v ∈ I, and the bar denotes the complement of
a set.

– The experiment outputs m⃗.

Remark 2.9. Here we make two remarks about the definition:

1. In the one-time security definition, we do not consider the update procedure. In
the next paragraph when we define continual attacks, we will handle the update
procedure explicitly.

2. One-time leakage resilience of locally decodable codes can be defined in the same
way as Definition 2.3.

Security Against Continual Attacks In the following, we extend the security to handle
continual attacks. Here we consider a third party called updater, who can read the
underlying messages and decide how to update the codeword. Our model allows the
adversary to learn the location that the updater updated the messages, so we also allow
the simulator to learn this information. This is without loss of generality if the leakage
class G allows it, i.e., the adversary can query some g ∈ G to figure out what location
was modified. On the other hand, the updater does not tell the adversary what content
was encoded of the updated messages, so the simulator needs to simulate the view
without such information. We can think of the updater as an honest user interacting with
the codeword (read/write). The security intuitively means that even if the adversary can
launch tampering and leakage attacks when the updater is interacting with the codeword,
the adversary cannot learn anything about the underlying encoded messages (or the
updated messages during the interaction).

D. Dachman-Soled et al.

Our continual experiment consists of rounds: in each round the adversary can tamper
with the codeword and get partial information. At the end of each round, the updater
will run update, and the codeword will be somewhat updated and refreshed. We note
that if there is no refreshing procedure, then no coding scheme can be secure against
continual leakage attack even for one-bit leakage at a time,3 so this property is necessary.
Our concept of “continuity” is different from that of Faust et al. [30], who considered
continual attacks on the same original codeword. (The tampering functions can be chosen
adaptively.) Our model does not allow this type of “resetting attacks.” Once a codeword
has been modified to f (C), the next tampering function will be applied on f (C).
We remark that the one-time security can be easily extended to the continual case

(using a standard hybrid argument) if the update procedure re-encodes the whole un-
derlying messages (c.f. see the results in the work [50]). However, in the setting above,
we emphasize on the local property, so this approach does not work. How to do a lo-
cal update while maintaining tamper and leakage resilience makes the continual case
challenging!

Definition 2.10. (Continual Tampering and Leakage Experiment) Let k be the se-
curity parameter, F ,G be some families of functions. Let (enc,dec,update) be an
(n, n̂, p, q)-locally decodable and updatable coding scheme with respect to ", "̂. Let
U be an updater that takes input a message M ∈ "n and outputs an index i ∈ [n]
and m ∈ ". Then for any blocks of messages M = (m1,m2, . . . ,mn) ∈ "n , and any
(non-uniform) adversary A, any updater U , define the following continual experiment
CTamperLeakA,U ,M :

– The challenger first computes an initial encoding C (1) ← enc(M).
– Then the following procedure repeats, at each round j , let C (j) be the current
codeword and M (j) be the underlying message:

• A sends either a tampering function f ∈ F and/or a leakage function g ∈ G to
the challenger.

• The challenger replaces the codeword with f (C (j)) or sends back a leakage
ℓ(j) = g(C (j)).

• We define m⃗(j) def=
(
dec f (C(j))(1), . . . ,dec f (C(j))(n)

)
.

• Then the updater computes (i (j),m) ← U(m⃗(j)) for the challenger.
• Then the challenger runs update f (C(j))(i (j),m) and sends the index i (j) toA.
• A may terminate the procedure at any point.

– Let t be the total number of rounds above. At the end, the experiment outputs

(
ℓ(1), ℓ(2), . . . , ℓ(t), m⃗(1), . . . , m⃗(t), i (1), . . . , i (t)

)
.

Definition 2.11. (Non-malleability and LeakageResilience against Continual Attacks)
An (n, n̂, p, q)-locally decodable and updatable coding scheme with respect to ", "̂ is
continual non-malleable against F and leakage resilient against G if for all ppt (non-

3If there is no refreshing procedure, then the adversary can eventually learn the whole codeword bit by bit
by leakage. Thus he can learn the underlying message.

Locally Decodable and Updatable Non-malleable Codes

uniform) adversaries A, and ppt updaters U , there exists some ppt (non-uniform) sim-
ulator S such that for any M = (m1, . . . ,mn) ∈ "n , CTamperLeakA,U ,M is (compu-
tationally) indistinguishable to the following ideal experiment IdealS,U ,M :

– The experiment proceeds in rounds. Let M (1) = M be the initial message.
– At each round j , the experiment runs the following procedure:

• At the beginning of each round, S outputs (ℓ(j), I(j), w⃗(j)), where I(j) ⊆ [n].
• Define

m⃗(j) =
{
w⃗(j) if I(j) = [n]
m⃗(j)|I(j) := ⊥, m⃗(j)|Ī(j) := M (j)|Ī(j) otherwise,

where x⃗ |I denotes the coordinates x⃗[v] where v ∈ I, and the bar denotes the
complement of a set.

• The updater runs (i (j),m) ← U(m⃗(j)) and sends the index i (j) to the simulator.
Then the experiment updates M (j+1) as follows: set M (j+1) := M (j) for all
coordinates except i (j), and set M (j+1)[i (j)] := m.

– Let t be the total number of rounds above. At the end, the experiment outputs

(
ℓ(1), ℓ(2), . . . , ℓ(t), m⃗(1), . . . , m⃗(t), i (1), . . . , i (t)

)
.

2.3. Strong Non-malleability

Herewefirst recall the strongnon-malleability notionoriginally definedbyDziembowski
et al. [29]. Then we define strong non-malleability against one-time and continual at-
tacks, respectively. We remark that our constructions in Sect. 3 can achieve the stronger
notion of non-malleability if the underlying non-malleable code is the stronger one (see
Remark 3.15).

Definition 2.12. (Strong Non-malleability [29]) Let k be the security parameter, F be
some family of functions. For each function f ∈ F , and m ∈ ", define the tampering
experiment

StrongNM f
m

def=
{

c ← enc(m), c̃ := f (c), m̃ := dec(c̃)
Output : same∗ if c̃ = c, and m̃ otherwise.

}

The randomness of this experiment comes from the randomness of the encoding
algorithm.We say that a coding scheme (enc,dec) is strong non-malleable with respect
to the function family F if for any m,m′ ∈ " and for each f ∈ F , we have:

{StrongNM f
m}k∈N ≈ {StrongNM f

m′}k∈N

where ≈ can refer to statistical or computational indistinguishability.

One-time security Strong Non-malleability against one-time physical attacks is defined
as follows.

D. Dachman-Soled et al.

Definition 2.13. (Strong Non-malleability of Locally Decodable Codes) Let k be the
security parameter, F be some family of functions. For each function f ∈ F , and
M = (m1,m2, . . . ,mn) ∈ "n , define the tampering experiment

StrongNM f
M

def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C ← enc(M), C̃ = f (C), m̃i = decC̃ (i) for i ∈ [n].
If ∃ i such that m̃i ̸= ⊥ & C̃ and C are not identical for all queries by dec(i),

then output: (m̃1, m̃2, . . . , m̃n).

Else, set m′
i = same∗ if C and C̃ are identical for all queries of dec(i);

otherwise m′
i = ⊥. Then output: (m′

1,m
′
2, . . . ,m

′
n).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

The randomness of this experiment comes from the randomness of the encoding and
decoding algorithms.
We say that a locally decodable coding scheme (enc,dec,update) is strong non-

malleable against the function class F if for any M,M ′ ∈ "n and for any f ∈ F , we
have:

{StrongNM f
M }k∈N ≈ {StrongNM f

M ′}k∈N

where ≈ can refer to statistical or computational indistinguishability.

Continual securityStrongNon-malleability against continual physical attacks is defined
as follows.

Definition 2.14. (Strong Continual Tampering and Leakage Experiment) Let k be the
security parameter, F ,G be some families of functions. Let (enc,dec,update) be an
(n, n̂, p, q)-locally decodable and updatable coding scheme with respect to ", "̂. Let
U be an updater that takes input a message M and outputs an index i ∈ [n] and m ∈ ".
Then for any blocks of messages M = (m1,m2, . . . ,mn) ∈ "n , and any (non-uniform)
adversary A, any updater U , define the following experiment StrongTLA,U ,M :

• The challenger first computes an initial encoding C (1) ← enc(M).
• Then the following procedure repeats, at each round j , let C (j) be the current
codeword and M (j) be the underlying message:

– A sends either a tampering function f ∈ F and/or a leakage function g ∈ G
to the challenger.

– The challenger replaces the codeword with f (C (j)) or sends back a leakage
ℓ(j) = g(C (j)).

– Then we define m⃗(j) for the following two conditions:

• If there exists i such that dec f (C(j))(i) ̸= ⊥ and C (j) and f (C (j)) are
not identical for all queries from dec(i), then set m⃗(j) = (dec f (C(j))(1),
. . . ,dec f (C(j))(n)).

• Else, for i ∈ [n], let m′
i = same∗ if f (C (j)) and C (j) are identical for all

queries of dec(i), otherwise m′
i = ⊥. Then set m⃗(j) = (m′

1,m
′
2, . . . ,m

′
n).

Locally Decodable and Updatable Non-malleable Codes

– Then the updater sends (i (j),m) ← U(M (j)) to the challenger, and the chal-
lenger runs update f (C(j))(i (j),m) and sends the index i (j) to A.

– A may terminate the procedure at any point.

• Let t be the total number of rounds above. At the end, the experiment outputs

(
ℓ(1), ℓ(2), . . . , ℓ(t), m⃗(1), . . . , m⃗(t), i (1), . . . , i (t)

)
.

Definition 2.15. (Strong Non-malleability and Leakage Resilience against Continual
Attacks) An (n, n̂, p, q)-locally decodable and updatable coding scheme with respect to
", "̂ is strong continual non-malleable against F and leakage resilient against G if for
all ppt (non-uniform) adversaries A, any ppt updater U , any messages M,M ′ ∈ "n ,
the experiments StrongTLA,U ,M and StrongTLA,U ,M ′ are (computationally) indistin-
guishable.

3. Our Constructions

In this section, we present two constructions. As a warm-up, we first present a construc-
tion that is one-time secure to demonstrate the idea of achieving non-malleability, local
decodability, and updatability simultaneously. Then in the next section, we show how
to make the construction secure against continual attacks.

3.1. Preliminary: Symmetric Encryption

Asymmetric encryption schemeconsists of three ppt algorithms (Gen,Encrypt,Decrypt)
such that:

– The key generation algorithm Gen takes as input a security parameter 1k returns a
key sk.

– The encryption algorithm Encrypt takes as input a key sk, and a message m. It
returns a ciphertext c ← Encryptsk(m).

– The decryption algorithm Decrypt takes as input a secret key sk, and a ciphertext
c. It returns a message m or a distinguished symbol ⊥. We write this as m =
Decryptsk(c)

We require that for any m in the message space, it should hold that

Pr[sk ← Gen(1k); Decryptsk(Encryptsk(m)) = m] = 1.

We next define semantical security and then the authenticity. In the following, we
define a left-or-right encryption oracle LRsk,b(·, ·) with b ∈ {0, 1} and |m0| = |m1| as
follows:

LRsk,b(m0,m1)
def= Encryptsk(mb).

D. Dachman-Soled et al.

Definition 3.1. (Semantical Security) A symmetric encryption scheme E = (Gen,
Encrypt,Decrypt) is semantically secure if for any non-uniform ppt adversary A, it
holds that |2 · AdvprivE (A) − 1| = negl(k) where

AdvprivE (A) = Pr
[
sk ← Gen(1k); b ← {0, 1} : ALRsk,b(·,·)(1k) = b

]
.

Definition 3.2. (Authenticity [9,10,45]) A symmetric encryption scheme
E = (Gen,Encrypt,Decrypt) has the property of authenticity if for any non-uniform
ppt adversary A, it holds that AdvauthE (A) = negl(k) where

AdvauthE (A) = Pr[sk ← Gen(1k), c∗ ← AEncryptsk(·) : c∗ ̸∈ Q ∧ Decryptsk(c
∗) ̸∈⊥]

where Q is the query history A made to the encryption oracle.

3.2. A First Attempt: One-Time Security

Construction Let E = (Gen,Encrypt,Decrypt) be a symmetric encryption scheme,
NMC = (enc,dec)be a coding scheme.Thenwe consider the following coding scheme:

– enc(M): on input M = (m1,m2, . . . ,mn), the algorithm first generates the en-
cryption key sk ← E .Gen(1k). Then it computes c ← NMC.enc(sk), ei ←
E .Encryptsk(mi , i) for i ∈ [n]. The algorithm finally outputs a codeword C =
(c, e1, e2, . . . , en).

– decC (i): on input i ∈ [n], the algorithm reads the first block and the (i + 1)-st
block of the codeword to retrieve (c, ei). Then it runs sk := NMC.dec(c). If the
decoding algorithm outputs ⊥, then it outputs ⊥ and terminates. Else, it computes
(mi , i∗) = E .Decryptsk(ei). If i∗ ̸= i , or the decryption fails, the algorithmoutputs
⊥. If all the above verifications pass, the algorithm outputs mi .

– update(i,m′): on inputs an index i ∈ [n], a block ofmessagem′ ∈ ", the algorithm
runs decC (i) to retrieve (c, ei) and (sk,mi , i). If the decoding algorithm returns
⊥, the algorithm writes ⊥ to the first block and the (i + 1)-st block. Otherwise,
it computes a fresh encoding c′ ← NMC.enc(sk), and a fresh ciphertext e′

i ←
E .Encryptsk(m′, i). Then it writes back the first block and the (i+1)-st block with
(c′, e′

i).

To analyze the coding scheme, we make the following assumptions of the parameters in
the underlying scheme for convenience:

1. The size of the encryption key is k (security parameter), i.e., |sk| = k.
2. Let" be a set, and the encryption scheme supports messages of length |"|+ log n.

The ciphertexts are in the space "̂.
3. The length of |NMC.enc(sk)| is less than |"̂|.
Then clearly, the above coding scheme is an (n, n + 1, 2, 2)-locally updatable and

decodable code with respect to ", "̂. The correctness of the scheme is obvious by
inspection. The rate (ratio of the length of messages to that of codewords) of the coding
scheme is 1 − o(1).

Locally Decodable and Updatable Non-malleable Codes

Theorem 3.3. Assume E is a symmetric authenticated encryption scheme, andNMC is
a non-malleable code against the tampering function class F . Then the coding scheme
presented above is one-time non-malleable against the tampering class

F̄ def=

⎧
⎪⎪⎨

⎪⎪⎩

f : "̂n+1 → "̂n+1 and | f | ≤ poly(k), such that :
f = (f1, f2), f1 : "̂n+1 → "̂, f2 : "̂n → "̂n,

∀(x2, . . . , xn+1) ∈ "̂n, f1(·, x2, . . . , xn+1) ∈ F
f (x1, x2, . . . , xn+1) = (f1(x1, x2, . . . , xn+1), f2(x2, . . . , xn+1)) .

⎫
⎪⎪⎬

⎪⎪⎭
.

We have presented the intuition in introduction. Before giving the detailed proof, we
make the following remark.

Remark 3.4. The function class F̄ may look complex, yet the intuition is simple. The
tampering function restricted in the first block (the underlying non-malleable code) falls
into the class F—this is captured by f1 ∈ F ; on the other hand, we just require the
function restricted in the rest of the blocks to be polynomial-sized—this is captured by
| f2| ≤ | f | ≤ poly(k).
For our construction, it is inherent that the function f2 cannot depend on x1 arbitrarily.

Suppose this is not the case, then f2 can first decode the non-malleable code, encrypt the
decoded value, andwrite the ciphertext into x2, which breaks non-malleability. However,
if the underlying coding scheme is non-malleable and also leakage resilient to G, then
we can allow f2 to get additional information g(x1) for any g ∈ G. Moreover, the above
construction is one-time leakage resilient.
We present the above simpler version for clarity of exposition and give this remark that

our construction actually achieves security against a broader class of tampering attacks.

Proof of Theorem 3.3. To show the theorem, for any function f ∈ F̄ , we need to
construct a ppt simulator S such that for any message blocks M = (m1, . . . ,mn), we

have Tamper f
M

c≈ IdealS,M as Definition 2.8. We describe the simulator as follows;
here the ppt simulator S has oracle access to f = (f1, f2) ∈ F̄ .

– S f (·) first runs sk ← E .Gen(1k) and computes n encryptions of 0, i.e., ei ←
E .Encryptsk(0) for i ∈ [n].

– Let f ′
1(·)

def= f1(·, e1, e2, . . . , en), and let S ′ be the underlying simulator of the
non-malleable code NMC with respect to the tampering function f ′

1. Then S f (·)

simulates S ′ f ′
1(·) internally; here S uses the external oracle access to f to compute

the responses for the queries made by S ′. At some point, S ′ returns an output
m′ ∈ " ∪ {same∗}.

– If m′ = same∗ ∪ {sk}, then S computes (e′
1, e

′
2, . . . , e

′
n) ← f2(e1, e2, . . . , en).

Let I be set of the indices where e′ is not equal to e, i.e., I = {i : e′
i ̸= ei }. Then

S outputs (I, ϵ⃗), where ϵ⃗ denotes the empty vector.
– Else (i.e., m′ ̸= same∗ ∩ m′ ̸= sk), S sets sk′ := m′, and computes
(e′

1, e
′
2, . . . , e

′
n) ← f2(e1, e2, . . . , en), and sets m⃗∗ := (E .Decryptsk′(e′

1),

. . . , E .Decryptsk′(e′
n)). Then S outputs ([n], m⃗∗).

To show Tamper f
M ≈ IdealS,M , we consider the following hybrids.

D. Dachman-Soled et al.

Hybrid H0: This is exactly the experiment IdealS,M .
Hybrid H1: In this hybrid, we use a modified simulator, who is basically the same as
S, except in the first place the modified simulator generates ei ← E .Encryptsk(mi , i)
for i ∈ [n].
Hybrid H2: In this hybrid, we use another modified simulator, who is basically the
same as the previous simulator, except this modified simulator obtains m′ by running
the real tampering experiment f1(NMC.enc(sk), e1, e2, . . . , en) and outputs same∗ if
the outcome is the original sk.

In the following claims, we are going to show that IdealS,M = H0 ≈ H1 ≈ H2 ≈
Tamper f

M . Then the theorem follows directly from these claims.

Claim 3.5. Suppose the encryption scheme E is semantically secure, then H0 ≈ H1.

Proof. Suppose an adversary can distinguish H0 from H1, thenwe can build a reduction
to break semantic security of the encryption scheme as follows: the reduction gets input
ciphertexts e1, . . . , en that are either from E .Encryptsk(mi , i) or E .Encryptsk(0) for i ∈
[n]. Then the reduction simulates the rest of the experiments. (NoteS andS∗ are identical
expect for the ciphertexts.) Clearly, if the input ciphertexts come from E .Encryptsk(0),
then the reduction identically simulates the experiment H0, and otherwise H1. Thus, if
the adversary can distinguish the two experiments, then the reduction can break semantic
security of the encryption. !

Claim 3.6. Suppose NMC is a non-malleable code against F , then H1 ≈ H2.

Proof. Since f ′
1 ∈ F , by the non-malleability of NMC, we have NMC.Tamper

f ′
1

sk ≈
NMC.IdealS ′,sk. We note that the experiments H2 and H1 can be easily derived from

NMC.Tamper
f ′
1

sk andNMC.IdealS ′,sk, respectively, by settingm′ as the output of either

of the experiments (i.e., set m′ = NMC.Tamper
f ′
1

sk or m′ = NMC.IdealS ′,sk). By the

security of the coding schemeNMC,weknow thatNMC.Tamper
f ′
1

sk andNMC.IdealS ′,sk
are indistinguishable. Therefore, H1 and H2 are indistinguishable as well. !

Claim 3.7. Suppose the encryption scheme E has the property of authenticity, then
H2 ≈ Tamper fM .

Proof. We first notice that suppose f ′
1 modifies sk, then the two experiments execute

identically. The only way that they differ is when sk remains unmodified, but there f2
produces some “valid” e′

i which is not equal ei . In this case H2 would produce ⊥, but
Tamper fM will produce a meaningful message for that slot. We denote this as the event
E . From the argument, we know that the statistical difference of the two experiments is
bounded by Pr[E] as conditioned on ¬E , and these two experiments are identical.

Next we show that Pr[E] = negl(k): suppose not, then we are going to build a re-
duction that breaks the authenticity property of the encryption scheme. The reduction
queries the encryption oracle to obtain ciphertexts e1, . . . , en and runs (e′

1, . . . , e
′
n) ←

f2(e1, . . . , en). Then it randomly outputs an element in the set {e′
j : e′

j ̸= e j }. The

Locally Decodable and Updatable Non-malleable Codes

reduction succeeds as long as the event E happens, and it guesses a right modified ci-
phertext. This is with probability at least Pr[E]/n, which is non-negligible. This reaches
a contradiction.
Thus, we conclude that these two experiments are indistinguishable assuming the

authenticity property of the encryption scheme. !

The proof of the theorem follows directly from these claims. !

3.3. Achieving Security Against Continual Attacks

As discussed in introduction, the above construction is not secure if continual tampering
and leakage is allowed—the adversary can use a rewind attack to modify the underlying
message to some old/related messages. We handle this challenge using a technique
of Merkle tree, which preserves local properties of the above scheme. We present the
construction in the following:

Definition 3.8. (Merkle tree) Let h : X × X → X be a hash function that maps
two blocks of messages to one.4 A Merkle tree Treeh(M) takes input a message M =
(m1,m2, . . . ,mn) ∈ X n . Then it applies the hash on each pair (m2i − 1,m2i), and result-
ing in n/2 blocks. Then again, it partitions the blocks into pairs and applies the hash on
the pairs, which results in n/4 blocks. This is repeated log n times, resulting a binary
tree with hash values, until one block remains. We call this value the root of Merkle tree
denoted Rooth(M), and the internal nodes (including the root) as Treeh(M). Here M
can be viewed as leaves.

Theorem 3.9. Assuming h is a collision-resistant hash function. Then for any message

M = (m1,m2, . . . ,mn) ∈ X n, any polynomial time adversary A, Pr
[
(m′

i , pi) ←
A(M, h) : m′

i ̸= mi , pi is a consistent path with Rooth(M)
]

≤ negl(k).

Moreover, given a path pi passing the leaf mi , and a new value m′
i , there is an algo-

rithm that computesRooth(M ′) in time poly(log n, k), where M ′ = (m1, . . . ,mi − 1,m′
i ,

mi+1, . . . ,mn).

Construction Let E = (Gen,Encrypt,Decrypt) be a symmetric encryption scheme,
NMC = (enc,dec) be a non-malleable code, H is a family of collision resistance hash
functions. Then we consider the following coding scheme:

– enc(M): on input M = (m1,m2, . . . ,mn), the algorithm first generates encryp-
tion key sk ← E .Gen(1k) and h ← H . Then it computes ei ← E .Encryptsk(mi)

for i ∈ [n], and T = Treeh(e1, . . . , en), R = Rooth(e1, . . . , en). Then it com-
putes c ← NMC.enc(sk, R, h). The algorithm finally outputs a codeword C =
(c, e1, e2, . . . , en, T).

– decC (i): on input i ∈ [n], the algorithm reads the first block, the (i + 1)-st block,
and a path p in the tree (from the root to the leaf i), and it retrieves (c, ei , p).
Then it runs (sk, R, h) = NMC.dec(c). If the decoding algorithm outputs ⊥, or

4Here we assume |X | is greater than the security parameter.

D. Dachman-Soled et al.

the path is not consistent with the root R, then it outputs ⊥ and terminates. Else, it
computes mi = E .Decryptsk(ei). If the decryption fails, output ⊥. If all the above
verifications pass, the algorithm outputs mi .

– update(i,m′): on inputs an index i ∈ [n], a block of message m′ ∈ ", the algo-
rithm runsdecC (i) to retrieve (c, ei , p). Then the algorithm can derive (sk, R, h) =
NMC.dec(c). If the decoding algorithm returns ⊥, the update writes ⊥ to the
first block, which denotes failure. Otherwise, it computes a fresh ciphertext e′

i ←
E .Encryptsk(m′), a new path p′ (that replaces ei by e′

i) and a new root R′, which
is consistent with the new leaf value e′

i . (Note that this can be done given only
the old path p as Theorem 3.9.) Finally, it computes a fresh encoding c′ ←
NMC.enc(sk, R′, h). Then it writes back the first block, the (i + 1)-st block, and
the new path blocks with (c′, e′

i , p
′).

To analyze the coding scheme, we make the following assumptions of the parameters in
the underlying scheme for convenience:

1. The size of the encryption key is k (security parameter), i.e., |sk| = k, and the
length of the output of the hash function is k.

2. Let " be a set, and the encryption scheme supports messages of length |"|. The
ciphertexts are in the space "̂.

3. The length of |NMC.enc(sk, v)| is less than |"̂|, where |v| = k.

Clearly, the above coding scheme is an (n, 2n+1, O(log n), O(log n))-locally updat-
able and decodable code with respect to ", "̂. The correctness of the scheme is obvious
by inspection. The rate (ratio of the length of messages to that of codewords) of the
coding scheme is 1/2 − o(1).

Theorem 3.10. Assume E is a semantically secure symmetric encryption scheme, and
NMC is a non-malleable code against the tampering function class F , and leakage
resilient against the function class G. Then the coding scheme presented above is non-
malleable against continual attacks of the tampering class

F̄ def=

⎧
⎪⎪⎨

⎪⎪⎩

f : "̂2n+1 → "̂2n+1 and | f | ≤ poly(k), such that :
f = (f1, f2), f1 : "̂2n+1 → "̂, f2 : "̂2n → "̂2n,

∀(x2, . . . , x2n+1) ∈ "̂n, f1(· , x2, . . . , x2n+1) ∈ F ,

f (x1, x2, . . . , x2n+1) = (f1(x1, x2, . . . , x2n+1), f2(x2, . . . , x2n+1)) .

⎫
⎪⎪⎬

⎪⎪⎭
,

and is leakage resilient against the class

Ḡ def=

⎧
⎨

⎩

g : "̂2n+1 → Y and |g| ≤ poly(k), such that :
g = (g1, g2), g1 : "̂2n+1 → Y ′, g2 : "̂2n → "̂2n,

∀ (x2, . . . , x2n+1) ∈ "̂n, g1(· , x2, . . . , x2n+1) ∈ G.

⎫
⎬

⎭ .

The intuition of this construction can be found in introduction. Before giving the
detailed proof, we make a remark.

Remark 3.11. Actually our construction is secure against a broader class of tampering
functions. The f2 part can depend on g′(x1) as long as the function g′(·) together with

Locally Decodable and Updatable Non-malleable Codes

the leakage function g1(·, x2, . . . , x2n+1) belongs to G. That is, the tampering function
f = (f1, f2, g′) and the leakage function g = (g1, g2) satisfy the constraint g′(·) ◦
g1(·, x2, . . . , x2n+1) ∈ G. (Here we use ◦ to denote concatenation.) For presentation
clarity, we choose to describe the simpler but slightly smaller class of functions.

Proof of Theorem 3.10. To prove the theorem, for any adversary A, we need to con-
struct a simulatorS, such that for initialmessageM ∈ "n , any updaterU , the experiment
of continual attacks TamperLeakA,U ,M is indistinguishable from the ideal experiment
IdealS,U ,M .
The simulatorS first samples randomcoins for the updaterU , so its output just depends

on its input given the random coins. Then S works as follows:

– Initially S samples sk ← E .Gen(1k), h ← H , and then generates n encryptions
of 0, i.e., e⃗(1) := (e1, e2, . . . , en)where ei ← E .Encryptsk(0) for i ∈ [n]. Then S
computes T (1) := Treeh(e1, . . . , en). Here let R(1) be the root of the tree. S keeps
global variables: sk, h, a flag flag = 0, and a string C = ϵ (empty string).

– At each round j , let g(j) ∈ Ḡ, f (j) = (f (j)1 , f (j)2) ∈ F̄ be some leakage/tampering
functions specified by the adversary. If the flag is 0, i.e., flag = 0, then S does the
following:

• First, S sets (e1, e2, . . . , en) := e⃗(j), T := T (j), and R := R(j). Then S defines
f ′
1(·)

def= f (j)1 (·, e1, e2, . . . , en, T), and g′(·) def= g(j)(·, e1, e2, . . . , en, T). Let
S ′ be the simulator of the underlying leakage-resilient non-malleable codeNMC
with respect to the tampering and leakage functions f ′

1(·) and g′(·).
• Then S computes (m′, ℓ′) ← S ′ f ′

1(·),g′(·), and sets ℓ(j) := ℓ′,
and (e′

1, e
′
2, . . . , e

′
n, T

′) := f (j)2 (e1, e2, . . . , en, T).
• If m′ = same∗, S sets I(j) = {u : e′

u ̸= eu}, i.e., the indices where e′ is not
equal to e, and set w⃗(j) := ϵ⃗, the empty vector. S outputs {ℓ(j), I(j), w⃗(j)} for
this round.
Then upon receiving an index i (j) ∈ [n] from the updater, thenS checkswhether
the path passing the leaf e′

i (j)
in the Merkle tree T ′ is consistent with the root

R, and does the following:

– If the check fails, he sets flag := 1, C := (⊥, e′
1, . . . , e

′
n, T

′), and then
exits the loop of this round.

– Otherwise, he sets e⃗(j+1) := (e′
1, e

′
2, . . . , e

′
n) for all indices except i

(j). He
creates a fresh ciphertext e ← E .Encryptsk(0) and sets e⃗(j+1)[i (j)] := e
(simulating the update). He updates the path passing through the i (j)-th
leaf in T ′ and the root R, and set T (j+1) := T ′, R(j+1) := R (the updated
ones).

• Else if m′ ̸= same∗, then S sets I(j) := [n], and sets the flag to be 1, i.e.,
flag := 1. He parsesm′ = (sk′, h′, R′), and uses the key sk′ to compute w⃗(j) =
(E .Decryptsk′(e′

1), . . . , E .Decryptsk′(e′
n)). Then he outputs {ℓ(j), I(j), w⃗(j)}

for this round.
Then S computes (i (j),m) ← U(w⃗(j)) on his own. Let C ′

= (NMC.enc(sk′, h′, R′), e′
1, . . . , e

′
n, T

′)be a codeword, andS runsupdateC
′

D. Dachman-Soled et al.

(i (j),m). Let C∗ be the resulting codeword, and S updates the global variable
C := C∗.

– Else if flag = 1, S simulates the real experiment faithfully:

• S outputs ℓ(j) = g(j)(C), and computes C ′ = f (j)(C).
• Set w⃗(j)[v] := dec(C

′)(v), i.e., running the real decoding algorithm. Then S
outputs {ℓ(j), I(j) = [n], w⃗(j)} for this round.

• Then S computes (i (j),m) ← U(w⃗(j)) on his own and runs updateC
′
(i (j),m).

Let C∗ be the resulting codeword after the update, and S updates the variable
C := C∗.

To show CTamperLeakA,U ,M ≈ IdealS,U ,M , we consider several intermediate hy-
brids.

Hybrid H0: This is exactly the experiment IdealS,U ,M .
Hybrid H1: This experiment is the same as H0 except the simulator does not generate
sk of the encryption scheme. Whenever he needs to produce a ciphertext (only in the
case when flag = 0), the hybrid provides oracle access to the encryption algorithm
E .Encryptsk(·), where the experiment samples sk privately.
It is not hard to see that the experiment H0 is identical to H1. Then we define another

hybrid:
Hybrid H2: This experiment is the same as H1 except; the encryption oracle does not
give E .Encryptsk(0) to the simulator; instead, it gives encryptions of the real messages
(in the first place, and in the update when flag = 0), as in the real experiment.

Then we can establish the following claim.

Claim 3.12. Suppose the encryption scheme is semantically secure, then H1 is com-
putationally indistinguishable from H2.

Proof. The proof is basically identical to the proof of Claim 3.5. Since the only differ-
ence between H1 and H2 is the encryption oracle’s outputs (either E .Encryptsk(0) or
E .Encryptsk(m) upon an input query m), if there is an adversary who can distinguish
the two hybrids, then we can build a simple reduction that breaks the encryption scheme
by a standard security proof argument. !

Next we consider the following hybrid.

Hybrid H3: This experiment is the same as H2 except, the simulator does not use the
underlying S ′ of the non-malleable code to produce (m′, ℓ′) (in the case when flag = 0).
Let R be the current root of the Merkle tree, h be the hash function, sk be the secret
key of the encryption oracle. In this experiment, the simulator generates an encoding of
NMC.enc(sk, h, R) and then applies the tampering and leakage function faithfully as the
real experiment TamperLeak f,g . If the outcome is still (sk, h, R), then the simulator
treats this as same∗. Otherwise, it uses the decoded value to proceed. Then the rest
follows exactly as H2.
Then we can establish the following claim:

Locally Decodable and Updatable Non-malleable Codes

Claim 3.13. Suppose the underlying coding scheme NMC is non-malleable and leak-
age resilience against F and G, then H2 is computationally indistinguishable from H3.

Proof. We can show this by considering the following sub-hybrids: H2, j : in the first
j rounds, the simulator generates (m′, ℓ′) according to the experiment TamperLeak
and in the rest S ′. By the property of the coding scheme, we can show each adjacent
sub-hybrid is computationally indistinguishable. Note that the simulator refreshes the
encoding of (sk, h, R) at each round, so we can apply the hybrid argument. From the
description, we have H2 = H2,0 and H2,t = H3, where t is the total number of rounds.
More formally, suppose H2, j and H2, j+1 are distinguishable for some j ∈ [t − 1],

then we construct a reduction that distinguishes the experiment TamperLeak f,g
m from

IdealS ′,m for some functions f ∈ F , g ∈ G and somemessagem. This is a contradiction
to the security property of the underlying coding scheme. The message m can be set
to (sk, h, R), and f, g be the functions in the j-th round output by the adversary. The
reduction first simulates the experiment up to the j-th round. At this moment, H2, j and
H2, j+1 are identical. Then the reduction receives an input (m′, ℓ′) from either of the
two experiments. The reduction uses these values for the round j + 1. Note that it is
sufficient for the reduction to finish the round j + 1 by knowing (m′, ℓ′). Finally the
reduction continues simulating the rest of the experiment. It is clear that if (m′, ℓ′) is from
TamperLeak f,g

m , then the reduction simulates H2, j+1, yet otherwise H2, j . Thus, if the
two adjacent hybrids are distinguishable, the reduction can break the leakage-resilient
non-malleable code of the underlying scheme. The completes the proof of the claim. !

Finally we want to show the following claim:

Claim 3.14. Suppose the hash function comes from a collision-resilient hash family,
then H3 is computationally indistinguishable from CTamperLeakA,U ,M.

Proof. We observe that the only difference between H3 and CTamperLeakA,U ,M
is the generation of m⃗(j) at each round (when the flag is 0). In the experiment
CTamperLeakA,U ,M , m⃗(j) is generated by honestly decoding the codeword at each

position, i.e.,
(
dec f (C(j))(1), . . . ,dec f (C(j))(n)

)
. In H3, m⃗(j) is generated by first com-

puting (m′, e′
1, . . . , e

′
n, T

′) := f (C (j)). In the case where m′ ̸= same∗, the two
experiments are identical. In the case where m′ = same∗, H3 sets m⃗(j)[v] = ⊥
if e′

v ̸= ev . The only situation that these two hybrids deviate is when e′
v ̸= ev , but

there is another consistent path in T ′ with the root R. For this situation, dec(v) ̸= ⊥
in CTamperLeak, but H3 will set m⃗[v] := ⊥. However, we claim this event can
happen with a negligible probability, or otherwise we can break the security of the
Merkle tree (Theorem 3.9) by simulating the hybrid H3. This completes the proof of the
claim. !

Putting everything together, we show that CTamperLeakA,U ,M ≈ IdealS,U ,M . !

Remark 3.15. Our one-time and continual constructions in Sects. 3.2 and 3.3, respec-
tively, achieve the notion of strong non-malleability if the underlying non-malleable

D. Dachman-Soled et al.

code is itself a strong non-malleable code. In the continual construction (see Sect. 3.3),
in order to prove strong non-malleability wemust show that the adversary’s view is indis-
tinguishable when it receives codewordC = (c, e1, e2, . . . , en, T), where e1, . . . , en are
encryptions of m1, . . . ,mn and when it receives codeword C ′ = (c, e′

1, e
′
2, . . . , e

′
n, T),

where e′
1, . . . , e

′
n are encryptions of m′

1, . . . ,m
′
n . This can be shown using a sequence

of hybrids, similar to the one used in Sect. 3.3. The main difference is that in the first
hybrid, we explicitly set c ← NMC.enc(0, 0, 0) (i.e., generate a non-malleable code-
word encoding message (0, 0, 0) as opposed to (sk, R, h) in the real construction) and
use strong non-malleability of the underlying code to argue indistinguishability. The
remaining hybrids follow similarly to those of Sect. 3.3.

3.4. Instantiations

In this section, we describe several constructions of non-malleable codes against differ-
ent classes of tampering/leakage functions. To our knowledge, we can use the explicit
constructions (of the non-malleable codes) in the works [1,3–5,7,17,29,30,32,50].
First we overview different classes of tampering/leakage function allowed for these

results: the constructions of Dziembowski et al. [29] work for bit-wise tampering func-
tions and split-state functions in the random oracle model. The construction of Choi
et al. [17] works for small block tampering functions. The construction of Liu and
Lysyanskaya [50] achieves both tamper and leakage resilience against split-state func-
tions in the common reference string (CRS) model. The construction of Dziembowski et
al. [27] achieves information-theoretic security against split-state tampering functions,
but their scheme can only support encoding for bits, so it cannot be used in our construc-
tion. The subsequent construction by Aggarwal et al. [3] achieves information-theoretic
security against split-state tampering without CRS. Recently, Aggarwal et al. [4] pre-
sented information-theoretic non-malleable codes that achieve both tamper and leakage
resilience against split-state functions and do not require a common reference string.
Subsequently, Aggarwal et al. [1] achieved optimal leakage rate, but only in the compu-
tational setting, and Aggarwal et al. [5] further strengthened these results by extending
to the continual setting. The construction by Faust et al. [32] is non-malleable against
small-sized tampering functions. Another construction by Faust et al. [30] achieves both
tamper and leakage resilience in the split-state model with CRS. The construction of
Aggarwal et al. [7] is non-malleable against permutation functions.

We also remark that there are other non-explicit constructions: Cheraghchi and Gu-
ruswami [16] showed the relation non-malleable codes and non-malleable two-source
extractors (but constructing a non-malleable two-source extractor is still open), and
in another work Cheraghchi and Guruswami [15] showed the existence of high rate
non-malleable codes in the split-state model but did not give an explicit (efficient) con-
struction.
Finally, we give a concrete example ofwhat the resulting class looks like using the con-

struction of Liu and Lysyanskaya [50] as the building block—recall that their construc-
tion achieves both tamper and leakage resilience for split-state functions (essentially the
same class of leakage/tampering would be achieved by plugging in any of the split-state
constructions). Our construction has the form (NMC.enc(sk, h, T),Encrypt(m1), . . . ,

Encrypt(mn), T). So the overall leakage function g restricted in the first block (i.e., g1)

Locally Decodable and Updatable Non-malleable Codes

can be a (poly-sized) length-bounded split-state function; g, on the other hand, can leak
all the other parts. For the tampering, the overall tampering function f restricted in the
first block (i.e., f1) can be any (poly-sized) split-state function. On the other hand f
restricted in the rest (i.e., f2) can be just any poly-sized function. We also remark that
f2 can depend on a split-state leakage on the first part, say g1, as we discussed in the
previous remark above.

4. Tamper and Leakage-Resilient RAM

In this section, we first introduce the notations of the random access machine (RAM)
model of computation in the presence of tampering and leakage attacks in Sect. 4.1.
Then we define the security of tamper and leakage-resilient RAMmodel of computation
in Sect. 4.2, recall the building block oblivious RAM (ORAM) in Sect. 4.3, and then
give a construction in Sect. 4.4 and the security analysis in Sect. 4.5.

4.1. Random Access Machines

We consider RAM programs to be interactive stateful systems ⟨!, state, D⟩, where !

denotes a next instruction function, state the current state stored in registers, and D
the content of memory. Upon state and an input value d, the next instruction function
outputs the next instruction I and an updated state state′. The initial state of the RAM
machine, state, is set to (start, ∗). For simplicity we often denote RAM program as
⟨!, D⟩. We consider four ways of interacting with the system:

– Execute(x): A user can provide the system with Execute(x) queries, for x ∈
{0, 1}u , where u is the input length.Upon receiving such query, the system computes
(y, t, D′) ← ⟨!, D⟩(x), updates the state of the system to D := D′ and outputs
(y, t), where y denotes the output of the computation and t denotes the time (or
number of executed instructions). By Execute1(x) we denote the first coordinate
of the output of Execute(x).

– doNext(x): A user can provide the systemwith doNext(x) queries, for x ∈ {0, 1}u .
Upon receiving such query, if state = (start, ∗), set state := (start, x), and
d := 0r ; here ρ = |state| and r = |d|. The system does the following until
termination:

1. Compute (I, state′) = !(state, d). Set state := state′.
2. If I = (wait), then set state := 0ρ , d := 0r and terminate.
3. If I = (stop, z), then set state := (start, ∗), d := 0r and terminate with

output z.
4. If I = (write, v, d ′), then set D[v] := d ′.
5. If I = (read, v,⊥), then set d := D[v].

Let I1, . . . , Iℓ be the instructions executed by doNext(x). All memory ad-
dresses of executed instructions are returned to the user. Specifically, for in-
structions I j of the form (read, v,⊥) or (write, v, d ′), v is returned.

D. Dachman-Soled et al.

– Tamper(f): We also consider tampering attacks against the system, modeled by
Tamper(f) commands, for functions f . Upon receiving such command, the system
sets D := f (D).

– Leak(g): We finally consider leakage attacks against the system, modeled by
Leak(g) commands, for functions g. Upon receiving such command, the value
of g(D) is returned to the user.

Remark 4.1. A doNext(x) instruction groups together instructions performed by the
CPU in a single clock cycle. Intuitively, a (wait) instruction indicates that a clock cycle
has ended and the CPU waits for the adversary to increment the clock. In contrast, a
(stop, z) instruction indicates that the entire execution has concluded with output z. In
this case, the internal state is set back to the start state.
We require that each doNext(x) operation performs exactly ℓ = ℓ(k) = poly(k)

instructions I1, . . . , Iℓ where the final instruction is of the form Iℓ = (stop, ·) or Iℓ =
(wait). For fixed ℓ1 = ℓ1(k), ℓ2 = ℓ2(k) such that ℓ1 + ℓ2 = ℓ − 1, we have that the
first ℓ1 instructions are of the form Iℓ = (read, ·,⊥) and the next ℓ2 instructions are of
the form Iℓ = (write, v, d ′). We assume that ℓ, ℓ1, ℓ2 are implementation-specific and
public. The limitations on space are meant to model the fact that the CPU has a limited
number of registers and that no persistent state is kept by the CPU between clock cycles.

Remark 4.2. We note that Execute(x) instructions are used by the ideal world
adversary—who learns only the input-output behavior of the RAMmachine and the run
time—as well as by the real-world adversary. The real-world adversary may also use the
more fine-grained doNext(x) instruction. We note that given access to the doNext(x)
instruction, the behavior of the Execute(x) instruction may be simulated.

4.1.1. Dealing with Leakage and Tampering on Instructions I

We note that our model does not explicitly allow for leakage and tampering on instruc-
tions I . E.g., when an instruction I = (write, v, d ′) is executed, we do not directly allow
tampering with the values v, d ′ or leakage on d ′. (Note that v is entirely leaked to the
adversary.) Nevertheless, as discussed in introduction, since we allow full leakage on the
addresses, the adversary can in some instances use the tampering and leakage attacks
on the memory to simulate attacks on the instructions. We elaborate in the following:

Leakage on an instruction I Since (write, v) or (read, v) is entirely leaked to the
adversary, we need only deal with leakage on d ′. In this case, an adversary leaking
on d ′ can be simulated in our model by an adversary who leaks the contents of
memory location v in the following round.

Tampering with d ′ in an instruction I of the form I = (read, v, d ′) In this case,
adversarial tampering will have no effect.

Tampering with d ′ in an instruction I of the form I = (write, v, d ′) In this case,
adversarial tampering with d ′ can be simulated in our model by an adversary who
tampers with the contents of memory location v in the following round.

Tampering with v in an instruction I of the form I = (read, v, d ′) Such tampering
is not straightforwardly captured by our model. We can change our model so that
each round has two stages: in the first stage, the adversary is given all instructions

Locally Decodable and Updatable Non-malleable Codes

I1, . . . , Iℓ and then the adversary may pre-emptively leak and tamper before the
instructions are completed. Security of our construction still holds in this slightly
modified setting. To simulate tampering on v, an adversary can now leak the
contents of memory location v, apply a tampering function which will copy the
contents of the tampered location ṽ to location v, allow the system to read the
memory location, and then write back the old contents of memory to v in the next
round.

Tampering with d ′ in an instruction I of the form I = (write, v, d ′) Such tampering
is not straightforwardly captured by our model. We can change our model so that
each round has two stages: in the first stage, the adversary is given all instructions
I1, . . . , Iℓ and then the adversary may pre-emptively leak and tamper before the
instructions are completed. Security of our construction still holds in this slightly
modified setting. To simulate tampering on v, an adversary can now leak the
contents of memory location v, apply a tampering function which will place d ′

in the tampered location ṽ, allow the system to write to memory location v, and
then write back the old contents of memory to v in the next round.

Tampering with read or write in an instruction I Our model does not handle this type
of tampering.

4.2. Tamper and Leakage-Resilient (TLR) RAM

A tamper and leakage-resilient (TLR) RAM compiler consists of two algorithms
(CompMem,CompNext), which transform a RAM program ⟨!, D⟩ into another pro-
gram ⟨!̂, D̂⟩ as follows: on input database D, CompMem initializes the memory and
internal state of the compiled machine and generates the transformed database D̂; on
input next instruction function !, CompNext generates the next instruction function of
the compiled machine.

Definition 4.3. A TLR compiler (CompMem,CompNext) is tamper and leakage
simulatable w.r.t. function families F ,G, if for every RAM next instruction function !,
and for any ppt (non-uniform) adversary A there exists a ppt (non-uniform) simulator
S such that for any initial database D ∈ {0, 1}poly(k) we have

TamperExec(A,F ,G, ⟨CompNext(!),CompMem(D)⟩) ≈ IdealExec(S, ⟨!, D⟩)

where TamperExec and IdealExec are defined as follows:

– TamperExec(A,F ,G, ⟨CompNext(!),CompMem(D)⟩): The adversary A in-
teracts with the system ⟨CompNext(!),CompMem(D)⟩ for arbitrarily many
rounds of interactions where in each round:

1. The adversary can “tamper” by executing a Tamper(f) command against the
system, for some f ∈ F .

2. The adversary can “leak” by executing aLeak(g) command against the system,
and receiving g(D) in return.

3. The adversary requests a doNext(x) command to be executed by the system.
Let I1, . . . , Iℓ be the instructions executed by doNext(x). If Iℓ is of the form

D. Dachman-Soled et al.

(stop, z), then output z is returned to the adversary. Moreover, all memory ad-
dresses corresponding to instructions I1, . . . , Iℓ − 1 are returned to the adversary.

The output of the game consists of the output of the adversary A at the end of the
interaction, along with (1) all input–output pairs (x1, y1), (x2, y2), . . ., (2) all re-
sponses to leakagequeriesℓ1, ℓ2, . . ., (3) all outputs ofdoNext(x1),doNext(x2),

– IdealExec(S, ⟨!, D⟩): The simulator interacts with the system ⟨!, D⟩ for arbitrar-
ily many rounds of interaction where, in each round, it runs an Execute(x) query
for some x ∈ {0, 1}u and receives output (y, t). The output of the game consists
of the output of the simulator S at the end of the interaction, along with all of the
execute-query inputs and outputs.

For simplicity of exposition, we assume henceforth that the next instruction function
! to be compiled is the universal RAM next instruction function. In other words, we
assume that the program to be executed is stored in the initial database D.

4.3. Preliminary: Oblivious RAM (ORAM)

An ORAM compiler ORAM consists of two algorithms (oCompMem,oCompNext),
which transform a RAM program ⟨!, D⟩ into another program ⟨!̃, D̃⟩ as follows: on
input database D, CompMem initializes the memory and internal state of the compiled
machine and generates the transformed database D̃; on input next instruction function
!, CompNext generates the next instruction function of the compiled machine, !̃.
CorrectnessWe require the following correctness property: for every choice of security
parameter k, every initial database D, and every sequence of inputs x1, . . . , xp, where
p = p(k) is polynomial in k, we have that with probability 1 − negl(k) over the coins
of oCompMem,

(
Execute1(x1), . . . ,Execute1(xp)

)
=

(
˜Execute1(x1), . . . , ˜Execute1(xp)

)
,

where Execute1(x) denotes the first coordinate of the output of Execute(x) w.r.t.
⟨!, D⟩ and ˜Execute1(x) denotes the first coordinate of the output of Execute(x) w.r.t.
⟨oCompNext(!),oCompMem(D)⟩.

Security Let ORAM = (oCompMem,oCompNext) be an ORAM complier and con-
sider the following experiment:
Experiment ExptoramA (k, b):

1. The adversary A selects two initial databases D0, D1.
2. Set initial contents of memory of the RAM machine to D̃ := oCompMem(Db).

Set the initial state of the RAM machine to state := (start, ∗).
3. The adversary A and the challenger participate in the following procedure for an

arbitrary number of rounds:

• For x ∈ {0, 1}u , A submits a doNext(x) query.
• Execute the doNext(x) query w.r.t. ⟨oCompNext(!), D̃⟩ and update the state
of the system. Let I1, . . . , Iℓ be the instructions executed by the RAMmachine.

Locally Decodable and Updatable Non-malleable Codes

For each j ∈ [ℓ], if I j is of the form (·, v j , ·), for some v j , output v j to A.
Otherwise, output v j = ⊥. Let v = v1, . . . , vℓ be the output obtained by A in
the current round.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment evaluates to 1
iff b′ = b.

Definition 4.4. An ORAM construction ORAM = (oCompMem,oCompNext) is
access-pattern hiding if for every ppt adversaryA, the following probability, taken over
the randomness of the experiment and b ∈ {0, 1}, is negligible:

∣∣∣∣Pr[ExptoramA (k, b) = 1] − 1
2

∣∣∣∣ .

4.4. TLR-RAM Construction

Herewefirst give a high-level description of our construction.More detailed construction
and a theorem statement follow. The security proof will be given in the next section.

High-level Description of ConstructionLet D be the initial database, and letORAM =
(oCompMem,oCompNext) be an ORAM compiler. Let NMCode = (enc,dec,
update) be a locally decodable and updatable code. We present the following con-
struction TLR-RAM = (CompMem,CompNext) of a tamper and leakage-resilient
RAM compiler. In order to make our presentation more intuitive, instead of specifying
the nextmessage functionCompNext(!), we specify the pseudocode for thedoNext(x)
instruction of the compiled machine. We note that CompNext(!) is implicitly defined
by this description.
TLR-RAM takes as input an initial database D and a next instruction function ! and

does the following:

– CompMem: On input security parameter k and initial database D, CompMem
does:

• Compute D̃ ← oCompMem(D), and output D̂ ← enc(D̃).
• Initialize the ORAM state stateORAM := (start, ∗) and dORAM := 0r , where
r = |dORAM|.

– doNext(x): On input x , do the following until termination:

1. If dORAM = ⊥ then abort.
2. Compute (I, state′

ORAM) ← oCompNext(!)(stateORAM, dORAM). Set
stateORAM := state′

ORAM.
3. If I = (wait) then set stateORAM := 0ρ and dORAM := 0r and terminate. Here

ρ = |stateORAM| and r = |dORAM|.
4. If I = (stop, z) then set stateORAM := (start, ∗), d := 0r and terminate with

output z.
5. If I = (write, v, d ′) then run updateD̂(v, d ′).
6. If I = (read, v,⊥) then set dORAM := decD̂(v).

D. Dachman-Soled et al.

Detailed Description of Construction LetORAM = (oCompMem,oCompNext) be
an ORAM compiler and let NMCode = (enc,dec,update) be a locally decodable
and updatable code. We view dec and update as RAM machines and denote by !dec,
!update the corresponding next message functions. We present the following tamper
and leakage-resilient RAM compiler TLR-RAM = (CompMem,CompNext). Here,
the parameters r = r(k), u = u(k), ρ = ρ(k) are polynomials in the security parameter
k that are implementation-dependent. The complier TLR-RAM takes as input an initial
database D and a next instruction function ! and does the following:

CompMem: On input security parameter k and initial database D, CompMem
does the following:

• Run oCompMem to compute D̃ ← oCompMem(D),
and to initialize stateORAM := (start, ∗), and dORAM := 0r .

• Output D̂ ← enc(D̃).

• Initialize state def= stateORAM||statecode||mode := (start, ∗)||(start, ∗)||⊥
and d def= dcode||dORAM := 0r ||0r .

CompNext: On input next instruction function !, let !̃ = oCompNext(!) be
the next instruction function of the ORAM compiled machine. CompNext(!)

is the next instruction function of the TLR-RAM compiled machine. It takes as
input (state, d) and does the following:

• Parse state = stateORAM||statecode||mode. Here mode ∈ {UP,DEC,⊥}
• If dORAM = ⊥ then abort.
• If statecode = (start, ∗): Compute (IORAM, state′

ORAM) := !̃(stateORAM,

dORAM).

1. If IORAM is of the form IORAM = (wait) then set I := (wait).
Set state := state′

ORAM||statecode||mode.
Output (I, state).

2. If IORAM is of the form (stop, z) then set I := (stop, z).
Set state := state′

ORAM||statecode||mode.
Output (I, state).

3. If IORAM is of the form (write, v, d ′) then set statecode := (start, v, d ′).
Set I := (read, 0,⊥) where (read, 0,⊥) denotes a dummy read.
Set state := stateORAM||state′

code||UP.
Output (I, state).

4. If IORAM is of the form (read, v,⊥) then set statecode := (start, v).
Set I := (read, 0,⊥) where (read, 0,⊥) denotes a dummy read.
Set state := stateORAM||state′

code||DEC.
Output (I, state).

• Otherwise if statecode ̸= (start, ∗):
Ifmode = UP, compute (Icode, state′

code) := !update(statecode, dcode).
Ifmode = DEC, compute (Icode, state′

code) := !dec(statecode, dcode).

1. If Icode is of the form (stop, z) then set I := (read, 0,⊥), where (read,
0,⊥) denotes a dummy read.

Locally Decodable and Updatable Non-malleable Codes

Set dORAM := z, set state′
code := (start, ∗), set state := state′

ORAM||
state′

code||⊥.
Output (I, state).

2. If Icode is of the form (read, v̂,⊥), set I := Icode.
Set state := state′

ORAM||state′
code||DEC.

Output (I, state).
3. If Icode is of the form (write, v̂, d̂ ′), set I := Icode.

Set state := state′
ORAM||state′

code||UP.
Output (I, state).
Upon execution of I , dcode will be set to D̂[v̂].

We are now ready to present the main theorem of this section:

Theorem 4.5. AssumeORAM = (oCompMem,oCompNext) is anORAMcompiler
which is access-pattern hiding and assumeNMCode = (enc,dec,update) is a locally
decodable and updatable code which is continual non-malleable againstF and leakage
resilient against G. Then TLR-RAM = (CompMem,CompNext) presented above is
tamper and leakage simulatable w.r.t. function families F ,G.

4.5. Security Analysis

In this section we prove Theorem 4.5. We begin by defining the simulator S. Let Scode
be the simulator guaranteed by the security of NMCode = (enc,dec,update).
For simplicity of exposition, we assume that for every x , given the runtime t of

Execute(x) with respect to ⟨!, D⟩, the runtime of Execute(x) with respect to
⟨oCompNext(!),oCompMem(D)⟩ is equal to p(t), p(·) is a fixed polynomial known
to the simulator. This is indeed the case for the instantiation of our compiler with known
underlying building blocks.

Simulator S

Setup: On input security parameter k, S does the following:

• Choose a dummy database D0, compute D̃ ← oCompMem(D0). Initialize
stateORAM := (start, ∗), dORAM = 0r .

• Instantiate the adversary A and the NMCode simulator Scode.
• Initialize output variable out = ⊥ and counter c = 0.

Adversarial query (g, f,doNext(x)): If stateORAM = (start, ∗), set stateORAM
= (start, x), submit query Execute(x) to oracle, and receive (z, t). Set out = z
and c = t .
Forward (g, f) to Scode. Upon receiving Scode’s output, (ℓ, I, w⃗), forward ℓ toA.

Case: I ̸= [n]. Execute a doNext(x) instruction w.r.t. ⟨oCompNext(!), D̃⟩.
Let I1, . . . Iℓ̃ be the sequence of instructions executed bydoNext(x). Recall that
the first ℓ̃1 instructions are reads, the next ℓ̃2 instructions arewrites, ℓ̃1+ℓ̃2+1 =
ℓ̃ and that ℓ̃, ℓ̃1, ℓ̃2 are public.
Let v⃗ = v1, . . . , vℓ̃ − 1 be the vector of read/write locations corresponding to
I1, . . . Iℓ̃.
For 1 ≤ i ≤ ℓ̃1, do the following:

D. Dachman-Soled et al.

• If dORAM = ⊥ then abort.
• Output Sdecvi

to A, where Sdecvi
be the ordered set of memory access

locations corresponding to dec(vi). If vi ∈ I, set dORAM = ⊥.

For ℓ̃1 + 1 ≤ i ≤ ℓ̃1 + ℓ̃2, S does the following:

• If dORAM = ⊥ then abort.
• Output Supdatevi

to A, where Supdatevi
be the ordered set of memory ac-

cess locations corresponding to update(vi). Play the part of the updater
interacting with Scode and submit index v to Scode.

Set c := c − 1 − σ · (ℓ̃1 + ℓ̃2), where σ is the number of instructions in a
dec,update. If c = 0, output out to A and set stateORAM = (start, ∗).
Case: I = [n]. Do the following until termination:

1. If dORAM = ⊥ then abort.
2. Compute (I, state′

ORAM) ← oCompNext(!)(stateORAM, dORAM). Set
stateORAM := state′

ORAM.
3. If I = (wait) then set stateORAM := 0ρ , dORAM := 0r and terminate.
4. If I = (stop, z) then set stateORAM = (start, ∗), d := 0r , output z to A

and terminate.
5. If I = (read, v,⊥) then set dORAM = w⃗v . Output Sdecv to A.
6. If I = (write, v, d ′) then do the following: output Supdatev to A. Play the

part of the updater interacting with Scode and submit index v to Scode.

Lemma 4.6. Assume ORAM = (oCompMem,oCompNext) and NMCode =
(enc,dec,update) are as in Theorem 4.5. Let! be the universal RAM next instruction
function. For any ppt adversary A, and any initial database D ∈ {0, 1}poly(k) we have

TamperExec(A,F ,G, ⟨CompNext(!),CompMem(D)⟩) ≈ IdealExec(S, ⟨!, D⟩)

To prove Lemma 4.6 we consider the sequence of hybrids H0, H1, H1.5, H2, defined
below.We denote byoutkA,Hi

, the output distribution of the adversaryA on input security
parameter k in Hybrid Hi , for i ∈ {0, 1, 1.5, 2}.

Hybrid H0: This is the simulated experiment IdealExec(S, ⟨!, D⟩).
Hybrid H1: This hybrid is the same as Hybrid H0 except for the following change is
made to the simulator’s algorithm: in the setup stage, the real database D is used to
compute D̃ ← oCompMem(D) (instead of D̃ ← oCompMem(D0)).

Claim 4.7.

{outkA,H0
}k∈N

c≈ {outkA,H1
}k∈N.

This follows from the security of the ORAM scheme ORAM = (oCompMem,

oCompNext). Details follow.

Proof. Theonlydifferencebetween the twoHybrids is that inHybridH0 whendoNext(x)
is executed, the vector v⃗ = v1, . . . , vℓ̃ − 1 is computed using the result of a doNext(x)

Locally Decodable and Updatable Non-malleable Codes

instruction w.r.t. ⟨oCompNext(!), D̃⟩, where D̃ ← oCompMem(D0) (and D0 is the
dummy database). On the other hand, in Hybrid H1, the vector v⃗ = v1, . . . , vℓ̃ − 1 is com-
puted using the result of a doNext(x) instruction w.r.t. ⟨oCompNext(!), D̃⟩, where
D̃ ← oCompMem(D) (and D is the real initial database). Thus, a distinguisher for Hy-
brids H0 and H1 immediately yields a distinguisher breaking the access-pattern hiding
property of ORAM = (oCompMem,oCompNext). !

Hybrid H1.5:We consider the following modification of the Hybrid H1 experiment:
Upon a doNext(x) query submitted by the adversary A. If I ̸= [n], execute the

following code: (otherwise, the experiment remains unchanged):
Do the following until termination:

1. If dORAM = ⊥ then abort.
2. Compute (I, state′

ORAM) ← oCompNext(!)(stateORAM, dORAM). Set
stateORAM := state′

ORAM.
3. If I = (wait) then set stateORAM := 0ρ , dORAM := 0r and terminate.
4. If I = (stop, z) then set stateORAM := (start, ∗), d := 0r and terminate with

output z.
5. If I = (read, v,⊥) then if v /∈ I, set dORAM = D̃[v]. Otherwise, set dORAM = ⊥.

Let Sdecv be the ordered set of memory access locations corresponding to dec(v).
Output Sdecv to A.

6. If I = (write, v, d ′) then do the following: S plays the part of the updater inter-
acting with Scode and submits index v to Scode. Let Supdatev be the ordered set of
memory access locations corresponding to update(v). Output Supdatev to A.

Claim 4.8.

{outkA,H1
}k∈N ≡ {outkA,H1.5

}k∈N.

Proof. Intuitively, the difference between Hybrid H1 and H1.5 is that in H1 in each
doNext query, the memory locations v⃗ = v1, . . . , vℓ̃ − 1 are pre-computed, whereas in
H1.5, the memory locations v1, . . . , vℓ̃ − 1 are computed on the fly. In particular, in H1,
the addresses v⃗ are computed assuming that each instruction of the form (read, vi ,⊥)

sets dORAM to the correct value dORAM = D̃[vi]. On the other hand, in H1.5, dORAM
may not be set to D̃[vi]. However, since we are in the case where I ̸= [n], the only way
this can happen is if vi ∈ I, in which case dORAM is set to ⊥. But now, if vi ∈ I, then
dORAM is set to⊥ in both H1 and H1.5 when the corresponding instruction (read, vi ,⊥)

is simulated. Moreover, once dORAM is set to ⊥ then the execution immediately aborts
in both H1 and H1.5. Thus, the view of the adversary is identical in H1 and H1.5. !

Hybrid H2 : This is the real experiment TamperExec(A, F,G, ⟨CompNext(!),

CompMem(D)⟩).
Claim 4.9.

{outkA,H1
}k∈N

c≈ {outkA,H2
}k∈N.

This follows from the security of the locally decodable andupdatable codeNMCode =
(enc,dec,update). Details follow.

D. Dachman-Soled et al.

Proof. We claim that Hybrid H1.5 can be perfectly simulated given the output of
IdealS,U ,M , while Hybrid H2 can be perfectly simulated given the output of
TamperLeakA′,U ,M , where A′ = A and S = S and U is the following updater:

The Updater U:
• U keeps persistent state stateORAM which is initialized to (start, ∗) and dORAM
which is initialized to 0r .

• On input D̃, U does the following:
• If dORAM = ⊥, then U aborts.
• Otherwise, U computes (I, state′

ORAM) := oCompNext(!)(stateORAM, dORAM)

and sets stateORAM := state′
ORAM.

• If I is of the form (read, v,⊥), then U sets dORAM = D̃[v] and outputs ⊥.
• If I is of the form (write, v, d), then U outputs (v, d).
• Otherwise, U outputs ⊥.

Thus, indistinguishability of hybrids H1.5 and H2 reduces to indistinguishability of
IdealS,U ,M and TamperLeakA′,U ,M . This concludes the proof of Claim 4.9. !

Acknowledgements

We thank Yevgeniy Dodis for helpful discussions.

References

[1] D. Aggarwal, S. Agrawal, D. Gupta, H.K. Maji, O. Pandey, M. Prabhakaran. Optimal computational
split-state non-malleable codes, in E. Kushilevitz, T. Malkin, editors, TCC 2016-A, Part II. LNCS, vol.
9563 (Springer, Heidelberg, 2016), pp. 393–417

[2] D. Aggarwal, Y. Dodis, T. Kazana, M. Obremski. Non-malleable reductions and applications, in R.A.
Servedio, R. Rubinfeld, editors, 47th ACM STOC (ACM Press, 2015), pp. 459–468

[3] D. Aggarwal, Y. Dodis, S. Lovett. Non-malleable codes from additive combinatorics, in D.B. Shmoys,
editor, 46th ACM STOC (ACM Press, 2014), pp. 774–783

[4] D. Aggarwal, S. Dziembowski, T. Kazana, M. Obremski. Leakage-resilient non-malleable codes, in
Y. Dodis, J.B. Nielsen, editors, TCC 2015, Part I. LNCS, vol. 9014 (Springer, Heidelberg, 2015), pp.
398–426

[5] D. Aggarwal, T. Kazana, M. Obremski. Inception makes non-malleable codes stronger. IACR Cryptol.
ePrint Arch. 2015, 1013 (2015)

[6] D. Agrawal, B. Archambeault, J.R. Rao, P. Rohatgi. The EM side-channel(s), in B.S. Kaliski Jr., Ç
Kaya Koç, C. Paar, editors, CHES 2002. LNCS, vol. 2523 (Springer, Heidelberg, 2003), pp. 29–45

[7] S. Agrawal, D. Gupta, H.K. Maji, O. Pandey, M. Prabhakaran. Explicit non-malleable codes against
bit-wise tampering and permutations, in R. Gennaro, and M.J.B. Robshaw, editors, CRYPTO 2015, Part
I. LNCS, vol. 9215 (Springer, Heidelberg, 2015), pp. 538–557

[8] S. Agrawal, D. Gupta, H.K. Maji, O. Pandey, M. Prabhakaran. A rate-optimizing compiler for non-
malleable codes against bit-wise tampering and permutations, in Y. Dodis, J.B. Nielsen, editors,
TCC 2015, Part I. LNCS, vol. 9014 (Springer, Heidelberg, 2015), pp. 375–397

[9] M. Bellare, C. Namprempre. Authenticated encryption: Relations among notions and analysis of the
generic composition paradigm, in T. Okamoto, editor, ASIACRYPT 2000. LNCS, vol. 1976. (Springer,
Heidelberg, 2000), pp. 531–545

Locally Decodable and Updatable Non-malleable Codes

[10] M.Bellare, P.Rogaway. Encode-then-encipher encryption:How to exploit nonces or redundancy in plain-
texts for efficient cryptography, in T. Okamoto, editor, ASIACRYPT 2000. LNCS, vol. 1976 (Springer,
Heidelberg, 2000), pp. 317–330

[11] E. Biham, A. Shamir. Differential fault analysis of secret key cryptosystems, in B.S. Kaliski Jr., editor,
CRYPTO’97. LNCS, vol. 1294 (Springer, Heidelberg, 1997), pp. 513–525

[12] D. Boneh, R.A. DeMillo, R.J. Lipton. On the importance of eliminating errors in cryptographic compu-
tations. J. Cryptol. 14(2), 101–119 (2001)

[13] N. Chandran, B. Kanukurthi, R. Ostrovsky. Locally updatable and locally decodable codes, in Y. Lindell,
editor, TCC 2014. LNCS, vol. 8349 (Springer, Heidelberg, 2014), pp. 489–514

[14] N. Chandran, B. Kanukurthi, S. Raghuraman. Information-theoretic local non-malleable codes and their
applications, in E. Kushilevitz, T. Malkin, editors, TCC 2016-A, Part II. LNCS, vol. 9563 (Springer,
Heidelberg, 2016), pp. 367–392

[15] M. Cheraghchi, V. Guruswami. Capacity of non-malleable codes, in M. Naor, editor, ITCS 2014 (ACM,
2014), pp. 155–168

[16] M. Cheraghchi, V. Guruswami. Non-malleable coding against bit-wise and split-state tampering, in Y.
Lindell, editor, TCC 2014. LNCS, vol. 8349 (Springer, Heidelberg, 2014), pp. 440–464

[17] S.G. Choi, A. Kiayias, T. Malkin. BiTR: built-in tamper resilience, in D.H. Lee, X. Wang, editors,
ASIACRYPT 2011. LNCS, vol. 7073 (Springer, Heidelberg, 2011), pp. 740–758

[18] B. Chor, E. Kushilevitz, O. Goldreich, M. Sudan. Private information retrieval. J. ACM 45(6), 965–981
(1998)

[19] S. Coretti, U. Maurer, B. Tackmann, D. Venturi. From single-bit to multi-bit public-key encryption via
non-malleable codes, in Y. Dodis, J.B. Nielsen, editors, TCC 2015, Part I. LNCS, vol. 9014 (Springer,
Heidelberg, 2015), pp. 532–560

[20] D. Dachman-Soled, Y.T. Kalai. Securing circuits against constant-rate tampering, in R. Safavi-Naini, R.
Canetti, editors, CRYPTO 2012. LNCS, vol. 7417 (Springer, Heidelberg, 2012), pp. 533–551

[21] D. Dachman-Soled, Y.T. Kalai. Securing circuits and protocols against 1/poly(k) tampering rate, in Y.
Lindell, editor, TCC 2014. LNCS, vol. 8349 (Springer, Heidelberg, 2014), pp. 540–565

[22] I. Damgård, S. Faust, P. Mukherjee, D. Venturi. Bounded tamper resilience: how to go beyond the
algebraic barrier, in K. Sako, P. Sarkar, editors, ASIACRYPT 2013, Part II. LNCS, vol. 8270 (Springer,
Heidelberg, 2013), pp. 140–160

[23] Y. Dodis, K. Pietrzak. Leakage-resilient pseudorandom functions and side-channel attacks on Feistel
networks, in T. Rabin, editor, CRYPTO 2010. LNCS, vol. 6223 (Springer, Heidelberg, 2010), pp. 21–40

[24] A. Duc, S. Dziembowski, S. Faust. Unifying leakage models: from probing attacks to noisy leakage, in
P.Q. Nguyen, E. Oswald, editors, EUROCRYPT 2014. LNCS, vol. 8441 (Springer, Heidelberg, 2014),
pp. 423–440

[25] S. Dziembowski, S. Faust. Leakage-resilient cryptography from the inner-product extractor, in D.H. Lee,
X. Wang, editors, ASIACRYPT 2011. LNCS, vol. 7073 (Springer, Heidelberg, 2011), pp. 702–721

[26] S. Dziembowski, S. Faust. Leakage-resilient circuits without computational assumptions, in R. Cramer,
editor, TCC 2012. LNCS, vol. 7194 (Springer, Heidelberg, 2012), pp. 230–247

[27] S. Dziembowski, T. Kazana, M. Obremski. Non-malleable codes from two-source extractors, in R.
Canetti, J.A. Garay, editors, CRYPTO 2013, Part II. LNCS, vol. 8043 (Springer, Heidelberg, 2013), pp.
239–257

[28] S. Dziembowski, K. Pietrzak. Leakage-resilient cryptography, in 49th FOCS (IEEE Computer Society
Press, 2008), pp. 293–302

[29] S. Dziembowski, K. Pietrzak, D. Wichs. Non-malleable codes, in A. Chi-Chih Yao, editor, ICS 2010
(Tsinghua University Press, 2010), pp. 434–452

[30] S. Faust, P. Mukherjee, J.B. Nielsen, D. Venturi. Continuous non-malleable codes, in Y. Lindell, editor,
TCC 2014. LNCS, vol. 8349 (Springer, Heidelberg, 2014), pp. 465–488

[31] S. Faust, P.Mukherjee, J.B.Nielsen,D.Venturi.A tamper and leakage resilient von neumann architecture,
in J. Katz, editor, PKC 2015. LNCS, vol. 9020 (Springer, Heidelberg, 2015), pp. 579–603

[32] S. Faust, P. Mukherjee, D. Venturi, D. Wichs. Efficient non-malleable codes and key-derivation for
poly-size tampering circuits, in P.Q. Nguyen, E. Oswald, editors, EUROCRYPT 2014. LNCS, vol. 8441
(Springer, Heidelberg, 2014), pp. 111–128

D. Dachman-Soled et al.

[33] S. Faust, K. Pietrzak, D. Venturi. Tamper-proof circuits: how to trade leakage for tamper-resilience, in
L. Aceto, M. Henzinger, J. Sgall, editors, ICALP 2011, Part I. LNCS, vol. 6755 (Springer, Heidelberg,
2011), pp. 391–402

[34] S. Faust, T. Rabin, L. Reyzin, E. Tromer, V. Vaikuntanathan. Protecting circuits from leakage: the
computationally-bounded and noisy cases, in H. Gilbert, editor, EUROCRYPT 2010. LNCS, vol. 6110
(Springer, Heidelberg, 2010), pp. 135–156

[35] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, T. Rabin. Algorithmic tamper-proof (ATP) security:
theoretical foundations for security against hardware tampering, in M. Naor, editor, TCC 2004. LNCS,
vol. 2951 (Springer, Heidelberg, 2004), pp. 258–277

[36] O. Goldreich, R. Ostrovsky. Software protection and simulation on oblivious rams. J. ACM 43(3), 431–
473 (1996)

[37] S. Goldwasser, G.N. Rothblum. Securing computation against continuous leakage, in T. Rabin, editor,
CRYPTO 2010. LNCS, vol. 6223 (Springer, Heidelberg, 2010), pp. 59–79

[38] S. Goldwasser, G.N. Rothblum. How to compute in the presence of leakage, in 53rd FOCS (IEEE
Computer Society Press, 2012), pp. 31–40

[39] J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Calandrino, A.J. Feldman, J.
Appelbaum, E.W. Felten. Lest we remember: cold boot attacks on encryption keys, in USENIX Security
Symposium (2008), pp. 45–60

[40] Y. Ishai, E. Kushilevitz. On the hardness of information-theoretic multiparty computation, in C. Cachin,
J. Camenisch, editors, EUROCRYPT 2004. LNCS, vol. 3027 (Springer, Heidelberg, 2004), pp. 439–455

[41] Y. Ishai, M. Prabhakaran, A. Sahai, D. Wagner. Private circuits II: keeping secrets in tamperable circuits,
in S. Vaudenay, editor, EUROCRYPT 2006. LNCS, vol. 4004 (Springer, Heidelberg, 2006), pp. 308–327

[42] Y. Ishai, A. Sahai, D. Wagner. Private circuits: securing hardware against probing attacks, in D. Boneh,
editor, CRYPTO 2003. LNCS, vol. 2729 (Springer, Heidelberg, 2003), pp. 463–481

[43] A. Juma, Y. Vahlis. Protecting cryptographic keys against continual leakage, in T. Rabin, editor,
CRYPTO 2010. LNCS, vol. 6223 (Springer, Heidelberg, 2010), pp. 41–58

[44] J. Katz, L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes, in 32nd
ACM STOC (ACM Press, 2000), pp. 80–86

[45] J. Katz, M. Yung. Unforgeable encryption and chosen ciphertext secure modes of operation, in B.
Schneier, editor, FSE 2000. LNCS, vol. 1978 (Springer, Heidelberg, 2001), pp. 284–299

[46] A. Kiayias, Y. Tselekounis. Tamper resilient circuits: the adversary at the gates, in K. Sako, P. Sarkar,
editors, ASIACRYPT 2013, Part II. LNCS, vol. 8270 (Springer, Heidelberg, 2013), pp. 161–180

[47] P.C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems, in
N. Koblitz, editor, CRYPTO’96. LNCS, vol. 1109 (Springer, Heidelberg, 1996), pp. 104–113

[48] P.C. Kocher, J. Jaffe, B. Jun. Differential power analysis, in M.J. Wiener, editor, CRYPTO’99. LNCS,
vol. 1666 (Springer, Heidelberg, 1999), pp. 388–397

[49] D. Lie, C.A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J.C. Mitchell, M. Horowitz. Architectural
support for copy and tamper resistant software, in ASPLOS (2000), pp. 168–177

[50] F.-H. Liu, A. Lysyanskaya. Tamper and leakage resilience in the split-state model, in R. Safavi-Naini,
R. Canetti, editors, CRYPTO 2012. LNCS, vol. 7417 (Springer, Heidelberg, 2012), pp. 517–532

[51] S. Micali, L. Reyzin. Physically observable cryptography (extended abstract), in M. Naor, editor,
TCC 2004. LNCS, vol. 2951 (Springer, Heidelberg, 2004), pp. 278–296

[52] K. Pietrzak. A leakage-resilient mode of operation, in A. Joux, editor, EUROCRYPT 2009. LNCS, vol.
5479 (Springer, Heidelberg, 2009), pp. 462–482

[53] T. Ristenpart, E. Tromer, H. Shacham, S. Savage. Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds, in E. Al-Shaer, S. Jha, A.D. Keromytis, editors, ACM CCS 09
(ACM Press, 2009), pp. 199–212

[54] G.N. Rothblum. How to compute under AC0 leakage without secure hardware, in R. Safavi-Naini, R.
Canetti, editors, CRYPTO 2012. LNCS, vol. 7417 (Springer, Heidelberg, 2012), pp. 552–569

[55] G.E. Suh, D.E. Clarke, B. Gassend, M. van Dijk, S. Devadas. AEGIS: architecture for tamper-evident
and tamper-resistant processing, in Proceedings of the 17th Annual International Conference on Super-
computing, ICS 2003 (2003), pp. 160–171

[56] A. Vasudevan, J.M. McCune, J. Newsome, A. Perrig, L. van Doorn. CARMA: a hardware tamper-
resistant isolated execution environment on commodity x86 platforms, in H. Youl Youm,Y.Won, editors,
ASIACCS 12 (ACM Press, 2012), pp. 48–49

Locally Decodable and Updatable Non-malleable Codes

[57] S. Yekhanin. Locally decodable codes. Found. Trends Theor. Comput. Sci. 6(3), 139–255 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s00145-018-9286-z
J Cryptol

Leakage Resilience from Program Obfuscation
Dana Dachman-Soled∗

University of Maryland, College Park, USA
danadach@ece.umd.edu

S. Dov Gordon†
George Mason University, Fairfax, USA

crypto@dovgordon.com

Feng-Hao Liu‡
Florida Atlantic University, Boca Raton, USA

fenghao.liu@fau.edu

Adam O’Neill
Georgetown University, Washington, DC, USA

adam@cs.georgetown.edu

Hong-Sheng Zhou
Virginia Commonwealth University, Richmond, USA

hszhou@vcu.edu

Communicated by Tal Rabin.

Received 23 August 2016 / Revised 3 March 2018

Abstract. The literature on leakage-resilient cryptography contains various leakage
models that provide different levels of security. In the bounded leakagemodel (Akavia et
al.—TCC2009), it is assumed that there is afixedupper bound L on thenumber of bits the
attacker may leak on the secret key in the entire lifetime of the scheme. Alternatively,
in the continual leakage model (Brakerski et al.—FOCS 2010, Dodis et al.—FOCS
2010), the lifetime of a cryptographic scheme is divided into “time periods” between
which the scheme’s secret key is updated. Furthermore, in its attack the adversary is
allowed to obtain some bounded amount of leakage on the current secret key during each
time period. In the continual leakage model, a challenging problem has been to provide
security against leakage on key updates, that is, leakage that is a function of not only
the current secret key but also the randomness used to update it. We propose a modular

∗Thisworkwas done in partwhile the authorwas visiting the Simons Institute for the Theory ofComputing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through
NSF Grant #CNS-1523467. This work was supported in part by NSF CAREER Award #CNS-1453045 and
by a Ralph E. Powe Junior Faculty Enhancement Award.

†This work was done in part when the author was a research scientist at Applied Communication Sciences.
‡This work was done in part when the author was a postdoc at the University of Maryland. Partial effort

of the work is supported by the NSF Award #CNS-1657040.

© International Association for Cryptologic Research 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-018-9286-z&domain=pdf

D. Dachman-Soled et al.

approach to overcome this problem based on program obfuscation. Namely, we present
a compiler that transforms any public key encryption or signature scheme that achieves a
slight strengthening of continual leakage resilience, whichwe call consecutive continual
leakage resilience, to one that is continual leakage resilient with leakage on key updates,
assuming indistinguishability obfuscation (Barak et al.—CRYPTO 2001, Garg et al.—
FOCS 2013). Under stronger forms of obfuscation, the leakage rate tolerated by our
compiled scheme is essentially as good as that of the starting scheme. Our compiler
is derived by making a connection between the problems of leakage on key updates
and so-called sender-deniable encryption (Canetti et al.—CRYPTO 1997), which was
recently constructed based on indistinguishability obfuscation by Sahai and Waters
(STOC 2014). In the bounded leakage model, we give an approach to constructing
leakage-resilient public key encryption from program obfuscation based on the public
key encryption scheme of Sahai and Waters (STOC 2014). In particular, we achieve
leakage-resilient public key encryption tolerating L bits of leakage for any L from
iO and one-way functions. We build on this to achieve leakage-resilient public key
encryption with optimal leakage rate of 1− o(1) based on stronger forms of obfuscation
and collision-resistant hash functions. Such a leakage rate is not known to be achievable
in a generic way based on public key encryption alone. We then develop additional
techniques to construct public key encryption that is (consecutive) continual leakage
resilient under appropriate assumptions, which we believe is of independent interest.

Keywords. Indistinguishability obfuscation, Leakage resilience, Public key encryp-
tion, Digital signatures.

1. Introduction

1.1. Background and Motivation

In recent years, researchers have uncovered a variety of ways to capture crypto-
graphic keys through side-channel attacks: physical measurements, such as execution
time, power consumption, and even sound waves generated by the processor. This has
prompted cryptographers to build models for these attacks and to construct leakage-
resilient schemes that remain secure in the face of such attacks. Of course, if the adver-
sary can leak the entire secret key, security becomes impossible, and so the “bounded”
leakage model was introduced (cf. [2,11,39,46]). Here, it is assumed that there is a fixed
upper bound, L on the number of bits the attacker may leak, regardless of the param-
eters of the scheme, or, alternatively, it is assumed that the attacker is allowed to leak
L = λ · |sk| total number of bits, where the amount of leakage increases as the size of
the secret key increases. Various works constructed public key encryption and signature
schemes with optimal leakage rate of λ = 1 − o(1), from specific assumptions (cf.
[11,46]). Hazay et al. [35] even constructed a leakage-resilient public key encryption
scheme in this model assuming only the existence of standard public key encryption,
although the leakage rate achieved by their scheme was not optimal.1

1In the construction of Hazay et al. [35], the secret key of the constructed scheme consists of n secret keys
of the underlying public key encryption scheme, where each underlying secret key is randomly selected from
a set of size m and m is polynomial in security parameter. The total amount of leakage that can be tolerated
is approximately n log(m) bits. Thus, the leakage rate is n log(m)

n·s ∈ Θ(
log(m)

s), where s denotes the length of
the secret key of the underlying scheme.

Leakage Resilience from Program Obfuscation

Surprisingly, it is possible to do better; a strengthening of the model—the “continual”
leakage model2—allows the adversary to request unbounded leakage. This model was
introduced by Brakerski et al. [12]—who constructed continual leakage-resilient (CLR)
public key encryption and signature schemes—and Dodis et al. [21]—who constructed
CLR signature schemes. Intuitively, the CLR model divides the lifetime of the attack,
which may be unbounded, into time periods and: (1) allows the adversary to obtain the
output of a “bounded” leakage function in each time period and (2) allows the secret key
(but not the public key!) to be updated between time periods. So, while the adversary’s
leakage in each round is bounded, the total leakage is unbounded.
Note that the algorithm used by any CLR scheme to update the current secret key to

the next one must be randomized, since otherwise the adversary can obtain some future
secret key, bit by bit, via its leakage in each time period. While the CLR schemes of
[12,21] were able to tolerate a 1− o(1) leakage rate, handling leakage during the update
procedure itself—that is, produced as a function of the randomness used by the update
algorithm as well as the current secret key—proved to be much more challenging. The
first substantial progress on this problem of “leakage on key updates” was made by
Lewko et al. [43], with their techniques being considerably refined and generalized by
Dodis et al. [24]. In particular, they give encryption and signature schemes that are CLR
with leakage on key updates tolerating a constant leakage rate, using “dual-system”
techniques (cf. [48]) in bilinear groups.

1.2. Overview of Our Results

Our first main contribution is to show how to compile any public key encryption or sig-
nature scheme that satisfies a slight strengthening of CLR (which we call “consecutive”
CLR or 2CLR) without leakage on key updates to one that is CLR with leakage on key
updates. Our compiler is based on a new connection we make between the problems
of leakage on key updates and “sender deniability” [13] for encryption schemes. In
particular, our compiler uses program obfuscation—either indistinguishability obfusca-
tion (iO) [5,29] or the public-coin differing-inputs obfuscation (diO) [37]3—and adapts
and extends techniques recently developed by Sahai and Waters [47] to achieve sender-
deniable encryption. This demonstrates the applicability of the techniques of [47] to
other seemingly unrelated contexts.4 We then show that the existing CLR encryption
scheme of Brakerski et al. [12] can be extended to meet the stronger notion of 2CLR
that we require for our compiler. Additionally, we show all our results carry over to
signatures as well. In particular, we show that 2CLR PKE implies 2CLR signatures (via

2Here “continual” refers to the fact that the total amount of leakage obtained by the adversary is unbounded.
Additionally, themodel ismore accurately called the continualmemory leakagemodel to contrastwith schemes
constructed under an assumption that “only computation leaks” [45].

3To the best of our knowledge, no impossibility results are known for public-coin differing-inputs obfus-
cation. Indeed, the impossibility results of Garg et al. [30] do not apply to this setting. In either case, current
constructions rely on multilinear maps, whose first candidate construction was given by [28].

4We note that the techniques of [47] have been shown useful in adaptively secure two-party and multiparty
computation [14,18,31] and “only computation leaks” (OCL) circuits without trusted hardware [19]. We note
that this work precedes the work of [18].

D. Dachman-Soled et al.

the intermediate notion of CLR “one-way relations” of Dodis et al. [21]), and observe
that our compiler also upgrades 2CLR signatures to ones that are CLR with leakage on
updates.
Our second main contribution concerns constructions of leakage-resilient public key

encryption directly from obfuscation. In particular, we show that the approach of Sahai
and Waters to achieve public key encryption from iO and punctured pseudorandom
functions [47] can be extended to achieve leakage resilience in the bounded leakage
model. Specifically, we achieve (1) leakage-resilient public key encryption tolerating L
bits of leakage for any L from iO and one-way functions, (2) leakage-resilient public
key encryption with optimal leakage rate of 1 − o(1) based on public-coin differing-
inputs obfuscation and collision-resistant hash functions, and (3) (consecutive) CLR
public key encryption with constant (although not optimal, on the order of one over
several hundred) leakage rate from differing-inputs obfuscation (not public coin) and
standard assumptions. Extending the construction from (2) to achieve continual leakage
resilience, without these additional assumptions, is an interesting open problem.

1.3. Summary and Perspective

In summary, we provide a thorough study of the connection between program obfus-
cation and leakage resilience. We define a new notion of leakage resilience (2CLR)
and demonstrate new constructions of 2CLR-secure encryption and signature schemes
from program obfuscation. Also using program obfuscation, we construct a compiler
that lifts 2CLR-secure schemes to CLR with leakage on key updates; together with our
new constructions, this provides a unified and modular method for constructing CLR
with leakage on key updates. Under appropriate assumptions (namely the ones used by
Brakerski et al. [12] in their construction), this approach allows us to achieve a leakage
rate of 1/4 − o(1) with leakage on key updates, a large improvement over prior work,
where the best leakage rate was 1/258 − o(1) [43]. Our result nearly matches the trivial
upper bound of 1/2 − o(1).5 In the bounded leakage model, we show that it is possible
to achieve optimal-rate leakage-resilient public key encryption from obfuscation and
generic assumptions.
Comparing our results in the bounded leakage model with the work of Hazay et al.

[35], we have (1) leakage-resilient public key encryption tolerating L bits of leakage
from iO and one-way functions and (2) leakage-resilient public key encryption with
optimal leakage rate based on public-coin differing-inputs obfuscation and collision-
resistant hash functions. As we mentioned above, Hazay et al. [35] constructed bounded
leakage-resilient public key encryption in the bounded leakage model from a far weaker
generic assumption (they require only standard public key encryption). Moreover, the
leakage rate of Hazay et al. [35] is far better than the leakage rate we achieve in (1), since
in our iO-based construction, the secret key consists of an entire obfuscated program,

5Unlike the case of CLRwithout leakage on key updates, observe that any scheme that is CLRwith leakage
on key updates can leak at most 1/2 · |sk|-bits per time period, since otherwise the adversary can recover
an entire secret key. As a consequence, the optimal leakage rate for a scheme that is CLR with leakage on
key updates is at most 1/2·|sk|

|sk|+|rup | < 1/2, where |sk| is the secret key length and |rup | is the length of the

randomness needed by the update algorithm.

Leakage Resilience from Program Obfuscation

which will be extremely large. Thus, the work of Hazay et al. [35] completely subsumes
(1). On the other hand, the leakage rate we achieve in (2) is optimal and so in this case,
our leakage rate improves upon the rate of Hazay et al. [35], though we require the far
stronger assumption of public-coin differing-inputs obfuscation for our result.
Finally, we discuss our result in the continuous leakage model on (3) (consecutive)

CLR public key encryption with constant leakage rate from differing-inputs obfuscation
and standard assumptions. When instantiating our construction in (3), the assumptions
and parameters achieved are inferior to those of the Brakerski et al. [12] scheme (which
we adapt to our setting). Our intention in (3) is therefore to explorewhat can be done from
generic assumptions, ideally showing that (consecutive) CLR public key encryption can
be constructed from any PKE scheme and diO. Unfortunately, we fall somewhat short,
requiring that the underlying encryption scheme posses various additional properties.
Given the above discussion, we feel that the main value of our results in the bounded

leakagemodel is that they provide direct insight into the connection between obfuscation
and leakage resilience. We are also hopeful that our techniques in the continual model
might lead to future improvements in rate as well as a better understanding of the
relationship between obfuscation and continual leakage resilience.

1.4. Details and Techniques

Part I: The Leak-on-Update Compiler. As described above, in the model of continual
leakage resilience (CLR) [12,21] for public key encryption or signature schemes, the
secret key can be updated periodically (according to some algorithm Update) and the
adversary can obtain bounded leakage between any two updates. Our compiler applies
to schemes that satisfy a slight strengthening of CLR we call consecutive CLR, where
the adversary can obtain bounded leakage as a joint function of any two consecutive
keys. More formally, let sk0, sk1, sk2, . . . , skt , . . . be the secret keys at each time
period, where ski = Update(ski− 1, ri), and each ri denotes fresh random coins used
at that round. For leakage functions f1, . . . , ft , . . . (chosen adaptively by the adversary),
consider the following two leakage models:

(1) For consecutive CLR (2CLR), the adversary obtains leakage

f1(sk0, sk1), f2(sk1, sk2), . . . , ft (skt− 1, skt),

(2) For CLR with leakage on key updates, the adversary obtains leakage

f1(sk0, r1), f2(sk1, r2), . . . , ft (skt− 1, rt),

Our compiler from 2CLR to CLR with leakage on key updates produces a slightly
different Update algorithm for the compiled scheme depending on whether we assume
indistinguishability obfuscation (iO) [5,29] or public-coin differing-inputs obfuscation
[37]. In both cases, if we start with an underlying scheme that is consecutive two-key
CLR while allowing µ-bits of leakage, then our compiled scheme is CLR with leakage
on key updates with leakage rate

µ

|sk| + |rup|
,

D. Dachman-Soled et al.

where |rup| is the length of the randomness required by Update. When using iO, we
obtain |rup| = 5|sk|, where |sk| is the secret key length for the underlying 2CLR scheme,
whereas using public-coin differing-inputs obfuscation we obtain |rup| = |sk|. Thus:
– Assuming iO, the compiled scheme is CLR with leakage on key updates with
leakage rate µ

6·|sk| .
– Assuming public-coin differing-inputs obfuscation, the compiled scheme is CLR
with leakage on key updates with leakage rate µ

2·|sk| .

Thus, if the underlying 2CLR scheme tolerates the optimal number of bits of leakage
(≈ 1/2 · |sk|), then our resulting public-coin differing-inputs-based scheme achieves
leakage rate 1/4 − o(1).

Our compiler is obtained by adapting and extending the techniques developed by
[47] to achieve sender-deniable PKE from any PKE scheme. In sender-deniable PKE,
a sender, given a ciphertext and any message, is able to produce coins that make it
appear that the ciphertext is an encryption of that message. Intuitively, the connection
we make to leakage on key updates is that the simulator in the security proof faces a
similar predicament to the coerced sender in the case of deniable encryption; it needs
to come up with some randomness that “explains” a current secret key as the update of
an old one. Our compiler makes any two such keys explainable in a way that is similar
to how Sahai and Waters make any ciphertext and message explainable. Intuitively, this
is done by “encoding” a secret key in the explained randomness in a special way that
can be detected only by the (obfuscated)Update algorithm. Once detected, theUpdate
algorithm outputs the encoded secret key, instead of running the normal procedure.
However, in our context, naïvely applying their techniques would result in the ran-

domness required by ourUpdate algorithm being very long, which, as described above,
affects the leakage rate of our resulting CLR scheme with leakage on key updates in a
crucial way (we would not even be able to get a constant leakage rate). We decrease the
length of this randomness in two steps. First, we note that the sender-deniable encryption
scheme of Sahai and Waters encrypts a message bit by bit and “explains” each message
bit individually. This appears to be necessary in their context in order to allow the adver-
sary to choose its challenge messages adaptively depending on the public key. For our
setting, this is not the case, since the secret key is chosen honestly (not by the adver-
sary), so “non-adaptive” security is in fact sufficient in our context and we can “explain”
a secret key all at once. This gets us to |rup| = 5 · |sk| and thus 1/12 − o(1) leakage
rate assuming the underlying 2CLR scheme can tolerate the optimal leakage. Second,
we observe that by switching assumptions from iO to the public-coin differing-inputs
obfuscation we can replace some instances of sk in the explained randomness with its
value under a collision-resistant hash, which gets us to |rup| = sk and thus 1/4 − o(1)
leakage rate in this case.
A natural question is whether the upper bound of 1/2 − o(1) leakage rate for CLR

with leakage on key updates, can be attained via our techniques (if at all). We leave this
as an intriguing open question, but note that the only way to do so would be to further
decrease |rup| so that |rup| < |sk|.
Part II: Constructions against Two-key Consecutive Continual Leakage. We revisit

the existing CLR public key encryption scheme of [12] and show that a suitable mod-

Leakage Resilience from Program Obfuscation

ification of it achieves 2CLR6 with optimal 1/4 − o(1) leakage rate,7 under the same
assumption used by [12] to achieve optimal leakage rate in the basic CLR setting (namely
the symmetric external Diffie–Hellman (SXDH) assumption in bilinear groups; smaller
leakage rates can be obtained under weaker assumptions). Our main technical tool here
is a new generalization of the Crooked Leftover Hash Lemma [6,26] that generalizes the
result of [12], which shows that “random subspaces are leakage resilient,” showing that
random subspaces are in fact resilient to “consecutive leakage.” Our claim also leads to
a simpler analysis of the scheme than appears in [12].
Finally, we also show (via techniques from learning theory) that 2CLR public key

encryption generically implies 2CLR one-way relations. Via a transformation of Dodis
et al. [21], this then yields 2CLR signatures with the same leakage rate as the starting
encryption scheme. Therefore, all the above results translate to the signature setting as
well. We also show a direct approach to constructing 2CLR one-way relations following
[21] based on the SXDH assumption in bilinear groups, although we are not able to
achieve as good of a leakage rate this way (only 1/8 − o(1)).

Part III: Exploring the relationship between (bounded and continual) leakage
resilience and obfuscation. Note that, interestingly, even the strong notion of virtual
black-box (VBB) obfuscation does not immediately lead to constructions of leakage-
resilient public key encryption. In particular, if we replace the secret key of a public key
encryption scheme with a VBB obfuscation of the decryption algorithm, it is not clear
that we gain anything: For example, the VBB obfuscation may output a circuit of size
|C |, where only √|C | number of the gates are “meaningful” and the remaining gates are
simply “dummy” gates, in which case we cannot hope to get a leakage bound better than
L = √|C |, and a leakage rate of 1/√|C |. Nevertheless, we are able to show that the PKE
scheme of Sahai and Waters (SW) [47], which is built from iO and “punctured pseudo-
random functions (PRFs),” can naturally be made leakage resilient. To give some brief
intuition, a ciphertext in our construction is of the form (r, w,Ext(PRF(k; r), w)⊕m),
where Ext is a strong extractor, r and w are random values,8 and the PRF key k is
embedded in obfuscated programs that are used in both encryption and decryption. In
the security proof, we “puncture” the key k at the challenge point, t∗, and hardcode the
mapping t∗ → y, where y = PRF(k; t∗), in order to preserve the input/output behav-
ior. As in SW, we switch the mapping to t∗ → y∗ for a random y∗ via security of the
puncturable PRF. But now observe we have that the min-entropy of y∗ is high even after
leakage, so the output of the extractor is close to uniform. To achieve optimal leakage
rate, we further modify the scheme to separate t∗ → y∗ from the obfuscated program
and store only an encryption of t∗ → y∗ in the secret key.
Note that the last change lends itself to achieving (consecutive) CLR, since the secret

key can be refreshed by re-randomizing the encryption. However, the information theo-

6Note that [12] also constructs such a signature scheme, but, as discussed below, such a signature scheme
can in fact be generically obtained, and therefore, for simplicity we do not consider their direct construction
here.

7In the 2CLR model, the maximum amount of leakage is roughly 1/2 · |sk|, so the optimal rate is roughly
1/2·|sk|
|sk|+|sk| = 1/4.

8Technically, we actually use pseudorandom value r , just as SW do. We omit this here to make the
explanation a little more clear.

D. Dachman-Soled et al.

retic argument above about the entropy remaining in y∗ no longer holds, since additional
entropy is lost in every round, and, eventually, y∗ might be recovered in full. To address
this issue, wemust prevent the attacker from directly leaking on y∗ in each round. Instead
of embedding an encryption of t∗ → y∗ in the secret key, we embed an encryption of
a tuple (si ,αi , H(t∗)) → y∗ using a fresh si in each round i , subject to the constraint
that αi = ⟨si , t∗⟩. In order to determine whether to output y∗ on some input t , our
obfuscated circuit decrypts and checks whether H(t∗) = H(t) ∧ ⟨si , t⟩ = αi , where
H is a collision-resistant hash function. We rely on the following facts to ensure that
y∗ remains indistinguishable from random given the adversary’s view: a) the adversary
must form his leakage queries before learning t∗, b) very little information about t∗ is
contained in the secret key, and c) due to the previous facts, and since the inner product
is a good two-source extractor, ⟨si , t∗⟩ remains very close to uniform, even under the
leakage. It follows that we can switch, even under leakage, to a random α∗, uncorrelated
with si , t∗. Since it is now hard to find inputs satisfying H(t∗) = H(t) ∧ ⟨si , t⟩ = α∗,
we can, using security of the diO, ignore this conditional statement and replace y∗, with
a 0 string in the secret key, while still using y∗ in the challenge ciphertext.

In the above discussion, we omitted some additional technical challenges due to lack
of space. Most notably, we also require that the encryption scheme used for encrypt-
ing the tuple in the secret key satisfies a notion of “diO-compatible RCCA-secure re-
randomizability,” which we introduce (see Sect. A.2), and show that the “controlled-
malleable” RCCA-secure PKE due to Chase et al. [17] based on the Decision-Linear
assumption in bilinear groups schemes satisfies it, giving us a constant leakage rate for
our (2)CLR scheme. For an in-depth technical overview and complete proof, see Sect. A.

1.5. Related Work

Leakage-Resilient Cryptography. We discuss various types of memory leakage attacks
that have been studied in the literature. Memory attacks are a strong type of attack,
where all secrets in memory are subject to leakage, whether or not they are actively
being computed on. Memory leakage attacks are motivated by the cold-boot attack of
Halderman et al. [34], who showed that for some time after power is shut down, partial
data canbe recovered from randomaccessmemory (DRAMandSRAM).Akavia et al. [2]
introduced themodel of boundedmemory attacks, where arbitrary leakage onmemory is
allowed, as long as the output size of the leakage function is bounded. Additional models
introduced by [16,27] and [23] allow unbounded-length noisy leakage, unbounded-
length leakage under restricted leakage functions, or unbounded-length hard-to-invert
leakage, respectively. The works of [12] and [21] introduced the notion of “continual
memory leakage” for public key primitives where the secret key is updated while the
public key remains the same. This model allows bounded memory leakage between key
refreshes. Finally, [12,21,24,43] considered the model of continual memory leakage
with leak on update, where leakage can occur while the secret key is being updated.
In this work, we consider bounded memory attacks, continual memory leakage and
continual memory leakage with leak on update.

Leakage Resilience from Program Obfuscation

There is a long line of constructions of leakage-resilient cryptographic primitives,
including public key encryption that are leakage resilient (LR) against bounded memory
attacks [2,46]; public key encryption that is continual leakage resilient (CLR) without
leak on update [12]; public key encryption that is CLR with leak on update [43]; digital
signature schemes that are leakage resilient (LR) against bounded memory attacks [39];
digital signature schemes that are LR against bounded memory attacks on both secret
key and random coins for signing [11,39,44]; digital signature schemes that are CLR
without leak on update [21]; digital signature schemes that are CLR with leak on update
[43].
Obfuscation and Its Applications. Since the breakthrough result of Garg et al. [29],

demonstrating the first candidate of indistinguishability obfuscation (iO) for all circuits,
a myriad of uses for iO in cryptography have been found. Among these results, the
puncturing methodology by Sahai and Waters [47] has been found very useful. Related
notions such as differing-inputs obfuscation (diO) [4] have been studied [3,9,37]. Please
refer to [49,50] for new constructions, applications, and limitations of obfuscation.

1.6. Organization

We present definitions and preliminaries in Sect. 2. In Sect. 3, we present our compiler
from 2CLR public key encryption/signatures to CLR public key encryption/signatures
with leakage on key update. In Sect. 4, we prove that the public key encryption scheme
of Brakerski et al. [12] achieves 2CLR. In Sect. 5, we present constructions of leakage-
resilient public key encryption (in the non-continual setting) from obfuscation and
generic assumptions. In Sect. 6, we define 2CLR security for one-way relations and
prove that the construction of Dodis et al. [21] achieves the 2CLR notion. In Sect. 7,
we present a construction of 2CLR signatures from 2CLR one-way relations. Finally, in
Appendix A, we address the question of constructing 2CLR public key encryption from
obfuscation and generic assumptions.

2. Definitions and Preliminaries

Statistical Indistinguishability. The statistical distance between two random variables
X,Y is defined by

∆(X,Y) = 1
2

∑

x

|Pr[X = x] − Pr[Y = x]|

We write X
s≈ Y to denote that the statistical distance is negligible in the security

parameter, and we say that X, Y are statistically indistinguishable.

2.1. Security Definitions for Leakage-Resilient Public Key Encryption

In this subsection, we present the definitions of various leakage-resilient public key
encryption schemes. These definitions are from the literature. In Subsect. 2.2, we present

D. Dachman-Soled et al.

the definitions for leakage-resilient signature schemes. Jumping ahead, in Subsect. 3.1,
we start to present our new definition for consecutive continual leakage resilience
(2CLR).
We present definitions for obfuscation and puncturable PRFs in Subsects. 2.3 and 2.4.

2.1.1. One-Time Leakage Model

Apublic key encryption schemePKE consists of three algorithms:PKE.Gen,PKE.Enc,
and PKE.Dec.

– PKE.Gen(1κ) → (pk, sk). The key generation algorithm takes in the security
parameter κ and outputs a public key pk and a secret key sk.

– PKE.Enc(pk,m) → c. The encryption algorithm takes in a public key pk and a
message m. It outputs a ciphertext c.

– PKE.Dec(sk, c) → m. The decryption algorithm takes in a ciphertext c and a
secret key sk. It outputs a message m.

Correctness. The PKE scheme satisfies correctness if PKE.Dec(sk, c) = m with all
but negligible probability whenever (pk, sk) is produced byPKE.Gen and c is produced
by PKE.Enc(pk,m).

Security. We define one-time leakage-resilient security for PKE schemes in terms of
the following game between a challenger and an attacker. (This extends the usual notion
of semantic security to our leakage setting.) We let κ denote the security parameter, and
the parameter µ controls the amount of leakage allowed.

Setup Phase. The game begins with a setup phase. The challenger calls
PKE.Gen(1κ) to create the initial secret key sk and public key
pk. It gives pk to the attacker. No leakage is allowed in this phase.

Query Phase. The attacker specifies an efficiently computable leakage function
f , whose output is at most µ bits. The challenger returns f (sk) to
the attacker. We sometimes refer to the challenger as a stateful,
“leakage oracle,” denotedO, during the query phase of the security
experiment.

Challenge Phase. The attacker chooses two messages m0,m1 which it gives to
the challenger. The challenger chooses a random bit b ∈ {0, 1},
encryptsmb, and gives the resulting ciphertext to the attacker. The
attacker then outputs a guess b′ for b. The attacker wins the game
if b = b′. We define the advantage of the attacker in this game as
| 12 − Pr[b′ = b]|.

Definition 1. (One-time Leakage Resilience) We say a public key encryption scheme
is µ-leakage resilient against one-time key leakage if any probabilistic polynomial-time
attacker only has a negligible advantage (negligible in κ) in the above game.

2.1.2. Continual Leakage Model

In the continual leakage setting, we require an additional algorithmPKE.Updatewhich
updates the secret key. Specifically, the update algorithm takes in a secret key ski− 1
and some randomness ri , and produces a new secret key ski for the same public key.

Leakage Resilience from Program Obfuscation

Thus, scheme PKE consists of four algorithms: PKE.Gen,PKE.Enc,PKE.Dec, and
PKE.Update.

– PKE.Gen(1κ) → (pk, sk0). The key generation algorithm takes in the security
parameter and outputs a public key pk and a secret key sk0.

– PKE.Enc(pk,m) → c. The encryption algorithm takes in a public key pk and a
message m. It outputs a ciphertext c.

– PKE.Dec(ski , c) → m. The decryption algorithm takes in a ciphertext c and a
secret key ski . It outputs a message m.

– PKE.Update(ski− 1) → ski . The update algorithm takes in a secret key ski− 1 and
produces a new secret key ski for the same public key. Here some randomness ri
is used in the update algorithm.

Correctness. The PKE scheme satisfies correctness if PKE.Dec(ski , c) = m with
all but negligible probability whenever pk and sk are produced by PKE.Gen, ski is
obtained by calls to PKE.Update on previously obtained secret keys (starting with
sk0), and c is produced by PKE.Enc(pk,m).

Security.We define continual leakage-resilient security for PKE schemes in terms of
the following game between a challenger and an attacker. (This extends the usual notion
of semantic security to our leakage setting.) We let κ denote the security parameter, and
the parameter µ controls the amount of leakage allowed.

Setup Phase. The game begins with a setup phase. The challenger calls
PKE.Gen(1κ) to create the initial secret key sk0 and public key
pk. It gives pk to the attacker. No leakage is allowed in this phase.

Query Phase. In this phase, the attacker launches a polynomial number of leak-
age queries. Each time, say in the i th query, the attacker provides
an efficiently computable leakage function fi whose output is at
most µ bits, and the challenger chooses randomness ri , updates
the secret key from ski− 1 to ski , and gives the attacker the leakage
response ℓi . In the regular continual leakage model, the leakage
attack is applied on a single secret key, and the leakage response
ℓi = fi (ski− 1). In the continual leak-on-update model, the leak-
age attack is applied on the current secret key and the randomness
used for updating the secret key, i.e., ℓi = fi (ski− 1, ri). We some-
times refer to the challenger as a stateful, “leakage oracle,” denoted
O, during the query phase of the security experiment.

Challenge Phase. The attacker chooses two messages m0 and m1 which it gives to
the challenger. The challenger chooses a random bit b ∈ {0, 1},
encryptsmb, and gives the resulting ciphertext to the attacker. The
attacker then outputs a guess b′ for b. The attacker wins the game
if b = b′. We define the advantage of the attacker in this game as
| 12 − Pr[b′ = b]|.

Definition 2. (Continual Leakage Resilience) We say a public key encryption scheme
is µ-CLR secure (respectively, µ-CLR secure with leakage on key updates) if any ppt
attacker only has a negligible advantage (negligible in κ) in the above game.

D. Dachman-Soled et al.

2.2. Leakage-Resilient Signatures

A digital signature scheme SIG consists of three algorithms: SIG.Gen,SIG.Sign,
and SIG.Verify. In the continual leakage setting, we require an additional algorithm
SIG.Update which updates the secret keys. Note that the verification key remains
unchanged.

– SIG.Gen(1κ) → (vk, sk0). The key generation algorithm takes in the security
parameter κ , and outputs a secret key sk0 and a public verification key vk.

– SIG.Sign(m, ski) → σ . The signing algorithm takes in a message m and a secret
key ski , and outputs a signature σ .

– SIG.Verify(vk, σ,m) → {0, 1}. The verification algorithm takes in the verification
key vk, a signature σ , and a message m. It outputs either 0 or 1.

– SIG.Update(ski− 1) → ski . The update algorithm takes in a secret key ski− 1 and
produces a new secret key ski for the same verification key.

Correctness. The signature scheme satisfies correctness if SIG.Verify(vk, σ,m)

outputs 1 whenever vk, sk0 is produced by SIG.Gen, and σ is produced by
SIG.Sign(m, ski) for some ski obtained by calls to SIG.Update, starting with sk0.
(If the verification algorithm is randomized, we may relax this requirement to hold with
all but negligible probability.)
Security.We define continual leakage security for signatures in terms of the following

game between a challenger and an attacker. (This extends the usual notion of existential
unforgeability to our leakage setting.) The game is parameterized by two values: the
security parameter κ , and the parameterµwhich controls the amount of leakage allowed.
For the sake of simplicity,we assume that the signing algorithmcalls the update algorithm
on each invocation. Since updates in our scheme do occur with each signature, we find
it more convenient to work with the simplified definition given below.

Setup Phase The game beginswith a setup phase. The challenger callsGen(1κ)

to create the signing key, sk0, and the verification key, vk. It gives
vk to the attacker. No leakage is allowed in this phase.

Query Phase. In this phase, the attacker launches a polynomial number of sign-
ing queries and leakage queries. Each time, say in the i th query,
the attacker specifies a message mi and provides an efficiently
computable leakage function fi whose output is at most µ bits,
and the challenger chooses randomness ri , updates the secret key
from ski− 1 to ski , and gives the attacker the corresponding sig-
nature for message mi as well as the leakage response ℓi . In the
CLR model, the leakage attack is applied on a single secret key,
and the leakage response ℓi = fi (ski− 1). In the CLR with leak-
age on key updates, the leakage attack is applied on the current
secret key and the randomness used for updating the secret key,
i.e., ℓi = fi (ski− 1, ri).

Forgery Phase The attacker gives the challenger a message, m∗, and a signature
σ ∗ such that m∗ has not been previously queried. The attacker
wins the game if (m∗, σ ∗) passes the verification algorithm using
vk.

Leakage Resilience from Program Obfuscation

Definition 3. (Continual Leakage Resilience) We say a Digital Signature scheme is
µ-CLR secure (respectively, µ-CLR secure with leakage on key updates) if any ppt
attacker only has a negligible advantage (negligible in κ) in the above game.

2.3. Obfuscation

Indistinguishability Obfuscation. A uniform ppt machine iO is called an indistinguish-
able obfucastor [4,5,29,33], for a circuit family {Cκ}, if the following conditions hold:

– (Correctness) For all κ ∈ N, for all C ∈ Cκ , for all inputs x , we have

Pr
[
C ′(x) = C(x) : C ′ ← iO(κ,C)

]
= 1

– For any uniform or non-uniform ppt distinguisher D, for all security parameter
κ ∈ N, for all pairs of circuits C0,C1 ∈ Cκ such that C0(x) = C1(x) for all inputs
x , then

∣∣Pr
[
D(iO(κ,C0)) = 1

]
− Pr
[
D(iO(κ,C1)) = 1

]∣∣ ≤ negl(κ)

For simplicity, when the security parameter κ is clear, we write iO(C) in short.
Public-Coin Differing-inputs Obfuscation for Circuits. Barak et al. [4,5] defined the

notion of differing-inputs obfuscation, which was later re-formulated in the works of
Ananth et al. and Boyle et. al [3,9]. In our work, we use aweaker notion known as public-
coin differing-inputs obfuscation, due to Ishai et al. [37]. To the best of our knowledge,
unlike the case of differing-inputs obfuscation, there are no impossibility results for
public-coin differing-inputs obfuscation. Below, we closely follow the definitions pre-
sented in [37].

Definition 4. (Public-Coin Differing-Inputs Sampler for Circuits) An efficient non-
uniform sampling algorithm Samp = {Sampκ} is called a public-coin differing-inputs
sampler for the parameterized collection of circuits C = {Cκ} if the output of Sampκ is
distributed over Cκ × Cκ and for every efficient non-uniform algorithmA = {Aκ} there
exists negligible function negl such that for all κ ∈ N:

Pr
r
[C0(x) ̸= C1(x) : (C0,C1) ← Sampκ(r), x ← Aκ(r)] ≤ negl(κ).

Note that in the above definition the sampler and attacker circuits both receive the
same random coins as input.

Definition 5. (Public-Coin Differing-inputs Obfuscator for Circuits) A uniform ppt
machine diO is called a public-coin differing-inputs obfuscator for the parameterized
collection of circuits C = {Cκ} if the following conditions are satisfied:

– (Correctness): For all security parameter κ , all C ∈ Cκ , all inputs x , we have

Pr[C ′(x) = C(x) : C ′ ← diO(κ,C)] = 1.

D. Dachman-Soled et al.

– (Differing-inputs): For every public-coin differing-inputs samplers Samp =
{Sampκ} for the collection C, for every (not necessarily uniform) ppt distinguisher
D, there exists a negligible function negl such that for all security parameters κ:

∣∣∣∣
Pr[Dκ(r,C ′) = 1 : (C0,C1) ← Sampκ(r),C

′ ← diO(κ,C0)]−
Pr[Dκ(r,C ′) = 1 : (C0,C1) ← Sampκ(r),C

′ ← diO(κ,C1)]

∣∣∣∣

≤ negl(κ),

where the probability is taken over r and the coins of diO.

2.4. Puncturable Pseudorandom Functions

Puncturable family of PRFs are a special case of constrained PRFs [8,10,41], where the
PRF is defined on all input strings except for a set of size polynomial in the security
parameter. Below we recall their definition, as given by [47].
A puncturable family of PRFs PRF is defined by a tuple of efficient algorithms

(Gen,Eval,Punct) and a pair of polynomials n() and m():

– KeyGenerationGen(1κ) is a ppt algorithm that takes as input the security param-
eter κ and outputs a PRF key K .

– Punctured Key Generation Punct(K , S) is a ppt algorithm that takes as input a
PRF key K , a set S ⊂ {0, 1}n(κ) and outputs a punctured key KS .

– Evaluation Eval(K , x) is a deterministic algorithm that takes as input a key K
(punctured key or PRF key), a string x ∈ {0, 1}n(κ) and outputs y ∈ {0, 1}m(κ)

Definition 6. A family of PRFs (Gen,Eval,Punct) is puncturable if it satisfies the
following properties

– Functionality preserved under puncturing. Let K ← Gen(1κ) and KS ←
Punct(K , S). Then for all x ̸∈ S,Eval(K , x) = Eval(KS, x).

– Pseudorandom at (non-adaptively) punctured points. For every ppt adversary
(A1,A2) such that A1() outputs a set S ⊂ {0, 1}n(κ) and x ∈ S, consider an
experiment K ← Gen(1κ) and KS ← Punct(K , S). Then

∣∣Pr[A2(KS, x,Eval(K , x)) = 1] − Pr[A2(KS, x,Um(κ)) = 1]
∣∣ ≤ negl(κ)

where Um(κ) denotes the uniform distribution over m(κ) bits. Note that the set S is
chosen non-adaptively, before the key K is generated.

Theorem 1. [8,10,32,41] If one-way functions exist, then for all polynomial n() and
m(), there exists a puncturable PRF family that maps n() bits to m() bits.

Next we consider families of PRFs that are with high probability injective:

Definition 7. Astatistically injective (puncturable) PRF familywith failure probability
ϵ() is a family of (puncturable) PRFs such that with probability 1− ϵ(κ) over the random
choice of key K ← Gen(1κ), we have that Eval(K , ·) is injective.

Leakage Resilience from Program Obfuscation

If the failure probability function ϵ() is not specified, then ϵ() is a negligible function.

Theorem 2. [47] If one-way functions exist, then for all efficiently computable func-
tions n(κ),m(κ), and e(κ) such that m(κ) > 2n(κ) + e(κ) here exists a puncturable
statistically injective PRF family with failure probability 2− e(κ) that maps n(κ) bits to
m(κ) bits.

Finally, we consider PRFs that are also (strong) extractors over their inputs:

Definition 8. An extracting (puncturable) PRF family with error ϵ() for min-entropy
k(κ) is a family of (puncturable) PRFs mapping n(κ) bits to m(κ) bits such that for all
κ , if X is any distribution over n(κ) bits with min-entropy greater than k(κ) then the
statistical distance between (K ← Gen(1κ),Eval(K , X)) and (K ← Gen(1κ),Um(κ))

is at most ϵ(κ), where Uℓ denotes the uniform distribution over ℓ bit strings.

Theorem 3. [47] If one-way functions exist, then for all efficiently computable func-
tions n(κ),m(κ), k(κ) and e(κ) such that n(κ) > k(κ) > m(κ)+2e(κ)+2 there exists
an extracting puncturable PRF family that maps n(κ) bits to m(κ) bits with error 2− e(κ)

for min-entropy k(κ)

For ease of presentation, for a puncturable family of PRFs PRF, we often write
PRF(K , x) to represent PRF.Eval(K , x).

3. Compiler from 2CLR to Leakage on Key Updates

In this section, we present a compiler that upgrades any scheme for public key encryption
(PKE) or digital signature (SIG), that is, consecutive two-key leakage resilient, into one
that is secure against leakage on update.We first introduce a notion of explainable update
transformation, which is a generalization of the idea of universal deniable encryption by
Sahai and Waters [47]. We show how to use such a transformation to upgrade a scheme
(PKE or SIG) that is secure in the consecutive two-key leakage model to one that is
secure in the leak-on-update model (Sect. 3.2). Finally, we show two instantiations of
the explainable update transformation: one based on indistinguishability obfuscation
and the other on differing-inputs obfuscation (Sect. 3.3). For clarity of exposition, the
following sections will focus on constructions of PKE. In Sect. 3.4, we show that the
result can be translated to SIG.

3.1. Consecutive Continual Leakage Resilience (2CLR)

In this subsection, we present a new notion of consecutive continual leakage resilience
for public key encryption (PKE). We remark that this notion can be easily extended
to different cases, such as signatures or leakage-resilient one-way relations [21]. For
simplicity and concreteness, we only present the PKE version. Let κ denote the
security parameter and µ be the leakage bound between two updates. Let PKE =
{Gen,Enc,Dec,Update} be an encryption scheme with update.

D. Dachman-Soled et al.

Setup Phase. The game begins with a setup phase. The challenger calls
PKE.Gen(1κ) to create the initial secret key sk0 and public key
pk. It gives pk to the attacker. No leakage is allowed in this phase.

Query Phase. The attacker specifies an efficiently computable leakage func-
tion f1, whose output is at most µ bits. The challenger updates
the secret key (changing it from sk0 to sk1), and then gives the
attacker f1(sk0, sk1). The attacker then repeats this a polynomial
number of times, each time supplying an efficiently computable
leakage function fi whose output is at most µ bits. Each time, the
challenger updates the secret key from ski− 1 to ski according to
Update(·) and gives the attacker fi (ski− 1, ski).

Challenge Phase. The attacker chooses two messages m0,m1 which it gives to
the challenger. The challenger chooses a random bit b ∈ {0, 1},
encrypts mb, and gives the resulting ciphertext to the attacker.
The attacker then outputs a guess b′ for b. The attacker wins the
game if b = b′. We define the advantage of the attacker in this
game as | 12 − Pr[b′ = b]|.

Definition 9. (Continual Consecutive LeakageResilience)We say a public key encryp-
tion scheme is µ-leakage resilient against consecutive continual leakage (or µ-2CLR) if
any probabilistic polynomial-time attacker only has a negligible advantage (negligible
in κ) in the above game.

3.2. Explainable Key Update Transformation

Now we introduce a notion of explainable key update transformation and show how it
can be used to upgrade security of a PKE scheme from 2CLR to CLR with leakage on
key updates. Informally, an encryption scheme has an “explainable” update procedure
if given both ski− 1 and ski = Update(ski− 1, ri), there is an efficient way to come up
with some explained random coins r̂i such that no adversary can distinguish the real
coins ri from the explained coins r̂i . Intuitively, this gives a way to handle leakage on
random coins given just leakage on two consecutive keys.
We start with any encryption scheme PKE that has some key update procedure, and

we introduce a transformation that produces a scheme PKE′ with an explainable key
update procedure.

Definition 10. (Explainable Key Update Transformation) Let PKE = PKE.{Gen,
Enc,Dec,Update} be an encryption scheme with key update. An explainable key
update transformation for PKE is a ppt algorithm TransformGen that takes input secu-
rity parameter 1κ , an update circuit CUpdate (that implements the key update algo-
rithm PKE.Update(1κ , ·; ·)), a public key pk of PKE, and outputs two programs
Pupdate,Pexplain with the following syntax:
Let (pk, sk) be a pair of public and secret keys of the encryption scheme

– Pupdate takes inputs sk, random coins r , and Pupdate(sk; r) outputs an updated
secret key sk′;

Leakage Resilience from Program Obfuscation

– Pexplain takes inputs (sk, sk′), random coins v̄, and Pexplain(sk, sk′; v̄) outputs a
string r .

Given a polynomial ρ(·) and a public key pk, we define Πpk = ⋃ρ(κ)
j=0 Π j , where

Π0 = {sk : (pk, sk) ∈ PKE.Gen},Πi = {sk : ∃sk′ ∈ Πi− 1, sk ∈ Update(sk′)} for
i = 1, 2, . . . , ρ(κ). In words,Πpk is the set of all secret keys sk such that either (pk, sk)
is in the support of PKE.Gen or sk can be obtained by the update procedure Update
(up to polynomially many times) with an initial (pk, sk′) ∈ PKE.Gen.
We say the transformation is secure if:

(a) For any polynomial ρ(·), any pk, all sk ∈ Πpk, anyPupdate ∈ TransformGen(1κ ,

PKE.Update,pk), the following two distributions are statistically close: {Pupdate
(sk)} ≈ {PKE.Update(sk)}. Note that the circuit Pupdate and the update algo-
rithm PKE.Update might have different spaces for random coins, but the distri-
butions can still be statistically close.

(b) For any public key pk and secret key sk ∈ Πpk, the following two distributions
are computationally indistinguishable:

{(Pupdate,Pexplain,pk, sk, u)} ≈ {(Pupdate,Pexplain,pk, sk, e)},

where (Pupdate,Pexplain) ← TransformGen(1κ ,PKE.Update,pk), u ←
Upoly(κ), sk′ = Pupdate(sk; u),
e ← Pexplain(sk, sk′), and Upoly(κ) denotes the uniform distribution over a poly-
nomial number of bits.

Let PKE = PKE.{Gen,Enc,Dec,Update} be a public key encryption scheme and
TransformGen be an explainable key update transformation for PKE as above. We
define the following transformed scheme PKE′ = PKE′.{Gen,Enc,Dec,Update} as
follows:

– PKE′.Gen(1κ): compute (pk, sk) ← PKE.Gen(1κ).
Then compute (Pupdate,Pexplain) ← TransformGen(1κ ,PKE.Update,pk).
Finally, output pk′ = (pk,Pupdate,Pexplain) and sk′ = sk.

– PKE′.Enc(pk′,m): parse pk′ = (pk,Pupdate,Pexplain). Then output c ←
PKE.Enc(pk,m).

– PKE′.Dec(sk′, c): output m = PKE.Dec(sk′, c).
– PKE′.Update(sk′): output sk′′ ← Pupdate(sk′).

Then we are able to show the following theorem for the upgraded scheme PKE′.

Theorem 4. Let PKE = PKE.{Gen,Enc,Dec,Update} be a public key encryp-
tion scheme that is µ-2CLR (without leakage on update), and TransformGen a
secure explainable key update transformation for PKE. Then the transformed scheme
PKE′ = PKE′.{Gen,Enc,Dec,Update} described above is µ-CLR with leakage on
key updates.

Proof. Assume toward contradiction that there is a ppt adversary A and a non-
negligible ϵ(·) such that for infinitely many values of κ,AdvA,PKE′ ≥ ϵ(κ) in the leak-

D. Dachman-Soled et al.

on-update model. Then we show that there exists B that breaks the security of the under-
lying PKE (in the consecutive two-key leakage model) with probability ϵ(κ)− negl(κ).
This is a contradiction.
For notional simplicity, we will use AdvA,PKE′ to denote the advantage of the adver-

saryA attacking the schemePKE′ (according to leak-on-update attacks), andAdvB,PKE
to denote the advantage of the adversaryB attacking the schemePKE (according to con-
secutive two-key leakage attacks).
We define B in the following way: B internally instantiates A and participates exter-

nally in a continual consecutive two-key leakage experiment on public key encryption
scheme PKE′. Specifically, B does the following:

– Upon receiving pk∗ externally, B runs (Pupdate,Pexplain) ← TransformGen(1κ ,

PKE.Update,pk∗). Note that by the properties of the transformation, this can be
done given only pk∗. B sets pk′ = (pk∗,Pupdate, Pexplain) to be the public key for
the PKE′ scheme and forwards pk′ to A.

– When A asks for a leakage query f (sk′
i− 1, ri),B asks for the following leakage

query on (ski− 1, ski): f ′(ski− 1, ski) = f (ski− 1,Pexplain(ski− 1, ski)) and for-
wards the response to A. Note that the output lengths of f and f ′ are the same.

– At some point, A submits m0,m1 and B forwards them to its external experiment.
– Upon receiving the challenge ciphertext c∗,B forwards it toA and outputs whatever
A outputs.

Now we would like to analyze the advantage of B. It is easy to see that B has the
same advantage asA; however, there is a subtlety such thatA does not necessarily have
advantage ϵ(κ): The simulation of leakage queries provided by B is not identical to the
distribution in the real game thatA would expect. Recall that in the security experiment
of the scheme PKE′, the secret keys are updated according to Pupdate. In the above
experiment (where B set up), the secret keys were updated using the Update externally,
and the random coins were simulated by the Pexplain algorithm.

Our goal is to show that actuallyA has essentially the same advantage in this modified
experiment as in the original experiment. We show this by the following lemma:

Lemma 1. For any polynomial n, the following two distributions are computationally
indistinguishable.

D1 ≡ (Pupdate,Pexplain,pk, sk0, r1, sk1, . . . , skn− 1, rn, skn) ≈
D2 ≡ (Pupdate,Pexplain,pk, sk0, r̂1, ŝk1, . . . , ŝkn− 1, r̂n, ŝkn),

where the initial pk, sk0 and TransformGen(1κ ,pk) are sampled identically in both
experiment; in D1, ski+1 = Pupdate(ski ; ri+1), and ri+1’s are uniformly random; in
D2, ŝki+1 ← Update(ŝki), r̂i+1 ← Pexplain(ŝki , ŝki+1). (Note ŝk0 = sk0.)

Proof. To show the lemma, we consider the following hybrids: for i ∈ [n] define

Leakage Resilience from Program Obfuscation

H (i) = (Pupdate,Pexplain,pk, sk0, r̂1, ŝk1, . . . , ŝki− 1,

ri , ski , ri+1, ski+1, ri+2, . . . , skn),

where the experiment is identical to D2 for up to ŝki− 1. Then it samples a uniformly
random ri , sets ski = Pupdate(ŝki− 1; ri), and proceeds as D1.

H (i.5) = (Pupdate,Pexplain,pk, sk0, r̂1, ŝk1, . . . ,

ŝki− 1, r̂i , ski , ri+1, ski+1, ri+2, . . . , skn),

where the experiment is identical to H (i) for up to ŝki− 1, and then, it samples ski ←
Pupdate(ŝki− 1), and r̂i ← Pexplain(ŝki− 1, ski). The experiment is identical to D1 for
the rest.
Then we establish the following lemmas, and the lemma follows directly.

Lemma 2. For i ∈ [n − 1], H (i.5) is statistically close to H (i+1).

Lemma 3. For i ∈ [n], H (i) is computationally indistinguishable from H (i.5).

This first lemma follows directly from the property (a) of Definition 10.We now prove
Lemma 3.

Proof. Suppose there exists a (poly-sized) distinguisherD that distinguishes H (i) from
H (i.5) with non-negligible probability, then there exist pk∗, sk∗, and anotherD′ that can
break the property (b).
From the definition of the experiments,we know thatPupdate,Pexplain are independent

of the public key and the first i secret keys, i.e., p= (pk, sk0, ŝk1, . . . , ŝki− 1). By an
average argument, there exists a fixed

p∗ = (pk∗, sk∗
0, ŝk

∗
1, . . . , ŝk

∗
i− 1)

such thatD can distinguish H (i) from H (i.5) conditioned on p∗ with non-negligible prob-
ability. (Theprobability is over the randomness of the rest experiment.) Thenweare going
to argue that there exist a poly-sized distinguisherD′, a key pair pk′, sk′ such thatD′ can
distinguish (Pupdate,Pexplain,pk′, sk′, u) from (Pupdate,Pexplain, pk′, sk′, e) where u
is from the uniform distribution, sk′′ = Pupdate(sk′; u), and e ← Pexplain(sk′, sk′′).

Let pk′ = pk∗, sk′ = ŝk
∗
i− 1, and we define D′ (with the prefix p∗ hardwired) who

on the challenge input (Pupdate,Pexplain,pk′, sk′, z) does the following:

– For j ∈ [i − 1],D′ samples r̂ j = Pexplain(sk∗
j− 1, sk

∗
j).

– Set ski− 1 = sk′ and ri = z, ski = Pupdate(ski− 1, z).
– For j ≥ i + 1,D′ samples r j from the uniform distribution and sets sk j =
Pupdate(sk j− 1; r j).

– Finally,D′ outputsD(Pupdate,Pexplain,pk′, sk∗
0, r̂1, sk

∗
1, . . . , ski− 1, ri , ski , ri+1,

. . . , skn).

D. Dachman-Soled et al.

Clearly, if the challenge z was sampled according to uniformly random (as u), then
D′ will output according to D(H (i)|p∗). On the other hand, suppose it was sampled
according toPexplain (as e), thenD′ will output according toD(Hi.5|p∗). This completes
the proof of the lemma. !

Remark 1. The non-uniform argument above is not necessary. We present in this way
for simplicity. The uniform reduction can be obtained using a standard Markov type
argument, which we omit here.

Now, we are ready to analyze the advantage of B (and A). Denote AdvA,PKE′;D as
the advantage ofA in the experiment where the leakage queries are answered according
to the distribution D. By assumption, we know that AdvA,PKE′;D1

= ϵ(κ), and by
definition the leakage queries are answered according to D1. By the above lemma,
we know that |AdvA,PKE′;D1

− AdvA,PKE′;D2
| ≤ negl(κ); otherwise, D1 and D2 are

distinguishable. Thus,we knowAdvA,PKE′;D2
≥ ϵ(κ)− negl(κ). It is not hard to see that

AdvB,PKE = AdvA,PKE′;D2
, since B answersA’s the leakage queries exactly according

the distribution D2. Thus, AdvB,PKE ≥ ϵ(κ) − negl(κ), which is a contradiction. This
completes the proof of the theorem. !

3.3. Instantiations via Obfuscation

In this section, we show how to build an explainable key update transformation from
program obfuscation. There are two variants of our construction: one from the weaker
notion of indistinguishability obfuscation (iO) [5,29] and one from the stronger notion
of public-coin differing-inputs obfuscation (public-coin diO) [37]. Since our best param-
eters are achieved using public-coin diO, we present the public-coin diO variant of our
construction/proof and indicate the points in the construction/proof where the iO variant
differs.
Let PKE = (Gen,Enc,Dec,Update) be a public key encryption scheme (or a

signature scheme with algorithms Verify,Sign) with key update, and diO(resp. iO) be a
public-coin differing-inputs obfuscator (resp. indistinguishability obfuscator) for some
class defined later. Let κ be a security parameter. Let Lsk be the length of secret keys
in PKE and Lr be the length of randomness used by Update. For ease of notation,
we suppress the dependence of these lengths on κ . We note that in the 2CLR case,
it is without loss of generality to assume Lr << Lsk, because we can always use
pseudorandom coins (e.g., the output of a PRG) to do the update. Since only the two
consecutive keys are leaked (not the randomness, e.g., the seed to the PRG), the update
with the pseudorandom coins remains secure, assuming the PRG is secure.
LetH be a family of public-coin collision-resistant hash functions, as well as a family

of (2κ, ϵ)-good extractor,9 mapping 2Lsk + 2κ bits to κ bits. Let F1 and F2 be families
of puncturable pseudorandom functions, where F1 has input length 2Lsk + 3κ bits and

9The description of the hash function is the seed. On input seed and source, the extractor outputs a
distribution that is ϵ close to the uniform distribution if the source has min-entropy 2κ . Here we set ϵ to be
some negligible. The hash function is chosen from a family of functions, and once chosen, it is a deterministic
function.

Leakage Resilience from Program Obfuscation

Internal (hardcoded) state: Public key pk, keys K1, K2, and h.

On input secret key sk1; randomness u = (u1, u2).
– If F2(K2, u1) ⊕ u2 = (sk2, r′) for (proper length) strings sk2, r′ and u1 =
h(sk1, sk2, r′), then output sk2.

– Else let x = F1(K1, (sk1, u)). Output sk2 = PKE.Update(pk, sk1;x).

Fig. 1. Program update.

Internal (hardcoded) state: key K2.

On input secret keys sk1, sk2; randomness r ∈ {0, 1}κ

– Set u1 = h(sk1, sk2, r). Set u2 = F2(K2, u1) ⊕ (sk2, r). Output e = (u1, u2).

Fig. 2. Program explain.

output length Lr bits, and it is as well an (Lr + κ, ϵ)-good unseeded extractor; F2 has
input length κ and output length Lsk+2κ . Here |u1| = κ and |u2| = Lsk+2κ, |r ′| = 2κ .

Define the algorithm TransformGen(1κ ,pk) that on input the security parameter, a
public key pk and a circuit that implements PKE.Update(·) as follows:
– TransformGen samples K1, K2 as keys for the puncturable PRF as above, and
h ← H. Let P1 be the program as Fig. 1, and P2 as Fig. 2.

– Then it samples Pupdate ← diO(P1), and Pexplain ← diO(P2). It outputs
(Pupdate,Pexplain).

The iO variant. Essentially, the difference between the construction based on iO versus
public-coin diO is that the hash function H is replaced with an injective, puncturable
PRF, F3 : {0, 1}κ × {0, 1}2Lsk+κ → {0, 1}4Lsk+3κ , which can be constructed from OWF
(see [47]). The iO-based construction is a simplified version of the deniable encryption
of the work [47], where our construction does not use a PRG in the Explain program. The
security proof relies directly on the puncturing technique on the key K3 with a condition
check. We elaborate on the details below.

– Instead of sampling a hash function h ← H,TransformGen samples an additional
PRF key K3 ← F.Gen(1κ).

– Wemodify program P1 in Fig. 1 by embedding an additional key, K3, and checking
whether u1 = F3(K3, sk1, sk2, r ′).

– We modify program P2 in Fig. 2, by embedding an additional key, K3, and setting
u1 = F3(K3, sk1, sk2, r).

– All input/output lengths of the programs and pseudorandom functions are adjusted
to be consistent with the fact that u1 now has length 4Lsk+3κ (whereas previously
it had length κ).

We now establish the following theorem.

Theorem 5. Let PKE be any public key encryption scheme with key update. Assume
diO (resp. iO) is a secure public-coin differing-inputs indistinguishable obfuscator

D. Dachman-Soled et al.

(resp. indistinguishable obfuscator) for the circuits required by the construction, F1, F2
are puncturable pseudorandom functions as above, and H is a family of public-coin
collision-resistant hash functions as above. Then the transformation TransformGen
(resp. TransformGen′) defined above is a secure explainable update transformation
for PKE as defined in Definition 10, which takes randomness u = (u1, u2) of length
L1 + L2, where L1 := κ, L2 := Lsk + 2κ (resp. L1 := 4Lsk + 3κ, L2 := Lsk + 2κ).

Looking at the big picture, recall that the entire secret state required for continually
updating the secret key consists of the current secret state, sk, and randomness, u =
(u1, u2), which together have total length Lsk + L1 + L2. Thus, when plugging in our
public-coin diO-based construction, we ultimately achieve leakage rate of µ

2Lsk+2κ =
µ

2Lsk
− o(1), where µ is the leakage rate of the underlying 2CLR public key encryption

scheme. On the other hand, when plugging in our iO-based construction, we achieve
leakage rate of µ

6Lsk+5κ = µ
6Lsk

− o(1).

Proof. Recall that to show that TransformGen satisfies property (a) of Definition 10,
we need to demonstrate that for any polynomialρ(·), anypk, all sk ∈ Πpk, anyPupdate ∈
TransformGen(1κ ,PKE.Update,pk), the following two distributions are statistically
close: {Pupdate(sk)} ≈ {PKE.Update(sk)}. Inspecting programPupdate(sk), the above
follows in a straightforward manner from the following: (1)When u is chosen uniformly
at random, the probability that F2(K2, u1) ⊕ u2 = (sk2, r ′) and u1 = h(sk1, sk2, r ′)
is negligible and (2) when u is chosen uniformly at random, then x = F1(K1, (sk1, u))
is statistically close to uniform. For the analysis showing that (1) holds, see the analysis
of Hybrid 1. (2) holds since F1 is an (Lr + κ, ϵ)-good unseeded extractor.

Recall that to show that TransformGen satisfies property (b) of Definition 10, we
need to demonstrate that for any public key pk∗ and secret key sk∗ ∈ Πpk, the following
two distributions are computationally indistinguishable:

{(Pupdate,Pexplain,pk∗, sk∗, u∗)} ≈ {(Pupdate,Pexplain,pk∗, sk∗, e∗)},
where these values are generated by

1. (Pupdate,Pexplain) ← TransformGen(1κ ,PKE.Update,pk∗),
2. u∗ = (u∗

1, u
∗
2) ← {0, 1}Lsk+3κ (in the iO variant, u∗ = (u∗

1, u
∗
2) ← {0, 1}3Lsk+4κ),

3. Set x∗ = F1(K1, sk∗||u∗), sk′ = Pupdate(sk∗; u∗). Then choose uniformly
random r∗ of length κ , and set e∗

1 = h(sk∗, sk′, r∗) (in the iO variant, e∗
1 =

F3(K3, sk∗, sk′, r∗)) and e∗
2 = F2(K2, e∗

1) ⊕ (sk′, r∗).

We prove this through the following sequence of hybrid steps.

Hybrid 1: In this hybrid step, we change Step 3 of the above challenge. Instead of
computing sk′ = Pupdate(sk∗; u∗), we compute sk′ = PKE.Update(pk∗, sk∗; x∗):

1. (Pupdate,Pexplain) ← TransformGen(1κ ,PKE.Update,pk∗),
2. u∗ = (u∗

1, u
∗
2) ← {0, 1}Lsk+3κ (in the iO variant, u∗ = (u∗

1, u
∗
2) ← {0, 1}3Lsk+4κ),

3. Set x∗ = F1(K1, sk∗||u∗), sk′ = PKE.Update(pk∗, sk∗; x∗), and choose uni-
formly random r∗ of length κ . Then, e∗

1 = h(sk∗, sk′, r∗) (in the iO variant,
e∗
1 = F3(K3, sk∗, sk′, r∗)) and e∗

2 = F2(K2, e∗
1) ⊕ (sk′, r∗).

Leakage Resilience from Program Obfuscation

Note that the only time in which this changes the experiment is when the values
(u∗

1, u
∗
2) ← {0, 1}Lsk+3κ happen to satisfy F2(K2, u∗

1) ⊕ u∗
2 = (sk′, r ′) such that

u∗
1 = h(sk∗, sk′, r ′). For any fixed u∗

1, sk
∗, sk′, and a random u2∗ , we know the

marginal probability of r ′ is still uniform given u∗
1, sk

∗, sk′. Therefore, we have
Pru2∗[h(sk∗, sk′, r ′) = u∗

1] = Prr ′ [h(sk∗, sk′, r ′) = u∗
1] < 2− κ + ϵ. This is because

h is a (2κ, ϵ)-extractor, so the output of h is ϵ-close to uniform over {0, 1}κ , and a uni-
form distribution hits a particular string with probability 2− κ . Since we set ϵ to be some
negligible, the two distributions are only different with the negligible quantity.
The iO variant. We make the same modification as in the public-coin diO case and set
sk′ = PKE.Update(pk∗, sk∗; x∗). However, the analysis of the hybrid changes, as we
now describe: In the iO setting, the only time in which the above modification changes
the output of the experiment is when the values (u∗

1, u
∗
2) ← {0, 1}3Lsk+4κ happen to

satisfy F2(K2, u∗
1) ⊕ u∗

2 = (sk′, r ′) such that u∗
1 = F3(K3, sk∗, sk′, r ′). The only way

the above can be satisfied is if u∗
1 is in the range of F3(K3, ·). Note that the range of

F3(K3, ·) has size 24Lsk+3κ , while u∗
1 is chosen independently and uniformly at random

from a domain of size 2Lsk + 2κ . This means that the probability that u∗
1 is in the range

of F3(K3, ·) is at most 22Lsk+κ

24Lsk+3κ = 2− 2Lsk− 2κ , which is negligible.

Hybrid 2: In this hybrid step, we modify the program in Fig. 1, puncturing key
K1 at points {sk∗||u∗} and {sk∗||e∗}, and adding a line of code at the beginning of the
program to ensure that the PRF is never evaluated at these two points. See Fig. 3. We
claim that with overwhelming probability over the choice of u∗, this modified pro-
gram has identical input/output as the program that was used in Hybrid 1 (Fig. 1). Note
that on input (sk∗, e∗) the output of the original program was already sk′ as defined
in Hybrid 1, so the outputs of the two programs are identical on this input. (This fol-
lows because e∗ anyway encodes sk′, so when the “If”-statement is triggered in the
program of Fig. 1, the output is sk′.) As long as u∗

1 and u∗
2 do not have the property

that F2(K2, u∗
1) ⊕ u∗

2 = (sk′, r ′) such that u∗
1 = h(sk∗, sk′, r ′), then the programs

have identical output on input (sk∗, u∗) as well. (This follows because sk′ is defined as
sk′ = Pupdate(sk∗; F1(K1, sk∗||u∗)) in the challenge game, which is also the output
of the program in Fig. 1 when u∗

1 and u∗
2 fail this condition.) As we argued in Hybrid

1, with very high probability, u∗ does not have this property. (We stress that u∗ is fixed
before we construct the obfuscated program described in Fig. 3, so with overwhelming
probability over the choice of u∗, the two programs have identical input output behav-
ior.) Indistinguishability of Hybrids 1 and 2 follows from the security of the obfuscation.
Note that this hybrid requires only the weaker notion of indistinguishability obfuscation.
The iO variant. The modification and security argument are identical, with the exception
that we require that u∗

1 and u
∗
2 do not have the property that F2(K2, u∗

1)⊕ u∗
2 = (sk′, r ′)

such that u∗
1 = F3(K3, sk∗, sk′, r ′). We invoke the argument from the previous hybrid

to show that this is true with overwhelming probability over choice of u∗.

Hybrid 3: In this hybrid, we change the challenge game to use truly random x∗

when computingsk′ = PKE.Update(pk∗, sk∗; x∗) (instead of x∗ = F1(K1; sk∗||u∗)).
Security holds by a reduction to the pseudorandomness of F1 at the punctured point
(sk∗, u∗). More specifically, given an adversary A that distinguishes Hybrid 2 from
Hybrid 3 on values pk∗, sk∗, we describe an reduction B that attacks the security of the

D. Dachman-Soled et al.

Internal (hardcoded) state: Public key pk∗, keys
K̃1 = PRF.Punct(K1, {sk∗||u∗}, {sk∗||e∗}), K2, sk′ (as defined in Hybrid 1)
and h.

On input secret key sk1; randomness u = (u1, u2).
– If (sk1, u) = (sk∗, u∗) or (sk1, u) = (sk∗, e∗) output the value sk′.
– Else If F2(K2;u1)⊕u2 = (sk2, r′) such that u1 = h(sk1, sk2, r′), then output sk2.
– Else let x = F1(K1, sk1||u). Output sk2 = PKE.Update(pk∗, sk1;x).

Fig. 3. Program update, as used in Hybrid 2.

Internal (hardcoded) state: Public key pk∗, keys K̃1 =
PRF.Punct(K1, {sk∗||u∗}, {sk∗||e∗}), K̃2 = PRF.Punct(K2, {u∗

1}, {e∗
1}), sk′ (as

defined in Hybrid 3) and h.

On input secret key sk1; randomness u = (u1, u2).
– If (sk1, u) = (sk∗, u∗) or (sk1, u) = (sk∗, e∗) output value sk′.
– Else If u1 = u∗

1 or u1 = e∗
1, let x = F1(K̃1, sk1||u). Output

sk2 = PKE.Update(pk∗, sk1;x).
– Else
– If F2(K2;u1) ⊕ u2 = (sk2, r′) such that u1 = h(sk1, sk2, r′), then output sk2.
– Else let x = F1(K1, sk1||u). Output sk2 = PKE.Update(pk∗, sk1;x).

Fig. 4. Program update, as used in Hybrid 4.

puncturable PRF, F1. B generates u∗ at random and submits (sk∗, u∗) to his challenger.
He receives K̃1 = PRF.Punct(K1, {sk∗||u∗}), and a value x∗ as a challenge. B com-
putes sk′ = PKE.Update(pk∗, sk∗; x∗), chooses r∗ at random, and computes e∗ as in
the original challenge game. He creates Pupdate using K̃1 and sampling K2 honestly.
The same K2 is used for creating Pexplain. B obfuscates both circuits, which completes
the simulation of A’s view.
The iO variant. The modification and security argument are identical for the iO setting.

Hybrid 4: In this hybrid, we puncture K2 at both u∗
1 and e∗

1, and modify the Update
program to output appropriate hardcoded values on these inputs. (See Fig. 4.) To prove
that Hybrids 3 and 4 are indistinguishable, we rely on security of public-coin differing-
inputs obfuscation and public-coin collision-resistant hash function. In particular, we
will show that suppose the hybrids are distinguishable, then we can break the security
of the collision-resistant hash function.
Consider the following sampler Samp(1κ) : outputs C0,C1 as the two update pro-

grams as in Hybrids 3 and 4, respectively, and it outputs an auxiliary input aux =
(pk∗, sk∗, sk′, u∗, e∗, K2, h, r∗) sampled as in the both hybrids. Note that aux includes
all the random coins of the sampler. Suppose there exists a distinguisher D for the two
hybrids, then there exists a distinguished D′ that distinguishes (diO(C0),aux) from
(diO(C1),aux). This is because given the challenge input, D′ can complete the rest of
the experiment either according to Hybrid 3 or Hybrid 4. Then by security of the diO,
we know there exists an adversary (extractor) B that given (C0,C1,aux) finds an input

Leakage Resilience from Program Obfuscation

such that C0 and C1 evaluate differently. However, this contradicts the security of the
public-coin collision-resistant hash function. We establish this by the following lemma.

Lemma 4. Assume h is sampled from a family of public-coin collision-resistant hash
function, (and (2κ, ϵ)-extracting) as above. Then for any ppt adversary, the probability
is negligible to find a differing-inputs given (C0,C1,aux) as above.

Proof. By examining the two circuits, we observe that the differing-inputs have the
following two forms: (s̄k, u∗

1, ū2) such that u∗
1 = h(s̄k, F2(K2; u∗

1) ⊕ ū2), (s̄k, ū2) ̸=
(sk∗, u∗

2); or (s̄k, e
∗
1, ē2) such that e∗

1 = h(s̄k, F2(K2; e∗
1) ⊕ ē2), (s̄k, ē2) ̸= (sk∗, e∗

2).
This is because they will run enter the first Else IF in Hybrid 3 (Fig. 3), but enter the
modified line (the first Else IF) in Hybrid 4 (Fig. 4). We argue that both cases happen
with negligible probability; otherwise, security of the hash function can be broken.
For the first case, we observe that the collision resistance and (2κ, ϵ) extracting guar-

antee that the probability of finding an pre-image of a random value u∗
1 is small, even

given aux; otherwise, there is an adversary who can break collision resistance. For
the second case, we know that e∗

1 = h(sk∗, sk′, r∗) = h(s̄k, F2(K2; e∗
1) ⊕ ē2) =

h(s̄k, e∗
2 ⊕ (sk′, r∗)⊕ ē2). Since we know that (s̄k, ē2) ̸= (sk∗, e∗

2), we find a collision,
which again remains hard even given aux.
Thus, suppose there exists a differing-inputs finder A, we can define an adversary

B to break the collision-resistant hash function: On input h,B simulates the sampler
Samp with the h. Then it runsA to find a differing-inputs. Then according to the above
argument, either of the two cases will lead to finding a collision. !

The iO variant. The hybrid proceeds identically to the diO variant. To prove that Hybrids
3 and 4 are indistinguishable, we rely on the security of the indistinguishability obfus-
cator. In particular, we will show that the functionality of program update is identical
in the two hybrids. By examining the two circuits, we must show that if the event
(u1 = u∗

1 ∨u1 = e∗
1)∧F2(k2; u1)⊕u2 = (sk2, r ′) such that u1 = F3(K3, sk1, sk2, r ′)

occurs then sk2 = PKE.Update(pk∗, sk1; x), where x = F1(K̃1, sk1||u). Indeed,
this is the only case where we enter the first Else IF in Hybrid 3 (Fig. 3), but enter
the modified line (the first Else IF) in Hybrid 4 (Fig. 4). To see that the above holds,
we consider two cases: u1 = u∗

1 and u1 = e∗
1. First, if u1 = u∗

1 then, as argued
above, u1 is not in the range of F3(K3, ·) (with overwhelming probability over the
choice of u∗

1) and so the event cannot occur. Second, note that if u1 = e∗
1 then

u1 = F3(K3, sk∗, sk′, r∗). Since F3(K3, ·) is injective, if the above event occurs,
it means that sk1 = sk∗ and u2 = (sk′, r∗) ⊕ F2(k2; u1) = e∗

2. This in turn
means that x = F1(K̃1, sk∗||e∗) = x∗. Therefore, by definition of sk′, we have that
sk2 = sk′ = PKE.Update(pk∗, sk∗; x∗) = PKE.Update(pk∗, sk1; x), as desired.
Hybrid 5: In this hybrid, we puncture K2 at both u∗

1 and e∗
1, and modify the Explain

program to output appropriate hardcoded values on these inputs. (See Fig. 5.) Similar to
the argument for the previous hybrids,we argue thatHybrids 4 and5 are indistinguishable
by security of the public-coin differing-inputs obfuscation and public-coin collision-
resistant hash function. Consider a samplerSamp(1κ): outputsC0,C1 as the two explain
programs as in Hybrids 4 and 5, respectively, and it outputs an auxiliary input aux =

D. Dachman-Soled et al.

Internal (hardcoded) state: key K̃2 = PRF.Punct(K2, {u∗
1}, {e∗

1}), u∗, e∗.

On input secret keys sk1, sk2; randomness r ∈ {0, 1}κ

– If u∗
1 = h(sk1, sk2, r), output u∗. Else If e∗

1 = h(sk1, sk2, r), output e∗.
– Else, set u1 = h(sk1, sk2, r). Set u2 = F2(K2, u1)⊕ (sk2, r). Output e = (u1, u2).

Fig. 5. Program explain, as used in Hybrid 5.

(pk∗, sk∗, sk′, u∗, e∗, K2, h, r∗) sampled as in the both hybrids (note that aux includes
all the randomcoins of the sampler). Similar to the above argument, suppose there exists a
distinguisherD that distinguishes Hybrids 4 and 5, then we can construct a distinguisher
D′ that distinguishes (diO(C0),aux) from (diO(C1),aux). This is because given the
challenging input,D′ can simulate the hybrids. Then by security of the diO, there exists
an adversary (extractor) B that can find differing-inputs. Now we want to argue that
suppose the h comes from a public-coin collision-resistant hash family, then no ppt
adversary can find differing-inputs. This leads to a contradiction.

Lemma 5. Assume h is sampled from a family of public-coin collision-resistant hash
function, (and (2κ, ϵ)-extracting) as above. Then for any ppt adversary, the probability
is negligible to find a differing-inputs given (C0,C1,aux) as above.

Proof. The proof is almost identical to that of Lemma 4. We omit the details. !

The iO variant. Program explain is modified with the following line: If
u∗
1 = F3(K3, sk1, sk2, r), output u∗. Else If e∗

1 = F3(K3, sk1, sk2, r), output e∗. The
proof is almost identical to that of the previous hybrid.

Hybrid 6: In this hybrid, we change both e∗
1 and e∗

2 to uniformly random. Hybrids
5 and 6 are indistinguishable by the security of the puncturable PRF F2, and by
the fact that h is (2κ, ϵ)-extracting. Clearly in this hybrid, the distributions of
{(Pupdate,Pexplain,pk∗, sk∗, u∗)} and {(Pupdate,Pexplain,pk∗, sk∗, e∗)} are identical.
From the indistinguishable arguments that the original game and Hybrid 6 are indistin-
guishable, we can argue that the distributions in the original game are indistinguishable.
This concludes the proof.

The iO variant. We must first puncture K3 at (sk∗, sk′, r∗). and modify both Update
and Explain so that whenever we check whether u1 = F3(K3, sk∗, sk′, r∗), we instead
check whether u1 = e∗

1. Once we have done this, we can now proceed as in the diO
variant and switch both e∗

1 and e∗
2 to uniformly random. !

3.4. Extension to Digital Signatures

Wehave already demonstrated a compiler that upgrades any 2CLR public key encryption
scheme into one that is secure against leakage on update. The same results can be
translated to digital signature scheme.

Leakage Resilience from Program Obfuscation

Continual Consecutive Leakage Resilience for Digital Signature. Following the pre-
sentation in Subsect. 3.1, we can modify the security game and define continual consec-
utive leakage resilience for digital signature schemes. We say a digital signature scheme
is µ-leakage resilient against consecutive continual leakage (or µ-2CLR) if any proba-
bilistic polynomial-time attacker only has a negligible advantage (negligible in κ) in the
modified game.
Explainable Key-Update Transformation for Digital Signature Scheme. Follow-

ing the presentation in Subsect. 3.2, we can define explainable key update trans-
formation for digital signature scheme. We start with any digital signature scheme
SIG = SIG.{Gen,Sign,Verify,Update} that has some key update procedure. Then
we can follow Definition 10, and introduce a transformation (Pupdate,Pexplain) ←
TransformGen(1κ ,SIG.Update,pk). This transformationwill help us define a scheme
SIG′ = SIG′.{Gen,Sign,Verify,Update} with an explainable key update procedure.

– SIG′.Gen(1κ): compute (pk, sk) ← SIG.Gen(1κ).
Then compute (Pupdate,Pexplain) ← TransformGen(1κ ,SIG.Update,pk).
Finally, output pk′ = (pk,Pupdate,Pexplain) and sk′ = sk.

– SIG′.Sign(sk′,m): output σ = SIG.Sign(sk′,m).
– SIG′.Verify(pk′,m, σ): parse pk′ = (pk,Pupdate,Pexplain). Then output b ←
SIG.Verify(pk,m, σ).

– SIG′.Update(sk′): output sk′′ ← Pupdate(sk′).

Similarly, we can show a theorem for the upgraded scheme SIG′.

Theorem 6. Let SIG = SIG.{Gen,Sign,Verify,Update} be a digital signature
scheme that is µ-2CLR (without leakage on update), and TransformGen a secure
explainable key update transformation for SIG. Then the transformed scheme SIG′ =
SIG′.{Gen,Sign,Verify,Update} described above is µ-CLR with leakage on key
updates.

The poof of the above theorem can exactly follow the proof of Theorem 4 and so we
omit the proof.
Instantiations. Finally, as in Subsect. 3.3, we can instantiate the explainable update

transformation via indistinguishability obfuscation or differing-inputs obfuscation, and
establish the same theorem for digital signature schemes.

Theorem 7. Let SIG be any digital signature scheme with key update. Assume
diO (resp. iO) is a secure public-coin differing-inputs indistinguishable obfuscator
(resp. indistinguishable obfuscator) for the circuits required by the construction, F1, F2
are puncturable pseudorandom functions as above, and H is a family of public-coin
collision-resistant hash functions as above. Then the transformation TransformGen
(resp. TransformGen′) defined above is a secure explainable update transformation for
SIG which takes randomness u = (u1, u2) of length L1 + L2, where L1 := κ, L2 :=
Lsk + 2κ (resp. L1 := 4Lsk + 3κ, L2 := Lsk + 2κ).

D. Dachman-Soled et al.

4. 2CLR from “Leakage-Resilient Subspaces”

We show that the PKE scheme of Brakerski et al. [12] (BKKV), which has been proved
CLR, can achieve 2CLR (with a slight adjustment in the scheme’s parameters). We note
that our focus on PKE here is justified by the fact that we show generically that any CLR
(resp. 2CLR) PKE scheme implies a CLR “one-way relation” (OWR) [21]; to the best of
our knowledge, such an implication was not previously known. Therefore, by the results
of Dodis et al. [21], this translates all our results about PKE to the signature setting as
well. We show that the approach of Dodis et al. [21] for constructing CLR OWRs can
be extended to 2CLR one-way relations, but we achieve weaker parameters this way.
Recall that in the work [12], to prove that their scheme is CLR, they show “ran-

dom subspaces are leakage resilient”. In particular, they show that for a random sub-
space X , the statistical difference between

(
X, f (v)

)
and
(
X, f (u)

)
is negligible, where

f is an arbitrary length-bounded function, v is a random point in the subspace, and
u is a random point in the whole space. Then by a simple hybrid argument, they
show that

(
X, f1(v0), f2(v1), . . . , ft (vt− 1)

)
and
(
X, f1(u0), f2(u1), . . . , ft (ut− 1)

)

are indistinguishable, where f1, . . . , ft are arbitrary and adaptively chosen length-
bounded functions, v0, v1, . . . , vt− 1 are independent random points in the subspace,
and u0, u1, . . . , ut− 1 are independent random points in the whole space. This lemma
plays the core role in their proof.
In order to show that their scheme satisfies the 2CLR security, we consider random

subspaces under “consecutive” leakage. That is, we want to show:

(
X, f1(v0, v1), f2(v1, v2), . . . , ft (vt− 1, vt)

)

≈
(
X, f1(u0, u1), f2(u1, u2), . . . , ft (ut− 1, ut)

)
,

for arbitrary and adaptively chosen fi ’s, i.e., each fi can be chosen after seeing the pre-
vious leakage values f1, . . . , fi− 1. However, this does not follow by a hybrid argument
of
(
X, f (v)

)
≈
(
X, f (u)

)
, because in the 2CLR case each point is leaked twice. It is

not clear how to embed a challenging instance of (X, f (z)) into the larger experiment
while still being able to simulate the rest.
To handle this technical issue, we establish a new lemma showing random subspaces

are “consecutive” leakage resilient. With the lemma and a hybrid argument, we can
show that the above experiments are indistinguishable. Then we show how to use this
fact to prove that the scheme of BKKV is 2CLR.

Lemma 6. Let t, n, ℓ, d ∈ N, n ≥ ℓ ≥ 3d, and q be a prime. Let (A, X) ← Zt×n
q ×

Zn×ℓ
q such that A · X = 0, T, T ′ ← Rkd(Zℓ×d

q), U ← Zn×d
q such that A ·U = 0, (i.e.,

U is a random matrix in Ker(A)), and f : Zt×n
q ×Zn×2d

q → W be any function.10 Then
we have:

∆
((
A, X, f (A, XT, XT ′), XT ′),

(
A, X, f

(
A,U, XT ′), XT ′)) ≤ ϵ,

10Note: Rk denotes rank. Here we use n as the dimension (different from [12] who used m) to avoid
overloading notation.

Leakage Resilience from Program Obfuscation

as long as |W | ≤ (1 − 1/q) · qℓ− 3d+1 · ϵ2.

Proof. We will actually prove something stronger, namely we will prove, under the
assumptions of Lemma 6, that

∆
((

A, X, f (A, X · T, X · T ′), X · T ′, T ′
)
,
(
A, X, f (A,U, X · T ′), X · T ′, T ′

))

≤ 1
2

√
3|W |

(1 − 1/q)qℓ− 3d+1 < ϵ .

Note that this implies the lemma by solving for ϵ, after noting that ignoring the last
component in each tuple can only decrease statistical difference.
For the proof, we will apply Lemma 7 as follows. We will take hash function H to

be H : Zn×ℓ
q × Zℓ×d

q → Zn×d
q where HK (D) = K D (matrix multiplication), and take

the set Z to be Zn×ℓ
q × Zℓ×d

q . Next we take random variable K to be uniform on Zn×ℓ
q

(denoted as thematrix X), D to be uniform onRkd(Zℓ×d
q), and finally Z = (A, XT ′, T ′)

where A is uniform conditioned on AX = 0, T ′ ∈ Rkd(Zℓ×d
q) is independent uniform.

We define U|Z as the uniform distribution such that AU = 0. This also means that U is
a random matrix in the kernel of A.

It remains to prove under these settings that

Pr
[
(D, D′, Z) ∈ BAD

]
≤ 1

(1 − 1/q)qℓ− 3d+1

with BAD defined as in Lemma 7. For this, let us consider

∆
(
(HK |Z (T1), HK |Z (T2)), (U|Z ,U ′

|Z)
)

where Z = (A, XT ′, T ′) as defined above. The above statistical distance is zero as long
as the outcomes of T1, T2, T ′ are all linearly independent. This is so because ℓ ≥ 3d.
Now, by a standard formula the probability that T1, T2, T ′ have a linear dependency is
bounded by 1

(1− 1/q)qℓ− 3d+1 , and we are done. !

We note that this lemma is slightly different that the original lemma in the work [12]:
the leakage function considered here also takes in a public matrix A, which is used as
the public key in the system. We observe that both our work and [12] need this version
of the lemma to prove security of the encryption scheme.
We actually prove Lemma 6 as a consequence of a new generalization of the Crooked

Leftover Hash Lemma (LHL) [6,26] we introduce (to handle hash functions that are
only pairwise independent if some bad event does not happen), as follows.

Lemma 7. Let H : K × D → R be a hash function and (K , Z) be joint random
variables over (K,Z) for the set K and some set Z . Define the following set

D. Dachman-Soled et al.

BAD =
{(
d, d ′, z

)
∈ D × D × Z : ∆

(
(HK |Z=z (d), HK |Z=z (d

′)),

(U|Z=z,U ′
|Z=z)
)
> 0
}
, (1)

where U|Z=z,U ′
|Z=z denote two independent uniform distributions over R conditioned

on Z = z, and K |Z=z is the conditional distribution of K given Z = z. We note that
R might depend on z, so when we describe a uniform distribution over R, we need to
specify the condition Z = z.
Suppose D and D′ are i.i.d. random variables over D, (K , Z) are random variables

over K × Z satisfying Pr
[
(D, D′, Z) ∈ BAD

]
≤ ϵ′. Then for any set S and function

f : R × Z → S it holds that

∆((K , Z , f (HK (D), Z)), (K , Z , f (U|Z , Z))) ≤ 1
2

√
3ϵ′ |S| .

Proof. The proof is an extension of the proof of the Crooked LHL given in [6]. First,
using Cauchy–Schwarz and Jensen’s inequality we have

∆((K , Z , f (HK (D), Z)), (K , Z , f (U|Z , Z)))

" 1
2

√√√√|S|Ek,z

[
∑

s

(Pr [f (Hk(D), z) = s] − Pr
[
f (U|Z=z, z) = s

]
)2

]

,

where U|Z=z is uniform on R conditioned on Z = z, and the expectation is over (k, z)
drawn from (K , Z). Thus, to complete the proof it suffices to prove the following lemma.

Lemma 8.

Ek,z

[
∑

s

(
Pr [f (Hk(D), z) = s] − Pr

[
f (U|Z=z, z) = s

])2
]

≤ 3ϵ′ . (2)

Proof. By the linearity of expectation, we can express Eq. 2 as:

Ek,z
∑

s

Pr [f (Hk(D), z) = s]2

− 2Ek,z
∑

s

Pr [f (Hk(D), z) = s]Pr
[
f (U|Z=z, z) = s

]

+EzCol(f (U|Z=z, z)), (3)

whereU|Z=z is uniform onR conditioned on Z = z, andCol is the collision probability
of its input random variable. Note that since f (U|Z=z, z) is independent of k, we can
drop it in the third term. In the following, we are going to calculate bounds for the first
two terms.

Leakage Resilience from Program Obfuscation

For any s ∈ S, we can write Pr [f (Hk(D), z) = s] = ∑d Pr [D = d]δ f (Hk (d),z),s
where δa,b is 1 if a = b and 0 otherwise, and thus

∑

s

Pr [f (Hk(D), z) = s]2 =
∑

d,d ′
Pr [D = d]Pr

[
D = d ′]δ f (Hk (d),z), f (Hk (d ′),z) .

So we have

Ek,z
∑

s

Pr [f (Hk(D), z) = s]2

= Ek,z

⎡

⎣
∑

d,d ′
Pr [D = d]Pr

[
D = d ′]δ f (Hk(d),z), f (Hk (d ′),z)

⎤

⎦

= Ez

⎡

⎣
∑

d,d ′
Pr [D = d]Pr

[
D = d ′]Ek

[
δ f (Hk(d),z), f (Hk (d ′),z)

]
⎤

⎦

≤
∑

z,d,d ′ /∈BAD
Pr [Z = z]Pr [D = d]Pr

[
D = d ′]Ek

[
δ f (Hk (d),z), f (Hk(d ′),z)

]
+ ϵ′

= Ez
[
Col(f (U|Z=z, z))

]
+ ϵ′, (4)

where BAD is defined as in Eq. (1) from Lemma 7. The inequality holds because, by
our definition of BAD, if (z, d, d ′) /∈ BAD, (Hk(d), Hk(d ′)) are distributed exactly as
two uniformly chosen elements (conditioned on Z = z), and because Pr[(z, d, d ′) ∈
BAD] ≤ ϵ′.
By a similar calculation, we have:

Ek,z
∑

s

Pr [f (Hk(D), z) = s]Pr
[
f (U|Z=z, z) = s

]

≥ Ez
[
Col(f (U|Z=z, z))

]
− ϵ′ . (5)

For the same reason, Hk(D) is uniformly random except for the bad event, whose
probability is bounded by ϵ′.
Putting things together, the inequality in Eq. 2 follows immediately by plugging the

bounds in Eqs. 4 and 5. This concludes the proof. !

Herewe describe the BKKV encryption scheme and show it is 2CLR secure.We begin
by presenting the main scheme in BKKV, which uses the weaker linear assumption in
bilinear groups, but achieves a worse leakage rate (that can tolerate roughly 1/8 · |sk| −
o(κ)). In that work [12], it is also pointed out that under the stronger SXDH assumption
in bilinear groups, the rate can be improved to tolerate roughly 1/4 · |sk| − o(k), with
essentially the same proof. The same argument also holds in the 2CLR setting. To avoid
repetition, we just describe the original scheme in BKKV and prove that it is actually
2CLR under the linear assumption in bilinear groups.

D. Dachman-Soled et al.

– Parameters. Let G,GT be two groups of prime order p such that there exists a
bilinear map e : G × G → GT . Let g be a generator of G (and so e(g, g) is a
generator of GT). An additional parameter ℓ ≥ 7 is polynomial in the security
parameter. (Setting different ℓ will enable a trade-off between efficiency and the
rate of tolerable leakage). For the scheme to be secure, we require that the linear
assumption holds in the group G, which implies that the size of the group must be
super-polynomial, i.e., p = κω(1).

– Key generation. The algorithm samples A ← Z2×ℓ
p , and Y ← Ker2(A), i.e.,

Y ∈ Zℓ×2
p can be viewed as two random (linearly independent) points in the kernel

of A. Then it sets pk = gA, sk = gY . Note that since A is known, Y can be sampled
efficiently.

– Key update. Given a secret key gY ∈ Gℓ×2, the algorithm samples R ←
Rk2(Z2×2

p) and then sets sk′ = gY ·R .
– Encryption.Given a public key pk = gA, to encrypt 0, it samples a random r ∈ Z2

p

and outputs c = gr
T ·A. To encrypt 1, it just outputs c = gu

T
where u ← Zℓ

p is a
uniformly random vector.

– Decryption. Given a ciphertext c = gv
T
and a secret key sk = gY , the algorithm

computes e(g, g)v
T ·Y . If the result is e(g, g)0, then it outputs 0, otherwise 1.

Then we are able to achieve the following theorem:

Theorem 8. Under the linear assumption, for every ℓ ≥ 7, the encryption scheme
above is µ-bit leakage resilient against two-key continual and consecutive leakage,
where µ = (ℓ− 6)·log p

2 − ω(κ). Note that the leakage rate would be µ
|sk|+|sk| ≈ 1/8, as

ℓ is chosen sufficiently large.

Proof. The theorem follows directly from the following lemma:

Lemma 9. For any t ∈ poly(κ), r ← Z2
p, A ← Z2×ℓ

p , random Y ∈ Ker2(A), and
polynomial sized functions f1, f2, . . . , ft where each fi : Zℓ×2

p × Zℓ×2
p → {0, 1}µ

and can be adaptively chosen (i.e., fi can be chosen after seeing the leakage values of
f1, . . . , fi− 1), the following two distributions, D0 and D1, are computationally indis-
tinguishable:

D0 = (g, gA, gr
T ·A, f1(sk0, sk1), . . . ft (skt− 1, skt))

D1 = (g, gA, gu, f1(sk0, sk1), . . . ft (skt− 1, skt)),

where sk0 = gY and ski+1 is the updated key from ski using random coins Ri ←
Rk2(Z2×2

p) as defined in the key update procedure.

Basically, the distribution D0 is the view of the adversary when given an encryption
of 0 as the challenge ciphertext and continual leakage of the secret keys; D1 is the
same except the challenge ciphertext is an encryption of 1. Our goal is to show that no
polynomial sized adversary can distinguish between them.
We show the lemma in the following steps:

Leakage Resilience from Program Obfuscation

1. We first consider two modified experiment D′
0 and D′

1 where in these experiments,
all the secret keys are sampled independently, i.e., sk′

i+1 ← Ker2(A). In other
words, instead of using a rotation of the current secret key, the update procedure
re-samples two random (linearly independent) points in the kernel of A. Denote
D′
b = (g, gA, gz, f1(sk′

0, sk
′
1), . . . ft (sk

′
t− 1, sk

′
t)) for g

z is sampled either from

gr
T ·A or gu depending on b ∈ {0, 1}. Intuitively, the operations are computed in the

exponent, so the adversary cannot distinguish between the modified experiments
from the original ones. We formally prove this using the linear assumption.

2. Then we consider the following modified experiments: for b ∈ {0, 1}, define

D′′
b = (g, gA, gz, f1(gu0 , gu1), f2(gu1, gu2), · · · , ft (gut− 1, gut)),

where the distribution samples a random X ∈ Zℓ×(ℓ− 3)
p such that A · X = 0; then

it samples each ui = X ·Ti for Ti ← Rk2(Z(ℓ− 3)×2
p); finally, it samples z either as

rT · A or uniformly random as in D′
b. We then show that D′′

b is indistinguishable
from D′

b using the new geometric lemma.
3. Finally, we show that D′′

0 ≈ D′′
1 under the linear assumption.

To implement the approach just described, we establish the following lemmas.

Lemma 10. For b ∈ {0, 1}, Db is computationally indistinguishable from D′
b.

To show this lemma, we first establish a lemma:

Lemma 11. Under the linear assumption, (g, gA, gY , gY ·U) ≈ (g, gA, gY , gY
′
),

where A ← Z2×ℓ
p , Y, Y ′ ← Ker2(A), and U ← Rk2(Z2×2

p).

Suppose there exists a distinguisher A that breaks the above statement with non-
negligible probability, then we can construct B that can break the linear assumption (the
matrix form). In particular, B distinguishes (g, gC , gC ·U) from (g, gC , gC

′
) where C

and C ′ are two independent and uniformly random samples from Z(ℓ− 2)×2
p , and U is

uniformly random matrix from Z2×2
p . Note that when p = κω(1) (this is required by

the linear assumption), then with overwhelming probability, (C ||C ′) is a rank 4 matrix,
and (C ||C · U) is a rank 2 matrix. The linear assumption is that no polynomial-time
adversary can distinguish the two distributions when given in the exponent.
B does the following on input (g, gC , gZ), where Z is either C · U or a uniformly

random matrix C ′:

– B samples a random rank 2 matrix A ∈ Z2×ℓ
p . Then B computes an arbitrary basis

of Ker(A) (note that Ker(A) = {v ∈ Zℓ
p : A · v = 0}), denoted as X . By the

rank-nullity theorem (see any linear algebra textbook), the dimension of Ker(A)
plus Rk(A) is ℓ. So we know that X ∈ Zℓ×(ℓ− 2)

p , i.e., X contains (ℓ − 2) vectors
that are linearly independent.

– B computes gX ·C and gX ·Z . This can be done efficiently given (gC , gZ) and X in
the clear.

– B outputs A(g, gA, gX ·C , gX ·Z).

D. Dachman-Soled et al.

We observe that when p = κω(1), the distribution of A is statistically close to a
randommatrix, andU is statistically close to a random rank 2 matrix. Then it is not hard
to see that gX ·C is identically distributed to gY , and gX ·Z is distributed as g(X ·C)·U if
Z = C ·U , and otherwise as gY

′
. So B can break the linear assumption with probability

essentially the same as that of A. This completes the proof of the lemma.
Then Lemma 10 can be proved using the lemma via a standard hybrid argument.

We show that D0 ≈ D′
0 and the other one can be shown by the same argument. For

i ∈ [t + 1], define hybrids Hi as the experiment as D0 except the first i secret keys
are sampled independently, as D′

0; the rest are sampled according to rotations, as D0.
It is not hard to see that H1 = D0, Ht+1 = D′

0, and Hi ≈ Hi+1 using the lemma. The
argument is obvious and standard, so we omit the detail.
Then we recall the modified distribution D′′

b : for b ∈ {0, 1},

D′′
b = (g, gA, gz, f1(gu0 , gu1), f2(gu1, gu2), · · · , ft (gut− 1, gut)),

where the distribution samples a random X ∈ Zℓ×(ℓ− 2)
p such that A · X = 0; then it

samples each ui = X · Ti for Ti ← Rk2(Z(ℓ− 2)×2
p), and z is sampled either rT · A or

uniformly random. We then establish the following lemma.

Lemma 12. For b ∈ {0, 1}, D′
b is computationally indistinguishable from D′′

b .

We prove the lemma using another hybrid argument. We prove that D′
0 ≈ D′′

0 , and
the other follows from the same argument. We define hybrids Qi for i ∈ [t] where in
Qi , the first i secret keys (the exponents) are sampled randomly from Ker2(A) (as D′

0),
and the rest secret keys (the exponents) are sampled as X ·T (as D′′

0). Clearly, Q0 = D′′
0

and Qt+1 = D′
0. Then we want to show that Qi is indistinguishable from Qi+1 using

the extended geometric lemma (Lemma 6).
For any i ∈ [t+1], we argue that suppose there exists an (even unbounded) adversary

that distinguishes Qi from Qi+1 with probability better than ϵ, then there exist a leakage
function L and an adversaryB such thatB can distinguish

(
A, X, L(A, X ·T, X ·T ′), X ·

T ′
)
from
(
A, X, L(A,U, X · T ′), X · T ′

)
in Lemma 6 with probability better than

ϵ − negl(κ) (dimensions will be set later). We will set the parameters of Lemma 6 such
that the two distributions have negligible statistical difference; thus ϵ can be at most a
negligible quantity.
Now we formally set the dimensions: let X be a random matrix in Zℓ×(ℓ− 3); T, T ′

be two random rank 2 matrices in Z(ℓ− 3)×2
p , i.e., Rk2

(
Z(ℓ− 3)×2
p

)
; L : Zℓ×2

p × Zℓ×2
p →

{0, 1}2µ; recall that 2µ = (ℓ − 6) · log p − ω(κ), and thus |L| ≤ pℓ− 6 · κ− ω(1). By
Lemma 6, for any (even computationally unbounded) L , we have

∆
((

A, X, L(A, X · T, X · T ′), X · T ′
)
,

(
A, X, L(A,U, X · T ′), X · T ′

))
< κ− ω(1) = negl(κ).

Leakage Resilience from Program Obfuscation

Let g be a random generator of G, and ω is some randomness chosen uniformly. We
define a particular function L∗, with g,ω hardwired, as follows: L∗(A, w, v) on input
A, w, v does the following:

– It first samples Y0, . . . ,Yi− 1 ← Ker2(A), using the random coins ω. Then it sets
sk j = gY j for j ∈ [i − 1].

– It simulates the leakage functions, adaptively, obtains the values
f1(sk0, sk1), . . . , fi− 1(ski− 2, ski− 1), and obtains the next leakage function fi .

– It computes fi (ski− 1, gw), and then obtains the next leakage function fi+1.
– Finally it outputs fi (ski− 1, gw)|| fi+1(gw, gv).

Recall that fi , fi+1 are two leakage functions with µ bits of output, so L∗ has 2µ bits
of output. Now we construct the adversary B as follows:

– Let g be the random generator,ω be the random coins as stated above, and L∗ be the
function defined above. Then B gets input (A, X, L∗(A, Z , X · T ′), X · T ′) where
Z is either uniformly random or X · T .

– B samples Y0, . . . ,Yi− 1 ← Ker2(A), using the random coins ω. Then it sets sk j =
gY j for j ∈ [i− 1].Wenote that the secret keys (in thefirst i− 1 rounds) are consistent
with the values used in the leakage function for they use the same randomness ω.

– B sets ski+2 = gX ·T
′
.

– B samples Ti+3, . . . , Tt+1 ← Rk2(Z(ℓ− 3)×2
p) and sets sk j = gX ·Tj for j ∈ {i +

3, . . . , t + 1}.
– B outputs A

(
gA, gz, f1(sk0, sk1), f2(sk1, sk2), · · · , fi− 1(ski− 2, ski− 1),

L∗(Z , X · T ′), fi+2(ski+2, sk′
i+3), . . . , ft (sk

′
t , sk

′
t+1)
)
.

Then it is not hard to see that if Z comes from the distribution XT , then the simulation
of B and L∗ distributes as Qi , and otherwise Qi− 1. Thus, supposeA can distinguish Qi
from Qi+1 with non-negligible probability ϵ, thenB can distinguish the two distributions
with a non-negligible probability. This contradicts Lemma 6.

Finally, we show that D′′
0 is computationally indistinguishable from D′′

1 under the
linear assumption.

Lemma 13. Under the linear assumption, the distributions D′′
0 and D′′

1 are computa-
tionally indistinguishable.

We use the same argument as the work [12]. In particular, we will prove that suppose
there exists an adversaryA that distinguishes D′′

0 from D′′
1 , then there exists an adversary

B that distinguishes the distributions {gC : C ← Z3×3
p } and {gC : C ← Rk2(Z3×3

p)}.
We assume that the second distribution samples two random rows, and then sets the third
row as a random linear combination of the first two rows. As argued in the work [12],
this assumption is without loss of generality.
Now we describe the adversary B. B on input gC does the following.

– B samples a random matrix X ← Zℓ×(ℓ− 3)
p , and a random matrix B ← Z3×ℓ

p such
that B · X = 0.

– B computes gCB , and sets its first two rows as gA and the last row as gz .
– B samples T1, . . . , Tt ← Rk2(Z(ℓ− 3)×2

p), and sets ski = gXTi for i ∈ [t].

D. Dachman-Soled et al.

– B outputs A(g, gA, gz, f1(sk0, sk1), . . . , ft (skt− 1, skt)).

As argued in the work [12], if C is uniformly random, then (A, z) is distributed
uniformly as D′′

1 . If C is of rank 2, then (A, z) is distributed as (A, rT A) for some
random r ∈ Z2

p as D
′′
0 . Thus, supposeA can distinguish D′′

0 from D′′
1 with non-negligible

probability, then B breaks the linear assumption with non-negligible probability.
Lemma 9 (D0 ≈ D1) follows directly from Lemmas 10, 12, and 13. This suffices to

prove the theorem. We present the proofs of Lemmas 10, 12, and 13.

5. Leakage-Resilient PKE from Obfuscation

5.1. Making Sahai–Waters PKE Leakage-Resilient

We show that by modifying the Sahai–Waters (SW) public key encryption scheme [47]
in two simple ways, the scheme already becomes non-trivially leakage resilient in the
one-time, bounded setting. Recall that in this setting, the adversary, after seeing the
public key and before seeing the challenge ciphertext, may request a single leakage
query of length L bits. We require that semantic security hold, even given this leakage.
Our scheme can tolerate an arbitrary amount of one-time leakage. Specifically, for

any L = L(κ) = poly(κ), we can obtain a scheme which is L-leakage resilient by
setting the parameter ρ in Fig. 6 depending on L . However, our leakage rate is far from
optimal, since the size of the secret key, sk, grows with L . Indeed, the result of this
section is subsumed by the work of Hazay et al. [35]. We view this section as a warm-
up; in Sect. 5.2, we will show how to further modify the construction to achieve optimal
leakage rate, though, we rely upon much stronger assumptions than those of Hazay et
al. [35].
At a high-level, we modify SW in the following ways: (1) Instead of following the

general paradigm of encrypting a message m by xoring with the output of a PRF, we
first apply a strong randomness extractor Ext to the output of the PRF and then xor
with the message m; (2) we modify the secret key of the new scheme to be an iO of
the underlying decryption circuit. Recall that in SW, decryption essentially consists of
evaluating a puncturable PRF. In our scheme, sk consists of an iO of the puncturable
PRF, padded with poly(L) bits.
We show that, even given L bits of leakage, the attacker cannot distinguish Ext(y)

from random, where y is the output of the PRF on a fixed input t∗. This will be sufficient
to prove security. We proceed by a sequence of hybrids: First, we switch sk to be an
obfuscation of a circuit which has a PRF key punctured at t∗ and a point function t∗ → y
hardcoded.On input t ̸= t∗, the punctured PRF is used to compute the output, whereas on
input t∗, the point function is used. Since the circuits compute the same function and—
due to appropriate padding—they are both the same size, security of the iO implies that
an adversary cannot distinguish the two scenarios. Next, just as in SW, we switch from
t∗ → y to t∗ → y∗, where y∗ is uniformly random of length L + Lmsg + 2 log(1/ϵ)
bits; here, we rely on the security of the punctured PRF. Now, observe that since y∗ is
uniform and since Ext is a strong extractor for inputs of min-entropy Lmsg+ 2 log(1/ϵ)
and output length Lmsg,Ext(y∗) looks random, even under L bits of leakage (Figs. 7,
8).

Leakage Resilience from Program Obfuscation

Encryption scheme E = (E .Gen, E .Enc, E .Dec) using obfuscator iO and PRG
G.

Key Generation: (pk, sk0) ← E .Gen(1κ)
Compute k ← PRF.Gen(1κ), where PRF : {0, 1}κ ×{0, 1}ρ → {0, 1}ρ. Let Ck be
the circuit described in Figure 7, and let CEnc ← iO(Ck).
Let Ck,κ+ρ be the circuit described in Figure 8, and let CDec ← iO(Ck,κ+ρ).
Output pk = (CEnc) and sk = (CDec).

Encryption: c ← E .Enc(pk,m)
On input message m ∈ {0, 1}Lmsg , sample r ← {0, 1}κ, w ← {0, 1}d, and output
c = (G(r), w,Ext(CEnc(r), w) ⊕ m), where PRG G : {0, 1}κ → {0, 1}ρ, and
Ext : {0, 1}ρ ×{0, 1}d → {0, 1}Lmsg .

Decryption: m̂ ← E .Dec(sk, c)
On input ciphertext c = (t, w, v), compute y := CDec(t).
If y ̸= ⊥ , output m̂ = Ext(y, w) ⊕ v. Otherwise, output m̂ = ⊥ .

Fig. 6. One-time, bounded leakage encryption scheme, E.

Internal (hardcoded) state: k.

On input: r
– Output z = PRF.Eval(k,G(r)), where G is the same PRG used in E .Enc.

Fig. 7. This program Ck is obfuscated using iO and placed in the public key to be used for encryption.

Internal (hardcoded) state: k.

On input: t
– Output z = PRF.Eval(k, t).

Fig. 8. The circuit above is padded with poly(κ + ρ) dummy gates to obtain the circuit Ck,κ+ρ . Ck,κ+ρ is
then obfuscated using iO and placed in the secret key.

Theorem 9. Assume

– PRG G : {0, 1}κ → {0, 1}ρ is a pseudorandom generator with output length
ρ ≥ 2κ .

– PRF : {0, 1}κ × {0, 1}ρ → {0, 1}ρ is a puncturable pseudorandom function.
– iO is indistinguishability obfuscator for circuits in this scheme.
– Ext : {0, 1}ρ × {0, 1}d → {0, 1}Lmsg is a (Lmsg + 2 log(1/ϵ), ϵ)-strong extractor,
where ϵ = negl(κ).

Then E is L-leakage resilient against one-time key leakage where

L = ρ − 2 log(1/ϵ) − Lmsg

Note that in the above theorem statement, ρ can be increased arbitrarily while all
other parameters remain fixed. Therefore, to achieve an arbitrary amount, L , of leakage,

D. Dachman-Soled et al.

we fix Lmsg and ϵ and then set ρ := L + 2 log(1/ϵ) + Lmsg. Additionally, note that
extractors that satisfy the requirements of Theorem 9 can be constructed via the Leftover
Hash Lemma (c.f. [36]).
In order to prove Theorem 9, we prove (in Lemma 14) that even under leakage, it is

hard for any ppt adversaryA to distinguish the output of the extractor,Ext from uniform
random. Given this, Theorem 9 follows immediately.

Lemma 14. For every ppt leaking adversaryA, who is given oracle access to a leakage
oracle O and may leak at most ρ − 2 log(1/ϵ) − Lmsg bits of the secret key, there exist
random variables pk′, s̃k such that:

(
pk, t, w,Ext(y, w), f (sk) ← AO(·)(pk)

)

c≈
(
pk′,Uρ, w,ULmsg , f (s̃k) ← AO(·)(pk′)

)

where y = CDecctdummy, (t = G(r)) and the distributions are taken over coins of A
and choice of (pk, sk) ← E .Gen(1κ), w, r and choice of pk′, s̃k, w, respectively.

We prove the lemma via the following sequence of hybrids: Note that Hybrids 1, 2 are
essentially identical to the Sahai–Waters hybrids. We differ from Sahai–Waters when
we modify the secret key in Hybrids 3 and 4.

Hybrid 0: This hybrid is identical to the real game.
Let DA

H0
denote the distribution (pk, t, w,Ext(y, w), f (sk) ← AO(·)(pk)) as in the

left side of Lemma 14.

Hybrid 1: This hybrid is the same as Hybrid 0 except we replace pseudorandom
t = G(r) in the challenge ciphertext with uniform random t∗ ← {0, 1}ρ .
Let DA

H1
denote the distribution (pk, t∗, w,Ext(y, w), f (sk) ← AO(·)(pk)) where

y = CDec(t∗) and the distribution is taken over coins of A, choice of (pk, sk), w, t∗ as
described above (Fig. 9).

Claim 1. For every ppt adversary A,

DA
H0

c≈ DA
H1
.

Proof. The proof is by reduction to the security of the pseudorandom generator G.
Assume toward contradiction that there exists a ppt adversary A, a corresponding ppt
distinguisher D and a polynomial p(·) such that for infinitely many κ, D distinguishes
DA

H0
and DA

H1
with probability at least 1/p(κ). We construct a ppt adversary S that

distinguishes the output of the PRG from uniform random with probability at least
1/p(κ), for infinitely many κ . S does the following: S runs E .Gen(1κ) honestly to
generate (pk, sk). S hands pk to A and responds to leakage query f by applying the
leakage function directly to sk to compute f (sk). Upon receiving its challenge t ′ as
the external PRG challenge, S sets y = CDec(t ′), hands (pk, t ′, w,Ext(y, w), f (sk))

Leakage Resilience from Program Obfuscation

Internal (hardcoded) state: k̃ = PRF.Punct(k, t∗).

On input: r
– Output z = PRF.Eval(k,G(r)), where G is the same PRG used in E .Enc.

Fig. 9. Program Ck̃ . This program replaces Ck . It is obfuscated and placed in the public key to be used for
encryption.

to the distinguisher D, and outputs whatever D does. The reader can verify that S’s
distinguishing advantage is the same as D’s. !

Hybrid 2: This hybrid is the same as Hybrid 1 except we replace the key k used inCEnc
with a punctured key, k̃ = PRF.Punct(k, t∗), and denote it as C ′

Enc.
We denote the resulting public key by pk′.
Let DA

H2
denote the distribution

(
pk′, t∗, w,Ext(y, w), f (sk) ← AO(·)(pk′)

)
where

y = CDec(t∗) and the distribution is taken over coins ofA, and choice of (pk′, sk), w, t∗

as described above.

Claim 2. For every ppt adversary A,

DA
H1

c≈ DA
H2
.

Proof. Theproof is by a reduction to the security of the indistinguishability obfuscation.
The main observation is that with all but negligible probability, t∗ is not in the range
of the PRG , in which case CEnc and the modified circuit C ′

Enc used in Hybrid 2 have
identical behavior. Thus, with high probability for all inputs neither program can call
on PRF.Punct(k, t∗). Therefore, puncturing t∗ out from the key k will not effect the
input/output behavior. Therefore, if there is a difference in advantage, we can create an
algorithm B that breaks the security of indistinguishability obfuscation.
B runs as the challenger, but where t∗ is chosen at random. When it is to create

the obfuscated program, it submits both programs C0 = Ck and C1 = Ck̃ to an iO
challenger. If the iO challenger chooses the first, then we are in Hybrid 1. If it chooses
the second, then we are in Hybrid 2. Any adversary with non-negligible advantages in
the two hybrids leads to B as an attacker on iO security. !

Hybrid 3: This hybrid is the same as Hybrid 2 except we replace CDec = iO(Ck,κ+ρ)

with C ′
Dec = iO(C ′

k̃
), where C ′

k̃
is specified in Fig. 10. Note that we puncture k at the

challenge point t∗. We denote by sk′ the resulting secret key.
Let DA

H3
denote the distribution

(
pk′, t∗, w,Ext(y, w), f (sk′) ← AO(·)(p̂k)

)
where

y = C ′
Dec(t

∗) and the distribution is taken over coins ofA, and choice of (pk, sk′), w, t∗

as described above.

Claim 3. For every ppt adversary A,

DA
H2

c≈ DA
H3
.

D. Dachman-Soled et al.

Internal (hardcoded) state: (t∗,β = PRF.Eval(k, t∗)), k̃ = PRF.Punct(k, t∗).

On input: t
– If t = t∗, output β.
– Otherwise, output PRF.Eval(k, t).

Fig. 10. Program C ′
k̃
. This program replaces Ck,κ+ρ . It is obfuscated and placed in the secret key.

Proof. The proof is by a reduction to the security of the indistinguishability obfus-
cation. The main observation is that the size of the circuit does not change since the
description of Ck,κ+ρ is padded with poly(κ + ρ) gates (for appropriate poly). Thus,
Ck,κ+ρ and C ′

k̃
are the same size. Moreover, puncturing t∗ out from the key k will

not effect the input/output behavior since on input t∗ we output the hardcoded value
β = PRF.Eval(k, t∗). Therefore, if there is a difference in advantage, we can create an
algorithm B that breaks the security of indistinguishability obfuscation.
B runs as the challenger, but where t∗ is chosen at random. When it is to create the

obfuscated program it submits both programs C0 = Ck,κ+ρ and C1 = C ′
k̃
to an iO

challenger. If the iO challenger chooses the first then we are in Hybrid 1. If it chooses
the second then we are in Hybrid 2. Any adversary with non-negligible advantages in
the two hybrids leads to B as an attacker on iO security. !

Hybrid 4: This hybrid is the same as Hybrid 3 except we replace the hardcoded β with
y∗, where y∗ is uniformly random. We denote by s̃k the resulting secret key. Note that
the public key pk′ remains the same.

LetDA
H4

denote the distribution
(
pk′, t∗, w,Ext(y∗, w), f (s̃k) ← AO(·)(pk′)

)
where

y∗ = C ′
Dec(t

∗) and the distribution is taken over coins of A, and choice of
(pk′, s̃k), w, t∗ as described above.

Claim 4. For every ppt adversary A,

DA
H3

c≈ DA
H4
.

Proof. The proof is through a reduction to the security of the puncturablePRF. Recall,
the security notion of puncturable PRFs states that, given PRF.Punct(k, t∗), an adver-
sary cannot distinguishPRF.Eval(k, t∗) from random. The reduction is straightforward:
to break the security of the PRF,S generates t∗ at random and submits it to his chal-
lenger. He receives PRF.Punct(k, t∗), along with either y∗ = PRF.Eval(k, t∗) or
y∗ ← {0, 1}ρ as a challenge. He uses y∗, and samples all the remaining necessary
keys for simulating p̂k and ŝk. He chooses w at random and computes Ext(y∗, w). He
answers leakage queries on s̃k honestly. The reader can verify that S’s advantage is the
same as A’s advantage in distinguishing the two hybrids. !
Claim 5.

DA
H4

s≈
(
pk′,Uρ, w,ULmsg , f (s̃k) ← AO(·)(p̃k)

)

Note that the right side above is the same as the right side of Lemma 14

Leakage Resilience from Program Obfuscation

Proof. We claim that themin-entropy of y∗ conditioned on pk′, f (s̃k) is at least Lmsg+
2 log(1/ϵ). Note that y∗ initially has min-entropy ρ since it is chosen uniformly at
random. Thus, leaking ρ − 2 log(1/ϵ) − Lmsg number of bits of the secret key reduces
y∗’s min-entropy by at most ρ − 2 log(1/ϵ) − Lmsg. Therefore, y∗ maintains min-
entropy at least Lmsg + 2 log(1/ϵ). and so the claim follows by the properties of the
strong extractor, Ext. !

This concludes the proof of Lemma 14.

5.2. Improving the Leakage Rate

In this section, we show how to modify the previous construction to achieve optimal
leakage rate. The key observation is that the leakage rate tolerated by the previous
construction is low because the entire obfuscated circuit iO(Ck,κ+ρ) must be stored in
the secret key. Ideally, since the circuit is obfuscated, we would like to put it in the public
key. However, this cannot possibly work since anyone can then decrypt the challenge
ciphertext. Therefore, we store a collision-resistant hash h(ctdummy) in the obfuscated
circuit, and include a ciphertext encrypted using a symmetric key encryption scheme,
ctdummy, in the secret key: the circuit will only decrypt if the user provides a proper
pre-image to the hardcoded value h(ctdummy). This scheme seems to preserve semantic
security, but we must prove security in the LR setting. Specifically, we must show that
even when leaking 1 − o(1)-fraction of ctdummy, the adversary cannot find a valid input
to the obfuscated circuit. To prove this, the idea is that in the hybrids, we switch ctdummy
from a “dummy input” to an encryption of the point function t∗ → y∗, where y∗ is
random. The obfuscated circuit will also be changed (as in the proof of the previous
construction) so that on input t∗, it outputs the output of the point function. Note that
even under leakage, y∗ has high min-entropy and thus Ext(y∗) will still look random.
Finally, we note that in order for the argument to work, we must now rely on public-coin
differing-inputs obfuscation, since in the hybrid arguments the obfuscated circuits in
the public key will produce different outputs on inputs ctdummy ̸= ct′dummy, such that
h(ct′dummy) = h(ctdummy), which are hard for an efficient adversary to find (Figs. 11,
12, 13, 14) .

Theorem 10. Assume

– E is a semantically secure symmetric key encryption scheme with ciphertexts of
length Lct(κ, Lmsg) for Lmsg-bit messages and security parameter κ .

– h is a collision-resistant hash function. with output length Lh(κ) for security param-
eter κ .

– PRG G : {0, 1}κ → {0, 1}ρ is a pseudorandom generator with output length
ρ ≥ 2κ .

– PRF : {0, 1}κ × {0, 1}ρ → {0, 1}ρ is a puncturable pseudorandom function.
– diO is a public-coin, differing-inputs obfuscator for circuits in this scheme.
– Ext : {0, 1}ρ × {0, 1}d → {0, 1}Lmsg is a (Lmsg + 2 log(1/ϵ), ϵ)-strong extractor,
where ϵ = negl(κ).

D. Dachman-Soled et al.

Encryption Scheme E = (E .Gen, E .Enc, E .Dec)

Key Generation: (pk, sk) ← E .Gen(1κ)
Compute the following:
– (skE) ← E.Gen(1κ),
– h ← H,
– k ← PRF.Gen(1κ), where PRF : {0, 1}κ ×{0, 1}ρ → {0, 1}ρ.
– ctdummy ← E.Enc(skE, 0κ||0ρ; r0), and h∗ = h(ctdummy).

Let Ck be the circuit described in Figure 12, and let CEnc ← diO(Ck).
Let keys = {skE, h∗}, let Ckeys be the circuit described in Figure 13, and let
CDec ← diO(Ckeys).
Output pk = (CEnc, CDec) and sk = (ctdummy).

Encryption: c ← E .Enc(pk,m)
On input message m ∈ {0, 1}Lmsg , sample r ← {0, 1}κ, w ← {0, 1}d, and output
c = (G(r), w,Ext(CEnc(r), w) ⊕ m), where PRG G : {0, 1}κ → {0, 1}ρ, and
Ext : {0, 1}ρ ×{0, 1}d → {0, 1}Lmsg .

Decryption: m̂ ← E .Dec(sk, c)
On input ciphertext c = (t, w, v), compute y := CDec(ctdummy, t).
If y ̸= ⊥ , output m̂ = Ext(y, w) ⊕ v. Otherwise, output m̂ = ⊥ .

Fig. 11. One-time, bounded leakage encryption scheme,E.

Internal (hardcoded) state: k.

On input: r
– Output z = PRF.Eval(k,G(r)), where G is the same PRG used in E .Enc.

Fig. 12. This program Ck is obfuscated and placed in the public key to be used for encryption.

Internal (hardcoded) state: keys = {k, h∗}.

On input: ctdummy, t

– If h(ctdummy) ̸= h∗ output ⊥ .
– Otherwise, output z = PRF.Eval(k, t).

Fig. 13. This program Ckeys is obfuscated and placed in the public key. It is used during decryption.

Internal (hardcoded) state: k̃ = PRF.Punct(k, t∗).

On input: r
– Output z = PRF.Eval(k,G(r)), where G is the same PRG used in E .Enc.

Fig. 14. Program Ck̃ . This program replaces Ck . It is obfuscated and placed in the public key to be used for
encryption.

Leakage Resilience from Program Obfuscation

Then E is L-leakage resilient against one-time key leakage where

L = |sk| · ρ − 2 log(1/ϵ) − Lmsg − Lh(κ)

(Lct(κ, κ + ρ))

Proof. First, note that extractors that satisfy the requirements of Theorem 10 can be
constructed via the Leftover Hash Lemma (c.f. [36]). We can choose a semantically
secure symmetric key encryption scheme with Lct(κ, κ + ρ) = O(κ) + κ + ρ, for
messages of length κ+ρ, as this is achieved by appropriate modes of operation. Finally,
choosing a collision-resistant hash function h with output length Lh(κ) = O(κ), and set-
ting ρ = ω(κ), ϵ = 2− Θ(κ), Lmsg = Θ(κ), yields an encryption scheme for messages
of length Θ(κ) with leakage rate 1 − o(1).

In order to prove Theorem 10, we prove (in Lemma 15) that even under leakage, it is
hard for any ppt adversaryA to distinguish the output of the extractor,Ext from uniform
random. Given this, Theorem 10 follows immediately. !

Lemma 15. For every ppt leaking adversaryA, who is given oracle access to a leakage
oracle O and may leak at most ρ − 2 log(1/ϵ) − Lmsg bits of the secret key, there exist
random variables p̃k, s̃k such that:

(
pk, t, w,Ext(y, w), f (sk) ← AO(·)(pk)

)

c≈
(
p̃k,Uρ, w,ULmsg , f (s̃k) ← AO(·)(p̃k)

)

where y = CDec(ctdummy, t = G(r)) and the distributions are taken over coins of A
and choice of (pk, sk) ← E .Gen(1κ), w, r and choice of p̃k, s̃k, w, respectively.

We prove the lemma via the following sequence of hybrids:

Hybrid 0: This hybrid is identical to the real game.
LetDA

H0
denote the distribution (pk, w,Ext(y, w), f (sk) ← AO(·)(pk)) as in the left

side of Lemma 15.
Hybrid 1: This hybrid is the same as Hybrid 0 except we replace pseudorandom
t = G(r) in the challenge ciphertext with uniform random t∗ ← {0, 1}ρ .

Let DA
H1

denote the distribution (pk, t∗, w,Ext(y, w), f (sk) ← AO(·)(pk)) where
y = CDec(ctdummy, t∗) and the distribution is taken over coins of A, choice of
(pk, sk), w, t∗ as described above.

Claim 6. For every ppt adversary A,

DA
H0

c≈ DA
H1
.

Proof. The proof is by reduction to the security of the pseudorandom generator G.
Assume toward contradiction that there exists a ppt adversary A, a corresponding ppt
distinguisher D and a polynomial p(·) such that for infinitely many κ, D distinguishes
DA

H0
and DA

H1
with probability at least 1/p(κ). We construct a ppt adversary S that

D. Dachman-Soled et al.

distinguishes the output of the PRG from uniform random with probability at least
1/p(κ), for infinitely many κ . S does the following: S runs E .Gen(1κ) honestly to
generate (pk, sk). S hands pk toA and responds to leakage query f by apply the leakage
function directly to sk to compute f (sk). Upon receiving its challenge t ′ as the external
PRG challenge, S sets y = CDec(ctdummy, t ′), hands (pk, t ′, w,Ext(y, w), f (sk))
to the distinguisher D, and outputs whatever D does. The reader can verify that S’s
distinguishing advantage is the same as D’s. !

Hybrid 2: This hybrid is the same as Hybrid 1 except we replace the key k used in
CEnc with a punctured key, k̃ = PRF.Punct(k, t∗), and denote it as C ′

Enc. We denote
the resulting public key by pk′.
Let DA

H2
denote the distribution

(
pk′, t∗, w,Ext(y, w), f (sk) ← AO(·)(pk′)

)
where

y = CDec(ctdummy, t∗) and the distribution is taken over coins of A, and choice of
(pk′, sk), w, t∗ as described above.

Claim 7. For every ppt adversary A,

DA
H1

c≈ DA
H2
.

Proof. The proof is by a reduction to the security of the indistinguishability obfuscation
(iO). Themain observation is that with all but negligible probability, t∗ is not in the range
of the PRG, in which case CEnc and the modified circuit C ′

Enc used in Hybrid 2 have
identical behavior. Thus, with high probability for all inputs neither program can call
on PRF.Punct(k, t∗). Therefore, puncturing t∗ out from the key k will not effect the
input/output behavior. Therefore, if there is a difference in advantage, we can create an
algorithm B that breaks the security of indistinguishability obfuscation.
B runs as the challenger, but where t∗ is chosen at random. When it is to create

the obfuscated program it submits both programs C0 = Ck and C1 = Ck̃ to an iO
challenger. If the iO challenger chooses the first, then we are in Hybrid 1. If it chooses
the second, then we are in Hybrid 2. Any adversary with non-negligible advantages
in the two hybrids leads to B as an attacker on iO security. Note that since we only
require indistinguishability obfuscation (iO) for this hybrid, it is actually sufficient in our
construction to replace CEnc with CEnc ← iO(Ck), i.e., we require only iO obfuscation,
rather than diO obfuscation for this program. !

Hybrid 3: This hybrid is the same as Hybrid 2 except:

– we replace ctdummy with ct′′dummy, where ct′′dummy is an encryption of t∗||y and
y = PRF.Eval(k, t∗).

– we replace h∗ with h
′′∗ = h(ct′′dummy).

We denote the resulting public key by pk′′ and the resulting secret key by sk′′.
LetDA

H3
denote thedistribution

(
pk′′, t∗, w,Ext(y, w), f (sk′′) ← AO(·)(pk′′)

)
where

y = CDec(ct′′dummy, t
∗) and the distribution is taken over coins of A, and choice of

(pk′′, sk′′), w, t∗ as described above.

Leakage Resilience from Program Obfuscation

Internal (hardcoded) state: keys′ = {skE, k̃ = PRF.Punct(k, t∗), h
′′∗}.

On input: ctdummy, t

– If h(ctdummy) ̸= h
′′∗ output ⊥ .

– Compute α||β = E.Dec(skE, ctdummy).
– If t = α, output β.
– Otherwise, output PRF.Eval(k, t).

Fig. 15. Program Ckeys′ . This program replaces Ckeys. It is obfuscated and placed in the public key. It is
used during decryption.

Claim 8. For every ppt adversary A,

DA
H2

c≈ DA
H3
.

The proof is by a reduction to the semantic security of E.
Hybrid 4: This hybrid is the same as Hybrid 3 except we replace CDec = diO(Ckeys)

with C ′
Dec = diO(Ckeys′), where Ckeys′ is specified in Fig. 15. We denote by p̂k the

resulting public key.
Let DA

H4
denote the distribution

(
p̂k, t∗, w,Ext(y, w), f (sk′′) ← AO(·)(p̂k)

)
where

y = C ′
Dec(ct

′′
dummy, t

∗) and the distribution is taken over coins of A, and choice of

(p̂k, sk′′), w, t∗ as described above.

Claim 9. For every ppt adversary A,

DA
H3

c≈ DA
H4
.

Proof. We define the following sampler Samp and show that the circuit family C
associated with Samp is a differing-inputs circuit family.
Samp(1κ) does the following:

– Set keys = (k, h
′′∗) and set keys′ = (skE, k̃, h

′′∗).
– Let C0 = Ckeys and let C1 = Ckeys′ .

– Set aux = (skE, h, h
′′∗, ct′′dummy, r t∗, y), where r is the randomness used for

ct′′dummy.
– Return (C0,C1,aux).

Note that aux contains all of the random coins used by Samp.
We now show that for every ppt adversary A there exists a negligible function negl

such that

Pr[C0(x) ̸= C1(x) : (C0,C1,aux) ← Samp(1κ),

x ← A(1κ ,C0,C1,aux)] ≤ negl(κ).

Assume toward contradiction that there exists a ppt adversary A and a polynomial
p(·) such that for infinitely many κ,A outputs a distinguishing input with probability at
least 1/p(κ). We construct a ppt adversary S that finds a collision on h.

D. Dachman-Soled et al.

On input h ← H,S does the following:

– S simulates Samp by doing the following:

• Run (skE) ← E.Gen(1κ), k ← PRF.Gen(1κ).
Choose t∗ at random and set k̃ = PRF.Punct(k, t∗).

• S computes y = PRF.Eval(k, t∗) to generate ct′′dummy. It computes h∗ =
h(ct′′dummy).

• Set keys = (k, h
′′∗) and keys′ = (skE, k̃, h

′′∗).
• Let C0 = Ckeys and let C1 = Ckeys′ .

• Set aux = (skE, h, h
′′∗ ct′′dummy, r t

∗, y).

– S runs A(1κ ,C0,C1,aux) and receives x in return.
– S parses x as (m, t) and outputs (m).

Note thatC0(ct′′dummy, ·) andC1(ct′′dummy, ·) are functionally equivalent. Furthermore,

on any input (m, t) where h(m) ̸= h
′′∗, both circuits output ⊥ . Therefore, if A finds a

distinguishing input x = (m, t), then it must be the case that both of the following hold:

– (m ̸= ct′′dummy)

– h(m) = h
′′∗.

Thus, whenever A outputs a differing-inputs, S successfully finds a collision on h.
Therefore, we have that for infinitely many κ,S outputs a collision with probability at
least 1/p(κ).
Claim 9 follows from the fact that diO is a public-coin differing-inputs obfuscator

and from the fact that the circuit family C associated with Samp is a differing-inputs
family. This is the case since DA

H3
can be simulated given (diO(C0),aux) and DA

H4
can

be simulated given (diO(C1),aux). !

Hybrid 5: This hybrid is the same as Hybrid 4 except we replace ct′′dummy with c̃tdummy,

where c̃tdummy is an encryption of t∗||y∗, where y∗ is uniformly random. We denote by
s̃k the resulting secret key. We replace h∗ with h̃∗ = h(c̃tdummy) and denote by p̃k the
updated public key.
Let DA

H5
denote the distribution

(
p̃k, t∗, w,Ext(y∗, w), f (s̃k) ← AO(·)(p̃k)

)
where

y∗ = C ′
Dec(c̃tdummy, t∗) and the distribution is taken over coins of A, and choice of

(p̃k, s̃k), w, t∗ as described above.

Claim 10. For every ppt adversary A,

DA
H4

c≈ DA
H5
.

Proof. The proof is through a reduction to the security of the puncturablePRF. Recall,
the security notion of puncturable PRFs states that, given PRF.Punct(k, t∗), an adver-
sary cannot distinguishPRF.Eval(k, t∗) from random. The reduction is straightforward:
to break the security of the PRF,S generates t∗ at random and submits it to his chal-
lenger. He receives PRF.Punct(k, t∗), along with either y∗ = PRF.Eval(κ, t∗) or
y∗ ← {0, 1}ρ as a challenge. He uses y∗, and samples all the remaining necessary

Leakage Resilience from Program Obfuscation

keys for simulating p̂k and ŝk. He chooses w at random and computes Ext(y∗, w). He
answers leakage queries on ŝk honestly. The reader can verify that S’s advantage is the
same as A’s advantage in distinguishing the two hybrids.

Claim 11.

DA
H5

s≈
(
p̃k,Uρ, w,ULmsg , f (s̃k) ← AO(·)(p̃k)

)

Note that the right side above is the same as the right side of Lemma 15

Proof. We claim that the min-entropy of y∗ conditioned on p̃k, f (s̃k) is at least Lmsg+
2 log(1/ϵ). Note that y∗ initially has min-entropy ρ since it is chosen uniformly at
random. Recall that ctdummy has length Lct(κ, κ + ρ), and h has output length Lh(κ).
Thus, conditioning on p̃k reduces y∗’s min-entropy by at most Lh(κ) (since only h̃∗

contains information about y∗).Moreover, leaking anotherρ− 2 log(1/ϵ)− Lmsg− Lh(κ)

number of bits of ctdummy reduces y∗’s min-entropy further by at most ρ − 2 log(1/ϵ)−
Lmsg. Therefore, y∗ maintains min-entropy at least Lmsg + 2 log(1/ϵ), and the claim
follows by the properties of the strong extractor, Ext. !

This concludes the proof of Lemma 15. !

6. Continual Leakage Resilience for One-Way Relations

Dodis et al. [21] defined one-way relation (OWR) in the regular continual leakage
resilience setting, and present a construction based on a simpler primitive – leakage-
indistinguishable re-randomizable relation (LIRR). In this section, we first extend their
definition to 2CLR and CLR with leakage on key updates. Then we prove their LIRR-
based construction actually achieves the 2CLR security. By using our generic transfor-
mation from Sect. 3, we can have a construction for achieving CLR with leakage on key
updates. Additionally, we give a new construction of 2CLR OWR based on 2CLR PKE,
which can be obtained from the previous sections.

6.1. Continual Leakage Model

A one-way relation scheme OWR consists of two algorithms: OWR.Gen and
OWR.Verify. In the continual leakage setting, we require an additional algorithm
OWR.Update which updates the secret keys. Note that the public key remains
unchanged.

– OWR.Gen(1κ) → (pk, sk0). The key generation algorithm takes in the security
parameter κ , and outputs a secret key sk0 and a public key pk.

– OWR.Verify(pk, sk) → {0, 1}. The verification algorithm takes in the public key
pk, a secret key sk, and outputs either 0 or 1.

– OWR.Update(ski− 1) → ski . The update algorithm takes in a secret key ski− 1
and produces a new secret key ski for the same public key.

D. Dachman-Soled et al.

Correctness. The OWR scheme satisfies correctness if for any polynomial q = q(κ),
it holds that for all i ∈ {0, 1, . . . , q},OWR.Verify(pk, ski) = 1, where (pk, sk0) ←
OWR.Gen(1κ), and ski+1 ← OWR.Update(ski).
Security. We define continual leakage security for one-way relations in terms of the

following game between a challenger and an attacker. We let κ denote the security
parameter, and the parameter µ controls the amount of leakage allowed.

Setup Phase. The game begins with a setup phase. The challenger calls
OWR.Gen(1κ) to create the initial secret key sk0 and public key
pk. It gives pk to the attacker. No leakage is allowed in this phase.

Query Phase. In this phase, the attacker launches a polynomial number of leak-
age queries. Each time, say in the i th query, the attacker provides
an efficiently computable leakage function fi whose output is at
most µ bits, and the challenger chooses randomness ri , updates
the secret key from ski− 1 to ski , and gives the attacker the leak-
age response ℓi . In the CLR model, the leakage attack is applied
on a single secret key, and the leakage response ℓi = fi (ski− 1).
In the 2CLR model, the leakage attack is applied on consecutive
two secret keys, i.e., ℓi = fi (ski− 1, ski). In the model of CLR
with leakage on key updates, the leakage attack is applied on the
current secret key and the randomness used for updating the secret
key, i.e., ℓi = fi (ski− 1, ri).

Recovery Phase. The attacker outputs some sk∗. The attacker wins the game if
OWR.Verify(pk, sk∗) = 1. We define the success probability of
the attacker in this game as Pr[OWR.Verify(pk, sk∗) = 1].

Definition 11. (Continual Leakage Resilience) We say a one-way relation scheme
is µ-CLR secure (respectively, µ-2CLR secure, or µ-CLR secure with leakage on key
updates) if any ppt attacker only has a negligible advantage (negligible in κ) in the above
game.

6.2. Construction Based on LIRR

Leakage-Indistinguishable Re-randomizable Relation

In [21],Dodis et al introduce a newprimitive, leakage-indistinguishable re-randomizable
relation (LIRR), and show that this primitive can be used to construct OWR in the
CLR model where the adversary is allowed to leak on the secret key in each round
of leakage attack. LIRR allows one to sample two types of secret keys: “good” keys
and “bad” keys. Both types of keys look valid and are acceptable by the verification
procedure, but they are produced in very different ways. In fact, given the ability to
produce good keys, it is hard to produce any bad key and vice-versa. On the other hand,
even though the two types of keys are very different, they are hard to distinguish from
each other. More precisely, given the ability to produce both types of keys, and µ bits
of leakage on a “challenge” key of an unknown type (good or bad), it is hard to come
up with a new key of the same type. More formally, a LIRR consists of ppt algorithms
(Setup,SampG,SampB,Update,Verify, isGood) with the following syntax:

Leakage Resilience from Program Obfuscation

– (pk, sG , sB,dk) ← Setup(1κ): This algorithm returns a public key pk, a “good”
sampling key sG , a “bad” sampling key sB , and a distinguishing trapdoor dk.

– skG ← SampGpk(sG) and skB ← SampBpk(sB): These algorithms sample
good/bad secret keys using good/bad sampling keys, respectively. We omit the
subscript pk when clear from context.

– b ← isGood(pk, sk,dk): This algorithm uses dk to distinguish good secret keys
sk from bad ones.

– ski ← Update(ski− 1) and b ← Verify(pk, sk): These two algorithms have the
same syntax as in the definition of OWR in the CLR model.

Definition 12. We say (Setup,SampG,SampB,Update,Verify, isGood) is a µ

leakage-indistinguishable re-randomizable relation (LIRR) if it satisfies the following
properties:

Correctness: If (pk, sG , sB,dk) ← Setup(1κ), skG ← SampG(sG), skB ←
SampB(sB) then Pr

[
Verify(pk, skG) = 1

∧
isGood(pk, skG ,dk) = 1∧

Verify(pk, skB) = 1
∧

isGood(pk, skB,dk) = 0

]

= 1 − negl(κ)
Re-Randomization: We require that (pk, sG, sk0, sk1)

c≈ (pk, sG , sk0, sk′
1)

where (pk, sG, sB,dk) ← Setup(), sk0 ← SampG(sG) and sk1 ← Update
(sk0), sk′

1 ← SampG(sG)
Hardness of BadKeys:Given sG , it is hard to produce a valid “bad key”. Formally,
for any ppt A,

Pr
[
(pk, sG , sB,dk) ← Setup(1κ), sk∗ ← A(pk, sG) :

Verify(pk, sk∗) = 1
∧

isGood(pk, sk∗,dk) = 0

]
≤ negl(κ)

Hardness of Good Keys: Given sB , it is hard to produce a valid “good key".
Formally, for any ppt A,

Pr
[
(pk, sG , sB,dk) ← Setup(1κ), sk∗ ← A(pk, sB) :

isGood(pk, sk∗,dk) = 1

]
≤ negl(κ)

µ Leakage Indistinguishability: Given both sampling keys sG , sB , and µ bits of
leakage on a secret key sk (which is either good or bad), it is hard to produce a
secret key sk∗ which is in the same category as sk. Formally, for any ppt adversary
A, we have |Pr[A wins] − 1/2| ≤ negl(κ) in the following game:

– The challenger chooses (pk, sG , sB,dk) ← Setup(1κ) and gives pk, sG , sB to
A. The challenger chooses a random bit b ∈ {0, 1}. If b = 1, then it samples
sk ← SampG(sG), and otherwise, it samples sk ← SampB(sB).

– The adversary A can make up to q queries in total to the leakage oracle
– The adversary outputs sk∗ and wins if isGood(pk, sk∗,dk) = b.

6.2.1. Construction

A µ LIRR can be used to construct a µ-2CLR-secure OWR, as follows:

D. Dachman-Soled et al.

– Gen(1κ): Sample (pk, sG , ·, ·) ← Setup(1κ), sk ← SampG(sG) and output
(pk, sk)

– Update(·),Verify(·, ·): Same as for LIRR

Note that the CLR-OWR completely ignores the bad sampling algorithm SampB, the
“bad” sampling key sB , the distinguishing algorithm isGood, and the distinguishing key
dk of the LIRR. These are only used in the argument of security. Moreover, the “good”
sampling key sG is only used as an intermediate step during key generation to sample
the secret key sk, but is never explicitly stored afterward.

Theorem 11. Given any 2µ-LIRR scheme, the construction above is aµ-2CLR-secure
OWR.

Proof. The proof is very similar to that in [21]. To prove the theorem statement, we
develop a sequence of games. !

GameH0: This is the originalµ-2CLRGame as Definition 11. The adversary is allowed
to apply leakage function on consecutive two secret keys in each round of leakage attack.
Games H0.i - H1: Let q be the total number of leakage rounds for which A runs. We
define the Games H0.i for i = 0, 1, . . . , q as follows. The challenger initially samples
(pk, sG , sB,dk) ← Setup(1κ), and sk0 ← SampG(sG) and gives pk toA. The game
then proceeds as before with many leakage rounds, except that the secret keys in rounds
j ≤ i are generated as sk j ← SampG(sG), independently of all previous rounds, and
in the rounds j > i , they are generated as sk j ← Update(sk j− 1). Note that Game
H0.0 is the same as GameH0, and we define Game H1 to be the same as Game H0.q .

Claim 12. For i = 1, . . . , q, it holds that |Pr[A wins |H0.(i− 1)]− Pr[A wins |H0.i]| ≤
negl(κ)

Proof. We use the re-randomization property to argue that, for i = 1, . . . , q, the
winning probability of A is the same in Game H0.(i− 1) as in Game H0.i , up to
negligible factors. We construct a reduction B, with input (pk, sG , sk′, sk′′). Here
sk′ ← SampG(sG), and sk′′ is sampled based on randomly chosen b: if b = 1,
then sk′′ ← SampG(sG) and if b = 0, then sk′′ ← Update(sk′).

More concretely, the reduction B emulates a copy of A internally. In addition, B
emulates the view for A: For all j < i,B generates sk j ← SampG(sG), and for all
j > i + 1,B generates sk j ← Update(sk j− 1); B sets ski := sk′ and ski+1 := sk′′.
Upon receiving a leakage query f j fromA, the reduction B returns f j (sk j− 1, sk j) toA.
If B’s challenger uses sk′′ which is generated through SampG then that corresponds

to the view ofA in GameH0.i and if sk′′ is generated throughUpdate, then corresponds
to Game H0.(i− 1). Therefore, if A is able to distinguish the two worlds, then B is able
to break the re-randomization property. !

Game H2: Game H2 is the same as Game H1, except the winning condition: Now the
adversary only wins if, at the end, it outputs sk∗ such that isGood(pk, sk∗,dk) = 1.

Claim 13. |Pr[A wins |H1] − Pr[A wins |H2]| ≤ negl(κ)

Leakage Resilience from Program Obfuscation

Proof. The winning probability ofA in GameH2 is at least that of GameH1 minus the
probability that sk∗ satisfiesVerify(pk, sk∗) = 1∧isGood(pk, sk∗,dk) = 0.However,
since the entire interaction between the challenger and the adversary in games H1,H2
can be simulated using (pk, sG), we can use the “hardness of bad keys” property to argue
that the probability of the above happening is negligible. Therefore, the probability of
A winning in Game H2 is at least that of GameH1, up to negligible factors. !

Games H2.i - H3: Let q be the total number of leakage rounds for which A runs.
We define the Games H2.i for i = 0, 1, . . . , q as follows. The challenger initially
samples (pk, sG , sB,dk) ← Gen(1κ) and gives pk to A. The game then proceeds
as before with many leakage rounds, except that the secret keys in rounds j ≤ i are
generated as sk j ← SampB(sB), and in the rounds j > i , they are generated as
sk j ← SampG(sG). Note that Game H2.0 is the same as Game H2, and we define
Game H3 to be the same as GameH2.q .

Claim 14. For i = 1, . . . , q, it holds that |Pr[A wins |H2.(i− 1)]− Pr[A wins |H2.i]| ≤
negl(κ).

Proof. We use the 2µ-leakage indistinguishability property to argue that, for i =
1, . . . , q, the winning probability of A is the same in Game H2.(i− 1) as in Game H2.i ,
up to negligible factors. We construct a reduction B, with input (pk, sG , sB) and with
leakage access to sk. Here sk is sampled based on randomly chosen b: if b = 1, then
sk ← SampG(sG) and if b = 0, then sk ← SampB(sB).
More concretely, the reduction B emulates a copy of A internally. In addition,

B emulates the view for A: In each leakage round j < i,B uses sB to generate
sk j ← SampB(sB); and in round j > i , B uses sG to generate sk j ← SampG(sG).
Upon receiving a leakage query f j from A in leakage round j , if j < i − 1,B returns
f j (sk j− 1, sk j) toA; if j = i − 1,B defines f̂ j = f j (sk j− 1, ·), and then applies f̂ j on sk,
and returns f̂ j (sk) toA; if j = i,B defines f̂ j = f j (sk j , ·), and then applies f̂ j on sk, and
returns f̂ j (sk) to A; if j > i,B returns f j (sk j− 1, sk j) to A. At the end, B outputs the
value sk∗ output byA. Note that B made queries f̂i− 1 and f̂i , which are 2µ bits in total.

If B’s challenger uses a good key then that corresponds to the view of A in Game
H2.i and a bad key corresponds to Game H2.(i− 1). Therefore, letting b be the bit used
by B’s challenger, we have:

|Pr[B wins] − 1/2| =
∣∣Pr[isGood(pk, sk∗,dk) = b] − 1/2

∣∣

= 1/2 ·
∣∣Pr[isGood(pk, sk∗,dk) = 1|b = 1]

− Pr[isGood(pk, sk∗,dk) = 1|b = 0]
∣∣

= 1/2 ·
∣∣Pr[A wins |H2.(i− 1)] − Pr[A wins |H2.i]

∣∣

Claim 15. Pr[A wins |H3] ≤ negl(κ)

Proof. We now argue that probability of A winning Game H3 is negligible, by the
“hardness of good keys”. Notice that A’s view in Game H3 can be simulated entirely
just given (pk, sB). Therefore, there is a ppt algorithm which, given (pk, sB) as inputs,

D. Dachman-Soled et al.

Construction OWR = OWR.{Gen,Update,Verify}

Here E = E .{Gen,Enc,Dec,Update} is a PKE scheme, and p(·) is some polynomial.

Key Generation: (pk, sk0) ← OWR.Gen(1κ)
– Compute (pkE , skE0) ← E .Gen(1κ).
– Choose p = p(κ) random messages m1, . . . ,mp from the message space of

E .
– For i ∈ [p], compute a random encryption ei = E .Enc(mi).
– Output public key pk = (pkE , (m1, e1), . . . , (mp, ep)) and secret key sk0 =

skE0 .
Key Update: ski+1 ← OWR.Update(ski)

Set ski+1 ← E .Update(ski).
Verification: b ← OWR.Verify(sk′, pk)

Upon receiving key pair (sk′, pk), parse pk = (pkE , (m1, e1), . . . , (mp, ep)).
If for all i ∈ [p], E .Dec(sk′, ei) = mi, then set b := 1; otherwise, set b := 0.

Fig. 16. Transformation of PKE to OWR.

can run GameH3 withA and output sk∗ such that isGood(pk, sk∗,dk) = 1 whenever
A wins. So the probability of A winning in Game H3 is negligible. !

By the hybrid argument, the probability of A winning in Game H0 is at most that of
A winning in Game H3, up to negligible factors. That is, Pr[A wins |H0] ≤ negl(κ).
Therefore, since the latter is negligible, the former must be negligible as well, which
concludes the proof of the theorem. !
Based on the result in [21], we have the following corollary.

Corollary 1. Fix a constant K ≥ 1, and assume that the K -linear assumption holds in
the base groups of some pairing. Then, for any constant ϵ > 0, there exists a µ-2CLR-
secure OWR scheme with relative-leakage µ

|sk| ≥ 1
2(K+1) − ϵ.

6.3. A Generic Construction Based on PKE

In this section, we describe a generic construction of CLR-secure OWR (resp., 2CLR
secure and CLR with leakage on key updates) from CLR secure PKE (resp., 2CLR
secure, and CLR with leakage on key updates). A OWR requires verification of the
relation to be deterministic; but a PKE does not necessarily give a OWR because there
might not be a deterministic way to check the key pair (pk, sk) of a PKE. Here we
present a way to check the key pair of a PKE deterministically, so that one can use PKE
to construct OWR.

Theorem 12. Let E be a public key encryption scheme secure in the model of CLR
(respectively, of 2CLR, and of CLR with leakage on key updates) with leakage rate ρ,
then for appropriate choice of polynomial p(·), the one-way relation scheme OWR in
Fig. 16 is secure in the model of CLR (respectively, of 2CLR, and of CLR with leakage
on key updates) with leakage rate ρ.

Leakage Resilience from Program Obfuscation

Proof. (Sketch.) A well-known result from learning theory known as Occam’s Razor
(see, for example, Kearns and Vazirani [40], Theorem 2.1)11 says that if a class of
circuits has size |C| and a circuit C ∈ C agrees with a target circuit C∗ ∈ C on
poly(log(|C|), 1/ϵ, log(1/δ)) number of random inputs, then with probability 1 − δ,C
agrees with C∗ over the uniform distribution with probability 1 − ϵ. In the following,
we will always set log(1/δ) ≥ κ and so δ ≤ 1/2κ .
Assume we have an adversary A breaking the security of the one-way relation, we

use it to construct an adversary A′ breaking the security of the encryption scheme E .
The class C consists of the circuits E .Dec(s̃k, ·) for all possible sk. Clearly, log(|C|) =
|sk| = poly(κ). Now, C corresponds to the circuit E .Dec(sk′, ·), where sk′ is the
secret key submitted by A such that OWR.Verify(sk′,pk) = 1. Furthermore, C∗ is
the circuit E .Dec(sk, ·), where sk is a real secret key. Note that C and C∗ agree on
p(κ) = poly(log(|C|), 1/ϵ, 1/ log(δ)) random inputs, since E .Verify(sk′,pk) = 1.
Thus, we are guaranteed that with probability 1 − δ over choice of input/output pairs
(mi , ei) in pk, sk′ decrypts correctly on a fresh random input with probability 1 − ϵ.
We are now ready to define the adversary A′.
A′ internally instantiates A, while participating externally in a leakage (resp., on con-
secutive two keys, and on both key and update) on encryption scheme E . Specifically,
A′ does the following:

– Upon receiving pkE from the external experiment, do the following:

• Choose p = p(κ) random messagesm1, . . . ,mp from the message space of E .
• For i ∈ [p], compute a random encryption ei = E .Enc(mi).
• Output public keypk = (pkE , (m1, e1), . . . , (mp, ep)) to the internal adversary
A. Note that secret key sk0 = skE0 is a correctly distributed secret key for this
pk.

– Whenever A submits a leakage query f ,A′ submits the same query to its external
challenger who applies it to the secret key (resp., on consecutive two keys, and on
both key and update) and forwards the answer to A.

– Finally,A submits sk′ toA′. If there exists i ∈ [p] such that E .Dec(sk′, ei) ̸= mi ,
then A′ outputs random b′.

– Otherwise, A′ chooses two independent, uniformly random messages m0,m1 and
submits to its external challenger.

– A′ then receives the challenge ciphertext c∗.
– A′ computes m∗ = E .Dec(sk′, c∗). If m∗ = m0,A′ outputs 0. Otherwise, A′

outputs 1.

Note thatA′ perfectly simulatesA’s view in theOWR game. Therefore, it is not hard
to see that if A succeeds with probability p1 = p1(κ) ≥ 8/2κ , then A′ succeeds with
probability 1/2 · (1 − p1)+ (p1 − δ)(1 − ϵ). For ϵ ≤ 1/7, we have that (p1 − δ)(1 −
ϵ) ≥ 3p1/4. Thus, A′ succeeds with probability 1/2 + p1/4 and obtains advantage
AdvA′,E = p1/4. This, in turn, implies that A must succeed with negligible p1(κ)
probability, since otherwise we contradict the security of E . !

11We note that the statement of Occam’s Razor theorem in [40] is for the case of Boolean functions.
However, the analysis can be easily extended to the non-Boolean case.

D. Dachman-Soled et al.

7. Continual Leakage Resilience for Digital Signatures

In the previous section, we extended the techniques of Dodis et al. [21] to construct
µ-2CLR-secure one-way relations. Dodis et al. [21] showed how to construct contin-
ual leakage-resilient signature schemes from one-way relations secure against continual
leakage. In this section, we extend their techniques and to constructµ-2CLR-secure sig-
nature schemes fromµ-2CLR-secure one-way relations. Finally, combiningour resulting
µ-2CLR-secure signature schemewith Theorems 6 and 7, we obtain a continual leakage-
resilient signature scheme with leakage on update (but no leakage on the randomness
used for signing).
See Sects. 2.2 and 3.4 for the formal definition of continual (consecutive) leakage

resilience for digital signature schemes.

7.1. NIZK and True-Simulation Extractability

Dodis et al. [21] constructed CLR-secure signature based on CLR-secure OWR and
another primitive named true-simulation extractable (tSE) NIZK. We here recall the
syntax and security properties of NIZK. We note that the definitions below are taken
from [21] for completeness.
Let R be an NP relation on pairs (y, x) with corresponding language LR =

{y | ∃x s. t. (y, x) ∈ R}. A NIZK argument for a relation R consists of four ppt algo-
rithms (Setup,Prove,Verify,Sim) with syntax:

– (crs, tk) ← Setup(1κ): Creates a common reference string (CRS) and a trapdoor
key to the CRS.

– π ← Provecrs(y, x): Creates an argument that y ∈ LR .
– Simcrs(y, tk): Creates a simulated argument that y ∈ LR .
– b ← Verifycrs(y,π): Verifies whether or not the argument π is correct.

For the sake of clarity, we write Prove,Verify,Sim without the crs in the subscript
when the crs can be inferred from the context.

Definition 13. We say that (Setup,Prove,Verify) are a NIZK argument system for
the relation R if the following three properties hold.

Completeness: For any (y, x) ∈ R, if (crs, tk) ← Setup(1κ),π ←
Prove(y, x), then Veri f y(y,π) = 1.

Soundness: For any ppt adversary A, Pr[Verify(y,π∗) = 1 ∧
y ̸∈ LR : (crs, tk) ← Setup(1κ), (y,π∗) ←
A(crs)] ≤ negl(1κ)

Composable Zero Knowledge: For any ppt adversaryA, we havePr[Awins]− 1/2 ≤
negl(1κ) in the following game:

– The challenger samples (crs, tk) ← Setup(1κ) and gives (crs, tk) to A.
– The adversary A chooses (y, x) ∈ R and gives these to the challenger.
– The challenger samples π0 ← Prove(y, x),π1 ← Sim(y, tk), b ← {0, 1} and
gives πb to A.

– The adversary A outputs a bit b′ and wins if b′ = b.

Leakage Resilience from Program Obfuscation

Definition 14. (True-Simulation Extractability [22]) Let NIZK = (Setup,Prove,
Verify,Sim) be an NIZK argument for an NP relation R, satisfying the complete-
ness, soundness and zero-knowledge properties. We say that NIZK is true-simulation
extractable (tSE), if:

– Apart from outputting a CRS and a trapdoor key, Setup also outputs an extraction
key: (crs, tk,ek) ← Setup(1κ).

– There exists a ppt algorithm Extek such that for all A we have Pr[Awins] ≤
negl(1κ) in the following game:

1. The challenger runs (crs, tk,ek) ← Setup(1κ) and gives crs to A.
2. ASIMtk() is given access to a simulation oracle SIMtk(), which it can adap-

tively access. A query to the simulation oracle consists of a pair (y, x). The
oracle checks if (y, x) ∈ R. If true, it ignores x and outputs a simulated argu-
ment Simtk(y). Otherwise, the oracle outputs ⊥ .

3. A outputs a pair (y∗, σ ∗), and the challenger runs x∗ ← Extek(y∗, σ ∗).

A wins if (y, x∗) ̸∈ R,Verify(y∗, σ ∗) = 1, and y∗ was not part of a query to the
simulation oracle.

7.2. CLR Signatures with Leakage on Key Updates from OWR

Next we recall Dodis et al’s construction and then show that actually their construction
is 2CLR secure if the underlying OWR is 2CLR secure.We then combine the above with
our generic transformation from Sect. 3 to obtain CLR-secure signatures with leakage
on key updates.
In the following, OWR := (OWR.Gen(1κ),OWR.Update(sk)) is a 2CLR-secure

one-way relation and NIZK := (NIZK.Setup,NIZK.Prove,NIZK.Verify) is a is tSE-
NIZK for the relation

R = {(y, x) | y = (pk,m), x = sk s.t. Verify(pk, sk) = 1}.

Although input m seems useless in the above relation, looking ahead, m will play the
role of the message to be signed. Note that we have the important property that when
the message m changes, the statement y = (pk,m) also changes.

– SIG.Gen(1κ) :Output (vk, sk)wherevk = (pk, crs), (pk, sk) ← OWR.Gen(1κ)

and crs ← NIZK.Setup(1κ).
– SIG.Signsk(m): Output σ ← NIZK.Prove((pk,m), sk).
– SIG.Verifyvk(m, σ): Output b := NIZK.Verify(pk,m), σ).
– SIG.Update(sk): Output OWR.Update(sk).

Theorem 13. If one-way relationOWR isµ-2CLR secure andNIZK is true-simulation
extractable, then the above signature scheme is µ-2CLR secure.

Proof. The proof here is very similar to that in [21]. We prove the above theorem
through a sequence of games. !

D. Dachman-Soled et al.

GameH0: This is the originalµ-2CLR game described in Definition 3, in which signing
queries are answered honestly by running σ ← NIZK.Prove((pk,m), sk) and A wins
if she produces a valid forgery (m∗, σ ∗).

Game H1: In this game, the signing queries are answered by generating simulated
arguments, i.e., σ ← NIZK.Simtk(pk,m). Games H0 and H1 are indistinguishable
by the zero-knowledge property of NIZK. Here the simulated arguments given to A as
answers to signing queries are always of true statements.

Game H2: In this game, we modify the winning condition so that the adversary only
wins if it produces a valid forgery (m∗, σ ∗) and the challenger is able to extract a valid
secret key sk∗ for pk from (m∗, σ ∗). That is, A wins if both SIG.Verify(m∗, σ ∗) = 1
and OWR.Verify(pk, sk∗) = 1, where sk∗ ← NIZK.Extek((pk,m∗), σ ∗). The win-
ning probability ofA in GameH2 is at least that of GameH1 minus the probability that
NIZK.Verify((pk,m∗), σ ∗) = 1 andOWR.Verify(pk, sk∗) = 0. By the true-simulation
extractability of the argument NIZK, we know that this probability is negligible. There-
fore, the winning probability of A in Game H2 differs from that in Game H1 by a
negligible amount.
Wehave shown that the probability thatAwins inGameH0 is the same as that inGame

H2, up to negligible factors. We now argue that the probability thatA wins in GameH2
is negligible, which proves that the probability that A wins in Game H0 is negligible
as well. To prove that the probability that A wins in GameH2 is negligible, we assume
otherwise and show that there exists a ppt algorithm B that breaks the µ-2CLR security
of OWR. On input pk,B generates (crs, tk,ek) ← NIZK.Setup(1κ) and emulates A
on input vk = (crs,pk). In each leakage round, B answers A’s leakage queries using
the leakage oracle and answers signing queries mi by creating simulated arguments
σi ← NIZK.Simtk(pk,mi). When A outputs her forgery (m∗, σ ∗),B runs sk∗ ←
NIZK.Extek((pk,m∗), σ ∗) and outputs sk∗. Notice that Pr[B wins] = Pr[A wins], so
that if Pr[Awins] is non-negligible thenB breaks theµ-consecutive two-key security of
OWR. We therefore conclude that the probability thatAwins in GameH2 is negligible.
This concludes the proof of the theorem. !
Based on the result in [21], we have the following corollary.

Corollary 2. Fix a constant K ≥ 1, and assume that the K -linear assumption holds in
the base groups of some pairing. Then, for any constant ϵ > 0, there exists a µ-2CLR-
secure signature scheme with relative-leakage µ

|sk| ≥ 1
2(K+1) − ϵ.

Acknowledgements

We thank the anonymous reviewers for their insightful comments, which greatly
improved the presentation of this work.

Leakage Resilience from Program Obfuscation

A. The Connection Between CLR and Obfuscation

In Sects. 5.1 and 5.2, we demonstrated that we can use obfuscation to fortify any public
key encryption scheme with leakage resilience, if the leakage is one-time and bounded.
Here, we seek to generalize the approach, using obfuscation to achieve security against
continual leakage. As compared with the result of Sect. 4, where we show that program
obfuscation can strengthen one specific encryption scheme to provide leakage resilience,
the intention here is to explore what can be done generically. That is, our aim is to achieve
continual leakage resilience starting from any PKE scheme and diO. Unfortunately, we
fall somewhat short, requiring that the underlying encryption scheme posses certain
specific properties, which we describe below. Although we demonstrate an instantiation
of such a scheme from the Decision-Linear assumption [7], we believe that the most
interesting open question left by our study of the relationship between leakage resilience
and program obfuscation is to construct such an encryption scheme directly from any
PKE scheme and diO.We include this section, in large part, with the hope of highlighting
the missing piece.
Recall that in the previous construction, the secret key consists of a dummy cipher-

text. An initial idea for how to achieve (consecutive) CLR is to refresh the secret key
by re-randomizing the ciphertext. Specifically, in the real construction, the ciphertext
in the secret key just encrypts zeros and is re-randomized, but in the proof it contains
the PRF output and the underlying plaintext is refreshed from round to round. How-
ever, since the underlying plaintext changes from round to round, we run into some
technical difficulties. Specifically, an adversary who knows the underlying secret key
for the ciphertext embedded in the construction’s secret key will be able to distinguish
consecutive hybrids. On the other hand, an adversary who does not know the secret key
for the ciphertext will not be able to produce a correctly distributed obfuscated circuit
to be placed in the public key. To resolve this, the idea is to use an encryption scheme
with special properties: The challenge ciphertext remains semantically secure while at
the same time, the adversary can efficiently simulate a decryption oracle which either
successfully decrypts the submitted ciphertext, or indicates that the submitted ciphertext
is a re-randomization of the challenge ciphertext. Note that this notion is a strengthening
of the notion of re-randomizable RCCA (relaxed CCA) security. Specifically, we define
a new special “diO-compatible” notion of “relaxed” [15] or “controlled” malleability
CCA security for re-randomizable encryption [17]. We then show how to realize our
new notion from the Decision-Linear (DLIN) assumption in bilinear groups, following
[17]. Our resulting continual leakage-resilient scheme presented in Sect. A.4 combines
this assumption with diO.

A.1. Re-randomizable Encryption

A re-randomizable encryption scheme is a tuple of algorithms RPKE = (Gen,Enc,
Dec,ReRand) defined as follows. First, the triple (Gen,Enc,Dec) is a standard
encryption scheme. Second,

(pk, sk, c1, c2) ≈ c (pk, sk, c1, c′
2)

where

D. Dachman-Soled et al.

(pk, sk) ← Gen(1κ) ; c1 ← Enc(pk,m),

c2 ← Enc(pk,m) ; c′
2 ← ReRand(pk, c) .

A.2. diO-Compatible RCCA Encryption

Intuitively, an RCCA encryption scheme [15] is like a CCA-secure encryption scheme
that allows replay attacks. We define a special type of RCCA encryption scheme that we
call diO compatible, inspired by the definition of controlled malleability of Chase et al.
[17]. The intuition for diO-compatible RCCA encryption is that the security proof allows
for placing the secret key of the encryption scheme in an obfuscation,while arguing about
semantic security of a challenge ciphertext. Specifically, the way this is achieved is by
requiring that the diO-compatible RCCA encryption have a specific hybrid structure
for proving security. In each hybrid, there is an efficient algorithm which simulates the
decryption oracle. Moreover, indistinguishability of consecutive hybrids reduces either
to the security of an underlying primitive, or reduces to the fact that, even given the code
of the simulated decryption oracle, the attacker cannot find a distinguishing input. A
detailed definition follows.
Syntax. A diO-compatible RCCA encryption scheme is a tuple of algorithms RCCA =
(Gen,Enc,SimEnc,Dec) where

– Algorithm Gen(1κ) outputs keys (pk, (sk1, sk2), τsim).
– Algorithm Enc(pk,m) outputs a ciphertext c.
– Algorithm SimEnc(τsim,m) outputs a ciphertext csim.
– Algorithm Dec1(sk1, c) outputs a message value in {m,⊥}.
– Algorithm Dec2(sk2, c) outputs a message value in {m,⊥,SimFlag}.

Correctness. For correctness, we require that Pr[Dec(sk1,Enc(pk,m)) = m] = 1
where (pk, (sk1, sk2), τsim) is output by Gen(1κ). (This can be relaxed to allow negli-
gible probability of failure.)
Security. Intuitively, our encryption schememust remain secure, evenwhen the adversary
is given an obfuscation of the decryption key (using diO security). This is hard to argue
generically, since we cannot say for sure what might be revealed about the key by such an
obfuscation. By using a two-key system and a NIZK, we enable ourselves to transition
through a sequence of hybrids that allow us to change the content of the plaintext while
still claiming indistinguishability. (A similar method appears in the work of Garg et al.
[29].) More specifically, we require three security properties that are formally described
below. The first property says that real ciphertexts are indistinguishable from simulated
ones, even when given sk1; this allows us to transition to using simulated ciphertexts,
even when the adversary is given an obfuscation containing sk1. The third property says
that, given a simulated ciphertext encrypting m, it is hard to construct a new ciphertext
that decrypts to m′ ̸= m under sk1, but decrypts to something other than m′ under sk2.
This allows us to switch the key in the obfuscation from sk1 to sk2 under the argument
of diO security. Finally, the second security property ensures indistinguishability of
simulated ciphertexts even when given sk2, which allows us to modify plaintext values
even while giving the adversary the obfuscated key. The formal definition follows. We

Leakage Resilience from Program Obfuscation

note that in the definition of simulation soundness, we useSimFlag to denote a Boolean
value, which is intended to indicate that a ciphertext was simulated. 12

– Indistinguishability of simulated ciphertexts from real ciphertexts: For any
efficient adversary A and message m

A(pk,Enc(pk,m), sk1)
c≈ A(pk,SimEnc(τsim,m), sk1) .

– Indistinguishability of simulated ciphertexts under chosen plaintext attack:
For any efficient adversary A, and any message pair (m0,m1),

A(pk, sk2,SimEnc(τsim,m0))
c≈ A(pk, sk2,SimEnc(τsim,m1)) .

– Simulation soundness: For any efficient A and message m the probability
that the following experiment outputs 1 is negligible: (pk, (sk1, sk2), τsim) ←
Gen(1κ) ; c ← SimEnc(τsim,m) ; c∗ ← A(sk1, sk2, c) Return 1 if either

1. Dec2(sk2, c∗) = SimFlag
∧

Dec1(sk1, c∗) ̸= m
2. Dec2(sk2, c∗) ̸= SimFlag

∧
Dec2(sk2, c∗) ̸= Dec1(sk1, c∗)

where the probability is taken over the randomness used in key generation,SimEnc,
and by A when computing c∗.

Re-randomizability. We say that a diO-compatible RCCA-secure encryption scheme
is re-randomizable if it has an additional algorithm ReRand defined analogously to
re-randomizable encryption.

A.3. Construction of diO-Compatible RCCA Re-randomizable PKE

In our extension to continual leakage, we need a diO-compatible RCCA-secure re-
randomizable scheme. We will show that the controlled-malleable (CM) CCA encryp-
tion scheme of Chase et al. [17] instantiates this notion based on the Decision-Linear
assumption [7]. Compared to their security analysis, we prove something stronger since
we require an RCCA scheme of a particular “diO-compatible” form, but we use the same
RCCA construction of [17] and what we require follows by observing that their scheme
possesses the additional properties we require.
We begin by defining non-interactive proof systems, non-interactive zero-knowledge

(NIZK) proofs of knowledge and malleable proof systems.We then define the additional
security properties (controlled-malleable simulation sound extractability), required for
the construction of Chase et al. [17]. Our definitions closely follow those in [17].

Definition 15. (Non-interactive proof systems)A set of algorithms (CRSSetup,P,V)
constitute a non-interactive (NI) proof system for an efficient relation R with associated
language LR if completeness and soundness below are satisfied. A NI proof system

12We note that the presented conditions only refer to single-message security, which is all that is needed
in our applications. More generally they could provide the adversary many challenge encryptions (say, via
appropriate encryption oracles).

D. Dachman-Soled et al.

is extractable if, in addition, the extractability property below is satisfied. A NI proof
system is zero knowledge (NIZK) if the zero-knowledge property is satisfied. A NIZK
proof system that is also extractable constitutes a non-interactive zero-knowledge proof
of knowledge (NIZKPoK) system.

1. Completeness. For all σcrs ← CRSSetup(1κ) and (x, w) ∈ R,V(σcrs, x,π) = 1
for all proofs π ← P(σcrs, x, w).

2. Soundness. For all ppt A, and for σcrs ← CRSSetup(1κ), the probability that
A(σcrs) outputs (x,π) such that x /∈ L but V(σcrs, x,π) = 1, is negligible.

3. Extractability. There exists a polynomial-time extractor algorithm E = (E1, E2)

such that E1(1κ) outputs (σext , τext) and E2(σext , τext, x,π) outputs a value
w such that (1) a σext output by E1(1κ) is indistinguishable from σcrs out-
put by CRSSetup(1κ); (2) for all ppt A, the probability that A(σext , τext)

(where (σext , τext) ← E1(1κ) outputs (x,π) such that V(σext , x,π) = 1 and
R(x, E2(σext , τext, x,π)) = 0, is negligible.

4. Zero knowledge. There exists a polynomial-time simulator algorithm S = (S1, S2)
such that S1(1κ) outputs (σsim, τsim) and S2(σsim, τsim, x) outputs a value πs such
that for all (x, w) ∈ R and ppt adversaries A, the following two interactions are
indistinguishable: in the first, we compute σcrs ← CRSSetup(1κ) and give A
σcrs and oracle access to P (where P will output ⊥ on input (x, w) such that
(x, w) /∈ R); in the second we compute (σsim, τsim) and give A σsim and oracle
access to S(σsim, τsim, ·, ·), where, on input (x, w), S outputs S2(σsim, τsim, x) if
(x, w) ∈ R and ⊥ otherwise.

Definition 16. (Malleable non-interactive proof system) Let (CRSSetup,P,V) be a
non-interactive proof system for a relation R. Let T be an allowable set of transfor-
mations for R. Then this proof system is malleable with respect to T if there exists an
efficient algorithm ZKEval that on input (σcrs, T, {xi ,πi }), where T ∈ T is an n-ary
transformation, and V(σcrs, xi ,πi) = 1 for all i, 1 ≤ i ≤ n, outputs a valid proof π for
the statement x = Tx ({xi }) (i.e., a proof π such that V(σcrs, x,π) = 1).

Definition 17. (Controlled-malleable simulation sound extractability) Let
(CRSSetup,P,V) be a NIZKPoK system for an efficient relation R, with a simulator
(S1, S2) and an extractor (E1, E2). Let T be an allowable set of unary transformations
for the relation R such that membership in T is efficiently testable. Let SE1 be an
algorithm that on input 1κ outputs (σcrs, τsim, τext) such that (σcrs, τsim) is distributed
identically to the output of S1. Let A be given, and consider the following game:

– Step 1. (σcrs, τsim, τext) ← SE1(1κ).
– Step 2. (x,π) ← AS2(σcrs ,τsim,·)(σcrs, τext).
– Step 3. (w, x ′, T) ← E2(σcrs, τext, x,π).

We say that the NIZKPoK satisfies controlled-malleable simulation sound extractabil-
ity if for all ppt algorithms A there exists a negligible function negl(·) such that the
probability (over the choices of SE1,A and S2) that V(σcrs, x,π) = 1 and (x,π) /∈ Q
(where Q is the set of queried statements and their responses) and either (1) w ̸= ⊥
and (x, w) /∈ R; (2) (x ′, T) ̸= (⊥,⊥) and either x ′ /∈ Tx (x ′) or T /∈ T ; or (3)
(w, x ′, T) = (⊥,⊥,⊥) is at most negl(κ).

Leakage Resilience from Program Obfuscation

For simplicity, we additionally require (CRSSetup,P,V) to be “same-string” NIZK
(see [20]), which means that σcrs generated by SE1 is identically distributed to σcrs
generated by CRSSetup. We point out in the analysis below where this property is
used.
For our purposes, we require proof systems for statements of the form “I know the

message and randomness corresponding to public key and ciphertext pair (pk, c), for
an underlying re-randomizable encryption scheme.” Given a proof corresponding to a
particular (pk, c), we would like to use malleability to construct proofs for (pk, c̃),
where c̃ is a re-randomization of c. Therefore, we require an NIZKPoK with controlled
malleability (CM) with respect to the class T , where T corresponds to the set of trans-
formations that take as input (pk, c) and output (pk, c̃), where c̃ is a re-randomization
of c. We discuss instantiations of such CM-NIZK below.
Our instantiation of diO-compatible RCCA follows the construction of CM-CCA

encryption of [17]. Details follow.
The Instantiation of diO-Compatible RCCAbased on [17].We assume a re-randomizable
IND-CPA-secure encryption scheme (Gen′,Enc′,Dec′) and a cm-NIZK scheme
(CRSSetup,P,V), with simulator SE1, for the relation R such that ((pk, c), (m, r)) ∈
R iff c := Enc′(pk,m; r) and for malleability class T , where T is the set of transfor-
mations corresponding to re-randomization of the ciphertext c. For our construction we
have RCCA = (Gen,Enc,SimEnc,Dec) as follows:

– Gen(1κ): Run (pk′, sk′) ← Gen′(1κ) and (σcrs, τsim, τext) ← SE1(1κ); set the
public key pk of the RCCA encryption scheme to pk := (pk′, σcrs), the secret key
sk1 of the RCCA encryption scheme to sk1 := (pk, sk′), and the secret key sk2 of
the RCCA encryption scheme to sk2 := (pk, τext). Output (pk, sk1, sk2, τsim).

– Enc(pk,m): Parse pk = (pk′, σcrs); then compute c′ ← Enc′(pk′,m) and π ←
P(σcrs, (pk′, c′),m) (i.e., a proof of knowledge of the value inside c′) and output
c := (c′,π).

– SimEnc(pk, τsim,m): Parse pk = (pk′, σcrs), then compute c′
sim ← Enc′(pk′,m)

and πsim ← S2(σcrs, τsim, (pk′, c′
sim)) a simulated proof of plaintext knowledge

as πsim; it outputs ciphertext c := (c′
sim,πsim).

– Dec1(sk1, c): First parse sk1 = (pk, sk′), pk := (pk′, σcrs) and c := (c′,π); now
check that V(σcrs, (pk′, c′),π) = 1. If not abort and output⊥ . Otherwise, compute
and output m = Dec′(sk′, c′).

– Dec2(sk2, c): First parse sk1 = (pk, sk′), pk := (pk′, σcrs) and c := (c′,π); now
check that
V(σcrs, (pk′, c′),π) = 1. If not abort and output ⊥ . Otherwise, compute
((m, r), (pk′, c′), T) ← E2(σcrs, τext, x,π). If (m, r) = ⊥ , outputSimFlag. Oth-
erwise, output m.

diO Compatibility of the Scheme. We go through the required security properties and
sketch the argument for why each of them hold.

D. Dachman-Soled et al.

– Indistinguishability of simulated ciphertexts from real ciphertexts: For any
efficient adversary A and message m

A(pk,Enc(pk,m), sk1)
c≈ A(pk,SimEnc(τsim,m), sk1) .

This follows from the “same-string” NIZK property of (CRSSetup,P,V) and
the fact that simulated proofs and real proofs under the cm-NIZK scheme
(CRSSetup,P,V) are indistinguishable.

– Indistinguishability of simulated ciphertexts under chosen plaintext attack:
For any efficient adversary A, and any message pair (m0,m1),

A(pk, sk2,SimEnc(τsim,m0))
c≈ A(pk, sk2,SimEnc(τsim,m1)) .

Since S2 takes as input σcrs, τsim, (pk′, c′
sim), the output ofSimEnc(τsim,mb), b ∈

{0, 1} can be computed given (σcrs, τsim, c′b
sim), where c

′b
sim is an encryption ofmb

under pk′. Therefore, due to the definitions of pk, sk2, it is sufficient to show that

(σcrs, τext, τsim, c
′0
sim)

c≈ (σcrs, τext, τsim, c
′1
sim).

This follows from the fact that encryptions of m0 and encryptions of m1 under pk′

are indistinguishable, even given σcrs, τext, and τsim.
– Simulation soundness: For any efficient A and message m the probability
that the following experiment outputs 1 is negligible: (pk, (sk1, sk2), τsim) ←
Gen(1κ) ; c ← SimEnc(τsim,m) ; c∗ ← A(sk1, sk2, c) Return 1 if

1. Dec2(sk2, c∗) = SimFlag
∧

Dec1(sk1, c∗) ̸= m
2. Dec2(sk2, c∗) ̸= SimFlag

∧
Dec2(sk2, c∗) ̸= Dec1(sk1, c∗)

where the probability is taken over the randomness used in key generation, SimEnc,
and by A when computing c∗.
This follows from the controlled-malleable simulation sound extractability of the

proof system (CRSSetup,P,V), which holds even given τext (which is contained
in sk2). Specifically, parse c := (c′,π) and c∗ := (c∗′,π∗) and note that if
Dec2(sk2, c∗) = SimFlag then it must be the case that V(σcrs, (pk′, c∗′),π∗) = 1
and ((m∗, r∗), (pk′, c∗′), T) ← E2(σcrs, τext, x,π) is such that (m∗, r∗) = ⊥ . But by
the controlled-malleable simulation sound extractability of (CRSSetup,P,V), if the
above occurs then it must be the case that (pk′, c∗′) ∈ T(pk′,c′)(pk′, c∗′) and T ∈ T . This
means that c∗′ is a re-randomization of c′ and so Dec1(sk1, c∗) = Dec′(sk′, c∗′) = m.
On the other hand, if Dec2(sk2, c∗) ̸= SimFlag then if V(σcrs, (pk′, c∗′),π∗) = 0
both Dec2(sk2, c∗) and Dec1(sk1, c∗) output ⊥ . Otherwise, it must be the case that
V(σcrs, (pk′, c∗′),π∗) = 1,

((m∗, r∗), (pk′, c∗′), T) ← E2(σcrs, τext, x,π) is such that (m∗, r∗) ̸= ⊥ and
Dec2(sk2, c∗) outputsm∗. But by the controlled-malleable simulation sound extractabil-
ity of (CRSSetup,P,V), if the above occurs then it must be the case that ((m∗, r∗),

Leakage Resilience from Program Obfuscation

(pk′, c∗′)) ∈ R, which means that Dec1(sk1, c∗) = Dec′(sk′, c∗′) = m∗ =
Dec2(sk2, c∗).

Concrete parameters. As in [17], the underlying re-randomizable RCCA public key
encryption scheme can be instantiated with the Decision-Linear-based encryption
scheme of Boneh, Boyen, and Shacham [7] (which is re-randomizable via exponen-
tiation). The NIZK proof system can be the same as in [17]: Combine a Groth-Sahai
proof of plaintext knowledge (which is itself re-randomizable and supports exponentia-
tion malleability of the underlying statement) along with the signature scheme fromAbe
et al. [1]. A ciphertext in the resulting diO-compatible RCCA-secure re-randomizable
PKE scheme will contain a constant number of group elements, although this constant
is large. A benefit of our abstractions is that better constructions of re-randomizable
RCCA-secure public key encryption and corresponding NIZK proof system will lead to
improved parameters for our continual leakage-resilient PKE scheme.

A.4. Our 2CLR PKE Construction

To guarantee security in the presence of continual leakage, we modify our construction
in two ways. First, we strengthen the security of the encryption scheme used to encrypt
ctdummy, requiring that it provide relaxed CCA security (RCCA) [15]. Recall that such
encryption schemes allow users to re-randomize ciphertexts, while guaranteeing the
ciphertexts are otherwise secure against chosen ciphertext attacks.
The other change that we make to the scheme of Sect. 5.2 comes up in the proof

of security. Because we are leaking over multiple rounds, storing t∗ in a list no longer
suffices. After enough rounds, the value will be fully recovered by the adversary, and
he will distinguish neighboring hybrids. To fix this, we instead store random values
whose inner product yields the challenge point, along with a hash of the challenge.
In our proof of security, the most interesting hybrids are Hybrid 4, where use RCCA
security, Hybrid 5, where we reduce to diO, and Hybrid 8, where we use the fact that
inner product is a good two-source (and, therefore, strong) extractor. The other hybrids
are fairly straightforward (Figs. 17, 18, 19).

Theorem 14. Assume

– RCCA is a diO-compatible RCCA-secure re-randomizable PKE with ciphertexts
of length Lct(κ, Lmsg) for Lmsg-bit messages and security parameter κ .

– SIG is a strong existentially unforgeable digital signature scheme with signatures
of length Lsig(κ, Lmsg) for Lmsg-bit messages and security parameter κ .

– PRF is a puncturable pseudorandom function {0, 1}κ × {0, 1}ρ → {0, 1}Lmsg for
some ρ = ρ(κ) = ω(κ2).

– G is a pseudorandom generator {0, 1}κ → {0, 1}ρ .
– diO is a differing-inputs obfuscator for circuits in this scheme.
– H is a family of collision-resistant hash functions with output size κ bits.

D. Dachman-Soled et al.

Encryption Scheme E = (E .Gen, E .Enc, E .Dec, E .Update)

Key Generation: (pk, sk0) ← E .Gen(1κ)
Compute the following:
– (pkRCCA, skRCCA, sk2, τsim) ← RCCA.Gen(1κ),
– (vk, td) ← SIG.Gen(1κ),
– k ← PRF.Gen(1κ).
– σ ← SIG.Sign(td, 02κ+ρ+Lmsg).
– ctdummy ← RCCA.Enc(pkRCCA, σ||02κ+ρ+Lmsg ; r0), where r0 ← {0, 1}κ.

Let Ck be the circuit described in Figure 18, and compute CEnc ← diO(Ck).
Let keys = {skRCCA, k, vk}, let Ckeys be the circuit in Figure 19, and compute
CDec ← diO(Ckeys).
Output pk = (pkRCCA, CEnc, CDec) and sk0 = (ctdummy).

Encryption: c ← E .Enc(pk,m)
On input message m ∈ {0, 1}Lmsg , sample r ← {0, 1}κ, and output c =
(G(r), CEnc(r) ⊕ m), where G is some fixed pseudorandom generator.

Decryption: m̂ ← E .Dec(ski, c)
In round i, on input ciphertext c = (t, v), compute y := CDec(ski, t).
If y ̸= ⊥ , output m̂ = y ⊕ v. Otherwise, output m̂ = ⊥ .

Key Update: ski ← E .Update(ski−1)
In round i, on input secret key ski−1, randomly choose ri ← {0, 1}κ, compute
and output ski ← RCCA.ReRand(pkRCCA, ski−1; ri).

Fig. 17. Continual leakage-resistant encryption scheme, E.

Internal (hardcoded) state: k.

On input: r
– Output z = PRF.Eval(k,G(r)), where G is some fixed pseudorandom generator.

Fig. 18. Program Ck . This program is obfuscated and placed in the public key to be used for encryption.

Internal (hardcoded) state: keys = {k, vk, skRCCA}.

On input: ctdummy, t

– Compute (σ′,m) = RCCA.Dec1(skRCCA, ctdummy).
– If SIG.Verify(σ′,m; vk) = 0 output ⊥ .
– Output z = PRF.Eval(k, t).

Fig. 19. Program Ckeys. This program is obfuscated and placed in the public key. It is used during
decryption.

Then E is L-2CLR where

L
|sk| =

(1/6 − o(1))ρ

Lct

(
κ, 2κ + ρ + Lmsg + Lsig(κ, 2κ + ρ + Lmsg)

)

Leakage Resilience from Program Obfuscation

Wechoose adiO-compatibleRCCA-secure re-randomizablePKEwith Lct(κ, Lmsg) =
c1 · Lmsg, for some constant c1 and a signature scheme with Lsig(κ, Lmsg) = o(Lmsg).
Setting ρ = ρ(κ) = ω(κ2) yields an encryption scheme for messages of length Θ(κ)

with constant leakage rate c1/6 − o(1).
Note that a diO-compatible RCCA-secure re-randomizable PKE is achieved by the

Chase et al. [17] scheme, as argued in the previous section. Additionally, signature
schemes with the required property (that Lsig(κ, Lmsg) = o(Lmsg)) can be achieved
using the well-known “hash-and-sign” paradigm (see, for example, [38]) and can be
constructed assuming the existence of collision-resistant hash functions.
It may seem puzzling as to why the leakage rate seems to depends on the length of

the message being encrypted, Lmsg. In general, it is true that the length of the message
being encrypted should not affect the leakage rate. However, in our scheme we are using
a “one-time-pad encryption” paradigm where CEnc generates randomness (t, y) and y
is then used for a one-time-pad encryption of the message, so that the final ciphertext is
(t, v := y ⊕ m). Note that this means that the length of y is the same as the length of
the message (Lmsg). CDec then reverses this process, by taking as input the secret key
(ctdummy) and t (from the ciphertext) and returning the corresponding y. In our proof,
we use an information theoretic argument for one of the steps, which requires that, for a
fixed t∗, the output of CDec (of length Lmsg bits) is uniform random, even conditioned
on the leakage from the secret key. Clearly, in this argument, the entropy of the output of
CDec must be coming from the entropy of the secret key. The entropy of the secret key, in
turn, comes from the fact that, in the hybrid argument, we switch from an encryption of
an all-0 string to an encryption of a random string, y∗. Thismeans that the secret keymust
encrypt amessage of length at least Lmsg bits (even under 0 bits of leakage) and so clearly
the length of the secret keymust depend on the length of themessage, Lmsg. If, instead of
using one-time-pad encryption, we used a computational variant in our construction, we
would eliminate the dependence between the secret key length and the message length.
However, thiswould further complicate the proof, requiring additional steps in the hybrid
argument. Therefore, for simplicity, we assume a simple one-time-pad-based encryption.
In order to prove Theorem 14, we prove (in Lemma 16) that even under leakage, it

is hard for any ppt adversary A to distinguish the output of the PRF y from uniform
random. Given this, Theorem 14 follows immediately.

In fact, we will prove a slightly stronger lemma, by allowingO to leak on two consec-
utive keys in any given round. By combining this property with the results from Sect. 3,
we prove that this construction achieves security when the adversary is allowed to leak
on updates. More specifically, in the lemma below, in round i , we allow the adversary
to specify a leakage function fi (·, ·), and O returns fi (ski− 1, ski).

Lemma 16. For every ppt leaking adversaryA, who is given oracle access to a leakage
oracle O and may leak at most L bits of the secret key, there exist random variables
p̃k, s̃k0, . . . , s̃kn such that:

(
pk, t∗, y, {fi (ski− 1, ski)}ni=1 ← AO(·)(pk)

)

c≈
(
p̃k,Uρ,ULmsg , {fi (s̃ki− 1, s̃ki)}ni=1 ← AO(·)(p̃k)

)

D. Dachman-Soled et al.

where y = CDec(ctdummy, t = G(r)), n is the number of key update rounds requested
by A, and the distributions are taken over coins of A and choice of (pk, sk0) ←
E .Gen(1κ), ski ← E .Update(ski− 1), r and choice of p̃k, s̃k0, . . . , s̃kn, w, respec-
tively.

Proof. We prove the lemma via the following sequence of hybrids:

Hybrid 0: This hybrid is identical to the real game.
LetDA

H0
denote the distribution (pk, t, y, {fi (ski− 1, ski)}ni=1 ← AO(·)(pk)) as in the

left side of Lemma 16.

Hybrid 1: This hybrid is the same as Hybrid 0 except we replace pseudorandom
t = G(r) in the challenge ciphertext with uniform random t∗ ← {0, 1}ρ . LetDA

H1
denote

the distribution (pk, t∗, y, {fi (ski− 1, ski)}ni=1 ← AO(·)(pk))where y = CDec(skn, t∗)
and the distribution is taken over coins ofA, choice of (pk, sk0) ← E .Gen(1κ), ski ←
E .Update(ski− 1), t∗ as described above. !

Claim 16. For every ppt adversary A,

DA
H0

c≈ DA
H1
.

Proof. The proof follows from the security of the PRG used in CEnc. We refer the
reader to the proof of Claim 6. We note that the reduction holds even if the adversary
were given all ski in full. !

Hybrid 2: This hybrid is the same as Hybrid 1 except we replace the key k used in
CEnc with a punctured key, k̃ = PRF.Punct(k, t∗). We denote the resulting public key
by pk′. Let DA

H2
denote the distribution

(
pk′, t∗, y, {fi (ski− 1, ski)}ni=1 ← AO(·)(pk′)

)

where y = CDec(skn, t∗) and the distribution is taken over coins of A, and choice of
(pk′, sk0, . . . , skn), t∗ as described above.

Claim 17. For every ppt adversary A,

DA
H1

c≈ DA
H2
.

Proof. The proof follows from the security of the obfuscation used in CEnc. We refer
the reader to the proof of Claim 7. We note again that the reduction holds even if A is
given all ski in full. !

Hybrid 3(j): We define a sequence of n hybrids, where n is the number of key update
rounds requested by the adversary. In Hybrid 3(j), in the first j update rounds, instead
of refreshing ctdummy by computing ctdummy = RCCA.ReRand(pkRCCA, ctdummy),
we replace the secret key with a fresh ciphertext: ctdummy = RCCA.Enc(pkRCCA, σ |
|02κ+ρ+Lmsg). For rounds i > j , the secret key is still refreshed through a re-
randomization. We denote the resulting set of secret keys by {sk(3| j)0 , . . . , sk(3| j)n }. Let
DA

H3| j denote the distribution
(
pk′, t∗, y, {fi (sk(3| j)i− 1 , sk(3| j)i)}ni=1 ← AO(·)(pk′)

)
where

Leakage Resilience from Program Obfuscation

y = CDec(sk(3| j)n , t∗) and the distribution is taken over coins of A, and choice of
(pk′, sk(3| j)0 , . . . , sk(3| j)n), t∗ as described above.

Claim 18. For every ppt adversary A, and every j ∈ [n]

DA
H3| j− 1

c≈ DA
H3| j .

Proof. The proof is through a reduction to the property that the distribution
of fresh ciphertexts and the distribution of re-randomized ciphertexts are indis-
tinguishable, even given the secret key sk j . The reduction adversary S receives
(pk, sk j) from his challenger and uses them to generate the public keys for E , along
with the secret keys {sk0 = RCCA.Enc(pkRCCA, σ ||02κ+ρ+Lmsg), . . . , sk j− 1 =
RCCA.Enc(pkRCCA, σ ||02κ+ρ+Lmsg)}. He submits ciphertext sk j− 1 along with the
underlying plaintext value as his challenge and receives c∗ which is either a re-
randomization sk j− 1, or a fresh encryption. He computes sk j+1 by re-randomizing
his challenge ciphertext, and for i ∈ { j+1, . . . , n}, he computes ski by re-randomizing
ski− 1. These ciphertexts are distributed either identically to those in Hybrid 3(j− 1) or
to those in Hybrid 3(j) and can be used by S to perfectly simulate the responses to
A’s leakage queries. It follows that the advantage of S is the same as the advantage of
distinguishing DA

H3| j− 1
from DA

H3| j . !

Hybrid 4: In this hybrid step, we again change the update phase. Instead of replacing
ctdummy with a fresh encryption of σ ||02κ+ρ+Lmsg , we will replace ctdummy with a
fresh encryption of σ ′||((si ,αi , H(t∗))|| y). Here si ,αi , H, y, σ ′ are defined as follows:
si ← Fρ/κ

q where q = 2κ ; H ← H where H is a family of collision-resistant hash
functions, and H(t∗) is of size κ; αi = ⟨si , t∗⟩ is of size κ , where t∗ is interpreted as
an element in Fρ/κ

q , and αi is interpreted as an element in Fq ; y = PRF.Eval(k, t∗) is
of size Lmsg and σ ′ = SIG.Sign(td, ((si ,αi , H(t∗))|| y)).

Let sk′′
i denote the secret key after update round i when computed as described

above. Let DA
H4

denote the distribution
(
pk′, t∗, y, {fi (sk′′

i− 1, sk
′′
i)}ni=1 ← AO(·)(pk′)

)

where y = CDec(sk′′
n, t

∗) and the distribution is taken over coins of A, and choice of
(pk′, sk′′

1, . . . , sk
′′
n), t

∗ as described above.

Claim 19. For every ppt adversary A,

DA
H3|n

c≈ DA
H4
.

Proof. The proof proceeds through an iteration of sub-hybrid steps, where in the j th
iterationwechangeonly the j th ciphertext. LetHybrid 4(j) denote the hybrid gamewhere
we have changed only the content of the first j ciphertexts. Let sk(4| j)i denote the secret
key that is generated in the i th update round of Hybrid 4(j). LetDA

H4| j denote the distribu-

tion
(
pk′, t∗, y, {fi (sk(4| j)i− 1 , sk(4| j)i)}ni=1 ← AO(·)(pk′)

)
where y = CDec(sk(4| j)n , t∗)

and the distribution is taken over coins ofA, and choice of (pk′, sk(4| j)0 , . . . , sk(4| j)n), t∗

D. Dachman-Soled et al.

as described above. The proof follows then from the following claim. (Note that Hybrid
4(0) is equivalent to Hybrid 3(n).) !

Claim 20. For j ∈ {0, . . . , n − 1},

DA
H4| j

c≈ DA
H4| j+1

Proof. We now define the set of hybrids that allows us to prove Claim 20. We note
that, by the definitions of Hybrids 4(j) and 4(j+1) given above, for any i ̸= j, sk(4| j)i =
sk(4| j+1)

i . Therefore, in each of the following sub-hybrids, we only need to make change

to sk(4| j)j .
Hybrid 4a(j): In this hybrid, we modify the update procedure in round j . Instead of
replacing ctdummy with a fresh encryption RCCA.Enc(pkRCCA, σ ||02κ+ρ+Lmsg), we

set sk(4a| j)j = RCCA.SimEnc(τsim, σ ||02κ+ρ+Lmsg). The other keys remain as they
are in Hybrid 4(j).

Let sk(4a| j)i denote the secret key that is generated in the i th update round of

Hybrid 4a(j). LetDA
H4a| j denote the distribution (pk

′, t∗, y, {fi (sk(4a| j)i− 1 , sk(4a| j)i)}ni=1 ←
AO(·)(pk′))where y = CDec(sk(4a| j)n , t∗) and the distribution is taken over coins ofA,
and choice of (pk′, sk(4a| j)0 , . . . , sk(4a| j)n), t∗ as described above.We claim the following

Claim 21. For any ppt adversary A,

DA
H4| j

c≈ DA
H4a| j

Proof. The proof follows by a reduction to the RCCA property ensuring the indis-
tinguishability of simulated ciphertexts from real ciphertexts. Recall, for any efficient
adversary S

SEnc(pkRCCA,·)(pkRCCA, sk1)
c≈ SSimEnc(τsim,·)(pkRCCA, sk1) .

To build the reduction, S receives keys (pkRCCA, sk1) for the RCCA scheme, which
suffices to build the pk of E . For update rounds i < j , he constructs ski by creating
a fresh encryption of σ ′||((si ,αi , H(t∗))|| y) (as defined above), and for i > j , he
constructs ski by creating a fresh encryption ofσ ||02κ+ρ+Lmsg . To create sk j , he submits
σ ||02κ+ρ+Lmsg to his challenger anduses the challenge ciphertext in the j th update round.
The distribution of secret keys generated by S is either identical to that in Hybrid 4(j),
or to that in Hybrid 4a(j). It follows that S’s advantage is the same as the distinguishing
advantage between DA

H4| j and DA
H4a| j . !

Hybrid 4b(j): In this hybrid, wemodify the circuitCkeys intoCkeys′ described in Fig. 20.
In words, the change involves using sk2 instead of sk1. If decryption under sk2 outputs a

Leakage Resilience from Program Obfuscation

Internal (hardcoded) state: keys′ = {k, vk, sk2}.

On input: ctdummy, t

– If RCCA.Dec2(sk2, ctdummy) = SimFlag, output z = PRF.Eval(k, t).
– If RCCA.Dec2(sk2, ctdummy) = ⊥ , output ⊥ .
– Else, parse RCCA.Dec2(sk2, ctdummy) as (σ′,m).
– If SIG.Verify(σ′,m; vk) = 0 output ⊥ .
– Otherwise, output z = PRF.Eval(k, t).

Fig. 20. Program Ckeys′ . This program is obfuscated and placed in the public key, replacing Ckeys. It is used
during decryption.

message, we still verify the signature just as inCkeys, and if decryption outputsSimFlag,
we proceed as though the signature has been verified. Intuitively, these circuits have
differing-inputs security because of the “simulation soundness” property of the RCCA
encryption scheme. Denote the resulting public key by pk(4b| j). Let DA

H4b| j denote the

distribution
(
pk(4b| j), t∗, y, {fi (sk(4a| j)i− 1 , sk(4a| j)i)}ni=1 ← AO(·)(pk(4b| j))

)
where y =

CDec
(sk(4a| j)n , t∗) and thedistribution is takenover coins ofA, and choiceof (pk(4b| j), sk(4a| j)0 ,

. . . , sk(4a| j)n), t∗ as described above. We claim the following

Claim 22. For any efficient adversary A,

DA
H4a| j

c≈ DA
H4b| j

Proof. We define the following sampler Samp and show that the circuit family C
associated with Samp is a differing-inputs circuit family.
Samp(1κ) does the following:

– Set keys = (sk1, k, vk) and set keys′ = (sk2, k, vk).
– Let C0 = Ckeys and let C1 = Ckeys′ .

– Set aux = (vk, {sk(4a| j)i }ni=0, t
∗, y)

– Return (C0,C1,aux).

We now show that for every ppt adversary A there exists a negligible function negl
such that

Pr[C0(x) ̸= C1(x) : (C0,C1,aux) ← Samp(1κ), x ← A(1κ ,C0,C1,aux)] ≤ negl(κ).

Assume toward contradiction that there exists a ppt adversary A and a polynomial
p(·) such that for infinitely many κ,A outputs a distinguishing input with probability
at least 1/p(κ). We construct a ppt adversary S that breaks the simulation soundness
property of the RCCA scheme.
Upon receiving (pkRCCA, sk1, sk2) ← Gen(1κ) from the challenger, S does the fol-
lowing:

D. Dachman-Soled et al.

– Run k ← PRF.Gen(1κ) and (vk, td) ← SIG.Gen(1κ). Choose t∗ at ran-
dom, compute y = PRF.Eval(k, t∗), and set keys = (sk1, k, vk) and keys′ =
(sk2, k, vk).

– Sample σ ← SIG.Sign(td, 02κ+ρ+Lmsg) and submit m∗ = (σ ||02κ+ρ+Lmsg) as a
challenge message.

– S receives challenge c∗ ← SimEnc(τsim,m∗) and simulates Samp by doing the
following:

• Let C0 = Ckeys and let C1 = Ckeys′ .
• S sets sk j = c∗. For i ̸= j,S uses pkRCCA to generate ski honestly, as done
in Hybrid 4a(j) above.

• Set aux = (vk, {ski }ni=0, t
∗, y)

– S runs A(1κ ,C0,C1,aux) and receives x in return. He outputs x .

Note that if RCCA.Dec2(sk2, x) = SimFlag and RCCA.Dec1(sk1, x) =
m∗, then both C0 and C1 output y = PRF.Eval(k, t∗). On the other hand, if
RCCA.Dec2(sk2, x) = SimFlag and RCCA.Dec1(sk1, x) ̸= m∗, then x violates the
simulation soundness property of the RCCA scheme and S wins his game. Similarly, if
RCCA.Dec2(sk2, x) ̸= SimFlag and RCCA.Dec2(sk2, x) = RCCA.Dec1(sk1, x),
thenC0 andC1 have the same output (either y or⊥). IfRCCA.Dec2(sk2, x) ̸= SimFlag
and RCCA.Dec2(sk2, x) ̸= RCCA.Dec1(sk1, x) then, again, S wins his game.
Claim 22 follows from the fact that diO is a differing-inputs obfuscator and from the

fact that the circuit family C associated with Samp is a differing-inputs family. This is
the case sinceDA

H4a| j can be simulated given (diO(C0),aux) andDA
H4b| j can be simulated

given (diO(C1),aux). !

Hybrid 4c(j): In this hybrid, we modify the update procedure in round j . Instead of
replacing ctdummy with the simulated ciphertextRCCA.SimEnc(τsim, σ ||02κ+ρ+Lmsg),
we compute

sk(4c| j)j = RCCA.SimEnc(τsim, σ ′||((si ,αi , H(t∗))|| y))

as described in Hybrid 4. The other keys remain as they are in Hybrid 4b(j).
Let sk(4c| j)i denote the secret key that is generated in the i th update round of Hybrid

4c(j). Let DA
H4c| j denote the distribution

(
pk(4b| j), t∗, y, {fi (sk(4c| j)i− 1 , sk(4c| j)i)}ni=1 ← AO(·)(pk(4b| j))

)

where y = CDec(sk(4c| j)n , t∗) and the distribution is taken over coins of A, and choice
of (pk(4b| j), sk(4c| j)0 , . . . , sk(4c| j)n), t∗ as described above. We claim the following

Claim 23. For any efficient adversary A,

DA
H4b| j

c≈ DA
H4c| j

Leakage Resilience from Program Obfuscation

Proof. The proof follows by a reduction to the RCCA property that ensures the indis-
tinguishability of simulated ciphertexts, even when given sk2. Recall, for any efficient
adversary S, and any message pair (m0,m1),

ASimEnc(τsim,·)(pkRCCA, sk2,SimEnc(τsim,m0))
c≈ ASimEnc(τsim,·)(pkRCCA, sk2,SimEnc(τsim,m1)) .

To build the reduction, S receives keys (pkRCCA, sk2) for the RCCA scheme, which
suffices to build the pk of E . For update rounds i < j , he constructs ski by creating a
fresh encryptionRCCA.Enc(pkRCCA, σ ′||((si ,αi , H(t∗))|| y)) (as defined above), and
for i > j , he constructs ski by creating a fresh encryption of σ ||02κ+ρ+Lmsg . To create
sk j , he submits challenge plaintext pair: (σ ||02κ+ρ+Lmsg), (σ ′||((si ,αi , H(t∗))|| y)) to
his challenger and uses the challenge ciphertext in the j th update round. The distribution
of secret keys generated byS is either identical to that inHybrid 4b(j), or to that inHybrid
4c(j). It follows that S’s advantage is the same as the distinguishing advantage between
DA

H4b| j and DA
H4c| j . !

Hybrid 4d(j) In this hybrid, we modify Ckeys′ back to the circuit Ckeys used in the real
world. That is, we return to using sk1. Denote the resulting public key by pk(4d| j). Let
DA

H4d| j denote the distribution

(
pk(4d| j), t∗, y, {fi (sk(4c| j)i− 1 , sk(4c| j)i)}ni=1 ← AO(·)(pk(4d| j))

)

where y = CDec(sk(4c| j)n , t∗) and the distribution is taken over coins of A, and choice
of (pk(4d| j), sk(4c| j)0 , . . . , sk(4c| j)n), t∗ as described above. We claim the following

Claim 24. For any efficient adversary A,

DA
H4c| j

c≈ DA
H4d| j

Proof. The proof follows from the security of diO. The proof is nearly identical to the
proof of Claim 22, so we omit it. !

Hybrid 4e(j): In this hybrid, we modify the update procedure in round j . Instead of
replacing ctdummy with a simulated ciphertext, we return to using a real ciphertext by
computing

sk(4e| j)j = RCCA.Enc(σ ′||((si ,αi , H(t∗))|| y))

The other keys remain as they are in hybrid 4d(j). Let sk(4e| j)i denote the secret key that
is generated in the i th update round of hybrid 4e(j). Let DA

H4e| j denote the distribution

(
pk(4d| j), t∗, y, {fi (sk(4e| j)i− 1 , sk(4e| j)i)}ni=1 ← AO(·)(pk(4d| j))

)

D. Dachman-Soled et al.

Internal (hardcoded) state: keys′′ = {k∗ = PRF.Punct(k, t∗), vk, sk1, H}.

On input: ctdummy, t

– Compute (σ′, (s,α, H(t′)|| y)) = RCCA.Dec1(sk1, ctdummy).
– If SIG.Verify(σ′, (s,α, H(t′)|| y); vk) = 0 output ⊥ .
– If ⟨s, t⟩ = α H(t) = H(t′), output y.
– Else, output PRF.Eval(k∗, t).

Fig. 21. Program Ckeys′′ . This program replaces Ckeys. Recall it is obfuscated and placed in the public key.
It is used during decryption.

where y = CDec(sk(4e| j)n , t∗) and the distribution is taken over coins of A, and choice
of (pk(4d| j), sk(4e| j)0 , . . . , sk(4e| j)n), t∗ as described above. We claim the following

Claim 25. For any efficient adversary A,

DA
H4d| j

c≈ DA
H4e| j

Proof. The proof is again by the indistinguishability of a simulated ciphertext from a
real ciphertext given sk1. The proof proceeds identically to the proof of Claim 21, so
we omit it. !

We note that Hybrid 4e(j) is identical to Hybrid 4(j+1), so this concludes the proofs
of Claims 19 and 20.

Hybrid 5: In this hybrid game, we replace: CDec = diO(Ckeys) with C ′′
Dec =

diO(Ckeys′′), where Ckeys′′ is the circuit described in Fig. 21. The difference between
keys and keys′′ is that we puncture k at the challenge point t∗ in keys′′. The dif-
ference between Ckeys′′ and Ckeys is that Ckeys′′ will attempt to use the point obfus-
cation before turning to the PRF key. See Fig. 21 for details. Denote the result-
ing public key by pk(5), and let sk(5)i denote the secret key after the i th round of
update, computed as described in the previous hybrid. Let DA

H5
denote the distribu-

tion
(
pk(5), t∗, y, {fi (sk(5)i− 1, sk

(5)
i)}ni=1 ← AO(·)(pk(5))

)
where y = C ′′

Dec(sk
(5)
n , t∗)

and the distribution is taken over coins of A, and choice of (pk(5), sk(5)0 , . . . , sk(5)n), t∗

as described above. We claim the following

Claim 26. For any efficient adversary A,

DA
H4

c≈ DA
H5

Proof. The proof follows from the security of diO, and from the collision resistance
of H and the security of the signature scheme. We define the following sampler Samp
and show that the circuit family C associated with Samp is a differing-inputs circuit
family. !

Leakage Resilience from Program Obfuscation

Samp(1κ) does the following:

– Set keys = (sk1, k, vk) and keys′′ = (sk1, k∗, vk, H).
– Let C0 = Ckeys and let C1 = Ckeys′′ .

– Set aux = (vk, {sk(5)i }ni=0, t
∗, y)

– Return (C0,C1,aux).

We now show that for every ppt adversary A there exists a negligible function negl
such that

Pr[C0(x) ̸=C1(x) : (C0,C1,aux)←Samp(1κ), x←A(1κ ,C0,C1,aux)] ≤ negl(κ).

Assume toward contradiction that there exists a ppt adversaryA and a polynomial p(·)
such that for infinitely many κ,A outputs a distinguishing input with probability at least
1/p(κ). Denote the event that A does so by Win. We show that the value output by A
will either enable us to find a collision under H , or to break the existential unforgeability
of the signature scheme.
Let (ct′dummy, t

′) denote the output of A when given circuits and auxiliary input
sampled as described above. Let (σ ′||m′) = RCCA.Dec1(sk1, ct′dummy). Letting Coll

denote the probabilistic event that (σ ′||m′) = Dec(sk1, sk
(5)
1) = · · · = Dec(sk1, sk(5)n)

(where the randomness is over the coins of the Samp and the coins of A), we divide
our analysis into the following two cases.

Claim 27. There exists an attacker S that finds collisions on H with probability
Pr[Win | Coll].

Proof. Upon receiving H ← H from the challenger, S does the following:

– Run (pkRCCA, sk1) ← RCCA.Gen(1κ), k ← PRF.Gen(1κ) and (vk, td) ←
SIG.Gen(1κ). Choose t∗ at random, and compute k∗ = PRF.Punct(k, t∗). Set
keys = (sk1, k, vk) and keys′′ = (sk1, k∗, vk, H).

– S simulates Samp by doing the following:

• S samples s ← Fρ/κ
q and computes α = ⟨s, t∗⟩. He computes y =

PRF.Eval(k, t∗). He uses these values, along with challenge H and signing
key td, to generate sk(5)i honestly.

• Set aux = (vk, {sk(5)i }ni=0, t
∗, y)

– S runsA(1κ ,C0,C1,aux) and receives x = (ct′′dummy, t
′′) in return. He outputs t ′′

as a collision with t∗ under H .

Because we condition on event Coll, we have that RCCA.Dec1(sk1, ct′′dummy) =
σ ′′||(s,α, H(t∗)|| y), where s and t∗ are the values sampled by S when simulating
sk(5)i ,α = ⟨s, t∗⟩, and SIG.Verify(σ ′′, (s,α, H(t∗)|| y)) = 1. It follows that the only
way for (ct′′dummy, t

′′) to constitute a differing-inputs is if the following condition holds:

t ′′ ̸= t∗
∧

PRF.Eval(k, t ′′) ̸= y
∧

⟨s, t ′′⟩ = α
∧

H(t ′′) = H(t∗)

D. Dachman-Soled et al.

To see why this condition is necessary, note that if t ′′ = t∗, or if PRF.Eval(k, t ′′) = y,
both circuits output y. If ⟨s, t ′′⟩ ̸= α, or H(t ′′) ̸= H(t∗), both circuits output
PRF.Eval(k, t ′′). Now, since t ′′ ̸= t∗, but H(t ′′) = H(t∗),S has succeeded in finding
a collision for function H . !

Claim 28. There exists an attacker S that finds forgeries with respect to Sign with
probability
Pr[Win | Coll].

Proof. Upon receiving vk from the challenger, S, who has the access to the signing
oracle SIG.Sign(td, ·), does the following:
– Run (pkRCCA, sk1) ← RCCA.Gen(1κ), k ← PRF.Gen(1κ). Choose t∗ at ran-
dom, and compute k∗ = PRF.Punct(k, t∗). Choose H ← H. Set keys =
(sk1, k, vk) and keys′′ = (sk1, k∗, vk, H).

– S simulates Samp by doing the following:

• S samples s ← Fρ/κ
q and computes α = ⟨s, t∗⟩. He computes y =

PRF.Eval(k, t∗). He uses these values to define message m = (s,α, H(t∗)||y)
and uses his external signing oracle SIG.Sign(td, ·) to get signature σ . He
generates sk(5)i by repeatedly encrypting (σ,m).

• Set aux = (vk, {sk(5)i }ni=0, t
∗, y)

– S runsA(1κ ,C0,C1,aux) and receives x = (ct′′dummy, t
′′) in return. Then he com-

putes (σ ′′,m′′) = RCCA.Dec1(sk1, ct′′dummy), and outputs (m′′, σ ′′) as a forged
signature.

Becausewe are conditioning on the eventColl, it follows thatS never obtains (σ ′′,m′′)
through his signing oracle. Furthermore, note that if SIG.Verify(vk,m′′, σ ′′) = 0, then
both C0 and C1 output ⊥ . It follows that (m′′, σ ′′) is a successful forgery, and S wins
his game. Note that we require a strongly unforgeable signature scheme, because, while
Coll states that (m′′, σ ′′) ̸= (m, σ), it may be that m′′ = m. !

From Claims 27 and 28, and the security of H and Sign, it follows that Pr[Win] <
negl. Claim 24 follows from the fact that diO is a differing-inputs obfuscator and from
the fact that the circuit family C associated with Samp is a differing-inputs family. This
is the case sinceDA

H4
can be simulated given (diO(C0),aux) andDA

H5
can be simulated

given (diO(C1),aux).

Hybrid 6: In this game, we modify the key update phase (in every round) to
use (s,α, H(t∗)|| y∗), where y∗ is chosen uniformly at random, rather than as
PRF.Eval(k, t∗). Let DA

H6
denote the distribution(

pk(6), t∗, y, {fi (sk(6)i− 1, sk
(6)
i)}ni=1 ← AO(·)(pk(6))

)
where y = C ′′

Dec(sk
(6)
n , t∗) and

the distribution is taken over coins of A, and choice of (pk(6), sk(6)0 , . . . , sk(6)n), t∗ as
described above. We claim the following

Leakage Resilience from Program Obfuscation

Claim 29. For any ppt adversary A,

DA
H5

c≈ DA
H6

Proof. The proof is by reduction to the security of the punctured PRF. Specifically, S
attacks thePRF by submitting t∗ to his challenger and receiving (PRF.Punct(k, t∗), y∗)
as a challenge. He then generates all the other necessary keys to simulate the view ofA.
And uses A’s guess to form his own. !

Hybrid 7: In this game, we replace C ′′
Dec with C ′′′

Dec by changing k∗ in C ′′
Dec in the

previous hybrid with the original k.

Claim 30. For any ppt adversary A,

DA
H6

c≈ DA
H7

Proof. Theproof is by a reduction to the security of the indistinguishability obfuscation.
The main observation is that if H(t ′) = H(t) and ⟨s, t⟩ = α, then both circuits output
y∗. If this does not hold, then C ′′

Dec returns y′′ = PRF.Eval(k∗, t), and C ′′′
Dec returns

y′′′ = PRF.Eval(k, t); note that y′′ = y′′′ on points t ̸= t∗. Therefore, changing k∗ into
k will not effect the input/output behavior. If there is a difference in advantage, we can
create an algorithm B that breaks the security of indistinguishability obfuscation. !

Hybrid 8(j): In this sequence of hybrids, wemodify the key update procedure as follows.
Instead of replacing ctdummy with an encryption of (s,α, H(t∗)|| y∗), where ⟨s, t∗⟩ =
α, in the first j key update rounds we instead replace it with a fresh encryption of
(si ,αi , H(t∗)|| y∗) where si ← Fρ/κ

q and αi ← Fq . Note that the difference in this
hybrid is that αi is no longer necessarily equal to α = ⟨si , t∗⟩. Let DA

H8| j denote the

distribution
(
pk(8| j), t∗, y∗, {fi (sk(8| j)i− 1 , sk(8| j)i)}ni=1 ← AO(·)(pk(8| j))

)
where y∗ ←

{0, 1}Lmsg is chosen uniformly at random, and the distribution is taken over coins ofA,
and choice of (pk(8| j), sk(8| j)0 , . . . , sk(8| j)n), w, and y∗ as described above. Noting that
Hybrid 8(0) is the same as Hybrid 7, We claim the following

Claim 31. For any ppt adversary A, and any j ∈ {0, . . . , n − 1}

DA
H8| j

c≈ DA
H8| j+1

The heart of this proof relies on Theorem 15 which is stated and proved next. Intu-
itively, the claim in this theorem is that, for any leakage function f with bounded output
length, it is hard to tell from (t∗, f (s j , H(t∗),α j ,α j+1)) whether α j = ⟨s j , t∗⟩. The
argument uses the fact that the inner product is a strong two-source extractor.

Lemma 17. (Strong Inner-Product Two-Source Extractor) Let X,Y , Z be correlated
variables, where X,Y have their support in Fm

q , and are independent conditioned on Z.

D. Dachman-Soled et al.

Let U be uniform and independent on Fq . Then

∆((Z , Y, ⟨X,Y ⟩), (Z ,Y,U)) ≤ 2− s

for some s ≥ 1+ 1
2 (kX +kY − (m+1) log q), where kX := H̃∞(X|Z), kY := H̃∞(Y |Z)

Theworst-case version of this lemma is Theorem 1 of Lee et al. [42]. The average-case
version that we use above follows as in Wichs’ thesis [51, Lemma 4.1.4]. (Wichs does
not state his lemma for the strong extraction property but this follows readily given the
result of Lee et al. [42].)

Theorem 15. Let S1, T be random on Fm
q and U be random on Fq . Fix any s2 ∈ Fm

q
and let A2 = ⟨s2, T ⟩. Suppose H outputs κ bits and f outputs L ′ bits. Then

∆ ((T, f (S1, H(T), ⟨S1, T ⟩, A2)), (T, f (S1, H(T),U, A2))) ≤ 2− s′ , (6)

where s′ = (m log q − 3L ′ − 1 − κ − 2 log q)/3.

Thus for the statistical distance in Eq. 6 to be negligible, we need

(m log q − 3L ′ − 1 − κ − 2 log q)/3 ≥ log(1/ϵ′) ,

for some negligible ϵ′. Taking κ = log 1/ϵ′ = log q and setting m = ω(κ) such that
m · κ = ρ(κ), L ′ = ρ/3 − O(κ), we can tolerate 2CLR leakage functions of length
L = L ′/2, which we will argue later.

Proof. Let BAD be the set of ℓ such that conditioning on f (S1, H(T),U, A2) = ℓ

gives S1 too little min-entropy. That is,

BAD := {ℓ such that H∞(S1 | f (S1, H(T),U, A2) = ℓ) < m log q − L ′ − s′ − 1} .

Additionally, for fixed t,α2 = ⟨s2, t⟩, let S t be the set of ℓ defined as,

S t := {ℓ such that Pr[f (S1, H(t),U,α2) = ℓ] > Pr[f (S1, H(t), ⟨S1, t⟩,α2) = ℓ]}.

!

We claim that

∆ ((T, f (S1, H(T),U, A2)), (T, f (S1, H(T), ⟨S1, T ⟩, A2)))

= Et ∆ (f (S1, H(t),U,α2), f (S1, H(t), ⟨S1, t⟩,α2))

≤ Et

⎛

⎝
∑

ℓ∈BAD∩S t

Pr
[
f (S1, H(t),U,α2) = ℓ

]
− Pr
[
f (S1, H(t), ⟨S1, t⟩, A2) = ℓ

]
⎞

⎠

+Et

(
∑

ℓ∈BAD∩S t

Pr
[
f (S1, H(t),U,α2) = ℓ

]
)

Leakage Resilience from Program Obfuscation

≤
∑

ℓ/∈BAD

(
Et
∣∣Pr
[
f (S1, H(t),U,α2) = ℓ

]
− Pr
[
f (S1, H(t), ⟨S1, t⟩,α2) = ℓ

]∣∣)

+
∑

ℓ∈BAD

(
Et Pr
[
f (S1, H(t),U,α2) = ℓ

])

=
∑

ℓ/∈BAD

(
Et
∣∣Pr
[
f (S1, H(t),U,α2) = ℓ

]
− Pr
[
f (S1, H(t), ⟨S1, t⟩,α2) = ℓ

]∣∣)

+Pr[f (S1, H(T),U, A2) ∈ BAD]
≤
∑

ℓ/∈BAD
(Et |Pr[f (S1, H(t),U,α2) = ℓ]

− Pr[f (S1, H(t), ⟨S1, t⟩,α2) = ℓ]|)+ 2− s′− 1 (7)

≤ 2L
′ · 2− s′− 1− L ′ + 2− s′− 1,

= 2− s′ . (8)

where (7) is due to Markov’s inequality and the definition of the set BAD. (8) is due to
the following claim:

Claim 32. For any ℓ /∈ BAD in the range of f ,

Et
∣∣Pr
[
f (S1, H(t),U,α2) = ℓ

]
− Pr
[
f (S1, H(t), ⟨S1, t⟩,α2) = ℓ

]∣∣ ≤ 2− s′− 1− L ′
.

Proof. First, for fixed t,β and ĥ = H(t), we have:

Pr[f (S1, ĥ, ⟨S1, t⟩,α2) = ℓ ∧ ⟨S1, t⟩ = β]
= Pr[f (S1, ĥ,β,α2) = ℓ ∧ ⟨S1, t⟩ = β]
= Pr[f (S1, ĥ,β,α2) = ℓ] · Pr[⟨S1, t⟩ = β | f (S1, ĥ,β,α2) = ℓ]. (9)

and

Pr[f (S1, ĥ,U,α2) = ℓ ∧U = β]
= Pr[f (S1, ĥ,β,α2) = ℓ ∧U = β]
= Pr[f (S1, ĥ,β,α2) = ℓ] · Pr[U = β]. (10)

Now, we have that:

Et←T |Pr[f (S1, H(t),U,α2) = ℓ] − Pr[f (S1, H(t), ⟨S1, t⟩,α2) = ℓ]|
=
∑

ĥ,α2

Pr[H(T) = ĥ ∧ ⟨s2, T ⟩ = α2] · E
t←T ′

|Pr[f (S1, ĥ,U,α2) = ℓ]

− Pr[f (S1, ĥ, ⟨S1, t⟩,α2) = ℓ]|
≤
∑

ĥ,α2

Pr[H(T) = ĥ ∧ ⟨s2, T ⟩ = α2]

D. Dachman-Soled et al.

· E
t←T ′

∑

β

|Pr[f (S1, ĥ,U,α2) = ℓ ∧U = β]

− Pr[f (S1, ĥ, ⟨S1, t⟩,α2) = ℓ ∧ ⟨S1, t⟩ = β]| (11)

=
∑

ĥ,α2

Pr[H(T) = ĥ ∧ ⟨s2, T ⟩ = α2]

·
∑

β

(E
t←T ′

|Pr[f (S1, ĥ,U,α2) = ℓ ∧U = β]

− Pr[f (S1, ĥ, ⟨S1, t⟩,α2) = ℓ ∧ ⟨S1, t⟩ = β]|)
=
∑

ĥ,α2

Pr[H(T) = ĥ ∧ ⟨s2, T ⟩ = α2]

·
∑

β

(E
t←T ′

[Pr[f (S1, ĥ,β,α2) = ℓ] · |Pr[U = β]

− Pr[⟨S1, t⟩ = β | f (S1, ĥ,β,α2) = ℓ]|]) (12)

≤
∑

ĥ,α2

Pr[H(T) = ĥ ∧ ⟨s2, T ⟩ = α2] ·
∑

β

(E
t←T ′

|Pr[U = β]

− Pr[⟨S1, t⟩ = β | f (S1, ĥ,β,α2) = ℓ]|) (13)

=
∑

ĥ,α2

Pr[H(T) = ĥ ∧ ⟨s2, T ⟩ = α2]

∆((T ′, (⟨S1, T ′⟩ | f (S1, ĥ,β,α2) = ℓ)), (T ′,U))

≤ 2− s′− 1− L ′
, (14)

where T ′ is uniform on the set {t | H(t) = ĥ ∧ ⟨s2, t⟩ = α2}, (11) follows by
triangle inequality, (12) follows from (9) and (10), (13) follows since the quantity
Pr[f (S1, ĥ,β,α2) = ℓ] is always less than or equal to 1.

To see why (14) holds, note that X :=
(
S1 | f (S1, ĥ,β,α2) = ℓ

)
and Y :=(

T | H(T) = ĥ ∧ ⟨s2, T ⟩ = α2
)
are independent sources. Furthermore,

kX := H̃∞
(
S1 | f (S1, ĥ,β,α2) = ℓ

)
≥ m log q − L ′ − s′ − 1

by the assumption ℓ /∈ BAD. And

kY := H̃∞
(
T | H(T) = ĥ ∧ ⟨s2, T ⟩ = α2

)
≥ m log q − κ − log q

by the “chain rule” for average min-entropy [25, Lemma 2.2]. Thus the last inequality
follows by Lemma 17. !

We now use theorem 15 to prove Claim 31.

Proof. We show that ifA can distinguish Hybrid 8(j) from 8(j+1) with some advantage
ϵ′, then there is a distinguisher S and functions f ∗ and H with output lengths at most

Leakage Resilience from Program Obfuscation

Internal (hardcoded) state: rand =
{
{si,αi, r

(1)
i , r(2)i }j−1

i=0 , r
(1)
j , r(2)j , r(1)j+1, r

(2)
j+1, y

∗, rtape
}
,

td, pkRCCA.

On input: sj , H(t∗),αj ,αj+1

– For i ∈ {0, . . . , j + 1},
– let mi = (si, H(t∗),αi||y∗),
– let σi = SIG.Sign(td,mi ; r(1)i),
– let ski = RCCA.Enc(pkRCCA,σi || mi ; r(2)i).

– Run the code ofA using random tape rrand until he has made j+1 leakage queries.
For i ∈ {1, . . . , j + 1}, reply to leakage query fi by computing fi(ski−1, ski).

– Output fj(skj−1, skj), fj+1(skj , skj+1)

Fig. 22. The function f ∗rand,td,pkRCCA is the leakage function sent by reduction adversary S to his chal-

lenger. In response, he receives either a sample from (T, f ∗rand,td,pkRCCA (S1, H(T), ⟨S1, T ⟩,α2)), or from
(T, f ∗rand,td,pkRCCA (S1, H(T),β,α2)).

L ′ = 2L bits and κ bits, respectively, such that S distinguishes the two distributions
(T, f ∗(S1, H(T), ⟨S1, T ⟩, A2)) and (T, f ∗(S1, H(T),U, A2)) from one another with
the same advantage. Since this violates the assertion in Theorem 15, the claim follows
directly.
S simulates the view of A as follows. He samples (pkRCCA, sk1, sk2) ←

RCCA.Gen(1κ), (vk, td) ← SIG.Gen(1κ), k ← PRF.Gen(1κ), and constructs CDec
andCEnc as described in the previous hybrid. Then, to simulate the replies toA’s leakage
queries, S acts as follows. For i ∈ {0, . . . , j − 1}, he samples si ← Fρ/κ

q , and αi ← Fq .
For i ∈ {0, . . . , j + 1} he samples randomness r (1)i to be used in signing the necessary
plaintext values, and r (2)i to be used in encrypting the necessary values. Finally, he sam-
ples rtape to be used as A’s random tape, and y∗ ← {0, 1}Lmsg . We denote the union
of these sets of random values by rand. He then submits function f ∗

rand,td,pkRCCA
to his

challenger, where f ∗
rand,td,pkRCCA

is defined as in Fig. 22.
S receives challenge value (t∗, f j− 1(sk j− 2, sk j− 1), f j (sk j− 1, sk j),α j+1). Once he

knows t∗, we note that S has all the information needed to simulate A’s view for the
first j − 2 leakage queries. He does so precisely as was done by his challenger when
running f ∗

rand,td,pkRCCA
, using identical random values, and eliciting identical leakage

queries. To simulate the replies to leakage queries f j− 1 and f j he uses the two outputs
of f ∗

rand,td,pkRCCA
.

By our setting of parameters, output size of f is L , and output size of f ∗ is L ′ = 2L .
To simulate the replies to query f j+1,S computes α j+1 = ⟨s j+1, t∗⟩, where, recall, s j+1

was fixed prior to his challenge query. He simulates sk(8| j)j+1 by signing and encrypt-

ing (s j+1, H(t∗),α j+1||y∗) with random coins r (1)j+1, r
(2)
j+1. For j + 1 < i < n, he

constructs sk(8| j)i by sampling si ← Fρ/κ
q , computing αi = ⟨si , t∗⟩, and then signing

and encrypting (si , H(t∗),αi ||y∗) using uniformly chosen coins. He simulates leakage
queries f j+1, . . . , fn using the sk(8| j)j+1 , . . . , sk

(8| j)
n .

D. Dachman-Soled et al.

The above simulation is distributed exactly as Hybrid 8(j) when S’s challenge
comes from (T, f ∗

rand,td,pkRCCA
(S j , H(T), ⟨S j , T ⟩,α j+1)), and it is distributed exactly as

Hybrid 8(j+1) when S’s challenge comes from (T, f ∗
rand,td,pkRCCA

(S j , H(T),β,α j+1)),
which concludes the proof. !

Hybrid 9: In this hybrid, we change the circuitCDec such that after decrypting ctdummy,
it verifies the signature, but otherwise ignores the content. Note that by the end of Hybrid
8 sequence, the inner-product relationship has been “broken”, so with all but negligible
probability over the choices of si ,αi , we are already ignoring the plaintext values anyway.
Let C (9)

keys denote the resulting circuit, and let pk(9) denote the modified public

key that results from obfuscating the updated circuit. Let DA
H9

denote the distri-

bution
(
pk(9), t∗, y∗, {fi (sk(9)i− 1, sk

(9)
i)}ni=1 ← AO(·)(pk(9))

)
where y∗ is chosen uni-

formly at random, and the distribution is taken over coins of A, and choice of
(pk(8), sk(8)0 , . . . , sk(8)n), y∗ as described above. We claim the following

Claim 33. For any ppt adversary A,

DA
H8|n

c≈ DA
H9

Proof. The proof follows from a reduction to the security of the diO scheme. The
argument that these two circuits have differing-inputs security follows almost identically
as in the proof of Claim 26, with a reduction to the either the security of the signature
scheme, or the collision resistance of H . We omit repeating the proof. !

Hybrid 10: In this hybrid, we replace the content of ctdummy with a fresh encryp-
tion of σ ||02κ+ρ+Lmsg , where σ is a signature on 02κ+ρ+Lmsg . Let sk(10)i denote
the resulting secret key in update round i . Let pk(10) denote the public key (which
is generated in the same fashion as in Hybrid 9.). Let DA

H10
denote the distribu-

tion (pk(10), t∗, y∗, {fi (sk(10)i− 1 , sk
(10)
i)}ni=1 ← AO(·)(pk(10))) where y∗ is chosen uni-

formly at random, and the distribution is taken over coins of A, and choice of
(pk(10), sk(10)0 , . . . , sk(10)n), y∗ as described above. We claim the following

Claim 34. For any ppt adversary A,

DA
H9

c≈ DA
H10

Proof. The proof follows from the security of theRCCA scheme.We transition through
a sequence of hybrids (and sub-hybrids), changing one plaintext value at a time, just as
we did in Claim 20. Note that, just as in that claim, our circuit only verifies the signature
on the plaintext, andmakes no use of the value otherwise. Sincewe only need to verify the
signature, we can replace decryption with sk1 by a check for SimFlag after decrypting
with sk2, and use diO security, as we did previously. We omit the details of the proof.

Leakage Resilience from Program Obfuscation

Finally, we have the following claim, where the right-hand side is the same as in
Lemma 16.

Claim 35.

DA
H10

s≈
(
p̃k,Uρ,ULmsg , {fi (s̃ki− 1, s̃ki)}ni=1 ← AO(·)(p̃k)

)

Proof. Note that pk(10) and sk(10)0 , . . . , sk(10)n contain no information about y∗. !

This concludes the proof of Lemma 16. !

References

[1] M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo. Constant-size structure-
preserving signatures: Generic constructions and simple assumptions. In X. Wang and K. Sako, editors,
ASIACRYPT 2012, vol. 7658 of LNCS (Springer, Berlin, 2012), pp. 4–24.

[2] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptography against
memory attacks. In O. Reingold, editor, TCC 2009, vol. 5444 of LNCS. (Springer, Berlin, 2009), pp.
474–495.

[3] P. Ananth, D. Boneh, S. Garg, A. Sahai, M. Zhandry. Differing-inputs obfuscation and applications.
Cryptology ePrint Archive, Report 2013/689, 2013. http://eprint.iacr.org/2013/689.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the
(im)possibility of obfuscatingprograms. In J.Kilian, editor,CRYPTO2001, vol. 2139ofLNCS. (Springer,
Berlin, 2001), pp. 1–18.

[5] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

[6] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient
constructionswithout randomoracles. InD.Wagner, editor,CRYPTO2008, vol. 5157ofLNCS. (Springer,
Berlin, 2008), pp. 335–359.

[7] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS (Springer, Berlin, 2004), pp. 41–55.

[8] D. Boneh and B. Waters. Constrained pseudorandom functions and their applications. In K. Sako and
P. Sarkar, editors, ASIACRYPT 2013, Part II, vol. 8270 of LNCS (Springer, Berlin, 2013), pp. 280–300.

[9] E. Boyle, K.-M. Chung, R. Pass. On extractability obfuscation. In Y. Lindell, editor, TCC 2014, vol.
8349 of LNCS (Springer, Berlin, 2014), pp. 52–73.

[10] E.Boyle, S.Goldwasser, and I. Ivan. Functional signatures andpseudorandom functions. InH.Krawczyk,
editor, PKC 2014, vol. 8383 of LNCS (Springer, Berlin, 2014), pp. 501–519.

[11] E. Boyle, G. Segev, and D. Wichs. Fully leakage-resilient signatures. In K. G. Paterson, editor, EURO-
CRYPT 2011, vol. 6632 of LNCS (Springer, Berlin, 2011), pp. 89–108.

[12] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole in the bucket: Public-
key cryptography resilient to continual memory leakage. In 51st FOCS, pp. 501–510. IEEE Computer
Society Press, (2010).

[13] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In B. S. Kaliski Jr., editor,
CRYPTO’97, volume 1294 of LNCS. (Springer, Berlin, 1997), pp. 90–104.

[14] R. Canetti, S. Goldwasser, and O. Poburinnaya. Adaptively secure two-party computation from indistin-
guishability obfuscation. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, vol. 9015 of LNCS
(Springer, Berlin, 2015), pp. 557–585.

[15] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In D. Boneh, editor,
CRYPTO 2003, vol. 2729 of LNCS (Springer, Berlin, 2003), pp. 565–582.

[16] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to counteract power-analysis
attacks. In M. J. Wiener, editor, CRYPTO’99, vol. 1666 of LNCS. (Springer, Berlin, 1999)

http://eprint.iacr.org/2013/689

D. Dachman-Soled et al.

[17] M. Chase,M. Kohlweiss, A. Lysyanskaya, and S.Meiklejohn.Malleable proof systems and applications.
In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, vol. 7237 of LNCS (Springer, Berlin,
2012), pp. 281–300

[18] D. Dachman-Soled, J. Katz, and V. Rao. Adaptively secure, universally composable, multiparty compu-
tation in constant rounds. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, vol. 9015 of LNCS
(Springer, Berlin, 2015), pp. 586–613

[19] D. Dachman-Soled, F.-H. Liu, and H.-S. Zhou. Leakage-resilient circuits revisited - optimal number
of computing components without leak-free hardware. In E. Oswald and M. Fischlin, editors, EURO-
CRYPT 2015, Part II, vol. 9057 of LNCS, (Springer, Berlin, 2015), pp. 131–158.

[20] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero
knowledge. In J. Kilian, editor,CRYPTO 2001, vol. 2139 of LNCS (Springer, Berlin, 2001), pp. 566–598

[21] Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Cryptography against continuous memory
attacks. In 51st FOCS, IEEE Computer Society Press, 2010, pp. 511–520.

[22] Y.Dodis, K.Haralambiev, A. López-Alt, andD.Wichs. Efficient public-key cryptography in the presence
of key leakage. In M. Abe, editor, ASIACRYPT 2010, vol. 6477 of LNCS (Springer, Berlin, 2010), pp.
613–631.

[23] Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography with auxiliary input. In M. Mitzenmacher, editor,
41st ACM STOC (ACM Press, 2009), pp. 621–630.

[24] Y. Dodis, A. B. Lewko, B. Waters, and D. Wichs. Storing secrets on continually leaky devices. In
R. Ostrovsky, editor, 52nd FOCS, pp. 688–697. IEEE Computer Society Press, 2011.

[25] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[26] Y. Dodis and A. Smith. Correcting errors without leaking partial information. In H. N. Gabow and
R. Fagin, editors, 37th ACM STOC (ACM Press, 2005), pp. 654–663.

[27] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting circuits from leakage: the
computationally-bounded and noisy cases. In H. Gilbert, editor, EUROCRYPT 2010, vol. 6110 of LNCS
(Springer, Berlin, 2010), pp. 135–156.

[28] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In T. Johansson and
P. Q. Nguyen, editors, EUROCRYPT 2013, vol. 7881 of LNCS (Springer, Berlin, 2013), pp. 1–17.

[29] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability
obfuscation and functional encryption for all circuits. in 54th FOCS, pp. 40–49. IEEE Computer Society
Press, 2013.

[30] S. Garg, C. Gentry, S. Halevi, and D. Wichs. On the implausibility of differing-inputs obfuscation
and extractable witness encryption with auxiliary input. In J. A. Garay and R. Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, (Springer, Berlin, 2014), pp. 518–535.

[31] S. Garg and A. Polychroniadou. Two-round adaptively secure MPC from indistinguishability obfusca-
tion. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, vol. 9015 of LNCS (Springer, Berlin,
2015), pp. 614–637.

[32] O. Goldreich, S. Goldwasser, and S.Micali. How to construct random functions. J. ACM, 33(4):792–807,
Aug. 1986.

[33] S. Goldwasser and G. N. Rothblum. On best-possible obfuscation. In S. P. Vadhan, editor, TCC 2007,
volume 4392 of LNCS (Springer, Berlin 2007), pp. 194–213

[34] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feldman,
J. Appelbaum, and E. W. Felten. Lest we remember: Cold boot attacks on encryption keys, in USENIX
Security Symposium, pp. 45–60 (2008)

[35] C. Hazay, A. López-Alt, H. Wee, and D. Wichs. Leakage-resilient cryptography from minimal assump-
tions. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, (Springer,
Berlin, 2013), pp. 160–176.

[36] R. Impagliazzo, L. A. Levin, andM. Luby. Pseudo-randomgeneration from one-way functions (extended
abstracts). In 21st ACM STOC (ACM Press, 1989), pp. 12–24.

[37] Y. Ishai, O. Pandey, and A. Sahai. Public-coin differing-inputs obfuscation and its applications. In
Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, vol. 9015 of LNCS, (Springer, Berlin, 2015), pp.
668–697.

[38] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition. CRC Press, 2014.

Leakage Resilience from Program Obfuscation

[39] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage resilience. InM.Matsui, editor,
ASIACRYPT 2009, vol. 5912 of LNCS, (Springer, Berlin, 2009), pp. 703–720

[40] M. J. Kearns and U. V. Vazirani. An introduction to computational learning theory. Massachusetts
Institute of Technology (1994)

[41] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable pseudorandom functions
and applications. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 13, (ACM Press,
2013), pp. 669–684.

[42] C.-J. Lee, C.-J. Lu, S.-C. Tsai, and W.-G. Tzeng. Extracting randomness from multiple independent
sources. IEEE Transactions on Information Theory, 51(6):2224–2227, 2005.

[43] A. B. Lewko, M. Lewko, and B. Waters. How to leak on key updates. In L. Fortnow and S. P. Vadhan,
editors, 43rd ACM STOC (ACM Press, 2011), pp. 725–734

[44] T. Malkin, I. Teranishi, Y. Vahlis, and M. Yung. Signatures resilient to continual leakage on memory and
computation. In Y. Ishai, editor, TCC 2011, vol. 6597 of LNCS, (Springer, Berlin, 2011), pp. 89–106

[45] S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In M. Naor, editor,
TCC 2004, vol. 2951 of LNCS (Springer, Berlin, 2004), pp. 278–296

[46] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In S. Halevi, editor,
CRYPTO 2009, vol. 5677 of LNCS, (Springer, Berlin, 2009), pp. 18–35

[47] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable encryption, and more. In
D. B. Shmoys, editor, 46th ACM STOC (ACM Press, 2014), pp. 475–484

[48] B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In
S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, (Springer, Berlin, 2009), pp. 619–636

[49] B. Waters. CS 395T Special Topic: Obfuscation in Cryptography. 2014. http://www.cs.utexas.edu/
~bwaters/classes/CS395T-Fall-14/outline.html

[50] B. Waters. How to use in distinguishability obfuscation, in Visions of Cryptography, 2014. Talk slides
available at http://www.cs.utexas.edu/~bwaters/presentations/files/how-to-use-IO.ppt.

[51] D. Wichs. Cryptographic resilience to continual information leakage. Ph.D. Thesis, 2011. http://www.
ccs.neu.edu/home/wichs/thesis.pdf

http://www.cs.utexas.edu/~bwaters/classes/CS395T-Fall-14/outline.html
http://www.cs.utexas.edu/~bwaters/classes/CS395T-Fall-14/outline.html
http://www.cs.utexas.edu/~bwaters/presentations/files/how-to-use-IO.ppt
http://www.ccs.neu.edu/home/wichs/thesis.pdf
http://www.ccs.neu.edu/home/wichs/thesis.pdf

Non-Malleable Codes for Partial
Functions with Manipulation Detection

Aggelos Kiayias1, Feng-Hao Liu2, and Yiannis Tselekounis1(B)

1 University of Edinburgh, Edinburgh, UK
akiayias@inf.ed.ac.uk, ytselekounis@ed.ac.uk
2 Florida Atlantic University, Boca Raton, USA

fenghao.liu@fau.edu

Abstract. Non-malleable codes were introduced by Dziembowski,
Pietrzak and Wichs (ICS ’10) and its main application is the protec-
tion of cryptographic devices against tampering attacks on memory. In
this work, we initiate a comprehensive study on non-malleable codes for
the class of partial functions, that read/write on an arbitrary subset of
codeword bits with specific cardinality. Our constructions are efficient in
terms of information rate, while allowing the attacker to access asymp-
totically almost the entire codeword. In addition, they satisfy a notion
which is stronger than non-malleability, that we call non-malleability
with manipulation detection, guaranteeing that any modified codeword
decodes to either the original message or to ⊥. Finally, our primitive
implies All-Or-Nothing Transforms (AONTs) and as a result our con-
structions yield efficient AONTs under standard assumptions (only one-
way functions), which, to the best of our knowledge, was an open ques-
tion until now. In addition to this, we present a number of additional
applications of our primitive in tamper resilience.

1 Introduction

Non-malleable codes (NMC) were introduced by Dziembowski, Pietrzak and
Wichs [27] as a relaxation of error correction and error detection codes, aiming
to provide strong privacy but relaxed correctness. Informally, non-malleability
guarantees that any modified codeword decodes either to the original message or
to a completely unrelated one, with overwhelming probability. The definition of
non-malleability is simulation-based, stating that for any tampering function f ,
there exists a simulator that simulates the tampering effect by only accessing f ,
i.e., without making any assumptions on the distribution of the encoded message.

The main application of non-malleable codes that motivated the seminal work
by Dziembowski et al. [27] is the protection of cryptographic implementations

A. Kiayias—Research partly supported by the H2020 project FENTEC (# 780108).
F.-H. Liu—Research supported by the NSF Award #CNS-1657040.
Y. Tselekounis—Research partly supported by the H2020 project PANORAMIX
(# 653497).

c⃝ International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10993, pp. 577–607, 2018.
https://doi.org/10.1007/978-3-319-96878-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96878-0_20&domain=pdf

578 A. Kiayias et al.

from active physical attacks against memory, known as tampering attacks. In this
setting, the adversary modifies the memory of the cryptographic device, receives
the output of the computation, and tries to extract sensitive information related
to the private memory. Security against such types of attacks can be achieved by
encoding the private memory of the device using non-malleable codes. Besides
that, various applications of non-malleable codes have been proposed in subse-
quent works, such as CCA secure encryption schemes [20] and non-malleable
commitments [4].

Due to their important applications, constructing non-malleable codes has
received a lot of attention over recent years. As non-malleability against gen-
eral functions is impossible [27], various subclasses of tampering functions have
been considered, such as split-state functions [1–3,26,27,36,37], bit-wise tam-
pering and permutations [4,5,27], bounded-size function classes [32], bounded
depth/fan-in circuits [6], space-bounded tampering [29], and others (cf. Sect. 1.4).
One characteristic shared by those function classes is that they allow full access
to the codeword, while imposing structural or computational restrictions to the
way the function computes over the input. In this work we initiate a comprehen-
sive study on non-malleability for functions that receive partial access over the
codeword, which is an important yet overlooked class, as we elaborate below.

The class of partial functions. The class of partial functions contains all
functions that read/write on an arbitrary subset of codeword bits with specific
cardinality. Concretely, let c be a codeword with length ν. For α ∈ [0, 1), the
function class Fαν (or Fα for brevity) consists of all functions that operate over
any subset of bits of c with cardinality at most αν, while leaving the remaining
bits intact. The work of Cheraghchi and Guruswami [18] explicitly defines this
class and uses a subclass (the one containing functions that always touch the
first αν bits of the codeword) in a negative way, namely as the tool for deriv-
ing capacity lower bounds for information-theoretic non-malleable codes against
split-state functions. Partial functions were also studied implicitly by Faust
et al. [32], while aiming for non-malleability against bounded-size circuits.1

Even though capacity lower bounds for partial functions have been derived
(cf. [18]), our understanding about explicit constructions is still limited. Exis-
tential results can be derived by the probabilistic method, as shown in prior
works [18,27]2, but they do not yield explicit constructions. On the other hand,
the capacity bounds do not apply to the computational setting, which could
potentially allow more practical solutions. We believe that this is a direction
that needs to be explored, as besides the theoretical interest, partial functions is

1 Specifically, in [32], the authors consider a model where a common reference string
(CRS) is available, with length roughly logarithmic in the size of the tampering
function class; as a consequence, the tampering function is allowed to read/write the
whole codeword while having only partial information over the CRS.

2 Informally, prior works [18,27] showed existence of non-malleable codes for classes
of certain bounded cardinalities. The results cover the class of partial functions.

Non-Malleable Codes for Partial Functions with Manipulation Detection 579

a natural model that complies with existing attacks that require partial access
to the registers of the cryptographic implementation [8,10–12,44].3

Besides the importance of partial functions in the active setting, i.e., when the
function is allowed to partially read/write the codeword, the passive analogue
of the class, i.e., when the function is only given read access over the codeword,
matches the model considered by All-Or-Nothing Transforms (AONTs), which
is a notion originally introduced by Rivest [41], providing security guarantees
similar to those of leakage resilience: reading an arbitrary subset (up to some
bounded cardinality) of locations of the codeword does not reveal the underly-
ing message. As non-malleable codes provide privacy, non-malleability for par-
tial functions is the active analogue of (and in fact implies) AONTs, that find
numerous applications [13,14,40,41,43].

Plausibility. At a first glance one might think that partial functions better
comply with the framework of error-correction/detection codes (ECC/EDC),
as they do not touch the whole codeword. However, if we allow the adversary
to access asymptotically almost the entire codeword, it is conceivable it can
use this generous access rate, i.e., the fraction of the codeword that can be
accessed (see below), to create correlated encodings, thus we believe solving non-
malleability in this setting is a natural question. Additionally, non-malleability
provides simulation based security, which is not considered by ECC/EDC.

We illustrate the separation between the notions using the following example.
Consider the set of partial functions that operate either on the right or on the left
half of the codeword (the function chooses if it is going to be left or right), and the
trivial encoding scheme that on input message s outputs (s, s). The decoder, on
input (s, s′), checks if s = s′, in which case it outputs s, otherwise it outputs ⊥.
This scheme is clearly an EDC against the aforementioned function class,4 as the
output of the decoder is in {s,⊥}, with probability 1; however, it is malleable
since the tampering function can create encodings whose validity depends on
the message. On the other hand, an ECC would provide a trivial solution in
this setting, however it requires restriction of the adversarial access fraction to
1/2 (of the codeword); by accessing more than this fraction, the attacker can
possibly create invalid encodings depending on the message, as general ECCs
do not provide privacy. Thus, the ECC/EDC setting is inapt when aiming for
simulation based security in the presence of attackers that access almost the
entire codeword. Later in this section, we provide an extensive discussion on
challenges of non-malleability for partial functions.

Besides the plausibility and the lack of a comprehensive study, partial
functions can potentially allow stronger primitives, as constant functions are
excluded from the class. This is similar to the path followed by Jafargholi and
Wichs [34], aiming to achieve tamper detection (cf. Sect. 1.4) against a class of

3 The attacks by [8,11,12] require the modification of a single (random) memory bit,
while in [10] a single error per each round of the computation suffices. In [44], the
attack requires a single faulty byte.

4 It is not an ECC as the decoder does not know which side has been modified by the
tampering function.

580 A. Kiayias et al.

functions that implicitly excludes constant functions and the identity function. In
this work we prove that this intuition holds, by showing that partial functions
allow a stronger primitive that we define as non-malleability with manipula-
tion detection (MD-NMC), which in addition to simulation based security, it
also guarantees that any tampered codeword will either decode to the original
message or to ⊥. Again, and as in the case of ECC/EDC, we stress out that
manipulation/tamper-detection codes do not imply MD-NMC, as they do not
provide simulation based security (cf. Sect. 1.4).5

Given the above, we believe that partial functions is an interesting and well-
motivated model. The goal of this work is to answer the following (informally
stated) question:

Is it possible to construct efficient (high information rate) non-malleable
codes for partial functions, while allowing the attacker to access almost the
entire codeword?

We answer the above question in the affirmative. Before presenting our results
(cf. Sect. 1.1) and the high level ideas behind our techniques (cf. Sect. 1.2), we
identify the several challenges that are involved in tackling the problem.

Challenges. We first define some useful notions used throughout the paper.

– Information rate: the ratio of message to codeword length, as the message
length goes to infinity.

– Access rate: the fraction of the number of bits that the attacker is allowed to
access over the total codeword length, as the message length goes to infinity.

The access rate measures the effectiveness of a non-malleable code in the par-
tial function setting and reflects the level of adversarial access to the codeword.
In this work, we aim at constructing non-malleable codes for partial functions
with high information rate and high access rate, i.e., both rates should app-
roach 1 simultaneously. Before discussing the challenges posed by this require-
ment, we first review some known impossibility results. First, non-malleability
for partial functions with concrete access rate 1 is impossible, as the function can
fully decode the codeword and then re-encode a related message [27]. Second,
information-theoretic non-malleable codes with constant information rate (e.g.,
0.5) are not possible against partial functions with constant access rate [18]6,
and consequently, solutions in the information-theoretic settings such as ECC
and Robust Secret Sharing (RSS) do not solve our problem. Based on these
facts, in order to achieve our goal, the only path is to explore the computational
setting, aiming for access rate at most 1 − ϵ, for some ϵ > 0.

At a first glance one might think that non-malleability for partial functions
is easier to achieve, compared to other function classes, as partial functions

5 Clearly, MD-NMC imply manipulation/error-detection codes.
6 Informally, in [18] (Theorem 5.3) the authors showed that any information-theoretic
non-malleable code with a constant access rate and a constant information rate must
have a constant distinguishing probability.

Non-Malleable Codes for Partial Functions with Manipulation Detection 581

cannot touch the whole codeword. Having that in mind, it would be tempting to
conclude that existing designs/techniques with minor modifications are sufficient
to achieve our goal. However, we will show that this intuition is misleading,
by pointing out why prior approaches fail to provide security against partial
functions with high access rate.

The current state of the art in the computational setting considers tools
such as (Authenticated) Encryption [1,22,24,28,36,37], non-interactive zero-
knowledge (NIZK) proofs [22,28,30,37], and ℓ-more extractable collision resis-
tant hashes (ECRH) [36], where others use KEM/DEM techniques [1,24]. Those
constructions share a common structure, incorporating a short secret key sk (or
a short encoding of it), as well as a long ciphertext, e, and a proof π (or a hash
value). Now, consider the partial function f that gets full access to the secret key
sk and a constant number of bits of the ciphertext e, partially decrypts e and
modifies the codeword depending on those bits. Then, it is not hard to see that
non-malleability falls apart as the security of the encryption no longer holds.
The attack requires access rate only O((|sk|)/(|sk| + |e| + |π|)), for [22,28,37]
and O(poly(k)/|s|) for [1,24,36]. A similar attack applies to [30], which is in the
continual setting.

One possible route to tackle the above challenges, is to use an encoding
scheme over the ciphertext, such that partial access over it does not reveal
the underlying message.7 The guarantees that we need from such a primitive
resemble the properties of AONTs, however this primitive does not provide
security against active, i.e., tampering, attacks. Another approach would be to
use Reconstructable Probabilistic Encodings [6], which provide error-correcting
guarantees, yet still it is unknown whether we can achieve information rate 1 for
such a primitive. In addition, the techniques and tools for protecting the secret
key can be used to achieve optimal information rate as they are independent of
the underlying message, yet at the same time, they become the weakest point
against partial functions with high access rate. Thus, the question is how to
overcome the above challenges, allowing access to almost the entire codeword.

In this paper we solve the challenges presented above based on the following
observation: in existing solutions the structure of the codeword is fixed and
known to the attacker, and independently of the primitives that we use, the only
way to resolve the above issues is by hiding the structure via randomization.
This requires a structure recovering mechanism that can either be implemented
by an “external” source, or otherwise the structure needs to be reflected in the
codeword in some way that the attacker cannot exploit. In the present work we
implement this mechanism in both ways, by first proposing a construction in the
common reference string (CRS) model, and then we show how to remove the
CRS using slightly bigger alphabets. Refer to Sect. 1.2 for a technical overview.

7 In the presence of NIZKs we can have attacks with low access rate that read sk, e,
and constant number of bits from the proof.

582 A. Kiayias et al.

1.1 Our Results

We initiate the study of non-malleable codes with manipulation-detection (MD-
NMC), and we present the first (to our knowledge) construction for this type
of codes. We focus on achieving simultaneously high information rate and high
access rate, in the partial functions setting, which by the results of [18], it can
be achieved only in the computational setting.

Our contribution is threefold. First, we construct an information rate 1
non-malleable code in the CRS model, with access rate 1 − 1/Ω(log k), where
k denotes the security parameter. Our construction combines Authenticated
Encryption together with an inner code that protects the key of the encryp-
tion scheme (cf. Sect. 1.2). The result is informally summarized in the following
theorem.

Theorem 1.1 (Informal). Assuming one-way functions, there exists an explicit
computationally secure MD-NMC in the CRS model, with information rate 1
and access rate 1 − 1/Ω(log k), where k is the security parameter.

Our scheme, in order to achieve security with error 2−Ω(k), produces code-
words of length |s| + O(k2 log k), where |s| denotes the length of the message,
and uses a CRS of length O(k2 log k log(|s|+k)). We note that our construction
does not require the CRS to be fully tamper-proof and we refer the reader to
Sect. 1.2 for a discussion on the topic.

In our second result we show how to remove the CRS by slightly increas-
ing the size of the alphabet. Our result is a computationally secure MD-NMC
in the standard model, achieving information and access rate 1 − 1/Ω(log k).
Our construction is proven secure by a reduction to the security of the scheme
presented in Theorem1.1. Below, we informally state our result.

Theorem 1.2 (Informal). Assuming one-way functions, there exists an explicit,
computationally secure MD-NMC in the standard model, with alphabet length
O(log k), information rate 1 − 1/Ω(log k) and access rate 1 − 1/Ω(log k), where
k is the security parameter.

Our scheme produces codewords of length |s|(1+ 1/O(log k)) +O(k2 log2 k).
In Sect. 1.2, we consider security against continuous attacks. We show how

to achieve a weaker notion of continuous security, while avoiding the use of
a self-destruct mechanism, which was originally achieved by [28]. Our notion
is weaker than full continuous security [30], since the codewords need to be
updated. Nevertheless, our update operation is deterministic and avoids the
full re-encoding process [27,37]; it uses only shuffling and refreshing operations,
i.e., we avoid cryptographic computations such as group operations and NIZKs.
We call such an update mechanism a “light update.” Informally, we prove the
following result.

Theorem 1.3 (Informal). One-way functions imply continuous non-malleable
codes with deterministic light updates and without self-destruct, in the standard
model, with alphabet length O(log k), information rate 1− 1/Ω(log k) and access
rate 1 − 1/Ω(log k), where k is the security parameter.

Non-Malleable Codes for Partial Functions with Manipulation Detection 583

As we have already stated, non-malleable codes against partial functions
imply AONTs [41]. The first AONT was presented by Boyko [13] in the random
oracle model, and then Canetti et al. [14] consider AONTs with public/private
parts as well as a secret-only part, which is the full notion. Canetti et al. [14]
provide efficient constructions for both settings, yet the fully secure AONT
(called “secret-only” in that paper) is based on non-standard assumptions.8

Assuming one-way functions, our results yield efficient, fully secure AONTs,
in the standard model. This resolves, the open question left in [14], where the
problem of constructing AONT under standard assumptions was posed. Our
result is presented in the following theorem.

Theorem 1.4 (Informal). Assuming one-way functions, there exists an explicit
secret-only AONT in the standard model, with information rate 1 and access
rate 1 − 1/Ω(log k), where k is the security parameter.

The above theorem is derived by the Informal Theorem1.1 yielding an
AONT whose output consists of both the CRS and the codeword produced
by the NMC scheme in the CRS model. A similar theorem can be derived with
respect to the Informal Theorem1.2. Finally, and in connection to AONTs that
provide leakage resilience, our results imply leakage-resilient codes [37] for partial
functions.

In the full version of the paper we provide concrete instantiations of our con-
structions, using textbook instantiations [35] for the underlying authenticated
encryption scheme. For completeness, we also provide information theoretic vari-
ants of our constructions that maintain high access rate and thus necessarily
sacrifice information rate.

1.2 Technical Overview

On the manipulation detection property. In the present work we exploit
the fact that the class of partial functions does not include constant functions
and we achieve a notion that is stronger than non-malleability, which we call
non-malleability with manipulation detection. We formalize this notion as a
strengthening of non-malleability and we show that our constructions achieve
this stronger notion. Informally, manipulation detection ensures that any tam-
pered codeword will either decode to the original message or to ⊥.

A MD-NMC in the CRS model. For the exposition of our ideas, we start
with a naive scheme (which does not work), and then show how we resolve all the
challenges. Let (KGen,E,D) be a (symmetric) authenticated encryption scheme
and consider the following encoding scheme: to encode a message s, the encoder
computes (sk||e), where e ← Esk(s) is the ciphertext and sk ← KGen(1k), is
the secret key. We observe that the scheme is secure if the tampering function
can only read/write on the ciphertext, e, assuming the authenticity property

8 In [43] the authors present a deterministic AONT construction that provides weaker
security.

584 A. Kiayias et al.

(Bits)

z

e← Encryptsk(s)

← SecretShare sk||sk3
)

Secret key: sk
Message: s

Locations defined by the CRS

Fig. 1. Description of the scheme in the CRS model.

of the encryption scheme, however, restricting access to sk, which is short, is
unnatural and makes the problem trivial. On the other hand, even partial access
to sk, compromises the authenticity property of the scheme, and even if there
is no explicit attack against the non-malleability property, there is no hope for
proving security based on the properties of (KGen,E,D), in black-box way.

A solution to the above problems would be to protect the secret key using
an inner encoding, yet the amount of tampering is now restricted by the capa-
bilities of the inner scheme, as the attacker knows the exact locations of the
“sensitive” codeword bits, i.e., the non-ciphertext bits. In our construction, we
manage to protect the secret key while avoiding the bottleneck on the access
rate by designing an inner encoding scheme that provides limited security guar-
antees when used standalone, still when it is used in conjunction with a shuffling
technique that permutes the inner encoding and ciphertext bit locations, it guar-
antees that any attack against the secret key will create an invalid encoding with
overwhelming probability, even when allowing access to almost the entire code-
word.

Our scheme is depicted in Fig. 1 and works as follows: on input message s, the
encoder (i) encrypts the message by computing sk ← KGen(1k) and e ← Esk(s),
(ii) computes an m-out-of-m secret sharing z of (sk||sk3) (interpreting both
sk and sk3 as elements in some finite field),9 and outputs a random shuffling
of (z||e), denoted as PΣ(z||e), according to the common reference string Σ.
Decoding proceeds as follows: on input c, the decoder (i) inverts the shuffling
operation by computing (z||e) ← P−1

Σ (c), (ii) reconstructs (sk||sk′), and (iii) if
sk3 = sk′, outputs Dsk(e), otherwise, it outputs ⊥.

In Sect. 3 we present the intuition behind our construction and a formal
security analysis. Our instantiation yields a rate 1 computationally secure MD-
NMC in the CRS model, with access rate 1 − 1/Ω(log k) and codewords of
length |s|+O(k2 log k), under mild assumptions (e.g., one way functions).

On the CRS. In our work, the tampering function, and consequently the code-
word locations that the function is given access to, are fixed before sampling the

9 In general, any polynomial of small degree, e.g., skc, would suffice, depending on the
choice of the underlying finite field. Using sk3 suffices when working over fields of
characteristic 2. We could also use sk2 over fields of characteristic 3.

Non-Malleable Codes for Partial Functions with Manipulation Detection 585

CRS and this is critical for achieving security. However, proving security in this
setting is non-trivial. In addition, the tampering function receives full access to
the CRS when tampering with the codeword. This is in contrast to the work
by Faust et al. [32] in the information-theoretic setting, where the (internal)
tampering function receives partial information over the CRS.

In addition, our results tolerate adaptive selection of the codeword locations,
with respect to the CRS, in the following way: each time the attacker requests
access to a location, he also learns if it corresponds to a bit of z or e, together
with the index of that bit in the original string. In this way, the CRS is gradually
disclosed to the adversary while picking codeword locations.

Finally, our CRS sustains a substantial amount of tampering that depends
on the codeword locations chosen by the attacker: an attacker that gets
access to a sensitive codeword bit is allowed to modify the part of the
CRS that defines the location of that bit in the codeword. The attacker is
allowed to modify all but O(k log(|s| + k)) bits of the CRS, that is of length
O(k2 log k log(|s|+ k)). To our knowledge, this is the first construction that tol-
erates, even partial modification of the CRS. In contrast, existing constructions
in the CRS model are either using NIZKs [22,28,30,37], or they are based on
the knowledge of exponent assumption [36], thus tampering access to the CRS
might compromise security.

Removing the CRS. A first approach would be to store the CRS inside the
codeword together with PΣ(z||e), and give to the attacker read/write access to
it. However, the tampering function, besides getting direct (partial) access to
the encoding of sk, it also gets indirect access to it by (partially) controlling the
CRS. Then, it can modify theCRS in way such that, during decoding, ciphertext
locations of its choice will be treated as bits of the inner encoding, z, increasing
the tampering rate against z significantly. This makes the task of protecting sk
hard, if not impossible (unless we restrict the access rate significantly).

To handle this challenge, we embed the structure recovering mechanism inside
the codeword and we emulate the CRS effect by increasing the size of the alpha-
bet, giving rise to a block-wise structure.10 Notice that, non-malleable codes
with large alphabet size (i.e., poly(k) + |s| bits) might be easy to construct, as
we can embed in each codeword block the verification key of a signature scheme
together with a secret share of the message, as well as a signature over the share.
In this way, partial access over the codeword does not compromise the security
of the signature scheme while the message remains private, and the simulation is
straightforward. This approach however, comes with a large overhead, decreasing
the information rate and access rate of the scheme significantly. In general, and
similar to error correcting codes, we prefer smaller alphabet sizes – the larger
the size is, the more coarse access structure is required, i.e., in order to access
individual bits we need to access the blocks that contain them. In this work,
we aim at minimizing this restriction by using small alphabets, as we describe
below.
10 Bigger alphabets have been also considered in the context of error-correcting codes,

in which the codeword consists of symbols.

586 A. Kiayias et al.

z

e← Encryptsk(s)

← SecretShare sk||sk3
)

Secret key: sk
Message: s

1 ||index||z[index]

Randomly chosen blocks

0 ||epart

(Blocks) (Contents)

Fig. 2. Description of the scheme in the standard model.

Our approach on the problem is the following. We increase the alphabet size
to O(log k) bits, and we consider two types of blocks: (i) sensitive blocks, in
which we store the inner encoding, z, of the secret key, sk, and (ii) non-sensitive
blocks, in which we store the ciphertext, e, that is fragmented into blocks of
size O(log k). The first bit of each block indicates whether it is a sensitive block,
i.e., we set it to 1 for sensitive blocks and to 0, otherwise. Our encoder works
as follows: on input message s, it computes z, e, as in the previous scheme and
then uses rejection sampling to sample the indices, ρ1, . . . , ρ|z|, for the sensitive
blocks. Then, for every i ∈ {1, . . . , |z|}, ρi is a sensitive block, with contents
(1||i||z[i]), while the remaining blocks keep ciphertext pieces of size O(log k).
Decoding proceeds as follows: on input codeword C = (C1, . . . , Cbn), for each
i ∈ [bn], if Ci is a non-sensitive block, its data will be part of e, otherwise, the
last bit of Ci will be part of z, as it is dictated by the index stored in Ci. If the
number of sensitive blocks is not the expected, the decoder outputs ⊥, otherwise,
z, e, have been fully recovered and decoding proceeds as in the previous scheme.
Our scheme is depicted in Fig. 2.

The security of our construction is based on the fact that, due to our shuf-
fling technique, the position mapping will not be completely overwritten by the
attacker, and as we prove in Sect. 4, this suffices for protecting the inner encod-
ing over sk. We prove security of the current scheme (cf. Theorem4.4) by a
reduction to the security of the scheme in the CRS model. Our instantiation
yields a rate 1 − 1/Ω(log k) MD-NMC in the standard model, with access rate
1− 1/Ω(log k) and codewords of length |s|(1+1/O(log k))+O(k2 log2 k), assum-
ing one-way functions.

It is worth pointing out that the idea of permuting blocks containing sensitive
and non-sensitive data was also considered by [42] in the context of list-decodable
codes, however the similarity is only in the fact that a permutation is being used
at some point in the encoding process, and our objective, construction and proof
are different.

Continuously non-malleable codes with light updates. We observe that
the codewords of the block-wise scheme can be updated efficiently, using shuffling
and refreshing operations. Based on this observation, we prove that our code is

Non-Malleable Codes for Partial Functions with Manipulation Detection 587

secure against continuous attacks, for a notion of security that is weaker than
the original one [30], as we need to update our codeword. However, our update
mechanism is using cheap operations, avoiding the full decoding and re-encoding
of the message, which is the standard way to achieve continuous security [27,37].
In addition, our solution avoids the usage of a self-destruction mechanism that
produces ⊥ in all subsequent rounds after the first round in which the attacker
creates an invalid codeword, which was originally achieved by [28], and makes
an important step towards practicality.

The update mechanism works as follows: in each round, it randomly shuffles
the blocks and refreshes the randomness of the inner encoding of sk. The idea
here is that, due to the continual shuffling and refreshing of the inner encoding
scheme, in each round the attacker learns nothing about the secret key, and
every attempt to modify the inner encoding, results to an invalid key, with
overwhelming probability. Our update mechanism can be made deterministic if
we further encode a seed of a PRG together with the secret key, which is similar
to the technique presented in [37].

Our results are presented in Sect. 5 (cf. Theorem5.3), and the rates for the
current scheme match those of the one-time secure, block-wise code.

1.3 Applications

Security against passive attackers - AONTs. Regarding the passive set-
ting, our model and constructions find useful application in all settings where
AONTs are useful (cf. [13,14,40,41]), e.g., for increasing the security of encryp-
tion without increasing the key-size, for improving the efficiency of block ciphers
and constructing remotely keyed encryption [13,41], and also for constructing
computationally secure secret sharing [40]. Other uses of AONTs are related to
optimal asymmetric encryption padding [13].

Security against memory tampering - (Binary alphabets, Logarith-
mic length CRS). As with every NMC, the most notable application of the
proposed model and constructions is when aiming for protecting cryptographic
devices against memory tampering. Using our CRS based construction we can
protect a large tamperable memory with a small (logarithmic in the message
length) tamperproof memory, that holds the CRS.

The construction is as follows. Consider any device performing cryptographic
operations, e.g., a smart card, whose memory is initialized when the card is being
issued. Each card is initialized with an independent CRS, which is stored in a
tamper-proof memory, while the codeword is stored in a tamperable memory.
Due to the independency of the CRS values, it is plausible to assume that the
adversary is not given access to the CRS prior to tampering with the card; the
full CRS is given to the tampering function while it tampers with the codeword
during computation. This idea is along the lines of the only computation leaks
information model [38], where data can only be leaked during computation,
i.e., the attacker learns the CRS when the devices performs computations that
depend on it. We note that in this work we allow the tampering function to read

588 A. Kiayias et al.

the full CRS, in contrast to [32], in which the tampering function receives partial
information over it (our CRS can also be tampered, cf. the above discussion). In
subsequent rounds the CRS and the codeword are being updated by the device,
which is the standard way to achieve security in multiple rounds while using a
one-time NMC [27].

Security against memory tampering - (Logarithmic length alphabets,
no CRS). In modern architectures data is stored and transmitted in chunks,
thus our block-wise encoding scheme can provide tamper-resilience in all these
settings. For instance, consider the case of arithmetic circuits, having memory
consisting of consecutive blocks storing integers. Considering adversaries that
access the memory of such circuits in a block-wise manner, is a plausible sce-
nario. In terms of modeling, this is similar to tamper-resilience for arithmetic
circuits [33], in which the attacker, instead of accessing individual circuit wires
carrying bits, it accesses wires carrying integers. The case is similar for RAM
computation where the CPU operates over 32 or 64 bit registers (securing RAM
programs using NMC was also considered by [22–24,31]). We note that the
memory segments in which the codeword blocks are stored do not have to be
physically separated, as partial functions output values that depend on the whole
input in which they receive access to. This is in contrast to the split-state set-
ting in which the tampering function tampers with each state independently,
and thus the states need to be physically separated.

Security against adversarial channels. In Wiretap Channels [9,39,45] the
goal is to communicate data privately against eavesdroppers, under the assump-
tion that the channel between the sender and the adversary is “noisier” than
the channel between the sender and the receiver. The model that we propose
and our block-wise construction can be applied in this setting to provide privacy
against a wiretap adversary under the assumption that due to the gap of noise
there is a small (of rate o(1)) fraction of symbols that are delivered intact to the
receiver and dropped from the transmission to the adversary. This enables pri-
vate, key-less communication between the parties, guaranteeing that the receiver
will either receive the original message, or ⊥. In this way, the communication
will be non-malleable in the sense that the receiver cannot be lead to output
⊥ depending on any property of the plaintext. Our model allows the noise in
the receiver side to depend on the transmission to the wiretap adversary, that
tampers with a large (of rate 1− o(1)) fraction of symbols, leading to an “active”
variant of the wiretap model.

1.4 Related Work

Manipulation detection has been considered independently of the notion of non-
malleability, in the seminal paper by Cramer et al. [21], who introduced the
notion of algebraic manipulation detection (AMD) codes, providing security
against additive attacks over the codeword. A similar notion was considered
by Jafargholi and Wichs [34], called tamper detection, aiming to detect mali-
cious modifications over the codeword, independently of how those affect the

Non-Malleable Codes for Partial Functions with Manipulation Detection 589

output of the decoder. Tamper detection ensures that the application of any
(admissible) function to the codeword leads to an invalid decoding.

Non-malleable codes for other function classes have been extensively stud-
ied, such as constant split-state functions [17,25], block-wise tampering [15,19],
while the work of [2] develops beautiful connections among various function
classes. In addition, other variants of non-malleable codes have been pro-
posed, such as continuous non-malleable codes [30], augmented non-malleable
codes [1], locally decodable/updatable non-malleable codes [16,22–24,31], and
non-malleable codes with split-state refresh [28]. In [7] the authors consider
AC0 circuits, bounded-depth decision trees and streaming, space-bounded adver-
saries. Leakage resilience was also considered as an additional feature, e.g.,
by [16,24,28,37].

2 Preliminaries

In this section we present basic definitions and notation that will be used
throughout the paper.

Definition 2.1 (Notation). Let t, i, j, be non-negative integers. Then, [t] is the
set {1, . . . , t}. For bit-strings x, y, x||y, is the concatenation of x, y, |x| denotes
the length of x, for i ∈ [|x|], x[i] is the i-th bit of x,

!t
j=1 xj := x1|| . . . ||xt, and

for i ≤j, x[i : j] = x[i]|| . . . ||x[j]. For a set I, |I|, P(I), are the cardinality and
power set of I, respectively, and for I ⊆ [|x|], x|I is the projection of the bits
of x with respect to I. For a string variable c and value v, c ← v denotes the
assignment of v to c, and c[I] ← v, denotes an assignment such that c|I equals v.
For a distribution D over a set X , x ← D, denotes sampling an element x ∈ X ,
according to D, x ← X denotes sampling a uniform element x from X , UX
denotes the uniform distribution over X and x1, . . . , xt

rs← X denotes sampling a
uniform subset of X with t distinct elements, using rejection sampling. The sta-
tistical distance between two random variables X, Y , is denoted by ∆(X,Y), “≈”
and “≈c”, denote statistical and computational indistinguishability, respectively,
and negl(k) denotes an unspecified, negligible function, in k.

Below, we define coding schemes, based on the definitions of [27,37].

Definition 2.2 (Coding scheme [27]). A (κ, ν)-coding scheme, κ, ν ∈ N, is a
pair of algorithms (Enc,Dec) such that: Enc : {0, 1}κ → {0, 1}ν is an encod-
ing algorithm, Dec : {0, 1}ν → {0, 1}κ ∪ {⊥} is a decoding algorithm, and for
every s ∈ {0, 1}κ, Pr[Dec(Enc(s)) = s] = 1, where the probability runs over the
randomness used by (Enc,Dec).

We can easily generalize the above definition for larger alphabets, i.e., by
considering Enc : {0, 1}κ → Γ ν and Dec : Γ ν → {0, 1}κ ∪ {⊥}, for some alpha-
bet Γ .

Definition 2.3 (Coding scheme in the Common Reference String
(CRS) Model [37]). A (κ, ν)-coding scheme in the CRS model, κ, ν ∈ N,

590 A. Kiayias et al.

is a triple of algorithms (Init,Enc,Dec) such that: Init is a randomized algo-
rithm which receives 1k, where k denotes the security parameter, and produces a
common reference string Σ ∈ {0, 1}poly(k), and (Enc(1k,Σ, ·),Dec(1k,Σ, ·)) is a
(κ, ν)-coding scheme, κ, ν = poly(k).

For brevity, 1k will be omitted from the inputs of Enc and Dec.
Below we define non-malleable codes with manipulation detection, which is a

stronger notion than the one presented in [27], in the sense that the tampered
codeword will always decode to the original message or to ⊥. Our definition is
with respect to alphabets, as in Sect. 4 we consider alphabets of size O(log k).

Definition 2.4 (Non-Malleability with Manipulation Detection (MD-NMC)).
Let Γ be an alphabet, let (Init,Enc,Dec) be a (κ, ν)-coding scheme in the common
reference string model, and F be a family of functions f : Γ ν → Γ ν . For any
f ∈ F and s ∈ {0, 1}κ, define the tampering experiment

Tamperfs :=
{

Σ ← Init(1k), c ← Enc(Σ, s), c̃ ← fΣ(c), s̃ ← Dec(Σ, c̃)
Output : s̃.

}

which is a random variable over the randomness of Enc, Dec and Init. The coding
scheme (Init,Enc,Dec) is non-malleable with manipulation detection with respect
to the function family F , if for all, sufficiently large k and for all f ∈ F , there
exists a distribution D(Σ,f) over {0, 1}κ ∪ {⊥, same∗}, such that for all s ∈
{0, 1}κ, we have:

{
Tamperfs

}

k∈N
≈

{
s̃ ← D(Σ,f)

Output s if s̃ = same∗, and ⊥ otherwise

}

k∈N

where Σ ← Init(1k) and D(Σ,f) is efficiently samplable given access to f , Σ.
Here, “≈” may refer to statistical, or computational, indistinguishability.

In the above definition, f is parameterized by Σ to differentiate tamper-proof
input, i.e., Σ, from tamperable input, i.e., c.

Below we define the tampering function class that will be used throughout
the paper.

Definition 2.5 (The class of partial functions Fαν
Γ (or Fα)). Let Γ be an alpha-

bet, α ∈ [0, 1) and ν ∈ N. Any f ∈ Fαν
Γ , f : Γ ν → Γ ν , is indexed by a set

I ⊆ [ν], |I| ≤αν, and a function f ′ : Γαν → Γαν , such that for any x ∈ Γ ν ,
(f(x))|I = f ′ (x|I

)
and (f(x))|Ic = x|Ic , where Ic := [ν]\I.

For simplicity, in the rest of the text we will use the notation f(x) and f(x|I)
(instead of f ′ (x|I

)
). Also, the length of the codeword, ν, according to Γ , will be

omitted from the notation and whenever Γ is omitted we assume that Γ = {0, 1}.
In Sect. 3, we consider Γ = {0, 1}, while in Sect. 4, Γ = {0, 1}O(log k), i.e., the
tampering function operates over blocks of size O(log k). When considering the
CRS model, the functions are parameterized by the common reference string.

The following lemma is useful for proving security throughout the paper.

Non-Malleable Codes for Partial Functions with Manipulation Detection 591

Lemma 2.6. Let (Enc,Dec) be a (κ, ν)-coding scheme and F be a family of
functions. For every f ∈ F and s ∈ {0, 1}κ, define the tampering experiment

Tamperfs :=
{

c ← Enc(s), c̃ ← f(c), s̃ ← Dec(c̃)
Output same∗ if s̃ = s, and s̃ otherwise.

}

which is a random variable over the randomness of Enc and Dec. (Enc,Dec) is
an MD-NMC with respect to F , if for any f ∈ F and all sufficiently large k: (i)
for any pair of messages s0, s1 ∈ {0, 1}κ,

{
Tamperfs0

}

k∈N
≈

{
Tamperfs1

}

k∈N
,

and (ii) for any s, Pr
[
Tamperfs /∈ {⊥, s}

]
≤ negl(k). Here, “≈” may refer to

statistical, or computational, indistinguishability.

The proof of the above lemma is provided in the full version of the paper.
For coding schemes in the CRS model the above lemma is similar, and Tamperfs
internally samples Σ ← Init(1k).

3 An MD-NMC for Partial Functions, in the CRS Model

In this section we consider Γ = {0, 1} and we construct a rate 1 MD-NMC for
Fα, with access rate α = 1− 1/Ω(log k). Our construction is defined below and
depicted in Fig. 1.

Construction 3.1. Let k, m ∈ N, let (KGen,E,D) be a symmetric encryp-
tion scheme, (SSm,Recm) be an m-out-of-m secret sharing scheme, and let
l ← 2m|sk|, where sk follows KGen(1k). We define an encoding scheme
(Init,Enc,Dec), that outputs ν = l + |e| bits, e ← Esk(s), as follows:

– Init(1k): Sample r1, . . . , rl
rs← {0, 1}log(ν), and output Σ = (r1, . . . , rl).

– Enc(Σ, ·): for input message s, sample sk ← KGen(1k), e ← Esk(s).
• (Secret share) Sample z ← SSm(sk||sk3), where z =

!2|sk|
i=1 zi, z ∈

{0, 1}2m|sk|, and for i ∈ [|sk|], zi (resp. z|sk|+i) is an m-out-of-m secret
sharing of sk[i] (resp. sk3[i]).

• (Shuffle) Compute c ← PΣ(z||e) as follows:
1. (Sensitive bits): Set c ← 0ν . For i ∈ [l], c[ri] ← z[i].
2. (Ciphertext bits): Set i ← 1. For j ∈ [l + |e|], if j /∈ {rp | p ∈ [l]},

c[j] ← e[i], i++.
Output c.

– Dec(Σ, ·): on input c, compute (z||e) ← P−1
Σ (c), (sk||sk′) ← Recm(z), and if

sk3 = sk′, output Dsk(e), otherwise output ⊥.

The set of indices of zi in the codeword will be denoted by Zi.

In the above we consider all values as elements over GF(2poly(k)).
Our construction combines authenticated encryption with an inner encoding

that works as follows. It interprets sk as an element in the finite field GF(2|sk|)
and computes sk3 as a field element. Then, for each bit of (sk||sk3), it computes

592 A. Kiayias et al.

an m-out-of-m secret sharing of the bit, for some parameter m (we note that
elements in GF(2|sk|) can be interpreted as bit strings). Then, by combining the
inner encoding with the shuffling technique, we get a encoding scheme whose
security follows from the observations that we briefly present below:

– For any tampering function which does not have access to all m shares of a
single bit of (sk||sk3), the tampering effect on the secret key can be expressed
essentially as a linear shift, i.e., as ((sk + δ)||(sk3 + η)) for some (δ, η) ∈
GF(2|sk|) × GF(2|sk|), independent of sk.

– By permuting the locations of the inner encoding and the ciphertext bits,
we have that with overwhelming probability any tampering function who
reads/writes on a (1 − o(1)) fraction of codeword bits, will not learn any
single bit of (sk||sk3).

– With overwhelming probability over the randomness of sk and CRS, for
non-zero η and δ, (sk + δ)3 ̸= sk3 + η, and this property enables us to
design a consistency check mechanism whose output is simulatable, without
accessing sk.

– The security of the final encoding scheme follows by composing the security
of the inner encoding scheme with the authenticity property of the encryption
scheme.

Below we present the formal security proof of the above intuitions.

Theorem 3.2. Let k, m ∈ N and α ∈ [0, 1). Assuming (SSm,Recm) is an
m-out-of-m secret sharing scheme and (KGen,E,D) is 1-IND-CPA11 secure,
authenticated encryption scheme, the code of Construction 3.1 is a MD-NMC
against Fα, for any α, m, such that (1 − α)m = ω(log(k)).

Proof. Let I be the set of indices chosen by the attacker and Ic = [ν]\I, where
ν = 2m|sk| + |e|. The tampered components of the codeword will be denoted
using the character “˜” on top of the original symbol, i.e., we have c̃ ← f(c), the
tampered secret key sk (resp. sk3) that we get after executing Recm(z̃) will be
denoted by s̃k (resp. s̃k

′
). Also the tampered ciphertext will be ẽ. We prove the

needed using a series of hybrid experiments that are depicted in Fig. 3. Below,
we describe the hybrids.

– ExpΣ,f,s
0 : We prove security of our code using Lemma2.6, i.e., by showing that

(i) for any s0, s1, Tamperfs0 ≈Tamperfs1 , and (ii) for any s, Pr
[
Tamperfs /∈

{⊥, s}] ≤ negl(k), where Tamperfs is defined in Lemma2.6. For any f , s,
Σ ← Init(1k), the first experiment, ExpΣ,f,s

0 , matches the experiment Tamperfs
in the CRS model, i.e., Σ is sampled inside Tamperfs .

11 This is an abbreviations for indistinguishability under chosen plaintext attack, for a
single pre-challenge query to the encryption oracle.

Non-Malleable Codes for Partial Functions with Manipulation Detection 593

ExpΣ,f,s
0 :

c ← Enc(Σ, s), c̃ ← 0ν

c̃[I] ← fΣ(c|I), c̃[I
c] ← c|Ic

s̃ ← Dec(c̃)

Output same∗ if s̃ = s and s̃ otherwise.

ExpΣ,f,s
1 :

c ← Enc(Σ, s), c̃ ← 0ν

c̃[I] ← fΣ(c|I), c̃[I
c] ← c|Ic

If ∃i : |(I ∩ Zi)| = m:

s̃ ← ⊥
Else:

s̃ ← Dec(c̃)

Output same∗ if s̃ = s and s̃ otherwise.

ExpΣ,f,s
2 :

sk ← KGen(1k), e ← Esk(s)

z∗ ← S̄Sf
m(Σ, sk), c ← PΣ(z∗||e)

c̃ ← 0ν , c̃[I] ← fΣ(c|I), c̃[I
c] ← c|Ic

If ∃i : |(I ∩ Zi)| = m:
s̃ ← ⊥

Else:
If ∃i :

⊕
j∈(I∩Zi)

c[j] ̸=
⊕

j∈(I∩Zi)
c̃[j]:

s̃ ← ⊥
Else:

s̃ ← Dsk(ẽ)

Output same∗ if s̃ = s and s̃ otherwise.

ExpΣ,f,s
3 :

sk ← KGen(1k), e ← Esk(s)
z∗ ← S̄Sf

m(Σ, sk), c ← PΣ(z∗||e)

c̃ ← 0ν , c̃[I] ← fΣ(c|I)

If ∃i : |(I ∩ Zi)| = m:
s̃ ← ⊥

Else:

If ∃i :
⊕

j∈(I∩Zi)
c[j] ̸=

⊕
i∈(I∩Zi)

c̃[j]:
s̃ ← ⊥

Else: s̃ ← ⊥
If ẽ = e:

s̃ ← same∗

Output s̃.

Fig. 3. The hybrid experiments for the proof of Theorem 3.2.

– ExpΣ,f,s
1 : In the second experiment we define Zi, i ∈ [2|sk|], to be the set of

codeword indices in which the secret sharing zi is stored, |Zi| = m. The main
difference from the previous experiment is that the current one outputs ⊥, if
there exists a bit of sk or sk3 for which the tampering function reads all the
shares of it, while accessing at most αν bits of the codeword. Intuitively, and
as we prove in Claim 3.3, by permuting the location indices of z||e, this event
happens with probability negligible in k, and the attacker does not learn any
bit of sk and sk3, even if he is given access to (1− o(1))ν bits of the codeword.

– ExpΣ,f,s
2 : By the previous hybrid we have that for all i ∈ [2|sk|], the tampering

function will not access all bits of zi, with overwhelming probability. In the
third experiment we unfold the encoding procedure, and in addition, we sub-
stitute the secret sharing procedure SSm with S̄S

f
m that computes shares z∗

i

that reveal no information about sk||sk3; for each i, S̄Sfm simply “drops” the
bit of zi with the largest index that is not being accessed by f . We formally
define S̄S

f
m below.

594 A. Kiayias et al.

S̄S
f
m(Σ, sk):

1. Sample
(
z1, . . . , z2|sk|

)
← SSm

(
sk||sk3

)
and set z∗

i ← zi, i ∈ [2|sk|].
2. For i ∈ [2|sk|], let li := maxd {d ∈ [m] ∧ Ind (zi[d]) /∈ I)}, where Ind

returns the index of zi[d] in c, i.e., li is the largest index in [m] such
that zi[li] is not accessed by f .

3. (Output): For all i set z∗
i [li] = ∗, and output z∗ :=∥2|sk|i=1 z∗

i .

In ExpΣ,f,s
1 , z =

!2|sk|
i=1 zi, and each zi is an m-out-of-m secret sharing for a

bit of sk or sk3. From Claim 3.3, we have that for all i, |I ∩ Zi| < m with
overwhelming probability, and we can observe that the current experiment is
identical to the previous one up to the point of computing f(c|I), as c|I and
f(c|I) depend only on z∗, that carries no information about sk and sk3.

Another difference between the two experiments is in the external “Else”
branch: ExpΣ,f,s

1 makes a call on the decoder while ExpΣ,f,s
2 , before calling

Dsk(ẽ), checks if the tampering function has modified the shares in a way such
that the reconstruction procedure ((s̃k, s̃k

′
) ← Recm(z̃)) will give s̃k ̸= sk

or s̃k
′ ̸= sk′. This check is done by the statement “If ∃i :

⊕
j∈(I∩Zi)

c[j] ̸=⊕
j∈(I∩Zi)

c̃[j]”, without touching sk or sk3.12 In case modification is detected
the current experiments outputs ⊥. The intuition is that an attacker that
partially modifies the shares of sk and sk3, creates shares of s̃k and s̃k

′
,

such that s̃k
3
= s̃k

′
, with negligible probability in k. We prove this by a

reduction to the 1-IND-CPA security of the encryption scheme: any valid
modification over the inner encoding of the secret key gives us method to
compute the original secret key sk, with non-negligible probability. The ideas
are presented formally in Claim 3.4.

– ExpΣ,f,s
3 : The difference between the current experiment and the previous one

is that instead of calling the decryption Dsk(ẽ), we first check if the attacker
has modified the ciphertext, in which case the current experiment outputs
⊥, otherwise it outputs same∗. By the previous hybrid, we reach this newly
introduced “Else” branch of ExpΣ,f,s

3 , only if the tampering function didn’t
modify the secret key. Thus, the indistinguishability between the two experi-
ments follows from the authenticity property of the encryption scheme in the
presence of z∗: given that s̃k = sk and s̃k

′
= sk′, we have that if the attacker

modifies the ciphertext, then with overwhelming probability Dsk(ẽ) = ⊥, oth-
erwise, Dsk(ẽ) = s, and the current experiment correctly outputs same∗ or ⊥
(cf. Claim 3.5).

– Finally, we prove that for any f ∈ Fα, and message s, ExpΣ,f,s
3 is indistin-

guishable from ExpΣ,f,0
3 , where 0 denotes the zero-message. This follows by

the semantic security of the encryption scheme, and gives us the indistin-
guishability property of Lemma2.6. The manipulation detection property is
derived by the indistinguishability between the hybrids and the fact that the
output of ExpΣ,f,s

3 is in the set {same∗,⊥}.

12 Recall that our operations are over GF(2poly(k)).

Non-Malleable Codes for Partial Functions with Manipulation Detection 595

In what follows, we prove indistinguishability between the hybrids using a series
of claims.

Claim 3.3. For k, m ∈ N, assume (1− α)m = ω(log(k)). Then, for any f ∈ Fα

and any message s, we have ExpΣ,f,s
0 ≈ExpΣ,f,s

1 , where the probability runs over
the randomness used by Init, Enc.

Proof. The difference between the two experiments is that ExpΣ,f,s
1 outputs

⊥ when the attacker learns all shares of some bit of sk or sk3, otherwise it
produces output as ExpΣ,f,s

0 does. Let E the event “∃i : |(I ∩ Zi)| = m”.
Clearly, ExpΣ,f,s

0 = ExpΣ,f,s
1 conditioned on ¬E, thus the statistical distance

between the two experiments is bounded by Pr[E]. In the following we show
that Pr[E] ≤ negl(k). We define by Ei the event in which f learns the entire
zi. Assuming the attacker reads n bits of the codeword, we have that for all
i ∈ [2|sk|],

Pr
Σ
[Ei] = Pr

Σ
[|I ∩ Zi| = m] =

m−1∏

j=0

n − j

ν − j
≤

(n

ν

)m
.

We have n = αν and assuming α = 1 − ϵ for ϵ ∈ (0, 1], we have Pr[Ei] ≤
(1 − ϵ)m ≤1/emϵ and Pr[E] = PrΣ

[⋃2|sk|
i=1 Ei

]
≤ 2|sk|

emϵ , which is negligible when
(1 − α)m = ω(log(k)), and the proof of the claim is complete. !

Claim 3.4. Assuming (KGen,E,D) is 1-IND-CPA secure, for any f ∈ Fα and
any message s, ExpΣ,f,s

1 ≈ExpΣ,f,s
2 , where the probability runs over the random-

ness used by Init, Enc.

Proof. In ExpΣ,f,s
2 we unfold the encoding procedure, however instead of calling

SSm, we make a call to S̄S
f
m. As we have already stated above, this modification

does not induce any difference between the output of ExpΣ,f,s
2 and ExpΣ,f,s

1 ,
with overwhelming probability, as z∗ is indistinguishable from z in the eyes
of f . Another difference between the two experiments is in the external “Else”
branch: ExpΣ,f,s

1 makes a call on the decoder while ExpΣ,f,s
2 , before calling Dsk(ẽ),

checks if the tampering function has modified the shares in a way such that the
reconstruction procedure will give s̃k ̸= sk or s̃k

′ ̸= sk′. This check is done by
the statement “If ∃i :

⊕
j∈(I∩Zi)

c[j] ̸=
⊕

j∈(I∩Zi)
c̃[j]”, without touching sk or

sk3 (cf. Claim 3.3).13 We define the events E, E′ as follows

E : Dec(c̃) ̸= ⊥, E′ : ∃i :
⊕

j∈(I∩Zi)
c[j] ̸=

⊕
j∈(I∩Zi)

c̃[j].

Clearly, conditioned on ¬E′ the two experiments are identical, since we have
s̃k = sk and s̃k

′
= sk′, and the decoding process will output Dsk(ẽ) in both

experiments. Thus, the statistical distance is bounded by Pr[E′]. Now, con-
ditioned on E′ ∧ ¬E, both experiments output ⊥. Thus, we need to bound
13 Recall that our operations are over GF(2poly(k)).

596 A. Kiayias et al.

Pr[E ∧ E′]. Assuming Pr[E ∧ E′] > p, for p = 1/poly(k), we define an attacker
A that simulates ExpΣ,f,s

2 , and uses f , s to break the 1-IND-CPA security
of (KGen,E,D) in the presence of z∗, with probability at least 1/2 + p′′/2, for
p′′ = 1/poly(k).

First we prove that any 1-IND-CPA secure encryption scheme, remains
secure even if the attacker receives z∗ ← S̄S

f
m(Σ, sk), as z∗ consists of

m − 1 shares of each bit of sk and sk3, i.e., for the entropy of sk we have
H(sk|z∗) = H(sk). Towards contradiction, assume there exists A that breaks the
1-IND-CPA security of (KGen,E,D) in the presence of z∗, i.e., there
exist s, s0, s1 such that A distinguishes between (z∗,Esk(s),Esk(s0)) and
(z∗,Esk(s),Esk(s1)), with non-negligible probability p. We define an attacker
A′ that breaks the 1-IND-CPA security of (KGen,E,D) as follows: A′, given
(Esk(s),Esk(sb)), for some b ∈ {0, 1}, samples ŝk ← KGen(1k), ẑ∗ ← S̄S

f
m(Σ, ŝk)

and outputs b′ ← A(z∗,Esk(s),Esk(sb)). Since (z∗,Esk(s),Esk(sb)) ≈(ẑ∗,Esk(s),
Esk(sb)) the advantage of A′ in breaking the 1-IND-CPA security of the scheme
is the advantage of A in breaking the 1-IND-CPA security of the scheme in the
presence of z∗, which by assumption is non-negligible, and this completes the
current proof. We note that the proof idea presented in the current paragraph
also applies for proving that other properties that will be used in the rest of the
proof, such as semantic security and authenticity, of the encryption scheme, are
retained in the presence of z∗.

Now we prove our claim. Assuming Pr[E ∧ E′] > p, for p = 1/poly(k), we
define an attacker A that breaks the 1-IND-CPA security of (KGen,E,D) in the
presence of z∗, with non-negligible probability. A receives the encryption of s,
which corresponds to the oracle query right before receiving the challenge cipher-
text, the challenge ciphertext e ← Esk(sb), for uniform b ∈ {0, 1} and uniform
messages s0, s1, as well as z∗. A is defined below.

A
(
z∗ ← S̄S

f
m(Σ, sk), e′ ← Esk(s), e ← Esk(sb)

)
:

1. (Define the shares that will be accessed by f): For i ∈ [2|sk|],
define wi := (z∗

i)|[m]\{li}
and for i ∈ [m − 1] define Ci =

!|sk|
j=1 wj [i],

Di =
!2|sk|
j=|sk|+1 wj [i].

2. (Apply f) Set c ← PΣ(z∗||e), compute c̃[I] ← fΣ(c|I) and let C̃i, D̃i, i ∈ [m],
be the tampered shares resulting after the application of f to c|I .

3. (Guessing the secret key) Let U =
∑m−1

i=1 Ci, V =
∑m−1

i=1 Di, i.e., U , V
denote the sum of the shares that are being accessed by the attacker (maybe
partially), and Ũ =

∑m−1
i=1 C̃i, Ṽ =

∑m−1
i=1 D̃i, are the corresponding tam-

pered values after applying f on U , V . Define

p(X) := (U − Ũ)X2 + (U2 − Ũ2)X + (U3 − Ũ3 − V + Ṽ),

and compute the set of roots of p(X), denoted as X , which are at most two.
Then set

ŜK := {x+ U |x ∈ X} . (1)

Non-Malleable Codes for Partial Functions with Manipulation Detection 597

4. (Output) Execute the following steps,
(a) For ŝk ∈ ŜK, compute s′ ← Dŝk(e

′), and if s′ = s, compute s′′ ← Dŝk(e).
Output b′ such that sb′ = s′′.

(b) Otherwise, output b′ ← {0, 1}.

In the first step A removes the dummy symbol “∗” and computes the shares
that will be partially accessed by f , denoted as Ci for sk and as Di for sk3. In
the second step, it defines the tampered shares, C̃i, D̃i. Conditioned on E′, it is
not hard to see that A simulates perfectly ExpΣ,f,s

2 . In particular, it simulates
perfectly the input to f as it receives e ← Esk(s) and all but 2|sk| of the actual
bit-shares of sk, sk3. Part of those shares will be accessed by f . Since for all i,
|I ∩Zi| < m, the attacker is not accessing any single bit of sk, sk3. Let Cm, Dm,
be the shares (not provided by the encryption oracle) that completely define sk
and sk3, respectively. By the definition of the encoding scheme and the fact that
sk, sk3 ∈ GF(2poly(k)), we have

∑m
i=1 Ci = sk,

∑m
i=1 Di = sk3, and

(U + Cm)3 = V +Dm. (2)

In order for the decoder to output a non-bottom value, the shares created by
the attacker must decode to s̃k, s̃k

′
, such that s̃k

3
= s̃k

′
, or in other words, if

(
Ũ + Cm

)3
= Ṽ +Dm. (3)

From2 and 3 we receive

(U − Ũ)C2
m + (U2 − Ũ2)Cm + (U3 − Ũ3) = V − Ṽ . (4)

Clearly, Pr[E ∧ E′ ∧ (U = Ũ)] = 0. Thus, assuming Pr[E ∧ E′] > p, for
p > 1/poly(k), we receive

p < Pr
[
E ∧ E′ ∧ (U ̸= Ũ)

]
≤ Pr

[
Dec(c̃) ̸= ⊥ ∧ E′ ∧ U ̸= Ũ

]

≤ Pr
[
s̃k

3
= s̃k

′ ∧ E′ ∧ (U ̸= Ũ)
]

(4,1)
= Pr [Cm ∈ X]

(1)
≤Pr

[
sk ∈ ŜK

]
, (5)

and A manages to recover Cm, and thus sk, with non-negligible probability
p′ ≥ p. Let W be the event of breaking 1-IND-CPA security. Then,

Pr[W] = Pr[W |sk ∈ ŜK] · Pr[sk ∈ ŜK]
+ Pr[W |sk /∈ ŜK] · Pr[sk /∈ ŜK]
(5)
= p′ +

1
2
(1 − p′) =

1
2
+

p′

2
, (6)

and the attacker breaks the IND-CPA security of (KGen,E,D). Thus, we have
Pr[E ∧ E′] ≤negl(k), and both experiments output ⊥ with overwhelming prob-
ability. !

598 A. Kiayias et al.

Claim 3.5. Assuming the authenticity property of (KGen,E,D), for any f ∈ Fα

and any message s, ExpΣ,f,s
2 ≈ ExpΣ,f,s

3 , where the probability runs over the
randomness used by Init, KGen and E.

Proof. Before proving the claim, recall that the authenticity property of the
encryption scheme is preserved under the presence of z∗ (cf. Claim 3.4). Let E

be the event s̃k = sk∧ s̃k
′
= sk3 and E′ be the event ẽ ̸= e. Conditioned on ¬E,

the two experiments are identical, as they both output ⊥. Also, conditioned on
E ∧¬E′, both experiments output same∗. Thus, the statistical distance between
the two experiments is bounded by Pr[E ∧ E′]. Let B be the event Dsk(ẽ) ̸= ⊥.
Conditioned on E∧E′∧¬B both experiments output ⊥. Thus, we need to bound
Pr[E ∧ E′ ∧ B].

Assuming there exist s, f , for which Pr[E∧E′∧B] > p, where p = 1/poly(k),
we define an attacker A = (A1,A2) that simulates ExpΣ,f,s

3 and breaks the
authenticity property of the encryption scheme in the presence of z∗, with non-
negligible probability. A is defined as follows: sample (s, st) ← A1(1k), and then,
on input (z∗, e, st), where e ← Esk(s), A2, samples Σ ← Init(1k), sets c̃ ← 0ν ,
c ← PΣ(z∗||e), computes c̃[I] ← f(c|I), c̃[I

c] ← c|Ic , (z̃
∗||ẽ) ← P−1

Σ (c̃), and
outputs ẽ. Assuming Pr[E ∧ E′ ∧ B] > p, we have that Dsk(ẽ) ̸= ⊥ and ẽ ̸= e,
with non-negligible probability and the authenticity property of (KGen,E,D)
breaks. !
Claim 3.6. Assuming (KGen,E,D) is semantically secure, for any f ∈ Fα and
any message s, ExpΣ,f,s

3 ≈ ExpΣ,f,0
3 , where the probability runs over the ran-

domness used by Init, KGen, E. “≈” may refer to statistical or computational
indistinguishability, and 0 is the zero-message.

Proof. Recall that (KGen,E,D) is semantically secure even in the presence of
z∗ ← S̄S

f
m(Σ, sk) (cf. Claim 3.4), and towards contradiction, assume there exist

f ∈ Fα, message s, and PPT distinguisher D such that
∣∣∣Pr

[
D

(
Σ,ExpΣ,f,s

3

)
= 1

]
− Pr

[
D

(
Σ,ExpΣ,f,0

3

)]
= 1

∣∣∣ > p,

for p = 1/poly(k). We are going to define an attacker A that breaks the semantic
security of (KGen,E,D) in the presence of z∗, using s0 := s, s1 := 0. A, given
z∗, e, executes Program.

Program(z∗, e) :
c ← PΣ(z∗||e), c̃ ← 0ν , c̃[I] ← f(c|I)
If ∃i : |(I ∩ Zi)| = m: s̃ ← ⊥
Else:

If ∃i :
⊕

j∈(I∩Zi)
c[j] ̸=

⊕
j∈(I∩Zi)

c̃[j]: s̃ ← ⊥
Else: s̃ ← ⊥and If ẽ = e: s̃ ← same∗

Output s̃.

It is not hard to see that A simulates ExpΣ,f,sb
3 , thus the advantage of A against

the semantic security of (KGen,E,D) is the same with the advantage of D in dis-
tinguishing between ExpΣ,f,s0

3 , ExpΣ,f,s1
3 , which by assumption is non-negligible.

We have reached a contradiction and the proof of the claim is complete. !

Non-Malleable Codes for Partial Functions with Manipulation Detection 599

From the above claims we have that for any f ∈ Fα and any s, ExpΣ,f,s
0 ≈

ExpΣ,f,0
3 , thus for any f ∈ Fα and any s0, s1, ExpΣ,f,s0

0 ≈ ExpΣ,f,s1
0 . Also,

by the indistinguishability between ExpΣ,f,s
0 and ExpΣ,f,0

3 , the second prop-
erty of Lemma 2.6 has been proven as the output of ExpΣ,f,0

3 is in {s,⊥},
with overwhelming probability, and non-malleability with manipulation detec-
tion of our code follows by Lemma2.6, since ExpΣ,f,s

0 is identical to Tamperfs of
Lemma 2.6. !

4 Removing the CRS

In this section we increase the alphabet size to O(log(k)) and we provide a
computationally secure, rate 1 encoding scheme in the standard model, tolerating
modification of (1 − o(1))ν blocks, where ν is the total number of blocks in the
codeword. Our construction is defined below and the intuition behind it has
already been presented in the Introduction (cf. Sect. 1, Fig. 2). In the following,
the projection operation will be also used with respect to bigger alphabets,
enabling the projection of blocks.

Construction 4.1. Let k, m ∈ N, let (KGen,E,D) be a symmetric encryption
scheme and (SSm,Recm) be an m-out-of-m secret sharing scheme. We define an
encoding scheme (Enc∗,Dec∗), as follows:

– Enc∗(1k, ·): for input message s, sample sk ← KGen
(
1k

)
, e ← Esk(s).

• (Secret share) Sample z ← SSm(sk||sk3), where z =
!2|sk|
i=1 zi, z ∈

{0, 1}2m|sk|, and for i ∈ [|sk|], zi (resp. z|sk|+i) is an m-out-of-m secret
sharing of sk[i] (resp. sk3[i]).

• (Construct blocks & permute) Set l ← 2m|sk|, bs ← log l + 2,
d ← |e|/bs, bn ← l + d, sample ρ := (ρ1, . . . , ρl)

rs← {0, 1}log(bn) and
compute C ← Πρ(z||e) as follows:
1. Set t ← 1, Ci ← 0bs, i ∈ [bn].
2. (Sensitive blocks) For i ∈ [l], set Cri ← (1||i||z[i]).
3. (Ciphertext blocks) For i ∈ [bn], if i ̸= rj, j ∈ [l], Ci ← (0||e[t :

t+ (bs − 1)]), t ← t+ (bs − 1).14
Output C := (C1|| . . . ||Cbn).

– Dec∗(1k, ·): on input C, parse it as (C1|| . . . ||Cbn), set t ← 1, l ← 2m|sk|,
z ← 0l, e ← 0, L = ∅ and compute (z||e) ← Π−1(C) as follows:
• For i ∈ [bn],

∗ (Sensitive block) If Ci[1] = 1, set j ← Ci[2 : bs− 1], z [j] ← Ci[bs],
L ← L ∪ {j}.

∗ (Ciphertext block) Otherwise, set e[t : t + bs − 1] = Ci[2 : bs],
t ← t+ bs − 1.

• If |L| ̸= l, output ⊥, otherwise output (z||e).

14 Here we assume that bs − 1, divides the length of the ciphertext e. We can always
achieve this property by padding the message s with zeros, if necessary.

600 A. Kiayias et al.

If Π−1(C) = ⊥, output ⊥, otherwise, compute (sk||sk′) ← Recm(z), and if
sk3 = sk′, output Dsk(e), otherwise output ⊥.

The set of indices of the blocks in which zi is stored will be denoted by Zi.

We prove security for the above construction by a reduction to the security of
Construction 3.1. We note that that our reduction is non-black box with respect
to the coding scheme in which security is reduced to; a generic reduction, i.e.,
non-malleable reduction [2], from the standard model to the CRS model is an
interesting open problem and thus out of the scope of this work.

In the following, we consider Γ = {0, 1}O(log(k)). The straightforward way
to prove that (Enc∗,Dec∗) is secure against Fα

Γ by a reduction to the security
of the bit-wise code of Sect. 3, would be as follows: for any α ∈ {0, 1}, f ∈ Fα

Γ

and any message s, we have to define α′, g ∈ Fα′
, such that the output of

the tampered execution with respect to (Enc∗,Dec∗), f , s, is indistinguishable
from the tampered execution with respect to (Init,Enc,Dec), g, s, and g is an
admissible function for (Init,Enc,Dec). However, this approach might be tricky
as it requires the establishment of a relation between α and α′ such that the
sensitive blocks that f will receive access to, will be simulated using the sensitive
bits accessed by g. Our approach is cleaner: for the needs of the current proof
we leverage the power of Construction 3.1, by allowing the attacker to choose
adaptively the codeword locations, as long as it does not request to read all
shares of the secret key. Then, for every block that is accessed by the block-wise
attacker f , the bit-wise attacker g requests access to the locations of the bit-
wise code that enable him to fully simulate the input to g. We formally present
our ideas in the following sections. In Sect. 4.1 we introduce the function class
Fad that considers adaptive adversaries with respect to the CRS and we prove
security of Construction 3.1 in Corollary 4.3 against a subclass of Fad , and then,
we reduce the security of the block-wise code (Enc∗,Dec∗) against Fα

Γ to the
security of Construction 3.1 against Fad (cf. Sect. 4.2).

4.1 Security Against Adaptive Adversaries

In the current section we prove that Construction 3.1 is secure against the class
of functions that request access to the codeword adaptively, i.e., depending on
the CRS, as long as they access a bounded number of sensitive bits. Below, we
formally define the function class Fad , in which the tampering function picks up
the codeword locations depending on the CRS, and we consider Γ = {0, 1}.

Definition 4.2 (The function class Fν
ad). Let (Init,Enc,Dec) be an (κ, ν)-coding

scheme and let ˚ be the range of Init(1k). For any g = (g1, g2) ∈ Fν
ad , we have

g1 : ˚ → P ([ν]), gΣ
2 : {0, 1}|range(g1)| → {0, 1}|range(g1)| ∪ {⊥}, and for any

c ∈ {0, 1}ν , gΣ (c) = g2
(
c|g1 (Σ)

)
. For brevity, the function class will be denoted

as Fad .

Construction 3.1 remains secure against functions that receive full access to the
ciphertext, as well as they request to read all but one shares for each bit of

Non-Malleable Codes for Partial Functions with Manipulation Detection 601

sk and sk3. The result is formally presented in the following corollary and its
proof, which is along the lines of the proof of Theorem3.2, is given in the full
version of the paper.

Corollary 4.3. Let k, m ∈ N. Assuming (SSm,Recm) is an m-out-of-m secret
sharing scheme and (KGen,E,D) is 1-IND-CPA secure authenticated encryption
scheme, the code of Construction 4.1 is a MD-NMC against any g = (g1, g2) ∈
Fad , assuming that for all i ∈ [2|sk|], (Zi ∩ g1(Σ)) < m, where sk ← KGen(1k)
and Σ ← Init(1k).

4.2 MD-NM Security of the Block-Wise Code

In the current section we prove security of Construction 4.1 against Fα
Γ , for

Γ = {0, 1}O(log(k)).

Theorem 4.4. Let k, m ∈ N, Γ = {0, 1}O(log(k)) and α ∈ [0, 1). Assum-
ing (SSm,Recm) is an m-out-of-m secret sharing scheme and (KGen,E,D) is a
1-IND-CPA secure authenticated encryption scheme, the code of Construc-
tion 4.1 is a MD-NMC against Fα

Γ , for any α, m, such that (1 − α)m =
ω(log(k)).

g1 (Σ = (r1 , . . . , rl)) :
• (Simulate block shuffling):

Sample ρ := (ρ1 , . . . , ρl)
rs← {0, 1}log(bn)

• (Construct I): Set I = ∅,
∗ (Add ciphertext locations to I):

For j ∈ [|e| + l], if j /∈ {ri|i ∈ [l]}, I ← (I ∪ j).
∗ (Add sensitive bit locations to I according to Ib):

For j ∈ [bn], if j ∈ Ib and ∃i ∈ [l] such that j = ρi, I ← (I ∪ ri).
• Output: Output I.

Fig. 4. The function g1 that appears in the hybrid experiments of Fig. 7.

gΣ
2 (c|I):

t ← 1, C∗
i ← 0bs, i ∈ [bn].

• (Reconstruct I): Compute I ← g1 (Σ).
• (Simulate ciphertext blocks):

For i ∈ [bn], if i ̸= ρj , j ∈ [l], C∗
i ← (0||e[t : t + (bs − 1)]), t ← t + (bs − 1).

• (Simulate sensitive blocks):
∗ For i ∈ [|I|], if ∃j ∈ [l], such that Ind(c|I [i]) = rj , set C∗

ρj
←

(
1||j||c|I [i]

)
.

∗ Set C∗ := (C∗
1 || . . . ||C

∗
bn) and C̃∗ := C∗.

• (Apply f): compute C̃∗[Ib] ← f(C∗
|Ib

).

• (Output): Output C̃∗
|Ib

.

Fig. 5. The function g2 that appears in the hybrid experiments of Fig. 7.

602 A. Kiayias et al.

Proof. Following Lemma 2.6, we prove that for any f ∈ Fα
Γ , and any pair of

messages s0, s1, Tamperfs0 ≈Tamperfs1 , and for any s, Pr
[
Tamperfs /∈ {⊥, s}

]
≤

negl(k), where Tamper denotes the experiment defined in Lemma2.6 with respect
to the encoding scheme of Construction 4.1, (Enc∗,Dec∗). Our proof is given by
a series of hybrids depicted in Fig. 7. We reduce the security (Enc∗,Dec∗), to
the security of Construction 3.1, (Init,Enc,Dec), against Fad (cf. Corollary 4.3).
The idea is to move from the tampered execution with respect to (Enc∗,Dec∗),
f , to a tampered execution with respect to (Init,Enc,Dec), g, such that the two
executions are indistinguishable and (Init,Enc,Dec) is secure against g.

Let Ib be the set of indices of the blocks that f chooses to tamper with,
where |Ib| ≤αν, and let l ← 2m|sk|, bs ← log l + 2, bn ← l + |e|/bs. Below we
describe the hybrids of Fig. 7.

– Expf,s0 : The current experiment is the experiment Tamperfs , of Lemma 2.6,
with respect to (Enc∗,Dec∗), f , s.

– Exp(g1 ,g2),s1 : The main difference between Expf,s0 and Exp(g1 ,g2),s1 , is that in
the latter one, we introduce the tampering function (g1, g2), that operates
over codewords of (Init,Enc,Dec) and we modify the encoding steps so that
the experiment creates codewords of the bit-wise code (Init,Enc,Dec). (g1, g2)
simulates partially the block-wise codeword C, while given partial access to
the bit-wise codeword c ← Enc(s). As we prove in the full version, it simulates
perfectly the tampering effect of f against C ← Enc∗(s).
g1 operates as follows (cf. Fig. 4): it simulates perfectly the randomness for
the permutation of the block-wise code, denoted as ρ, and constructs a set
of indices I, such that g2 will receive access to, and tamper with, c|I . The
set I is constructed with respect to the set of blocks Ib, that f chooses to
read, as well as Σ, that reveals the original bit positions, i.e., the ones before
permuting (z||e). g2 receives c|I , reconstructs I, simulates partially the blocks
of the block-wise codeword, C, and applies f on the simulated codeword. The
code of g2 is given in Fig. 5. In the full version we show that g2, given c|I ,
simulates perfectly C|Ib , which implies that gΣ

2 (c|I) = f(C|Ib), and the two
executions are identical.

– Exp(g1 ,g3),s2 : In the current experiment, we substitute the function g2 with
g3, and Dec∗ with Dec, respectively. By inspecting the code of g2 and g3
(cf. Figs. 5 and 6, respectively), we observe that latter function executes the
code of the former, plus the “Check labels and simulate c̃[I]” step. Thus
the two experiments are identical up to the point of computing f(C|Ib). The
main idea here is that we want the current execution to be with respect to
(Init,Enc,Dec) against (g1, g3). Thus, we substitute Dec∗ with Dec, and we
expand the function g2 with some extra instructions/checks that are missing
from Dec. We name the resulting function as g3 and we prove that the two
executions are identical.

– Finally, we prove that for any f and any s, Exp(g1 ,g3),s2 ≈ Exp(g1 ,g3),02 and
Pr

[
Exp(g1 ,g3),s2 /∈ {⊥, s}

]
≤ negl(k). We do so by proving that (g1, g3) is

Non-Malleable Codes for Partial Functions with Manipulation Detection 603

admissible for (Init,Enc,Dec,), i.e., (g1, g3) ∈ Fad , and g3 will not request
to access more that m − 1 shares for each bit of sk, sk3 (cf. Corollary 4.3).
This implies security according to Lemma2.6.

gΣ
3 (c|I):

t ← 1, C∗
i ← 0bs, i ∈ [bn].

• (Reconstruct I): Compute I ← g1 (Σ).
• (Simulate ciphertext blocks):

For i ∈ [bn], if i ̸= ρj , j ∈ [l], C∗
i ← (0||e[t : t + (bs − 1)]), t ← t + (bs − 1).

• (Simulate sensitive blocks):
∗ For i ∈ [|I|], if ∃j ∈ [l], such that Ind(c|I [i]) = rj , set C∗

ρj
←

(
1||j||c|I [i]

)
.

∗ Set C∗ := (C∗
1 || . . . ||C

∗
bn) and C̃∗ := C∗.

• (Apply f): compute C̃∗[Ib] ← f(C∗
|Ib

).

• (Check labels and simulate c̃[I]): If Π−1 (C̃∗) = ⊥, set d ← 1, otherwise set (z̃∗||ẽ) ←
Π−1 (C̃∗), c̃∗ ← PΣ(z̃∗||ẽ).

• (Output): If d = 1 output ⊥, otherwise output c̃∗
|I
.

Fig. 6. The function g3 that appears in the hybrid experiments of Fig. 7.

Expf,s0 :
sk ← KGen 1k

)
, e ← Esk(s)

z ← SSm(sk||sk3)

ρ := (ρ1 , . . . , ρl)
rs← {0 , 1}log(bn)

C ← Πρ(z||e), C̃ ← C
C̃[Ib] ← f(C|Ib

)

s̃ ← Dec∗(C̃)

Output same∗ if s̃ = s and s̃ otherwise.

Exp(g1 ,g2),s1 :
sk ← KGen 1k

)
, e ← Esk(s)

z ← SSm(sk||sk3)

Σ ← Init∗(1k), c ← PΣ(z||e)
I ← g1 (Σ)

C ← Πρ(z||e), C̃ ← C

C̃[Ib] ← gΣ
2 (c|I)

s̃ ← Dec∗(C̃)

Output same∗ if s̃ = s and s̃ otherwise.

Exp(g1 ,g3),s2 :
Σ ← Init∗(1k)
sk ← KGen 1k

)
, e ← Esk(s)

z ← SSm(sk||sk3)

c ← PΣ(z||e), c̃ ← c
I ← g1 (Σ)
c̃[I] ← gΣ

3 (c|I)

s̃ ← Dec(Σ, c̃)

Output same∗ if s̃ = s and s̃ otherwise.

Fig. 7. The hybrid experiments for the proof of Theorem 4.4.

The indistinguishability between the hybrids is given in the full version of the
paper. !

5 Continuous MD-NMC with Light Updates

In this section we enhance the block-wise scheme of Sect. 4 with an update
mechanism, that uses only shuffling and refreshing operations. The resulting
code is secure against continuous attacks, for a notion of security that is weaker
than the original one [30], as we need to update our codeword. Below we define
the update mechanism, which is denoted as Update∗.

Construction 5.1. Let k, m ∈ N, (KGen,E,D), (SSm,Recm) be as in Construc-
tion 4.1. We define the update procedure, Update∗, for the encoding scheme of
Construction 4.1, as follows:

604 A. Kiayias et al.

– Update∗(1k, ·): on input C, parse it as (C1|| . . . ||Cbn), set l ← 2m|sk|, L̂ = ∅,
and set Ĉ := (Ĉ1|| . . . ||Ĉbn) to 0.
• (Secret share 02|sk|): Sample z ← SSm

(
02|sk|

)
, where z =

!2|sk|
i=1 zi,

z ∈ {0, 1}2m|sk|, and for i ∈ [2|sk|], zi is an m-out-of-m secret sharing of
the 0 bit.

• (Shuffle & Refresh): Sample ρ := (ρ1, . . . , ρl)
rs← {0, 1}log(bn). For

i ∈ [bn],
∗ (Sensitive block) If Ci[1] = 1,

· (Shuffle): Set j ← Ci[2 : bs − 1], Ĉρj ← Ci.
· (Refresh): Set Ĉρj [bs] ← Ĉρj [bs] ⊕ z[j].

∗ (Ciphertext block)
If Ci[1] = 0, set j ← minn

{
n ∈ [bn]

∣∣n /∈ L̂, n ̸= ρi, i ∈ [l]
}
, and

Ĉj ← Ci, L̂ ← L̂ ∪ {j}.
Output Ĉ.

The following definition of security is along the lines of the one given in [30],
adapted to the notion of non-malleability with manipulation detection. Also,
after each invocation the codewords are updated, where in our case the update
mechanism is only using shuffling and refreshing operations. In addition, there
is no need for self-destruct after detecting an invalid codeword [28].

Definition 5.2 (Continuously MD-NMC with light updates). Let CS =
(Enc,Dec) be an encoding scheme, F be a functions class and k, q ∈ N. Then, CS
is a q-continuously non-malleable (q-CNM) code, if for every, sufficiently large
k ∈ N, any pair of messages s0, s1 ∈ {0, 1}poly(k), and any PPT algorithm A,{
TamperAs0 (k)

}

k∈N
≈

{
TamperAs1 (k)

}

k∈N
, where,

TamperAs (k) :
C ← Enc(s), s̃ ← 0
For τ ∈ [q] :

f ← A(s̃), C̃ ← f(C), s̃ ← Dec(C̃)
If s̃ = s : s̃ ← same∗

C ← Update∗(1k, C)
out ← A(s̃)
Return : out

and for each round the output of the decoder is not in {s,⊥} with negligible
probability in k, over the randomness of TamperAs .

In the full version of the paper we prove the following statement.

Theorem 5.3. Let q, k, m, ∈ N, Γ = {0, 1}O(log(k)) and α ∈ [0, 1). Assum-
ing (SSm,Recm) is an m-out-of-m secret sharing scheme and (KGen,E,D) is a
1-IND-CPA, authenticated encryption scheme, the scheme of Construction 5.1
is a continuously MD-NMC with light updates, against Fα

Γ , for any α, m, such
that (1 − α)m = ω(log(k)).

Non-Malleable Codes for Partial Functions with Manipulation Detection 605

In the above theorem, q can be polynomial (resp. exponential) in k, assum-
ing the underlying encryption scheme is computationally (resp. unconditionally)
secure.

References

1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.:
Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0 15

2. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: STOC, pp. 459–468 (2015)

3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC, pp. 774–783 (2014)

4. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Explicit non-
malleable codes against bit-wise tampering and permutations. In: Gennaro, R.,
Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 538–557. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-47989-6 26

5. Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-
optimizing compiler for non-malleable codes against bit-wise tampering and per-
mutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
375–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 16

6. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes for
bounded depth, bounded fan-in circuits. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 881–908. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 31

7. Ball, M., Dachman-Soled, D., Kulkarni, M., Malkin, T.: Non-malleable codes from
average-case hardness: AC0 , decision trees, and streaming space-bounded tamper-
ing. Cryptology ePrint Archive, Report 2017/1061 (2017)

8. Bao, F., Deng, R.H., Han, Y., Jeng, A., Narasimhalu, A.D., Ngair, T.: Breaking
public key cryptosystems on tamper resistant devices in the presence of transient
faults. In: Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Proto-
cols 1997. LNCS, vol. 1361, pp. 115–124. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0028164

9. Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 294–311.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 18

10. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052259

11. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

12. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)

13. Boyko, V.: On the security properties of OAEP as an all-or-nothing transform.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 32

https://doi.org/10.1007/978-3-662-49099-0_15
https://doi.org/10.1007/978-3-662-47989-6_26
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-46494-6_16
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/978-3-662-49896-5_31
https://doi.org/10.1007/BFb0028164
https://doi.org/10.1007/BFb0028164
https://doi.org/10.1007/978-3-642-32009-5_18
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-48405-1_32

606 A. Kiayias et al.

14. Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient
functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 33

15. Chandran, N., Goyal, V., Mukherjee, P., Pandey, O., Upadhyay, J.: Block-wise
non-malleable codes. IACR Cryptology ePrint Archive, p. 129 (2015)

16. Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-
malleable codes and their applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016-A. LNCS, vol. 9563, pp. 367–392. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49099-0 14

17. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-
state tampering. In: FOCS, pp. 306–315 (2014)

18. Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: ITCS 2014
(2014)

19. Choi, S.G., Kiayias, A., Malkin, T.: BiTR: built-in tamper resilience. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 740–758. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 40

20. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 22

21. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 27

22. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Locally decodable and updatable
non-malleable codes in the bounded retrieval model. Cryptology ePrint Archive,
Report 2017/303 (2017). http://eprint.iacr.org/2017/303

23. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for
leakage-resilient, locally decodable and updatable non-malleable codes. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 310–332. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 13

24. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 18

25. Döttling, N., Nielsen, J.B., Obremski, M.: Information theoretic continuously non-
malleable codes in the constant split-state model. Cryptology ePrint Archive,
Report 2017/357 (2017). http://eprint.iacr.org/2017/357

26. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-
1 14

27. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS (2010)
28. Faonio, A., Nielsen, J.B.: Non-malleable codes with split-state refresh. In: Fehr,

S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 279–309. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 12

29. Faust, S., Hostáková, K., Mukherjee, P., Venturi, D.: Non-malleable codes for
space-bounded tampering. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 95–126. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63715-0 4

https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/3-540-45539-6_33
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-662-49099-0_14
https://doi.org/10.1007/978-3-642-25385-0_40
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-540-78967-3_27
http://eprint.iacr.org/2017/303
https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-662-46494-6_18
http://eprint.iacr.org/2017/357
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-642-40084-1_14
https://doi.org/10.1007/978-3-662-54365-8_12
https://doi.org/10.1007/978-3-319-63715-0_4
https://doi.org/10.1007/978-3-319-63715-0_4

Non-Malleable Codes for Partial Functions with Manipulation Detection 607

30. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

31. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: A tamper and leakage resilient
von neumann architecture. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 579–
603. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 26

32. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 7

33. Genkin, D., Ishai, Y., Prabhakaran, M.M., Sahai, A., Tromer, E.: Circuits resilient
to additive attacks with applications to secure computation. In: STOC 2014, pp.
495–504 (2014)

34. Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 451–480.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 19

35. Katz, J., Lindell, Y.: Introduction to Modern Cryptography (2007)
36. Kiayias, A., Liu, F.-H., Tselekounis, Y.: Practical non-malleable codes from l-more

extractable hash functions. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2016, pp. 1317–1328. ACM, New
York (2016)

37. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

38. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24638-1 16

39. Ozarow, L.H., Wyner, A.D.: Wire-tap channel II. AT&T Bell Lab. Tech. J. 63(10),
2135–2157 (1984)

40. Resch, J.K., Plank, J.S.: AONT-RS: blending security and performance in dis-
persed storage systems. In: FAST 2011 (2011)

41. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052348

42. Shaltiel, R., Silbak, J.: Explicit list-decodable codes with optimal rate for compu-
tationally bounded channels. In: APPROX/RANDOM 2016 (2016)

43. Stinson, D.R.: Something about all or nothing (transforms). Des. Codes Crypt.
22(2), 133–138 (2001)

44. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21040-2 15

45. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)

https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-46447-2_26
https://doi.org/10.1007/978-3-642-55220-5_7
https://doi.org/10.1007/978-3-662-46494-6_19
https://doi.org/10.1007/978-3-642-32009-5_30
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/978-3-540-24638-1_16
https://doi.org/10.1007/BFb0052348
https://doi.org/10.1007/978-3-642-21040-2_15
https://doi.org/10.1007/978-3-642-21040-2_15

Parameter-Hiding Order Revealing
Encryption

David Cash1, Feng-Hao Liu2, Adam O’Neill3, Mark Zhandry4,
and Cong Zhang5(B)

1 Department of Computer Science, University of Chicago, Chicago, USA
davidcash@cs.uchicago.edu

2 Department of Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, USA

3 Department of Computer Science, Georgetown University, Washington, D.C., USA
4 Department of Computer Science, Princeton University, Princeton, USA

5 Department of Computer Science, Rutgers University, New Brunswick, USA
cz200@cs.rutgers.edu

Abstract. Order-revealing encryption (ORE) is a primitive for out-
sourcing encrypted databases which allows for efficiently performing
range queries over encrypted data. Unfortunately, a series of works, start-
ing with Naveed et al. (CCS 2015), have shown that when the adversary
has a good estimate of the distribution of the data, ORE provides little
protection. In this work, we consider the case that the database entries
are drawn identically and independently from a distribution of known
shape, but for which the mean and variance are not (and thus the attacks
of Naveed et al. do not apply). We define a new notion of security for
ORE, called parameter-hiding ORE, which maintains the secrecy of these
parameters. We give a construction of ORE satisfying our new definition
from bilinear maps.

Keywords: Encryption · Order-revealing encryption

1 Introduction

An emerging area of cryptography concerns the design and analysis of “leaky”
protocols (see e.g. [11,33,36] and additional references below), which are proto-
cols that deliberately give up some level of security in order to achieve better
efficiency. One important tool in this area is order-revealing encryption [7,8]1.
Order-revealing encryption (ORE) is a special type of symmetric encryption
which leaks the order of the underlying plaintexts through a public procedure
Comp. In practice, ORE allows for a client to store a database on an untrusted
server in encrypted form, while still permitting the server to efficiently perform
various operations such as range queries on the encrypted data without the secret
decryption key. ORE has been implemented and used in real-world encrypted
database systems, including CryptDB [36].
1 In [7], it was called efficiently-orderable encryption.

c⃝ International Association for Cryptologic Research 2018
T. Peyrin and S. Galbraith (Eds.): ASIACRYPT 2018, LNCS 11272, pp. 181–210, 2018.
https://doi.org/10.1007/978-3-030-03326-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03326-2_7&domain=pdf

182 D. Cash et al.

Various notions of ORE have been proposed. The strongest, called “ideal”
ORE, insists that everything about the plaintexts is hidden, except for their
order. For example, it should be impossible to distinguish between encryptions
of 1, 2, 3 and 1, 4, 9. Such ideal ORE can be constructed from multilinear maps [8],
showing that in principle ideal ORE is achievable. However, current multilinear
maps are quite inefficient, and moreover have been subject to numerous attacks
(e.g. [16,17,32]).

In order to develop efficient schemes, one can relax the security requirements
to allow for more leakage. Order-preserving encryption (OPE) [1,6]—which actu-
ally predates ORE—is one example, where Comp is simply integer comparison.
Very efficient constructions of OPE are known [6]. However, OPE necessarily
leaks much more information about the plaintexts [6] than ideal ORE; intu-
itively, the difference between ciphertexts can be used to approximate the dif-
ference between the plaintexts. More recently, there have been efforts to achieve
better security without sacrificing too much efficiency: Chenette, Lewi, Weis
and Wu (CLWW) [15] recently gave an ORE construction which leaks only the
position of the most significant differing bits of the plaintexts.

Unfortunately, even hypothetical ideal ORE has recently been shown insecure
for various use cases [3,10,19,20,22,24–26,30,34]. This is even if the scheme itself
reveals nothing but the order of the plaintexts. The problem is that just the order
of plaintexts alone can already reveal a significant amount of information about
the data. For example, if the data is chosen uniformly from the entire domain,
then even ideal ORE will leak the most significant bits. As the most significant
bits are often the most important ones, this is troubling.

The problem is that the definitions of ORE, while precise and provable, do not
immediately provide any “semantically meaningful” guarantees for the privacy
of the underlying data. Indeed, the above attacks show that when the adversary
has a strong estimate of the prior distribution the data is drawn from, essentially
no security is possible. However, we contend that there are scenarios (see below)
where the adversary lacks this knowledge. A core problem in such scenarios is
that the privacy of one message is inherently dependent on what other cipher-
texts the adversary sees. Analyzing these correlations under arbitrary sources
of data, even for ideal ORE, can be quite difficult. Only very mild results are
known, for example the fact that either CLWW leakage or ideal leakage provably
hides the least significant bits of uniformly chosen data. Unfortunately, these bits
are probably of less importance (e.g. for salaries).

Therefore, a central goal of this paper is to devise a semantically meaningful
notion of privacy for the underlying data in the case that the adversary does
not have a strong estimate of the prior distribution, and develop a construction
attaining this notion not based on multilinear maps.

We stress that we are not trying to devise a scheme that is secure in the use
cases of the attacks above, as many of the attacks above would apply to any
ORE scheme; we are instead aiming to identify settings where the attacks do
not apply, and then provide a scheme satisfying a given notion of security in this
setting.

Parameter-Hiding Order Revealing Encryption 183

1.1 This Work: Parameter-Hiding ORE

In this work, we give one possible answer to the question above. Rather than
focusing on the individual data records, we instead ask about the privacy of the
distribution they came from. We show how to protect some information about
the underlying data distribution.

Motivating Example. To motivate our notion, consider the following setting. A
large university wants to outsource its database of student GPAs. For simplicity,
we will assume each student’s academic ability is independent of other students,
and that this is reflected in the GPA. Thus, we will assume that each GPA is
sampled independently and identically according to some underlying distribu-
tion. The university clearly wants to keep each individual’s GPA hidden. It also
may want aggregate statistics such as mean and variance to be hidden, perhaps
to avoid getting a reputation for handing out very high or very low grades.

Distribution-Hiding ORE. This example motivates a notion of distribution-
hiding ORE, where all data is sampled independently and identically from some
underlying distribution D, and we wish to hide as much as possible about D.
We would ideally like to handle arbitrary distributions D, but in many cases
will accept handling certain special classes of distributions. Notice that if the
distribution itself is completely hidden, then so too is every individual record,
since any information about a record is also information about D.

We begin with the following trivial observation: if D has high min-entropy
(namely, super-logarithmic), then the ideal ORE leakage is just a random order-
ing with no equalities, since there are no collisions with overwhelming probability.
In particular, this leakage is independent of the distribution D; as such, ideal
ORE leakage hides everything about the underlying distribution, except for the
super-logarithmic lower bound on min-entropy. Thus, we can use the multilinear
map-based scheme of [8] to achieve distribution-hiding ORE for any distribution
with high min-entropy.

We note the min-entropy requirement is critical, since for smaller min-
entropies, the leakage allows for determining the frequency of the most common
elements, hence learning non-trivial information about D.2

Unfortunately, the only way we know to build distribution-hiding ORE is
using ideal leakage as above; as such, we do not know of a construction not
based on multilinear maps. Instead, in hopes of building such a scheme, we will
allow some information about the distribution to leak.

2 This min-entropy requirement may be somewhat problematic in some settings. GPAs
for example, probably have fewer than 10 bits of entropy. However, adding small
random noise to the data before encrypting (much smaller than the precision of the
data) will force the data to have high min-entropy without changing the order of
data, with the exception that identical data will appear different when comparing.
In many cases (such as answering range queries) it is totally acceptable to fail to
identify identical data.

184 D. Cash et al.

Parameter-Hiding ORE. We recall that in many settings, data follows a known
type of distribution. For example, the central limit theorem implies that many
quantities such as various physical, biological, and financial quantities are
(approximately) normally distributed. It is also common practice to assign grades
on an approximately normal distribution, so GPAs might reasonably be conjec-
tured to be normal. For a different example, insurance claims are often modeled
according to the Gamma distribution.

Therefore, since the general shape of the distribution is typically known, a
reasonable relaxation of distribution-hiding ORE is what we will call parameter-
hiding ORE. Here, we will assume the distribution has a known, public “shape”
(e.g. normal, uniform, Laplace etc.) but it may be shifted or scaled. We will allow
the overall shape to be revealed; our goal instead is to completely hide the shifting
and scaling information. More precisely, we consider a distribution D over [0, 1]
which will describe the general shape of the family of distributions in question.
For example, if the shape in consideration is the set of uniform distributions over
an interval, we may take D to be uniform distribution over [0, 1]; if the shape is
the normal distribution, we will take D be the normal distribution with mean
1/2, and standard deviation small enough so that the vast majority of the mass
is in [0, 1]. Let Dα,β be the distribution defined as: first sample x ← D, and then
output ⌊αx+ β⌋. We will call α the scaling term and β the shift. The adversary
receives a polynomial number of encryptions of plaintext sampled iid from Dα,β

for some α,β. We will call a scheme parameter hiding if the scale and shift are
hidden from any computationally bounded adversary. Our main theorem is that
it is possible to construct such parameter-hiding ORE from bilinear maps:

Theorem 1 (Informal). Assuming bilinear maps, it is possible to construct
parameter-hiding ORE for any “smooth” distribution D, provided the scaling
term is “large enough.”

We note the restrictions to large scalings are inherent: any small scaling will
lead to a distribution with low min-entropy. As discussed above, even with ideal
ORE, it is possible to estimate the min-entropy of low min-entropy distributions,
and hence it would be possible to recover the scaling term if the scaling term is
small. Some restrictions on the shape of D are also necessary, as certain shapes
can yield low min-entropy even for large scalings. “Smoothness” (which we will
define as having a bounded derivative) guarantees high min-entropy at large
scales, and is also important technically for our analysis.

1.2 Technical Overview

As a starting point, we will consider the leakage profile of Chenette, Lewi, Weis
and Wu [15] (henceforth referred to as CLWW), which reveals the position of the
most significant differing bit between any two plaintexts. This is quite a lot of
information: for example, it can be used to get rough bounds on the difference
between two plaintexts. Thus, CLWW cannot be parameter hiding, since the
scaling term is not hidden. However, CLWW will be a useful starting point, as

Parameter-Hiding Order Revealing Encryption 185

it will allow us to construct shift-hiding ORE, where we only care about hiding
the shift term. To help illustrate our approach, we will therefore first describe
an equivalent formulation of CLWW leakage, which we will then explain how to
extend to get full parameter-hiding ORE.

An Alternative View of CLWW Leakage. Consider the plaintext space
{0, 1, 2, . . . , 2ℓ − 1}. We will think of the plaintexts as leaves in a full binary tree
of depth ℓ. In this tree, the position of the most significant differing bit between
two plaintexts corresponds to the depth of their nearest ancestor. The leakage
of CLWW can therefore can be seen as revealing the tree consisting of all given
plaintexts, their ancestors in the tree up to the lowest common ancestor, and
the order of the leaves, with all other information removed. See Fig. 1 for an
illustration.

Fig. 1. CLWW Leakage. The two sets of plaintext {0, 4, 5, 10, 11} and {1, 6, 7, 8, 9}
correspond to equivalent subtrees. If the message space extends beyond 15, the CLWW
leakage remains the same as depicted, since the leakage only reveals the tree up to the
most recent ancestor.

Now, suppose all plaintext elements are in the range [0, 2i) for some i. This
means they all belong in the same subtree at height i; in particular, the CLWW
leakage will only have depth at most i. Now, suppose we add a multiple of 2i to
every plaintext. This will simply shift all the plaintexts to being in a different
subtree, but otherwise keep the same structure. Therefore, the CLWW leakage
will remain the same.

Therefore, while CLWW is not shift hiding, it is shift periodic. In particular,
if imagine a distributionD whose support is on [0, 2i), and consider shifting D by
β. Consider an adversary A, which is given the CLWW leakage from q plaintexts
sampled from the shifted D, and outputs a bit. If we plot the probability p(β)
that A outputs 1 as a function of β, we will see that the function is periodic
with period 2i.

186 D. Cash et al.

Shift-Hiding ORE/OPE. With this periodicity, it is simple to construct a scheme
that is shift hiding. To get a shift-hiding scheme for message space [0, 2ℓ), we
instantiate CLWW with message space [0, 2ℓ+1). We also include as part of
the secret key a random shift γ chosen uniformly in [0, 2ℓ). We then encrypt a
message m as Enc(m+ γ). Adding a random shift can be seen as convolving the
signal p(β) with the rectangular function

q(β) =

{
2−ℓ if β ∈ [0, 2ℓ)
0 otherwise

Since the rectangular function’s support matches the period of p, the result
is that the convolved signal p̂ is constant. In other words, the adversary always
has the same output distribution, regardless of the shift β. Thus, we achieve
shift hiding.

When the comparison algorithm of an ORE scheme is simple integer com-
parison, we say the scheme is an order-preserving encryption (OPE) scheme.
OPE is preferable because it can be used with fewer modifications to a database
server. We recall that CLWW can be made into an OPE scheme — where cipher-
texts are integers and comparision is integer comparison — while maintaining
the CLWW leakage profile. Our conversion to shift-hiding preserves the OPE
property, so we similarly achieve a shift-hiding OPE scheme.

Scale-Hiding ORE/OPE. We note that we can also turn any shift-hiding ORE
into a scale-hiding ORE. Simply take the logarithm of the input before encrypt-
ing; now multiplying by a constant corresponds to shifting by a constant. Of
course, taking the logarithm will result in non-integers; this can easily be fixed
by rounding to the appropriate level of precision (enough precision to guarantee
no collisions over the domain) and scaling up to make the plaintexts integral.
Similarly, we can also obtain scale-hiding OPE if we start with an OPE scheme.

Impossibility of Parameter-Hiding OPE. One may hope to achieve both shift-
hiding and scale-hiding by some combination of the two above schemes. For
example, since order preserving encryption schemes can be composed, one can
imagine composing a shift-hiding scheme with a scale-hiding scheme. Inter-
estingly, this does not give a parameter-hiding scheme. The reason is that
shifts/scalings of the plaintext do not correspond to shifts/scalings of the cipher-
texts. Therefore, while the outer OPE may provide, say, shift-hiding for its
inputs, this will not translate to shift-hiding of the inner OPE’s inputs.

Nonetheless, one may hope that tweaks to the above may give a scheme that
is simultaneously scale and shift hiding. Perhaps surprisingly, we show that this
is actually impossible. Namely, we show that OPE cannot possibly be parameter-
hiding. Due to space limit, we put the rigorous proof in our full version [12].

This impossibility shows that strategies leveraging CLWW leakage are
unlikely to yield parameter-hiding ORE schemes. Interestingly, all ORE schemes
we are aware of that can be constructed from symmetric crypto can also be made
into OPE schemes. Thus, this suggests we need stronger tools than those used
by previous efficient schemes.

Parameter-Hiding Order Revealing Encryption 187

Parameter Hiding via Smoothed CLWW Leakage. Motivated by the
above, we must seek a different leakage profile if we are to have any hope of
achieving parameter-hiding ORE. We therefore first describe a “dream” leakage
that will allow us to perform similar tricks as in the shift hiding case in order
to achieve both scale and shift hiding simultaneously. Our dream leakage will be
a “smoothed” CLWW leakage, where all nodes of degree exactly 2 are replaced
with an edge between the two neighbors. In other words, the dream leakage is
the smallest graph that is “homeomorphic” to the CLWW leakage. See Fig. 2 for
an illustration.

Fig. 2. Smoothed CLWW Leakage. The two sets of plaintext {0, 4, 5, 10, 11} and
{1, 2, 3, 5, 6} correspond to equivalent smoothed subtrees. Notice that the CLWW leak-
age for these two trees is different.

Our key observation is that this smoothed CLWW leakage now exhibits addi-
tional periodicity. Namely, if we multiply every plaintext by 2, every edge in the
bottom layer of the CLWW leakage will get subdivided into a path of length 2,
but smoothing out the leakage will result in the same exact graph. This means
that smoothed CLWW leakage is periodic in the log domain.

In particular, consider a distribution D with support on [0, 2i), and suppose
it is multiplied by α. Consider an adversary A, which is given the smoothed
CLWW leakage from q plaintexts sampled from a scaled D, and outputs a bit.
If we plot the probability p(log2 α) that A outputs 1 as a function of α, we will
see that the function is periodic with period 1.

Therefore, we can perform a similar trick as above. Namely, we convolve
p with the uniform distribution over the period of p in the log domain. We
accomplish this by including a random scalar α as part of the secret key, and
multiplying by α before encrypting. However, this time several things are differ-
ent:

– Since we are working in the log domain, the logarithm of the random scalar
α has to be uniform. In other words, α is log-uniform

– Since we are working over integers instead of real numbers, many issues arise.

188 D. Cash et al.

• First, α needs to be an integer to guarantee that the scaled plaintexts
are still integers. This means we cannot choose α at log-uniformly over a
single log period, since then α only has support on {1, 2}. Instead, we need
to choose α log-uniformly over a sufficiently large multiple of the period
that α approximates the continuous log-uniform distribution sufficiently
well.

• Second, unlike the shift case, sampling at random fromD and then scaling
is not the same as sampling from a scaled version of D, since the round-
ing step does not commute with scaling. For example, for concreteness
consider the normal distribution. If we sample from a normal distribution
(and round) and then scale, the resulting plaintexts will all be multiples
of α. However, if we sample directly from a scaled normal distribution
(and then round), the support of the distribution will include integers
which are not multiples of α.
To remedy this issue, we observe that if the plaintexts are sampled from
a wide enough distribution, their differing bits will not be amongst the
lowest significant bits. Hence, the leakage will actually be independent
of the lower order bits. For example, this means that while the rounding
does not commute with the scaling, the leakage actually does not depend
on the order in which the two operations are carried out.

• The above arguments can be made to work for, say, the normal distribu-
tion. However, we would like to have a proof that works for any distribu-
tion. Unfortunately, for distributions that oscillate rapidly, we may run
into trouble with the above arguments, since rounding such distributions
can cause odd behaviors at all scales. This problem is actually unavoid-
able, as quickly oscillating distributions may have actually have low min-
entropy even at large scales. Therefore, we must restrict to “smooth”
functions that have a bounded derivative.

Using a careful analysis, we are able to show for smooth distributions that
we achieve the desired scale hiding.

– Finally, we want to have a scheme that is both scale and shift hiding. This
is slightly non-trivial, since once we introduce, say, a random shift, we have
modified the leakage of the scheme, and cannot directly appeal to the argu-
ments above to obtain scale hiding as well. Instead, we distill a set of specific
requirements on the leakage that will work for both shift hiding and scale hid-
ing. We show that our shift hiding scheme above satisfies the requirements
needed in order for us to introduce a random scale and additionally prove
scale hiding.

Achieving Smoothed CLWW Leakage. Next we turn to actually construct-
ing ORE with smoothed CLWW leakage. Of course, ideal ORE has better than
(smoothed) CLWW leakage, so we can construct such ORE based on multilinear
maps. However, we want a construction that uses standard tools.

We therefore provide a new construction of ORE using pairings that achieves
smoothed CLWW leakage. We believe this construction is of interest on its own,

Parameter-Hiding Order Revealing Encryption 189

as it is achieves the to-date smallest leakage of any non-multilinear-map-based
scheme.

CLWW ORE and How to Reduce its Leakage. Our construction builds on the
ideas of CLWW, so we first briefly recall the ORE scheme of CLWW. In their
(basic) scheme, the encryption key is just a PRF key K. To encrypt a plaintext
x ∈ {0, 1}n, for each prefix pi = x[1, . . . , i], the scheme computes

yi = PRFK(pi) + xi+1

where xi+1 is the (i+ 1)-st bit of x, and the output of PRF ∈ {0, 1}λ is treated
as an integer (we will take λ to be the security parameter). The ORE ciphertext
is then (y1 . . . , yn). To compare two ciphertexts (y1 . . . , yn) and (y′

1 . . . , y
′
n), one

finds the smallest index i such that yi ̸= y′
i, and outputs 1 if y′

i − yi = 1. This
naturally reveals the index of the bit where the plaintexts differ.

Our approach to reducing the leakage is to attempt to hide the index i where
the plaintexts differ. As a naive attempt at this, first consider what happens if we
modify the scheme to simply randomly permute the outputs (y1 . . . , yn) (with a
fresh permutation chosen for each encryption). We can still compare ciphertexts
by appropriately modifying the comparison algorithm: now given c = (y1 . . . , yn)
and c′ = (y′

1 . . . , y
′
n) (permuted as above), it will look for indices i, j such that

either y′
i − yj = 1, in which case it outputs 1, or yj − y′

i = 1, in which case it
outputs 0. (If we choose the output length of the PRF to be long enough then
this check will be correct with overwhelming probability).

This modification, however, does not actually reduce leakage: an adversary
can still determine the most significant differing bit by counting how many ele-
ments c and c′ have in common.

We can however recover this approach by preventing an adversary from
detecting how many elements c and c′ have in common. To do so, we introduce
and employ the new notion of property-preserving hashing (PPH). Intuitively,
a PPH is a randomized hashing scheme that is designed to publicly reveal a
particular predicate P on pairs of inputs.

PPH can be seen as the hashing (meaning, no decryption) analogue of the
notion of property-preserving encryption, a generalization of order-revealing
encryption to arbitrary properties due to Pandey and Rouselakis [35]. (This
can also be seen as a symmetric-key version of the notion of “relational hash”
due to Mandal and Roy [31].)

Specifically, we construct and employ a PPH for the property

P1(x, x′) =

{
1 if x = x′ + 1
0 otherwise

(Here x, x′ are not plaintexts of the ORE scheme, think of them as other inputs
determined below.) Security requires that this is all that is leaked; in particular,
input equality is not leaked by the hash values (which requires a randomized
hashing algorithm).

190 D. Cash et al.

Now, the idea is to modify the scheme to include a key KH for such a PPH H,
and the encryption algorithm to not only randomly permute the yi’s but hash
them as well, i.e., output (h1, . . . , hn) where hi = HKH (yi) for the permuted
yi’s.3 The comparison algorithm can again be modified appropriately, namely to
not to check if y′

i − yj = 1 but rather if their h′
i and h′

j hash values satisfy P1

via the PPH (and similarly for the check yj − y′
i = 1).

For any two messages, the resulting ORE scheme is actually ideal: it only
reveals the order of the underlying plaintexts, but nothing else. However, for
three messages m,m′,m′′ we see that some additional information is leaked.
Namely, if we find that y′

i − yj = 1 y′′
k − yj = 1, then we know that y′

j = y′′
k . We

choose the range of the PRF large enough so that this can only happen if y′
j and

y′
k are both PRFK(pℓ) + xℓ+1 for the same prefix pℓ and same bit xℓ+1, and y′

j

corresponds to the most significant bit where m′ differs from m, y′′
k corresponds

to the most significant bit wherem′′ differs fromm, and moreover these positions
are the same. Therefore, the adversary learns whether these most-significant
differing bits are the same. It is straightforward to show that this leakage is
exactly equivalent to the smoothed CLWW leakage we need. Proving this ORE
scheme secure wrt. this leakage based on an achievable notion of security for the
PPH turns out to be technically challenging. Nevertheless, we manage to prove
it “non-adaptively secure,” meaning the adversary is required to non-adaptively
choose the dataset, which is realistic for a passive adversary in the outsourced
database setting.

Property-Preserving Hash From Bilinear Maps. Next we turn to constructing a
property-preserving hash (PPH) for the property P1(x, x′) = x = x′ + 1. For
this, we adapt techniques from perfectly one-way hash functions [9,31] to the
symmetric-key setting and use asymmetric bilinear groups. Roughly, in our con-
struction the key for the hash function is a key K for a pseudorandom function
PRF and, letting e : G1 × G2 → GT be an asymmetric bilinear map on prime
order cyclic groups G1, G2 with generators g1, g2, the hash of x is

HK(x) = (gr11 , gr1PRFK(x)
1 , gr22 , gr2PRFK(x+1)

2)

for fresh random r1, r2 ∈ Zp. (Thus, the PRF is also pushed to our PPH con-
struction and can be dropped from the higher-level ORE scheme when our hash
function is plugged-in). The bilinear map allows testing whether P1(x, x′) from
HK(x),HK(x′), and intuitively our use of asymmetric bilinear groups prevents
testing other relations such as equality (formally we use the XSDH assumption).
We prove the construction secure under an indistinguishability-based notion in
which the adversary has to distinguish between the hash of a random challenge
x∗ and a random hash value, and can query for hash values of inputs x of its

3 A minor issue here is that we now lose decryptability for the resulting ORE scheme;
however, this can easily be added back in a generic way by also encrypting the
plaintext separately under a semantically secure scheme.

Parameter-Hiding Order Revealing Encryption 191

choice as long as P1(x, x∗) and P1(x∗, x) are both 0. Despite being restricted,4,
this notion suffices in our ORE scheme above.

When our PPH is plugged into our ORE scheme, ciphertexts consist of 4n
group elements, and order comparison requires n(n − 1) pairing computations
on average. We also note that CLWW gave an improved version of their scheme
where ciphertexts are size O(n) rather than O(nλ) for security parameter λ,
however, we have reason to believe this may be difficult for schemes with our
improved leakage profile, see below.

Piecing everything together, we obtain a parameter-hiding ORE from bilinear
maps. We note that, as parameter-hiding OPE is impossible, we achieve the first
construction of ORE without multilinear maps secure with a security notion that
is impossible for OPE.

Generalizing Our ORE Scheme. In our full version [12], we also show several
extensions to our smoothed CLWW ORE scheme. In one direction, we achieve
an improved level of leakage by considering blocks of bits at a time(encrypting
message block by block, rather than bit by bit). We show that if the block
size is only 2, then we improve security and efficiency simultaneously, while for
larger block sizes the leakage continues to reduce but the efficiency compared
to the basic scheme (in terms of both ciphertext size and pairings required for
comparison) decreases.

On the other direction, we also show how to improve efficiency while sacri-
ficing some security. We give a more efficient version of the scheme than above
(only need O(n) pairings for each comparison), that is still sufficient for achieving
parameter-hiding ORE using our conversion.

In addition, we also show how our ORE scheme easily gives a left/right ORE
as defined by [29] that also improves on their leakage. In left/right ORE, cipher-
texts can be generated in either the left mode or right mode, and the comparison
algorithm only compares a left and a right ciphertext. Security requires that no
information is leaked amongst left and right ciphertexts in isolation.

1.3 Discussion and Perspective

The original OPE scheme of [6] leaks “whatever a random order-preserving func-
tion leaks.” Unfortunately, this notion does not say anything about what such
leakage actually looks like. The situation has been improved in recent works on
OPE such as CLWW which define a precise “leakage profile” for their scheme.
However, such leakage profiles are still of limited use, since they do not obviously
say anything about the actual privacy of the underlying data.

We instead study ORE with a well-defined privacy notion for the underlying
plaintexts. A key part of our results is showing how to translate sufficiently
strong leakage profiles into such privacy notions. Nonetheless, we do not claim

4 More generally, following [35] one could allow the adversary to choose two challenge
inputs and make queries that do not allow it to trivially distinguish them, but we
are unable to prove our construction secure under this stronger notion.

192 D. Cash et al.

that our new ORE scheme is safe to use in general higher-level protocols. We only
claim security as long all that is sensitive is the scale and shift of the underlying
plaintext distributions. If, for example, if the shape of the distribution is highly
sensitive, or if there are correlations to other data available to the attacker, our
notion is insufficient.

However, our construction provably has better leakage than existing efficient
schemes, and it at least shows some meaningful security for specific situations.
Moreover we suspect that the scheme can be shown to be useful in many other
settings by extending our techniques.

1.4 Related Work

Work done on “leaky cryptography” includes work on multiparty computa-
tion [33], searchable symmetric and structured encryption [11,13,14,18,21,28,
37], and property-preserving encryption [5,6,35]. In the database community,
the problem of querying an encrypted database was introduced by Hacigümüş,
Iyer, Li and Mehrotra [23], leading to a variety of proposals there but mostly
lacking formal security analysis. Proposals of specific outsourced database sys-
tems based on property-preserving encryption like ORE include CryptDB [36],
Cipherbase [2], and TrustedDB [4].

Besides, in [29], the authors give an efficient ORE construction based on
PRFs, while their leakage profile cannot achieve shift hiding and scale hid-
ing simultaneously, which means their scheme cannot meet our privacy notion.
Moreover, in [27], the authors give an alternative ORE construction, based on
function revealing encryption for simple functions, namely orthogonality testing
and intersection cardinality, while their leakage needs further analysis.

2 Background

Notation. All algorithms are assumed to be polynomial-time in the security
parameter (though we will sometimes refer to efficient algorithms explicitly).
We will denote the security parameter by λ. For a random variable Y , we write
y

$← Y to denote that y is sampled according to Y ’s distribution, moreover, let
D be Y ’s distribution, we abuse notation y

$← D to mean that y is sampled
according to D. For an algorithm A, by y

$← A(x) we mean that A is executed
on input x and the output is assigned to y, furthermore, if A is randomized,
then we write y

$← A(x) to denote running A on input x with a fresh random
tape and letting y be the random variable induced by its output. We denote
by Pr[A(x) = y : x $← X] the probability that A outputs y on input x when
x is sampled according to X. We say that an adversary A has advantage ϵ in
distinguishing X from Y if Pr[A(x) = 1 : x $← X] and Pr[A(y) = 1 : y $← Y]
differ by at most ϵ.

When more convenient, we use the following probability-theoretic notation
instead. We write PX(x) to denote the probability that X places on x, i.e.

Parameter-Hiding Order Revealing Encryption 193

PX(x) = Pr[X = x], and we say PX(x) is the probability density function
(PDF) of X’s distribution. The statistical distance between X and Y is given
by ∆ = 1

2

∑
x |PX(x) − PY (x)|. If ∆(X,Y) is at most ϵ then we say X,Y are

ϵ-close. It is well-known that if X,Y are ϵ-close then any (even computationally
unbounded) adversary A has advantage at most ϵ in distinguishing X from Y .

The min-entropy of a random variable X is H∞ (X) = − log(maxx PX(x)).
A value ν ∈ R depending on λ is called negligible if its absolute value goes to
0 faster than any polynomial in λ, i.e. ∀c > 0 ∃λ∗ ∈ N ∀λ ≥ λ∗ : |ν| ≤ 1

λc .
We let [M] = {1, . . . ,M}, [M]′ = {0, . . . ,M − 1} and [M,N] = {M, . . . , N}.
We write m as a vector of plaintexts and |m | as the vector’s length, namely
m = (m1, . . . ,ms) and |m | = s. For a vectorm , by am we mean (am1, . . . , ams)
and we writem+b to denote (m1+b, . . . ,ms+b). Let x be a real number, we write
⌊x⌋ as the largest integer s.t. ⌊x⌋ ≤ x, and ⌈x⌉ as the smallest integer s.t. ⌈x⌉ ≥ x.
By ⌊x⌉, we mean rounding x to the nearest integer, namely −1/2 ≤ ⌊x⌉−x < 1/2.
If P is a predicate, we write 1(P) for the function that takes the inputs to P
and returns 1 if P holds and 0 otherwise.

PRFs. We use the standard notion of a PRF. A function F : {0, 1}λ × D →
{0, 1}λ is said to be a PRF with domain D if for all efficient A we have that

|Pr[AF (K,·)(1λ) = 1] − Pr[Ag(·)(1λ) = 1]|

is a negligible function of λ, where K is uniform over {0, 1}λ and g is uniform
over all functions from D to {0, 1}λ.

ORE. The following definition of syntax for order-revealing encryption makes
explicit that comparison may use helper information (e.g. a description of a
particular group) by incorporating a comparison key, denote ck.

Definition 2 (ORE). A ORE scheme is a tuple of algorithms Π = (K, E , C)
with the following syntax.

– The key generation algorithm K is randomized, takes inputs (1λ,M), and
always emits two outputs (sk, ck). We refer to the first output sk as the secret
key and the second output ck as the comparison key.

– The encryption algorithm E is randomized, takes inputs (sk,m) where m ∈
[M], and always emits a single output c, that we refer to as a ciphertext.

– The comparison algorithm C is deterministic, takes inputs (ck, c1, c2), and
always emits a bit.

If the comparison algorithm C is simple integer comparison (i.e., if
C(ck, c1, c2) is a canonical algorithm that treats its the ciphertexts and binary
representations of integers and tests which is greater) then the scheme is said to
be an order-preserving encryption (OPE) scheme.

Correctness of ORE schemes. Intuitively, an ORE scheme is correct if the
comparison algorithm can output the order of the underlying plaintext, by taking
ck and two ciphertexts as inputs.

194 D. Cash et al.

Our constructions will only be computationally correct, i.e. correct with
overwhelming probability when the input messages are provided by an effi-
cient process, under hardness assumptions. Formally, we define correctness using
the game CORore

Π (A), which is defined as follows: The game starts by running
(sk, ck) $← K(1λ,M), and it gives ck to A. The adversary A then outputs two
messages x, y ∈ [M]. The game computes c1

$← E(sk, x) and c2
$← E(sk, y),

outputs 1 if x < y but C(ck, c1, c2) = 0.
We say that an ORE scheme Π is computationally correct if for all efficient

adversaries A, all M = poly(λ), we have that Pr[CORore
Pi(A) = 1] is a negligible

function in the security parameter.

Security of ORE Schemes. The following simulation-based security defini-
tion is due to Chenette et al. [15]. Here a leakage profile is any randomized
algorithm. The definition refers to games given in Fig. 3, which we review now.
In the real game, key generation is run and the adversary is given the compar-
ison key and oracle access to the encryption algorithm with the corresponding
secret key. The adversary eventually outputs a bit that the game uses as its
own output. In the ideal simulation game, the adversary is interacting with the
same oracle, but the comparison key is generated by a stateful simulator, and
the oracle responses are generated by the simulator which receives leakage from
the stateful leakage algorithm L.

Fig. 3. Games REALoreΠ(A) (left) and SIMore
Π,L(A,S) (right), where Π = (E , C) is an

ORE scheme, L is a leakage profile, A is an adversary, and S is a simulator.

Definition 3 (L-simulation-security for ORE). For an ORE scheme Π ,
an adversary A, a simulator S, and leakage profile L, we define the games
REALore

Π (A) and SIMore
Π,L(A) in Fig. 3. The advantage of A with respect to S

is defined as

AdvoreΠ,L,A,S(λ) =
∣∣Pr[REALore

Π (A) = 1] − Pr[SIMore
Π,L(A,S) = 1]

∣∣ .

We say that Π is L-simulation-secure if for every efficient adversary A there
exists an efficient simulator S such that AdvoreΠ,L,A,S(λ) is a negligible function.

We also define non-adaptive variants of the games where A gets a single
query to an oracle that accepts a vector of messages of unbounded size. In the real

Parameter-Hiding Order Revealing Encryption 195

game REALore-na
Π (A), the oracle returns the encryptions applied independently

to each message. In the ideal game SIMore-na
Π (A), the leakage function gets the

entire vector of messages as input and produces an output L that is then given
to S which produces a vector of ciphertexts, which are returned by the oracle.

We define the non-adaptive advantage of A with respect to S analogously,
and denote it Advore-naΠ,L,A,S(λ). Non-adaptive L-simulation security is defined anal-
ogously.

Ideal ORE. Ideal ORE is the case where the leakage profile L is simply the list
of results of comparisons between the plaintexts. We note that such a L is always
revealed by the comparison algorithm, so ideal ORE is the best one can hope
for. Ideal ORE can be constructed from multilinear maps [8].

CLWW Leakage. As an example of a non-ideal leakage profile, consider the
leakage Lclww of Chenette, Lewi, Weis and Wu [15]. For m0,m1 ∈ {0, 1}n, we
define the most significant differing bit of m1 and m2, denoted msdb(m0,m1),
as the index of first bit where m0,m1 differ, or n+ 1 if m1 = m2.

The CLWW leakage profile Lclww takes in input a vector of plaintext m =
(m1, . . . ,mq) and produce the following:

Lclww(m1, . . . ,mq) := (∀1 ≤ i, j ≤ n,1(mi < mj),msdb(mi,mj))

3 New Security Notions for ORE

In this section, we propose four meaningful notions of privacy: distribution-
hiding, parameter-hiding, scale-hiding and shift-hiding ; in those notions, we are
considering the privacy of the underlying distribution of data records, rather
than the individual data records, and show how to protect information about
the underlying data distribution.

Distribution-Hiding for ORE.We assume that all database entries are inde-
pendently and identically distributed according to some distribution D5, and the
notion of distribution-hiding refers to game defined in Fig. 4. In the interactive
game, after receiving the public parameter and comparison key, adversary A
picks two distributions D0,D1 and sends to challenger C, C then flips a coin b,
samples a sequence of entries from Db, and sends back the encrypted entries.
Eventually A outputs a bit, and we say adversary wins if it guesses b correctly.
We note that if either ofDb has low min-entropy, it is possible for an adversary to
estimate the min-entropy by looking for collisions in its ciphertexts. Therefore,
we must restrict Db to have high min-entropy.

Definition 4 (Distribution-Hiding for ORE). For an ORE scheme Π , an
adversary A, function q = q(λ) we define the games DHΠ,q(A,λ) in Fig. 4. The
5 By D, here we mean a sampling algorithm, such that the outputs of this algorithm
obey the distribution D, for ease we denote maxD as the maximum item in D’s
support.

196 D. Cash et al.

Fig. 4. Games DHΠ,q(A,λ), where Π = (K, E , C) is an ORE scheme, q = poly(λ), and
A is an adversary.

advantage of A is defined as AdvDH
Π,q(A,λ) = |Pr[DHΠ,q(A,λ)− 1

2]|. We say that
Π is distribution-hiding if for every efficient adversary A, and any polynomial
q = poly(λ), AdvDH

Π,q(A,λ) is a negligible function.

We immediately observe that ideal ORE achieves distribution hiding, while for
other known leakier ORE schemes, it’s seems unfeasible to achieve this privacy
guarantee. However, in many settings, the general shape of the distribution is
often known (that is, if the distribution is normal, uniform, Laplace, etc.), and
it is reasonable to allow the overall shape to be reveal but hide its mean and/or
variance completely, subject to certain restrictions. Before formalize these notion,
we firstly introduce some notations.

For a continuous random variable X, where D is X’s distribution, we abuse
notation pD(x) = pX(x). Now we introduce three alternative distributions:
Dδ

scale,D
ℓ
shift,D

δ,ℓ
aff with parameter δ, ℓ, where the corresponding probability den-

sity function is defined as:

pDscale =
pD(xδ)

δ
; pDshift(x) = pD(x − ℓ); pDaff =

pD(x−ℓ
δ)

δ

In other words, Dδ
scale scales the shape of D by a factor of δ; Dshift shifts D by ℓ

and Daff does both.

Rounded distribution. As our plaintexts are integers, we need map real num-
ber to its rounded integer, namely x → ⌊x⌉. More precisely, let D be a distri-
bution over real numbers between α and β; we induce a rounded distribution
Rα,β

D on [⌈α⌉, ⌊β⌋]which samples from D and then rounds. Its probability density
function is:

pRα,β
D

(k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ ⌈α⌉+1/2
α pD(x)dx

∫ β
α pD(x)dx

k = α
∫ k+1/2
k−1/2 pD(x)dx
∫ β

α pD(x)dx
k ∈ [⌈α + 1⌉, ⌊β − 1⌋]

∫ β
⌊β⌋−1/2 pD(x)dx

∫ β
α pD(x)dx

k = β

0 Otherwise

In the case of Dδ
scale, D

ℓ
shift, or D

δ,ℓ
aff , we will use the notation ⌊Dδ

scale⌉, ⌊Dℓ
shift⌉,

and ⌊Dδ,ℓ
aff ⌉ to denote the respective rounded distributions.

Parameter-Hiding Order Revealing Encryption 197

Now, we present the notion “(γ, D)-parameter-hiding” ORE, referring to the
game defined in Fig. 5. Here, D is a distribution over [0, 1], which represents the
description of the known shape of the distribution of plaintexts. γ is a lower-
bound on the scaling that is allowed. Then key generation is run and adversary is
given the public parameter, (γ, D), and the comparison key. Then, the adversary
A sends two pairs of parameters (δ0, ℓ0), (δ1, ℓ1) to challenger C. Next, C flips
a coin b, checks whether the parameter is proper(1(δ0 ≥ γ ∩ δ1 ≥ γ)), then
samples a sequence of data entries from the rounded distribution ⌊Dδb,ℓb

aff ⌉ and
sends back encrypted data. Eventually A outputs a bit, and we say adversary
wins if it guesses b correctly.

Fig. 5. Games para-hidΠ,q(A,λ), where Π = (E , C) is an ORE scheme, D is a distribu-
tion on [0, 1], A is an adversary

Definition 5 ((γ, D)-parameter hiding for ORE). For an ORE scheme Π ,
an adversary A, a distribution D, and function q = q(λ), we define the games
(γ, D)-para-hidΠ,q(A,λ) in Fig. 5. The advantage of A is defined as

Advpara-hid
Π,q,γ,D(A,λ) = |Pr[(γ, D)-para-hidΠ,q(A,λ) − 1

2
]|

We say that Π is (γ, D)-parameter hiding if for every efficient adversary A and
polynomial q Advpara-hid

Π,q,γ,D(A,λ) is a negligible function.

Similarly, we define (γ, D)-scale hiding and (γ, D)-shift hiding with little change
as above. More precisely, in the game of (γ, D)-scale hiding, we add the restric-
tion ℓ0 = ℓ1 = 0 and in the game of (γ, D)-shift hiding, we add the restriction
δ0 = δ1. Due to the space limit, we skip the formal definitions here.

We note that these three notions are distribution dependent, and we would
like they work for any distribution. Unfortunately, quickly oscillating distribu-
tions do not fit into our case, as they may have actually low min-entropy for
their discretized distributions on integers, even at large scales. Hence, we place
additional restrictions. We place the following restriction, which is sufficient, but
potentially stronger than necessary:
(η, µ)-smooth distribution. We let D be a distribution where its support
mainly on [0, 1] (Pr[x /∈ [0, 1] : x ← D] ≤ negl(λ)), we denote p′

D(x) as its
derivative, and we say that D is (η, µ)-smooth if (1) ∀x ∈ [0, 1], pD(x) ≤ η; (2)
|p′

D(x)| ≤ η for all x ∈ [0, 1] except for µ points.

198 D. Cash et al.

Definition 6 ((γ, η, µ)-parameter hiding for ORE). For an ORE scheme
Π , we say Π is (γ, η, µ)-parameter hiding if for every efficient adversary A,
polynomial q, and any (η, µ)-smooth distribution D, Advpara-hid

Π,q,γ,D(A,λ) is a neg-
ligible function.

4 Parameter Hiding ORE

In this section, we will assume we are given an ORE Π = (K, E , C) with a
“smoothed” version of CLWW leakage, defined below. Later, in Sect. 5, we will
show how to instantiate such a scheme from bilinear maps.

We show how to convert a scheme with smoothed CLWW leakage into a
parameter-hiding ORE scheme by simply composing with a linear function:
namely, for any plaintext m, the ciphertext has form E(αm + β), where α,β
are the same across all messages and are sampled as part of the secret key. Intu-
itively, α helps to hide the scale parameter and β hides the shift. We need to be
careful about the distributions of α and β; α needs to be drawn from a “discrete
log uniform” distribution of appropriate domain, and β needs to be chosen from
a uniform distribution of appropriate domain.

The discrete log uniform distribution D on [A,B] (logU(A,B)) has probabil-
ity density function:

pD(k) =

{
1/k∑B
i=A 1/i

i ∈ [A,B]

0 Otherwise

We say a leakage function L is smoothed CLWW if:

1. For any two plaintext sequences m0,m1, if Lclww(m0) = Lclww(m1), then
L(m0) = L(m1) (in other words, it leaks no more information that CLWW);

2. For any plaintext sequence m , L(m) = L(2m)

4.1 Parameter-Hiding ORE

In this part, we give the formal description of parameter-hiding ORE. To simplify
our exposition, we first specify some parameters. We will assume we are given:

q = poly(λ),M = 2poly(λ), γ = 2ω(log λ), η, µ ≤ O(1)

We will assume γ and M are exactly powers of 2 without loss of generality
by rounding up. We define:

τ = γ, ξ = γ2, U = 4ξM,T = γ2 × U,K = 2 × T

Let Π = (K, E , C) be an ORE scheme on message space [K] with smoothed
CLWW leakage L. We define our new ORE Π aff = (Kaff , Eaff , Caff) on message
space [M] as follows:

Parameter-Hiding Order Revealing Encryption 199

– Kaff(1λ,M, Π): On input the security parameter λ, message space [M] and Π ,
the algorithm picks a super-polynomial γ = 2ω(log λ) as a global parameter,
and computes parameters above. Then it runs (ck, sk) ← K(1λ,K), draws
α

$← logU(ξ, 2ξ − 1) and β from discrete uniform on [T]′ and outputs skaff =
(sk,α,β), ckaff = ck;

– Eaff(skaff ,m). On input the secret key skaff and a message m ∈ [M], it outputs

CTaff = E(αm+ β)

By our choice of message space [K] for Π , the input to E is guaranteed to be
in the message space.

– Caff(ckaff ,CT0
aff ,CT

1
aff): On inputs the comparison key ckaff , two ciphertexts

CT0
aff ,CT

1
aff , it outputs C(ckaff ,CT

0
aff ,CT

1
aff)

Here we also give the description of composted schemes that only achieve
“scale-hiding” or “shift-hiding”. Formally, we define Π scale = (Kscale, Escale, Cscale)
and Π shift = (Kshift, Eshift, Cshift), respectively:

– Kscale(1λ,M, Π): On input the security parameter λ, the message space
[M] and Π , the algorithm picks a super-polynomial γ = 2ω(log λ) as a
global parameter, and computes parameters above. Then it runs (ck, sk) ←
K(1λ,K), draws α

$← logU(ξ, 2ξ −1) and outputs skscale = (sk,α), ckscale = ck;
– Escale(skscale,m). On input the secret key skscale and a message m ∈ [M], it
outputs

CTscale = E(αm)

– Cscale(ckscale,CT0
scale,CT

1
scale): On inputs the comparison key ckscale, two cipher-

texts CT0
scale,CT

1
scale, it outputs C(ckscale,CT

0
scale,CT

1
scale).

– Kshift(1λ,M, Π): On input the security parameter λ, the message space [M]
and Π , the algorithm picks a super-polynomial γ = 2ω(log λ) as a global
parameter, and computes parameters above. Then it runs (ck, sk) ← K(1λ),
draws β from discrete uniform on [T]′ and outputs skshift = (sk,α), ckshift = ck;

– Eshift(skshift,m). On input the secret key skshift and a message m ∈ [M], it
outputs

CTshift = E(m+ b)

– Cshift(ckshift,CT0
shift,CT

1
shift): On inputs the comparison key ckshift, two cipher-

texts CT0
shift,CT

1
shift, it outputs C(ckshift,CT

0
shift,CT

1
shift).

The correctness of Π aff , Π scale and Π shift is directly held by correctness of Π ,
and what is more interesting is the privacy that those scheme can guarantee.

4.2 Main Theorem

In the part, we prove Π aff is parameter hiding, formally:

Theorem 7 (Main Theorem). Assuming Π has L-simulation-security where
L is smoothed CLWW, then for any γ = 2ω(log λ), Π aff is (γ, η, µ)-parameter
hiding.

200 D. Cash et al.

Proof. According to the security notions, it is straightforward that if an ORE
scheme is (γ, η, µ)-parameter hiding, then it is also (γ, η, µ)-scale hiding and
(γ, η, µ)-shift hiding. Next we claim the converse proposition holds.

Claim. If an ORE scheme Π achieves (γ, η, µ)-scale hiding and (γ, η, µ)-shift
hiding simultaneously, then Π is (γ, η, µ)-parameter hiding.

We sketch the proof by hybrid argument. For any γ = 2ω(log λ) and (η, µ)-
smooth distribution D, firstly, by shift-hiding, there is no efficient adversary
that distinguish (δ0, ℓ0) from (δ0, 0) with non-negligible probability. Then due
to scale-hiding, no efficient adversary can differ (δ0, 0) from (δ1, 0) with non-
negligible probability. Thirdly, same as the first argument, any efficient adversary
can distinguish (δ1, 0) from (δ1, ℓ1) with only negligible advantage. Combining
together, Π achieves (γ, η, µ)-parameter hiding.

Thus, it suffices to show Π aff is both (γ, η, µ)-scale hiding and (γ, η, µ)-shift
hiding, due to space limit, we put the rigorous proof in our full version [12].

5 ORE with Smoothed CLWW Leakage

We start by defining the security we target via a smoothed CLWW leakage func-
tion. Then we recall a primitive for our construction called a property-preserving
hash (PPH) function, and state and analyze our ORE construction using a PPH.
In a later section we instantiate the PPH to complete the construction. Next,
we give variant constructions with trade-offs between efficiency and leakage.

Now We define the non-adaptive version of the leakage profile for our
construction. The leakage profile takes in input a vector of messages m =
(m1, . . . ,mq) and produces the following:

Lf (m1, . . . ,mq) := (∀1 ≤ i, j, k ≤ q,1(mi < mj),1(msdb(mi,mj) = msdb(mi,mk)))

By definition, it’s easy to note that Lf leaks strictly less than CLWW. Except
for the order of underlying plaintexts, it only leaks whether the position of
msdb(mi,mj) and msdb(mi,mj) are the same, therefore the leakage profile pre-
serve consistent if we left-shift all the plaintexts by one bit, which referring to
Lf (m) = Lf (2m). Thus, Lf is smoothed CLWW.

5.1 Property Preserving Hash

Our construction will depend on a tool – property preserving hash (PPH), which
is essentially a property-preserving encryption scheme [35] without the decryp-
tion algorithm. In this section we recall the syntax and security of a PPH.

Definition 8. A property-preserving hash (PPH) scheme is a tuple of algo-
rithms Γ = (Kh,H, T) with the following syntax:

Parameter-Hiding Order Revealing Encryption 201

– The key generation algorithm Kh is randomized, takes as input 1λ and emits
two outputs (hk, tk) that we refer to as the hash key hk and test key tk. These
implicitly define a domain D and range R for the hash.

– The evaluation algorithm H is randomized, takes as input the hash key hk,
an input x ∈ D, and emits a single output h ∈ R that we refer to as the hash
of x.

– The test algorithm T is deterministic, takes as input the test key tk and two
hashes h1, h2, and emits a bit.

Correctness of PPH schemes. Let P be a predicate on pairs of inputs. We
define correctness of a PPH Γ with respect to P via the game CORpph

Γ,P (A), which
is as follows: It starts by running (hk, tk) $← Kh(1λ) and gives tk to A. Then A
outputs x, y. The game computes h $← H(hk, x), h′ $← H(hk, y) and outputs 1 if
T (tk, h, h′) ̸= P (x, y). We say that Γ is computationally correct with respect to
P if for all efficient A, Pr[CORpph

Γ,P (A) = 1] is a negligible function of λ.

Security of PPH Schemes. We recall a simplified version of the security
definition for PPH that is a weaker version of PPE security defined by Pandey
and Rouselakis [35]. The definition is a sort of semantic security for random
messages under chosen-plaintext attacks, except that the adversary is restricted
from making certain queries.

Fig. 6. Game INDpph
Γ,P (A).

Definition 9. Let P be some predicate and Γ = (Kh,H, T) be a PPH scheme
with respect to P . For an adversary A we define the game INDpph

Γ,P (A) in Fig. 6.
The restricted-chosen-input advantage of A is defined to be AdvpphΓ,P,A(λ) =
2Pr[INDpph

Γ,P (A) = 1] − 1. We say that Γ is restricted-chosen-input secure if
for all efficient adversaries A, AdvpphΓ,P,A(λ) is negligible.

5.2 ORE from PPH

Construction. Let F : K × ([n] × {0, 1}n) → {0, 1}λ be a secure PRF. Let
P (x, y) = 1(x = y + 1) be the predicate that outputs 1 if and only if x = y + 1,

202 D. Cash et al.

and let Γ = (Kh,H, T) be a PPH scheme with respect to P . In our construction,
we interpret the output of F as a λ-bit integer, which is also the input domain
of the PPH Γ . We define our ORE scheme Π = (K, E , C) as follows:

– K(1λ,M): On input the security parameter and message space [M], the algo-
rithm chooses a key k uniformly at random for F , and runs the key generation
algorithm of the property preserving hash function Γ.Kh to obtain the hash
and test keys (hk, tk). It sets ck ← tk, sk ← (k, hk) and outputs (ck, sk).

– E(sk,m): On input the secret key sk and a message m, the algorithm writes
the binary representation as m as (b1, . . . , bn), and then for i = 1, . . . , n, it
computes:

ui = F (k, (i, b1b2 · · · bi−1||0n−i+1)) + bi mod 2λ, ti = Γ.H(hk, ui).

We note that ui is computed by treating the PRF output as a member of
{0, . . . , 2λ −1}. Then it chooses a random permutation π : [n] → [n], and sets
vi = tπ(i). The algorithm outputs CT = (v1, . . . , vn).

– C(ck,CT1,CT2): on input the public parameter, two ciphertexts CT1,CT2

where CT1 = (v1, . . . , vn),CT2 = (v′
1, . . . , v

′
n), the algorithm runs

Γ.T (tk, vi, v′
j) and Γ.T (tk, v′

i, vj) for every i, j ∈ [n]. If there exists a pair
(i∗, j∗) such that Γ.T (tk, vi∗ , v′

j∗) = 1, then the algorithm outputs 1, mean-
ing m1 > m2; else if there exists a pair (i∗, j∗) such that Γ.T (tk, v′

i∗ , vj∗) = 1,
then the algorithm outputs 0, meaning m1 < m2; otherwise it outputs ⊥,
meaning m1 = m2.

Correctness. For two messages m1,m2, let (b1, . . . bn) and (b′
1, . . . , b

′
n) be their

binary representations. Assuming m1 > m2, there must exists a unique index
i∗ ∈ [n] such that ui = u′

i + 1. Therefore correctness of Π is followed by cor-
rectness of PPH. We can use the same argument for the case m1 = m2 and
m1 < m2. What is more interesting is its simulation based security, as it is the
foundation for parameter hiding ORE, formally:

Theorem 10. Assuming F is a secure PRF and Γ is restricted-chosen-input
secure, Π is Lf-non-adaptively-simulation secure.

Proof. We use a hybrid argument, and define a sequence of hybrid games as
follows:

– H−1: Real game REALore
Π (A);

– H0: Same as H−1, except replacing PRF Fk(·) by a truely random function
F ∗ in the encryption oracle;

– Hi·q+j Depend on a predicate Switch(i,j) which is define below. If Switch(i,j) =
0, then Hi·q+j = Hi·q+j−1, else in procedure of E(mj), uj

i is replaced by a
random string.

From the high level, we establish the proof by showing show that any adjacent
hybrids are indistinguishable, and then we construct an efficient simulator S such

Parameter-Hiding Order Revealing Encryption 203

that the output of Hqn and SIMore
Π,Lf

(A,S) are statistically identical. For the
predicate, we say Switchi,j = 1 if ∀k ∈ [q],msdb(mj ,mk) ̸= i, and 0 otherwise.
We note that when Switchi,j = 0, there exists uk

i such that uj
i = uk

i ± 1, the
relation which can be detected by the test algorithm of PPH(for the i-th bit
of mj , we call such a bit a leaky bit), which means we cannot replace it with
random string, otherwise adversary can trivially distinguish it. In the following
we firstly prove any adjacent objects are computational indistinguishable.

Lemma 11. Assuming Γ is restricted-chosen-input secure, for any k ∈ [qn]
Hk−1

comp
≈ Hk.

Proof. Due to the security of PRF, it’s trivial that H−1
comp
≈ H0, and for any

k > 0 (for ease, k = i∗ · q + j∗ where i∗ ∈ [n − 1], j∗ ∈ [q]), it suffices to
show Hk−1

comp
≈ Hk under the condition Switchi∗,j∗ = 1(Switchi∗,j∗ = 0 implies

Hk−1 = Hk). We prove that if there exists adversary A that distinguish Hk from
Hk−1 with noticeable advantage ϵ, then we can construct a simulator B wins the
restricted-chosen-input game with ϵ-negl. Here is the description of B. Firstly
it runs INDpph

Γ , and sends tk as the comparison key ck to A. After receiving a
sequence of plaintext m1, . . . ,mq, it picks a random function F ∗(using the lazy
sampling technique for instance), sets X∗ = F ∗(i∗, bj

∗

1 bj
∗

2 · · · bj
∗

i∗−1||0n−i∗+1)+bj
∗

i∗

where bji is the i-th bit of mj . Then it sends X∗ to its challenger in restricted-
chosen-input game and gets back T as the challenge term. To simulate the
encryption oracle, B works as follows:

1. (i′, j′) > (i∗, j∗)(here using a natural order for tuples, (i, j) > (i′, j′) iff iq+j >
i′q + j′), B computes:

uj′

i′ = F ∗(i∗, bj
′

1 b
j′

2 · · · bj
′

i′−1||0
n−i′+1) + bj

′

i′ ; t
j′

i′ = Γ.H(hk, uj′

i′)

2. (i′, j′) < (i∗, j∗)∩Switchi′,j′ = 0, then same as above, else uj′

i′
$← {0, 1}λ, tj

′

i′ =
Γ.H(hk, uj′

i′).
3. sets tj

∗

i∗ = T , and ∀j ∈ [q], picks a random permutation πj and outputs the
ciphertexts CTj = (tjπj(1)

, . . . , tjπj(n)
).

Finally, B outputs whatever A outputs6.
Since F ∗ is a random function, Pr[uj′

i′ = X∗ ± 1] is negligible for all (i′, j′) ̸=
(i∗, j∗), which means B fails to simulate the encryption oracle with only negligible
probability. Besides, when T = Γ.H(hk,X∗), B properly simulates Hk−1, and if
T is random, then B simulates Hk(due to the PRF security, the distribution
of Γ.H(hk, r) : r $← {0, 1}λ is computationally close to a random variable that
uniformly sampled from the range of Γ). Hence, if Adv(A) is noticeable, then
B’s advantage is also noticeable. ⊓3

In the following, we describe an efficient simulator S such that the output
of Hqn and SIMore

Π,Lf
(A,S) are statistically identical. Roughly speaking, we note

6 We note that B does not have hk, what it does is to call the hash oracle.

204 D. Cash et al.

that Switchi,j = 1 means that i-th bit of mj is not a leaky bit, indicating that its
value would not affect the leakage profile whp. Hence, it suffices to only simulate
the leaky bit of each individual message, which can be extracted by Lf , and sets
the rest just as random string. Due to the final random permutations, Hqn and
SIMore

Π,Lf
(A,S) are statistically identical. Formally:

Description of the simulator. For fixed a message set M = {m1, . . . ,mq}
(without loss of generality, we assume m1 > . . . > mq), the simulator S is given
the leakage information Lf (m1, . . . ,mq). S firstly keeps a q × n matrix B and
runs a recursive algorithm FillMatrix(1, 1, q) to fill in the entries, as follows:

– If j = k, then ∀i′ ∈ [i, n], B[j][i′] = r where r
$← {0, 1}λ;

– Else, it proceeds as follows:
• searches the smallest j∗ ∈ [j, k] s.t. P (mj ,mj∗) = P (mj ,mk);
• sets B[j′][i] = r′,∀j′ ∈ [j, j∗ − 1];B[j′][i] = r′ − 1,∀j′ ∈ [j∗, k], where
r′ $← {0, 1}λ;

• runs FillMatrix(i+ 1, j, j′ − 1) and FillMatrix(i+ 1, j′, k) recursively.

More concretely, our recursive algorithm is to fill in the entries by

FillMatrix(i, j, k), ∀i ∈ [n], j ≤ k ∈ [q]

Then S runs Γ.Kh(1λ) and gets the keys tk, hk, and sets ti,j = Γ.H(hk,B[j][i]),
∀i ∈ [n], j ∈ [q]. Finally, S samples random permutations πj , outputs CTj as
CTj = (tjπj(1)

, . . . , tjπj(n)
) We note that the FillMatrix algorithm terminates after

at most qn steps as each cell will not be written twice, hence S is an efficient
simulator.

Finally we claim that S properly simulates the relevant games. We first
observe that the simulator identifies how many leaked bits (prefixes) there
are for the messages m1, . . . ,mq. Recall that if messages m1, . . . ,mq share the
same prefix up to the ℓ − 1-th bit, and if there exists (the first) i∗ such that
msdb(m1,mi∗) = msdb(m1,mq), then we can conclude that {m1, . . . ,mi∗−1} has
1 on their ℓ-th bit, and {mi∗ , . . . ,mq} has 0 on their ℓ-th bit. This way the ℓ-th
bit of these messages are leaked. The simulator recursively identifies other leaked
bits for these two sets. At the end, for each message, how many prefixes whose
next bits are leaked will be identified. As this information will also be identi-
fied in the hybrid Hqn. So a random permutation (for Hqn and the simulation)
will hide these leaked prefixes, except the total number. Thus, our simulation is
identical to Hqn, and we establish the entire proof. ⊓3

5.3 More Efficient Comparisons

The construction above needs to run O(n2) times PPH test algorithm for one
single comparison, which is very expensive for real application. In this part,
we present a variant ORE achieving better efficiency but with a weaker leak-
age profile, which only requires O(n) pairings in each individual comparison.
And what’s more interesting is that this weaker leakage profile is also smoothed

Parameter-Hiding Order Revealing Encryption 205

CLWW, that means we can still construct a parameter hiding ORE based on
it, along with better efficiency. From the high level, we fix a permutation for all
encryptions(this permutation is part of the secret key now), rather than sam-
pling fresh permutation for each ciphertext. Therefore, in the comparison, we
only need run the PPH test for pairs that share the same index, which means
only O(n) pairings for one comparison. Formally:

Construction. Let F be a secure PRF with the same syntax as above, let
P (x, y) = 1(x = y + 1) be the relation predicate that outputs 1 if and only if
x = y+1, and let Γ = (Kh,H, T) be a PPH scheme with respect to P , as before.
We define our ORE scheme Π = (K, E , C) as follows:

– K(1λ,M): On input the security parameter and message space [M], the algo-
rithm chooses a key k uniformly at random for F , runs Γ.Kh to obtain the
hash and test keys (hk, tk), and samples a random permutation π : [n] → [n].
It sets ck ← tk, sk ← (k, hk,π) and outputs (ck, sk).

– E(sk,m): On input the secret key SK and a message m, the algorithm com-
putes the binary representation of m = (b1, . . . , bn), and then calculates:

ui = F (k, (i, b1b2 · · · bi−1||0n−i+1)) + bi, ti = Γ.H(hk, ui).

Then it sets vi = tπ(i) and outputs CT = (v1, . . . , vn).
– C(ck,CT1,CT2): on input the public parameter, two ciphertexts CT1,CT2

where CT1 = (v1, . . . , vn),CT2 = (v′
1, . . . , v

′
n), the algorithm runs

Γ.T (tk, vi, v′
i) for every i ∈ [n]. If there exists i∗ such that Γ.T (tk, vi∗ , v′

i∗) = 1,
then the algorithm outputs 1, meaning m1 > m2; else if there exists a pair
i∗ such that Γ.T (tk, v′

i∗ , vi∗) = 1, then the algorithm outputs 0, meaning
m1 < m2; otherwise it outputs it outputs ⊥, meaning m1 = m2.

Now, we give the description of the leakage profile, which takes m =
{m1, . . . ,mq} as input and produces:

L′
f (m1, . . . ,mq) := (∀1 ≤ i, j, k, l ≤ q,1(mi < mj),1(msdb(mi,mj) = msdb(mk,ml)))

Compared to Lf , L′
f gives extra information that 1(msdb(mi,mj) =

msdb(mk,ml)) even when i ̸= k. However, L′
f is still strictly stronger than

CLWW, and for any m , it’s obvious that L′
f (m) = L′

f (2m), which gives evi-
dence that L′

f is also smoothed CLWW. And for its simulation based security,
applying exactly the same argument as the proof of Theorem 10, we can establish
the following theorem.

Theorem 12. The ORE scheme Π is L′
f -non-adaptive-simulation secure,

assuming F is a secure PRF and Γ is restricted-chosen-input secure.

Therefore, to achieve the privacy of parameter hiding, we can use this effi-
cient scheme as an alternative, such that we only need O(n) pairings for each
comparison.

206 D. Cash et al.

6 PPH from Bilinear Maps

We construct a PPH scheme for the predicate P required in our ORE construc-
tion. That is, P (x, y) = 1 if and only if x = y + 1.

We let F : {0, 1}λ × {0, 1}λ → Zp be a PRF, where p is a prime to be
determined at key generation.

Construction. We now define our PPH Γ = (Kh,H, T).

– Kh(1λ) This algorithm takes the security parameter as input. It samples
descriptions of prime-order p groups G, Ĝ,GT , generators g ∈ G, ĝ ∈ Ĝ, a
bilinear map e : G × Ĝ → GT . It then chooses k

$← {0, 1}λ. It sets the hash
key hk ← (k, g, ĝ), the test key tk ← (G, Ĝ,GT , e), a description of the bilinear
map and groups, and outputs (hk, tk).

– H(hk, x) This algorithm takes as input the hash key hk, an input x, picks two
random non-zero r1, r2 ∈ Zp and outputs

H(hk, x) = (gr1 , gr1·F (k,x), ĝr2 , ĝr2·F (k,x+1)).

– T (tk, h1, h2) To test two hash values (A1, A2, B1, B2) and (C1, C2,D1,D2),
T outputs 1 if

e(A1,D2) = e(A2,D1),

and otherwise it outputs 0.

Hence the domain D is {0, 1}λ and the range R is (G2, Ĝ2)

Correctness. Correctness reduces to testing if F (k, y + 1) = F (k, x). If x =
y+1 then this always holds. If not, then it is easily shown that finding x, y with
this property (and without knowing the key) with non-negligible probability
leads to an adversary that contradicts the assumption that F is a PRF.

Security. We prove that PPH is restricted-chosen-input secure, assuming that
F is a PRF and that the following assumption holds.

Definition 13. Let G, Ĝ,GT be prime-order p groups, g be generator of G and
ĝ be a generator of Ĝ, tand e : G × Ĝ → GT be a bilinear pairing. We say the
symmetric external Diffie-Hellman assumption holds with respect to these groups
and pairing if for all efficient A,

|Pr[A(g, ga, gb, gab) = 1] Pr[A(g, ga, gb, T) = 1]|

and
|Pr[A(ĝ, ĝa, ĝb, ĝab) = 1] Pr[A(ĝ, ĝa, ĝb, T) = 1]|

are negligible functions of λ, where a, b, c are uniform over Zp and T is uniform
over GT .

We can now state and prove our security theorem.

Parameter-Hiding Order Revealing Encryption 207

Theorem 14. Our PPH Γ is restricted-chosen-input secure, assuming F is a
PRF and the SXDH assumption hold with respect to the appropriate groups and
pairing.

Proof. We use a hybrid argument. Let (A1, A2, B1, B2) ∈ G2 × Ĝ2 denote
the challenge hash value given to the adversary during the real game H0 =
INDpph

Γ,P (A). Additionally, let R be a random element of G, R̂ be a random
element of Ĝ, both independent of the rest of the random variables under con-
sideration. Then we define the following hybrid experiments:

– H1: At the start of the game, a uniformly random function F ∗ R←
Funs[{0, 1}λ, {0, 1}λ] is sampled instead of the PRF key K, the rest remain
unchanged.

– H2: The challenge hash value is (A1, R,B1, B2), where R
$← G.

– H3: The challenge hash value is (A1, R,B1, R̂), where R
$← Ĝ.

In H3, the adversary is given a random element from the range R. Therefore,

AdvpphΓ,P,A(λ) = |Pr[H0 = 1] − Pr[H3 = 1]|

To prove H0 is indistinguishable from H3, we show that each step of the hybrid
is indistinguishable from the next. First, it is apparent that H0 and H1 are
computational indistinguishable by the PRF security, then:

Lemma 15. H1 ≈ H2 under the SXDH assumption.

Let A be an adversary playing the PPH security game, and let

ϵ = |Pr[H1 = 1] − Pr[H2 = 1]|.

Then we can build adversary B that solves SXDH with advantage ϵ. B is given
as input (g, ĝ, B,C) and the challenge term T . B works as follows:

– B sets tk = (G, Ĝ,GT , e) and sends it to A. After receiving x∗ $← A(tk)
it simulates a random function F ∗ via lazy sampling, and it will implicitly
set F ∗(x∗) = b, the discrete logarithm of B. It prepares the challenge as by
selecting r∗ $← Zp and computing

A1 = gc, A2 = T,B1 = ĝr
∗
, B2 = ĝr

∗F∗(x∗+1)

and runs A on input tk, x∗, (A1, A2, B1, B2).
– To answer hash query for x ̸= x∗ from A, B calculates F ∗(x) and F ∗(x+ 1)

(note that x, x+ 1 ̸= x∗). Then B picks r1, r2 randomly and computes:

H(x) = gr1 , gr1·F
∗(x), ĝr2 , ĝr2·F

∗(x+1);

If A queries x = x∗, B calculates F ∗(x∗+1), picks r′
1, r

′
2

$← Zp, and computes

H(x∗) = gr
′
1 , Br′

1 , ĝr
′
2 , ĝr

′
2·F

∗(x∗+1);

208 D. Cash et al.

– Finally B outputs whatever A outputs.

We note that in A’s view, without querying A(x∗ − 1), B simulates the game
properly. If T = gbc, then B simulates H1, and if T s random then it simulates
H2. Hence if A has an advantage ϵ in distinguishing H1 and H2, then B has the
same advantage to break SXDH assumption.

We also have the following lemma:

Lemma 16. H2 ≈ H3 under the SXDH assumption.

The proof is exactly the same as the prior hybrid step, except in the group Ĝ
part of the hash instead of G. We omit the details.

Collecting the steps completes the proof of Theorem 14.

Acknowledgments. David Cash is supported by NSF CNS-1453132. Feng-Hao Liu
is supported by NSF CNS-1657040. Adam O’Neill is supported in part by NSF CNS-
1650419. Mark Zhandry is supported by NSF. David Cash and Cong Zhang are par-
tially supported by DARPA and SSC Pacific under contract N66001-15-C-4070. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of NSF, DARPA or SSC
Pacific.

References

1. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: SIGMOD (2004)

2. Arasu, A., Blanas, S., Eguro, K., Kaushik, R., Kossmann, D., Ramamurthy, R.,
Venkatesan, R.: Orthogonal security with cipherbase. In: CIDR (2013)

3. Arasu, A., Eguro, K., Kaushik, R., Ramamurthy, R.: Querying encrypted data
(tutorial). In: ICDE (2013)

4. Bajaj, S., Sion, R.: TrustedDB: a trusted hardware-based database with privacy
and data confidentiality. TKDE 26(3), 752–765 (2014)

5. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

6. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 13

7. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revis-
ited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 33

8. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 563–594. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 19

9. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial
information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052255

https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/BFb0052255

Parameter-Hiding Order Revealing Encryption 209

10. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: CCS (2015)

11. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 20

12. Cash, D., Liu, F.-H., O’Neill, A., Zhandry, M., Zhang, C.: Parameter-hiding order
revealing encryption. Cryptology ePrint Archive, Report 2018/698 (2018). https://
eprint.iacr.org/2018/698

13. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

14. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17373-8 33

15. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption
with limited leakage. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 474–493.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 24

16. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

17. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multi-
linear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
607–628. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 21

18. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: CCS (2006)

19. Dautrich Jr., J.L., Ravishankar, C.V.: Compromising privacy in precise query pro-
tocols. In: EDBT (2013)

20. Durak, F.B., DuBuisson, T.M., Cash, D.: What else is revealed by order-revealing
encryption? In: ACM CCS (2016)

21. Goh, E.-J., et al.: Secure indexes. IACR Cryptology ePrint Archive 2003:216 (2003)
22. Grubbs, P., Sekniqi, K., Bindschaedler, V., Naveed, M., Ristenpart, T.: Leakage-

abuse attacks against order-revealing encryption. Cryptology ePrint Archive,
Report 2016/895 (2016). http://eprint.iacr.org/2016/895

23. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over encrypted data
in the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2002, pp. 216–227.
ACM, New York (2002)

24. Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional
range queries over outsourced data. VLDBJ 21(3), 333–358 (2012)

25. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: NDSS (2012)

26. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Inference attack against encrypted range
queries on outsourced databases. In: CODASPY (2014)

27. Joye, M., Passelègue, A.: Function-revealing encryption (2016)
28. Kamara, S., Moataz, T.: SQL on structurally-encrypted databases. Cryptology

ePrint Archive, Report 2016/453 (2016). http://eprint.iacr.org/

https://doi.org/10.1007/978-3-642-40041-4_20
https://eprint.iacr.org/2018/698
https://eprint.iacr.org/2018/698
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-662-52993-5_24
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-53008-5_21
http://eprint.iacr.org/2016/895
http://eprint.iacr.org/

210 D. Cash et al.

29. Lewi, K., Wu, D.J.: Order-revealing encryption: new constructions, applications,
and lower bounds. In: ACM CCS (2016)

30. Liu, C., Zhu, L., Wang, M., Tan, Y.-A.: Search pattern leakage in searchable
encryption: attacks and new construction. Inf. Sci. 265, 176–188 (2014)

31. Mandal, A., Roy, A.: Relational hash: probabilistic hash for verifying relations,
secure against forgery and more. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 518–537. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47989-6 25

32. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: crypt-
analysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 22

33. Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party com-
putation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 30

34. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: CCS (2015)

35. Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
375–391. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 23

36. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: SOSP (2011)

37. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: SP (2000)

https://doi.org/10.1007/978-3-662-47989-6_25
https://doi.org/10.1007/978-3-662-47989-6_25
https://doi.org/10.1007/978-3-662-53008-5_22
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-642-29011-4_23

	Locally Decodable and Updatable Non-malleable Codes and Their Applications
	1. Introduction
	1.1. Techniques
	1.2. Related Work
	1.3. Subsequent Work

	2. Locally Decodable and Updatable Non-malleable Codes
	2.1. Preliminary
	2.2. New Definitions: Codes with Local Properties
	2.3. Strong Non-malleability

	3. Our Constructions
	3.1. Preliminary: Symmetric Encryption
	3.2. A First Attempt: One-Time Security
	3.3. Achieving Security Against Continual Attacks
	3.4. Instantiations

	4. Tamper and Leakage-Resilient RAM
	4.1. Random Access Machines
	4.1.1. Dealing with Leakage and Tampering on Instructions I

	4.2. Tamper and Leakage-Resilient (TLR) RAM
	4.3. Preliminary: Oblivious RAM (ORAM)
	4.4. TLR-RAM Construction
	4.5. Security Analysis

	Acknowledgements
	References

