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A B S T R A C T

One of the critical factors affecting travel rates while hiking, jogging, or running along a trail is the slope of the
underlying terrain. Models for predicting this effect have been used in a wide variety of scientific and applied
contexts, including recreation planning, search and rescue, wildland firefighter safety, social network analysis,
and recreating historical human movement patterns. Despite their wide use, these models are based on datasets
with very small sample sizes that were collected without using instantaneous measures of travel rate and assume
symmetrical effects about the slope of maximum travel rate. These models also typically resulted in a single
mathematical function, ignoring the significant variability that can occur between a fast and a slow individual,
or between walking and running travel rates. In this study we modeled travel rates using a database of GPS tracks
from 29,928 individuals representing 421,247 individual hikes, jogs, and runs on trails in and around Salt Lake
City, Utah for an entire year between July 1, 2016 and June 30, 2017. Three widely-used probability distribution
functions (Laplace, Gauss, and Lorentz) were used to predict travel rates based on terrain slope along segments of
trails with uniform slopes. To account for the variability in travel rates between fast and slow movement, a series
of travel rate models were generated to predict travel rate percentiles, ranging from the 1st to the 99th, thus
providing a flexible basis for predicting travel rates as a function of slope. The large number of samples allowed
us to introduce a novel term that accounts for asymmetry in travel rates on uphill and downhill slopes. All three
functions performed well, with Lorentz percentile models averaging an R2 of 0.958 and a mean absolute error
(MAE) of 0.078m/s, Laplace with R2 of 0.953 and MAE of 0.088m/s, and Gauss with R2 of 0.949 and MAE of
0.090m/s. All three functions performed notably better at estimating lower travel rate percentiles (e.g. 5th:
R2Lorentz = 0.941; R2Laplace= 0.940; R2Gauss= 0.934) as compared to higher (e.g. 95th: R2Lorentz= 0.914;
R2Laplace= 0.913; R2Gauss= 0.908), indicating greater consistency in walking rates than the fastest running rates.
Lorentz outperformed the other functions for the widest range of percentiles (5th, 30th-90th), and thus is re-
commended for use as a flexible travel rate prediction function. However, Laplace tended to produce the best
results at moderately-low travel rate percentiles (10th-25th), suggesting a combination of the two models could
produce the highest accuracies. The results of this research provide a sound basis for future studies aiming to
estimate travel rates while hiking or running along slopes.

1. Introduction

There are three general relationships that apparently govern the
effect of terrain slope on pedestrian movement: (1) higher energy
output is required with increasing (steeper) uphill slope; (2) braking
against gravity with increasing downhill slope and ensuring the main-
tenance of safety through careful foot placement; and (3) as a result of
(1) and (2), with increasing slope in both directions, one tends to move
more slowly, though these effects are not symmetrical about 0° in slope

(Minetti, Moia, Roi, Susta, & Ferretti, 2002). Although these relation-
ships are fairly intuitive and innate to the human bipedal experience,
the quantification of these effects is quite complex, due to the varia-
bility in modes of travel (e.g. walking vs. sprinting), distances of travel
(e.g. 100-m dash vs. marathon), and between the physical character-
istics of individuals (e.g. variation in stride length). Despite this in-
herent complexity, several mathematical functions aimed at quanti-
fying the effect of slope on walking and/or hiking travel rates have been
developed, with early efforts spanning as far back as the 19th century
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(Campbell, Dennison, & Butler, 2017; Davey, Hayes, & Norman, 1994;
Irmischer & Clarke, 2018; Naismith, 1892; Rees, 2004; Tobler, 1993, p.
24). These functions broadly show that steeper slopes result in slower
movement (Fig. 1). Differences between these previously proposed re-
lationships likely result from the varied scientific approaches taken to
derive the mathematical functions, including the use of primary vs.
secondary travel rate data, the techniques used for tracking/timing
study subjects, the travel distances used as a baseline for experi-
mentation, the statistical function used to fit the data, the assumption of
symmetry about the 0° slope value, and, perhaps most importantly, the
sample size of study subjects (Table 1).

With the recent proliferation of GPS-enabled smartphones, we now
have the capability of collecting large quantities of travel rate in-
formation in real time from a diverse population of users. Popular fit-
ness tracking applications, such as Strava, allow users to collect, share,
and compare travel rates along roads and trails while hiking, running,
and biking. Rather than relying on sparse travel rate information from
relatively few individuals, we can leverage the power of a vast database
of GPS tracks to derive a much more robust and broadly-applicable
mathematical model for estimating the effect of slope on travel rates. In
addition, all of the aforementioned functions are based on the predic-
tion of travel rates while walking or hiking along a slope. To the au-
thors' knowledge, no models for the prediction of running travel rates as
a function of slope currently exist. This could be due to the greater
variability between individuals' running travel rates as compared to
their walking travel rates and the associated difficulty of developing a
generalizable predictive model. With the use of a fitness tracking da-
tabase, where modes of pedestrian travel range from walking to jogging
to sprinting, such a model could be realized.

In this study, some of the key limitations inherent to existing slope-
travel rate models are addressed by employing the use of a very large,
crowdsourced database of GPS tracks representing trail hikes, jogs, and

runs. Specifically, the primary objectives of this study are to: (1) de-
velop a flexible model for estimating travel rates as a function of slope
based on a range of travel rate percentiles from the 1st (slow walking/
hiking) to the 99th (fast running/sprinting) from a large database of
GPS tracks along trails; (2) compare the statistical and geospatial si-
milarities and differences between three popular distribution functions
used as a basis for modeling slope-controlled travel rates; and (3) apply
the best-fitting function to the simulation of total hiking time along a
popular trail and compare the results to existing travel rate functions
and a validation dataset.

2. Background

Tobler's hiking function (THF; Tobler, 1993, p. 24) is one of the
most widely-used existing models for the estimation of travel rates as a
function of slope (Alegana et al., 2012; Contreras, 2011; Doherty, Guo,
Doke, & Ferguson, 2014; Fryer, Dennison, & Cova, 2013; Herzog, 2010;
Jennings & Craig, 2001; Jensen, 2003; Kantner, 2004; Kunitz, Lagree, &
Weinig, 2017; Márquez-Pérez, Vallejo-Villalta, & Álvarez-Francoso,
2017; McCoy et al., 2011; Mink, Ripy, Bailey, & Grossardt, 2009;
Richards-Rissetto & Landau, 2014; Ripy et al., 2014; Rogers, Collet, &

Fig. 1. Existing slope-travel rate functions, where downhill slopes are negative and uphill slopes are positive.

Table 1
Sample sizes of study subjects used as a basis for deriving several existing travel
rate functions.

Study Number of Subjects

Tobler (1993) Unknown (secondary data)
Naismith (1892) 1
Davey et al. (1994) 2
Rees (2004) Unknown (based on 10 hikes)
Campbell et al. (2017) 37
Irmischer and Clarke (2018) 200
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Lugon, 2014; Rogers, Fischer, & Huss, 2014; Taliaferro, Schriever, &
Shackley, 2010; Verhagen & Jeneson, 2012; White, 2015; Wood &
Schmidtlein, 2012). It is calculated as:

= × × +v exp1. 6̄ 3.5 tan 0.05 (1)

where v is velocity in m/s and θ is the slope angle in degrees. The function
was derived from empirical data presented by Imhof (1950). As Herzog
(2010) points out, however, these foundational data from Imhof (1950)
were not presented in their raw form; instead, he provided a figure with
aggregated slope-based travel time isolines, to which Tobler (1993, p. 24)
fit a mathematical function, with no reporting on the statistical model fit
or accuracy. Like many travel rate functions, THF takes a double-ex-
ponential form, which is characterized by a sharp peak, representing a
maximum travel rate, and rapidly-decreasing travel rates on either side of
the peak (Fig. 1). While the function is mirrored on both sides of a peak
travel rate, THF assumes that the peak travel rate occurs on a slight
downhill slope. According to THF, one travels most efficiently along
slightly-downhill slopes of −2.86°, with an estimated hiking travel rate of
approximately 1.67m/s.

THF has been used for estimating travel rates in a range of contexts,
including the location of missing persons for search and rescue
(Doherty et al., 2014), assessment of urban social interaction and in-
tegration (Richards-Rissetto & Landau, 2014), simulation of pedestrian
evacuation times in the event of a tsunami (Wood & Schmidtlein, 2012),
analysis of hiking times and difficulties along trails for recreation
planning (Márquez-Pérez et al., 2017), modeling of pedestrian health
care facility accessibility in developing nations (Alegana et al., 2012),
and estimation of wildland firefighter escape route travel time to safety
(Fryer et al., 2013). By far, the discipline that has employed THF the
most is that of archaeology (White, 2015), where it has been used to
recreate historical migration routes (Jensen, 2003; Kantner, 2004;
Kunitz et al., 2017; Verhagen & Jeneson, 2012), analyze trade and
geopolitical interactions (Contreras, 2011; Jennings & Craig, 2001;
McCoy et al., 2011; Taliaferro et al., 2010), and prediction of archae-
ological site locations (Mink et al., 2009; Ripy et al., 2014; Rogers,
Collet, et al., 2014; Rogers, Fischer, et al., 2014).

Perhaps the second most widely-used slope-travel rate function is
the one developed in 1892 by Scottish mountaineer William Naismith
(Naismith, 1892). “Naismith's Rule”, based apparently on personal ex-
perience, suggested that one should need one hour for every three
horizontal miles traveled, with an additional hour budgeted for every
2000 feet of vertical ascent. Though it was not presented as a mathe-
matical function per se, Naismith's Rule can be defined as follows:

=
+ ×

v 1
0.72 6 tan (2)

Naismith's Rule is similar in form to THF (Fig. 1). In fact, the travel
rates are nearly identical on flat slopes (vTolber,0°=1.39m/s;
vNaismith,0°=1.40m/s). However, Naismith's Rule makes no mention of
downhill travel, and thus is only used to estimate travel rates on posi-
tive slopes. To correct for this omission, Langmuir (1984) suggested
modifying Naismith's rule, such that on steep downhill slopes
(θ≤−12°):

=
×

v 1
0.72 2 tan (3)

and on less steep downhill slopes (−12° < θ≤−5°):

=
+ ×

v 1
0.72 2 tan (4)

Although there is no specific mention of slightly-downhill slopes
(−5° < θ < 0°), Irmischer and Clarke (2018) point out that the
popular open-source GIS platform GRASS′ r.walk function, which is
based on the Langmuir corrections for Naismith's Rule, simply assumes
that the travel rate on these slopes is constant and is the same as the
travel rate on flat slopes (1.40m/s). The Langmuir corrections result in

a very peculiar and counter-intuitive form (Fig. 1), suggesting that one
travels fastest at a downhill slope of −12° (3.39m/s), but then at
−12.1°, the travel rate would drop precipitously to (0.87m/s) – a
highly improbable set of circumstances. Naismith's Rule, with and
without the Langmuir corrections, has been applied frequently, though
seemingly not as often as THF. It has been used to assess the remoteness
of wild lands in Scotland (Carver, Comber, McMorran, & Nutter, 2012),
analyze trail usage and travel time information for recreation planning
purposes (Chiou, Tsai, & Leung, 2010), study the perceptions of safety
while moving through an urban environment (De Silva,
Warusavitharana, & Ratnayake, 2017), develop a sampling design for
forest inventory (Tomppo et al., 2014) as well as several archaeological
applications, including social network analysis (Gravel-Miguel, 2016),
historical route recreation (Tomppo et al., 2014), and archaeological
site accessibility assessment (Henry, Belmaker, & Bergin, 2017).

In addition to these two popular slope-travel rate functions, several
others, both more recent and less widely-cited, have been developed.
Davey et al. (1994) presented a function based on a two-subject
treadmill experiment, which allowed for an adjustment factor to fit the
slope-travel rate function based on a baseline individual velocity that is
sustainable over an unspecified long distance on flat ground (v0), as
follows:

= × ×v v exp0
0.049 (5)

Like Naismith's Rule, the function presented by (Davey et al., 1994)
does not have a downhill component; however, the adjustment factor
(v0) provides a more flexible framework for travel rate estimation, given
differences in fitness and endurance levels. This function, adjusted for a
baseline rate of v0=1.40m/s can be seen in Fig. 1.

Rees (2004) presented a polynomial travel rate model based on the
compiled results of 10 individual GPS-tracked walks that, unlike other
functions, did not come to a sharp, peak travel rate, and instead took a
more bell curve-like form (Fig. 1). The resulting equations is as follows:

=
+ × + ×

v 1
0.75 0.09 tan 14.6 (tan )2 (6)

Campbell et al. (2017) performed an experiment with 37 subjects to
determine the effects of slope, vegetation density, and ground surface
roughness on travel rates in an off-trail environment. Like (Rees, 2004),
the resulting function does not feature a strong peak travel rate; unlike
(Rees, 2004), the effects are not symmetrical about zero slope, with the
peak travel rate (1.67m/s) occurring at −2.3°, similar to THF (Fig. 1).
Although the resulting function contained terms for the latter two
landscape conditions, if no vegetation and a smooth surface are as-
sumed, the equation for estimating travel rates based on slope alone
becomes:

= × × × ×v 1.662 (5.191 10 ) (1.127 10 )3 3 2 (7)

Most recently, Irmischer and Clarke (2018) presented a slope-travel
rate function based on the real-time GPS tracking of 200 United States
Military Academy cadets as they traversed varied terrain during
training exercises. They compared the resulting travel rates to both THF
and the Langmuir-corrected Naismith Rule, finding that neither fit their
data very well, particularly given the lack of a strong peak in travel
rates. They found that their data closely aligned with a Gauss curve
(Fig. 1), resulting in the following function:

= +
× +

v exp0.11
(100 tan 5)

1800
2

(8)

As Fig. 1 highlights, with the exception of the Langmuir corrections,
the functions all fall within a fairly consistent range of travel rates.
Differences between the functions likely stem from the differences in
sample size (Table 1) and sample populations, and differences in ana-
lytical approaches ranging from interpretation of existing empirical
data (THF) to timed treadmill and field experiments (Davey et al., 1994
and Campbell et al., 2017, respectively), and GPS-tracked field
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experiments (Irmischer & Clarke, 2018).
Mathematical functions for predicting travel rates are useful in their

own right; however, they are often made more practical through their
application in a geospatial context (e.g. Campbell et al., 2017;
Contreras, 2011; Doherty et al., 2014; Verhagen & Jeneson, 2012;
Wood & Schmidtlein, 2012). When used in conjunction with digital
elevation model (DEM) data, these slope-travel rate functions allow for
the computation of travel cost, which represents the time (e.g. seconds)
it would take a pedestrian to traverse a given raster pixel on the ground,
according to that pixel's slope and the direction of movement. Provided
that the slope-travel rate function is accurate, this allows for the esti-
mation of travel time between any two (or more) locations along a
least-cost path. To assume, however, that slope is the only impedance to
pedestrian mobility, is an oversimplification of reality, where other
landscape conditions such as the ground surface condition and the
presence of vegetation can limit efficient movement (Alexander, Baxter,
& Dakin, 2005; Butler, Cohen, Putnam, Bartlette, & Bradshaw, 2000;
Campbell et al., 2017), as well as impassible features such as water
bodies. Of the models presented, only Campbell et al. (2017) attempt to
account for ground surface condition.

3. Methods

The travel rate data used in this study were obtained from Strava,
Inc. (San Francisco, California, USA) via their Strava Metro program.
Strava is a popular fitness tracking and social networking app that al-
lows users to track their movement while hiking, running, and cycling
using GPS and compare their travel rates to their peers. As such,
Strava's databases contain perhaps the most comprehensive record of
travel rate information in existence, with 136 million runs tracked in
2017 spanning more than 700 million miles worldwide (Strava, 2018).
The company aggregates and anonymizes the data and makes them
available to planning organizations and researchers through the Strava
Metro program. Strava Metro data have been used by researchers to
study urban cycling patterns (Musakwa & Selala, 2016), air pollution
exposure while cycling (Sun & Mobasheri, 2017), the relative effec-
tiveness of improving cycling infrastructure such as adding bike lanes
(Heesch & Langdon, 2017), and many other cycling-specific applica-
tions, though the pedestrian data (hiking, jogging, running) have re-
ceived relatively scarce attention in the scientific literature.

To obtain their pedestrian travel data, Strava Metro requested that
we provide them with a spatial dataset containing individual line fea-
tures representing segments of trails, to which their GPS track data was
aggregated using their proprietary algorithms. The process for creating
those trail segments proceeded as follows. We first selected the trails in
and around Salt Lake City, Utah as a basis for study (Fig. 2), given the
abundance of trails, the large population, diversity of terrain, and
presence of existing lidar data for use in deriving a high spatial re-
solution terrain model. The study area in Fig. 2 is defined by the extent
of a lidar data collection that took place in 2006–2007. It is a 3888 km2

area centered at approximately 40° 43′ 32″ N, 111° 51′ 40″ W, spanning
a 7-county area in northern-central Utah, with the majority of the area
falling within Salt Lake County. As of 2010, there were approximately
1.36 million people living within the study area extent, according to
Census Block data (United States Census Bureau, 2010). It lies at the
interface between the Basin and Range and Middle Rocky Mountain
geologic provinces (Utah Geological Survey, 2000), featuring a di-
versity of terrain and geology, with a wide range of elevations, from
1237m (4058 ft) on the lakebed sediment-deposited basin floor to
3502m (11490 ft) in the glacially-carved range peaks.

Lidar and trails data were obtained from the Utah Automated
Geographic Reference Center (AGRC, https://gis.utah.gov/). The lidar
data were collected between 2006 and 2007 by Horizons, Inc. on behalf
of the State of Utah with an average post spacing of 2m and a vertical
root mean square position error of approximately± 5 cm. The raw lidar
data were processed by AGRC in order to derive a raster digital terrain

model at a spatial resolution of 2m, which was the basis of the terrain
data used in our study. The statewide trails dataset was clipped to the
extent of the lidar data.

Slope varies continuously at a finer spatial scale than the travel rate
data, so we developed an algorithm inspired by the LandTrendr tem-
poral segmentation process (Kennedy, Yang, & Cohen, 2010) to split
trails into segments of relatively homogeneous slope (Fig. 3). The al-
gorithm begins by placing points along every trail at a 2m interval and
extracts the lidar-derived terrain elevation at each point. It then labels
the first and last points along the trail as inflection points and creates a
trail segment by connecting them. The root mean squared difference
between the trail segment and the true surface is then calculated. If this
value exceeds a pre-defined threshold (1m), an additional inflection
point is placed on the single point that has the largest difference from
the trail segment. This new inflection point is used to split the trail into
two new segments. This process is repeated until all of the trail seg-
ments are below the root mean squared difference threshold.

Trails were additionally split at each intersection with other trails,
where such intersections occurred. All trail segments under 50m in
length were eliminated to minimize the potential travel rate noise that
would likely emerge from such small distances. Trail segment slope was
calculated as the arctangent of each trail segment's elevation gain di-
vided by the horizontal segment distance. Then, slope distance, a more
realistic measure of true distance traveled, was calculated as the hor-
izontal distance of each segment divided by the cosine of the slope. In
all, 9870 trail segments from 1233 individual trails, totaling
1409.68 km in distance were delivered to Strava (Table 2), with which
they were able to perform their internal GPS database querying, ex-
tracting, and aggregating procedure.

In return, Strava provided data from 29,928 anonymous individuals
(Table 3) representing 421,247 individual hikes, jogs, and runs on trails
in and around Salt Lake City, Utah for an entire year between July,
2016 and June, 2017. The database we received contained the attri-
butes seen in Table 4. The median total distance traveled per activity
was 6544m (4.07 miles), and the median total time per activity was
approximately 49min. After splitting these activities up by the trail
segments, there were 2.99 million individual travel rate records. Sev-
eral steps were taken to reduce potential sources of bias in the data: (1)
remove data from all trails marked as paved or improved to focus solely
on natural surface trails; (2) remove data from slopes greater than 30°,
given their sparseness; (3) remove data where multiple individuals
were exercising together to focus on individual travel rates; (4) remove
data flagged as being a part of a commute to limit focus to intentional
fitness activities; and (5) remove all travel rates above 10m/s, as this
value approximates the limits of human performance and travel rates
above that threshold are believed to be due to a variety of factors in-
cluding GPS error (Ranacher, Brunauer, Trutschnig, Spek, & Reich,
2016), aggregation error, and/or user error (e.g. forgetting to stop GPS
tracking after getting into a car, tagging the wrong fitness activity, etc.).
As a result, 1.05 million records remained, forming the basis of the
subsequent analyses.

Given the wide variety of travel rates that emerged across the range
of slopes analyzed (± 30°), it became quite clear that no single travel
rate model accounts for sufficient variability to be useful in a broad
range of applications. In the raw Strava data, there was no ability to
control for whether someone was hiking, jogging, or running, nor was
there any individual-level information to distinguish between fit or
unfit individuals, males or females, young or old. Accordingly, we first
calculated a series of per-slope-degree travel rate percentiles (1st, 5th –
95th, by 5, and 99th) (Fig. 4).

Given the visual patterns that emerged from the percentile analysis,
we sought to determine the best mathematical functions that could
closely fit these percentiles. Without associated heartrate or energy
consumption information, there is no way to link these percentiles to
modes of travel (e.g. walking, jogging, sprinting), but they provide an
estimate of the range of possible travel rates, from slow (1st) to fast
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(99th) movement. To fit these percentiles, we tested three common
probability distribution functions: Laplace (also known as double ex-
ponential), Gauss (also known as normal), and Lorentz (also known as
Cauchy). These three functions are defined, respectively, below:

=y
b

exp1
2Laplace

x a
b (9)

=y
b

exp1
2Gauss

x a
b

2

( )
2

2

2

(10)

=
+ ( )

y
b

1

1
Lorentz x a

b
2

(11)

where a represents a curve-centering term (akin to the mean of the
distribution), b represents a curve-width-widening term (akin to the
standard deviation of the distribution). The effects of these parameters
can be seen in Fig. 5. The Laplace function comes to a pointed peak
value, similar to the travel rate functions of Tobler (1993, p. 24),
Naismith (1892), and Davey et al. (1994), whereas the Gauss and
Lorentz functions come to a rounded peak value, as in Rees (2004),
Campbell et al. (2017), and Irmischer and Clarke (2018). The key dif-
ference between the Gauss and Lorentz distributions is the fact that the
Gauss distribution has a more rounded peak and flatter tails, whereas
the Lorentz distribution has a less rounded peak and less flattened tails.

As with all probability distribution functions, the y values are
bounded by [0,1]. Given that the travel rate data are bounded by
[0,10], an additional, multiplicative term (c) needs to be included in the

Fig. 2. Study area map highlighting all non-paved trail segments longer than 50m with slopes< 30° used as a basis for slope-travel rate analysis.
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functions. As seen in Fig. 4, none of the travel rate percentiles reach
zero; thus, there needs to be an additive term (d) in the functions as
well. Lastly, upon close examination of the percentile lines in Fig. 4, it
becomes clear that the upslope effects and downslope effects differ,
with upslope travel rates being both more consistent among the per-
centiles and generally lower than the downslope travel rates. Accord-
ingly, a final slope-dependent multiplicative term (e) needs to be added
to the functions, allowing for anisotropy in uphill and downhill travel
rates that has not been accounted for in previously proposed functions.
Substituting the slope (θ; assumed to be in degrees) for x and the travel
rate (v; assumed to be in m/s) for y, the functions for Laplace, Gauss,
and Lorentz travel rate estimation are as follows:

= + +v c
b

exp d e1
2Laplace

a
b

(12)

= + +v c
b

exp d e1
2

Gauss

a
b

2

( )
2

2

2

(13)

Fig. 3. Trail segmentation technique example, with each iteration (a, b, c, and d) adding a split point to reduce root mean squared difference between the segments
and actual trail elevation.

Table 2
Summary characteristics of trail segment data delivered to Strava Metro, with total trail segment length (in km) by slope and elevation classes.

Elevation (m)

Slope (°) 1000–1500 1500–2000 2000–2500 2500–3000 3000–3500 Total

< 5 313.06 335.67 96.33 105.79 12.80 863.65
5–10 21.76 139.91 88.19 97.35 16.08 363.30
10–15 2.75 41.14 38.20 37.60 8.40 128.09
15–20 0.16 9.11 13.39 12.38 2.44 37.47
20–25 0.13 2.37 4.72 2.97 1.70 11.89
25–30 0.00 0.80 1.16 0.91 0.59 3.45
≥ 30 0.00 0.53 0.30 0.00 0.39 1.22
Total 337.87 529.52 242.28 257.00 42.40 1409.68

Table 3
Age and gender characteristics of anonymous study subjects from Strava Metro
database.

Age Gender

Male Female Unknown

< 25 1438 861
25–34 4151 2349
35–44 5406 2178
45–54 2869 867
55–64 914 319
65–74 182 64
75–84 16 9
85–94 2 2
≥ 95 11 4
Unknown 4278 2194 1814
Total 19267 8847 1814
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=
+

+ +
( )

v c
b

d e1

1
Lorentz

a
b

2

(14)

To best fit the travel rate percentiles for each function Eqs.
(12)–(14), the optimal values for coefficients a, b, c, d, and e had to be
determined. To do this, the data were first divided in half, at random,
into a training dataset (Ntrain = 525260) and a validation dataset
(Nvalid= 525261). For both the training dataset and the validation
dataset, the travel rate percentiles (1st, 5th – 95th by 5, and 99th) were

calculated. Using the training dataset, the percentile models were fit
using the nls (nonlinear least squares) function in R. This function re-
quires the use of starting parameters, which were determined empiri-
cally. The resulting predictive models were then compared to the va-
lidation dataset percentiles and assessed for fit using R2 and mean
absolute error (MAE).

For comparison to existing travel rate functions, the overall best-
fitting slope-travel rate models were applied in a geospatial environ-
ment to map and compare estimated travel times. To do this, a single
trail within the study area was selected for evaluation. The Lake
Blanche Trail, a hiking trail in Big Cottonwood Canyon near Salt Lake

Table 4
Strava Metro database field names and descriptions.

Field Name Description

edge_id Unique identifier for trail segments for linking back to spatial data
year Year that the activity was recorded
day Julian day that the activity was recorded
hour Hour that the activity was recorded
minute Minute that the activity was recorded
athlete_count Total number of people that recorded an activity for a given trail segment at a given time in the forward direction
rev_athlete_count Total number of people that recorded an activity for a given trail segment at a given time in the reverse direction
activity_count Total number of activities recorded for a given trail segment at a given time in the forward direction
rev_activity_count Total number of activities recorded for a given trail segment at a given time in the reverse direction
total_activity_count Total number of activities recorded for a given trail segment at a given time in either direction
activity_time Total time the activity took while traversing a given trail segment at a given time in the forward direction, in seconds
rev_activity_time Total time the activity took while traversing a given trail segment at a given time in the reverse direction, in seconds
commute_count Binary (0 vs. 1) flag to indicate whether or not the activity was recorded as part of a commute

Fig. 4. Raw travel rate vs. slope data with percentiles. Individual travel rate records are represented by black dots with 1% opacity. Thus, dark black areas indicate
over 100 overlapping points.
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City, was selected for its popularity, length (∼11.7 km, out and back),
and diverse terrain (∼818m difference between high and low points).
Elevation values were sampled at a 5m interval along the trail, from
which slope (in degrees) was calculated. Slope and horizontal distance
were then used to calculate a slope distance. This information was then
used to estimate the cumulative travel time for an out and back hike
along the entire length of the trail for each of the travel rate percentile
models and the existing travel rate functions discussed in the
Background, with the exception of Davey et al. (1994), since it does not
allow for the estimation of downhill travel rates. Lastly, for validation
purposes, these modeled results were compared to a sampling of data
gathered from AllTrails.com, a popular trail mapping website and
mobile application that provides user-submitted GPS tracks of their
hikes. We selected the 100 most recent out-and-back hikes of the Lake
Blanche Trail (https://www.alltrails.com/explore/trail/us/utah/lake-
blanche-trail). There was a significant degree of variability in re-
corded travel distance, which could be caused by a variety of factors,
including differences in recorded start- and end-points, GPS error, and
venturing off-trail, so to facilitate a more direct comparison, average
trail travel rates were calculated for each GPS track and used to esti-
mate total travel time based on the trail length used for modeling.

4. Results

The best-fitting parameters for the three slope-travel rate functions
can be seen in Fig. 6. The terms for each model and percentile can be
found in the supplemental material. Broadly, the Gauss and Lorentz
models tended to be optimized using relatively similar terms, as evident
by the similar trends across the range of percentiles. Although there
were some similarities in the overall trends, the optimal terms for the
Laplace models differed significantly from those of Gauss and Lorentz in
magnitude, particularly for the b, c, and d terms. The a term, which
dictates the slope of highest travel rate, ranges between −1.41° and
−4.00°, a range which is inclusive of the equivalent value for THF
(−2.86°), Campbell et al. (2017) (−2.3°), and Irmischer and Clarke
(2018) (−2.86°). In each of the three functions, the slope of highest
travel rate tends towards steeper downhill slopes from the 5th to the
85th percentile, suggesting that when moving more quickly (e.g. run-
ning), one moves fastest at slightly steeper downhill slopes.

In all three cases, the b term, which dictates the width of the curves,
begins with a relatively high value, then decreases to a minimum at
around the 30th percentile and increases with increasing percentiles.
This suggests that, when moving slowly (e.g. 5th) or quickly (e.g. 95th),
relatively small increases in slope have a minimal impact on travel

rates. The c term follows a similar pattern to b, generally increasing in
all three functions from low to high travel rate percentiles, meaning
faster runners have the widest range of travel rates and thus are most
affected by slope, whereas the slower hikers have the narrowest range
of travel rates and thus are least affected by slope. The d term does not
show a very clear trend among the functions and percentiles, as its
influence appears to be outweighed by that of c. Lastly, the e term,
which dictates the asymmetry of the functions, all have negative values.
This suggests that, even after accounting for the fact that people tend to
travel fastest on slightly downhill slopes (shifting the curves to the left),
there is still an asymmetry to the curve, with uphill travel rates tending
to be slightly slower than downhill – a relationship that has not been
previously noted or accounted for in predictive models. This asymmetry
tends to increase slightly from the 5th to the 85th percentiles, and then
sharply from the 85th to the 99th, meaning that the fastest individuals
move relatively quickly downhill as compared to uphill travel, whereas
the slowest individuals experience less of a difference therebetween.

When modeled using the optimal parameters from Fig. 6, the
functions take the forms seen in Fig. 7. As discussed earlier, the Laplace
function tends to come to a sharp peak, whereas the Gauss and Lorentz
functions tend to produce more rounded maximum travel rates when
compared to slope. Thus, Laplace-based slope-travel models tend to
produce higher travel rates at the fastest slope as compared to Gauss-
and Lorentz-based models. The notable difference in form between the
Gauss and Lorentz functions is that Gauss tends to flatten out more in
the tails than Lorentz. Accordingly, Gauss-based slope-travel rate
models will tend to produce higher travel rates on very steep slopes
than Lorentz-based models.

Despite their differences in form, the three functions all produce
similar results in terms of model fit (R2) and prediction error (MAE)
(Fig. 8). In general, all three functions perform best when modeling
moderately slow to moderately fast travel rates (5th – 85th percentiles)
but experience a significant decrease in accuracy at very slow (1st) and
fast travel rates (90th – 99th percentiles). The lower accuracy at the 1st
percentile is likely due to the influence of immobility on GPS-tracked
travel rates, causing significant travel rate variability in the low-end
travel rate data. In Fig. 4, particularly on lower slopes, there are sig-
nificant number of travel rate records at or near zero m/s, which sug-
gests people were likely taking a break in activity, but not stopping
their GPS data collection. The lower accuracy at the highest percentiles
is likely due to a combination of two factors: (1) the vertical spread in
the raw data, particularly on lower slopes exemplified in Fig. 4, likely
due to errors in data collection or aggregation; and (2) the fact that
running and sprinting travel rates tend to be highly variable between

Fig. 5. Laplace, Gauss, and Lorentz function parameter examples.
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individuals, especially when compared to walking travel rates. There
are some important differences between the models as well. Laplace
tends to outperform Gauss and Lorentz at a relatively narrow range of
low travel rates (10th – 25th percentiles), whereas Lorentz tends to
outperform Laplace and Gauss at a relatively wider range of moderate-
fast travel rates (30th – 95th percentiles). Averaged out over the entire
range of percentiles tested, Lorentz produced the best results
(R2ave= 0.958; MAEave= 0.078m/s), followed by Laplace
(R2ave= 0.953; MAEave= 0.088m/s), and Gauss (R2ave= 0.949;
MAEave= 0.090m/s).

Notably, the travel rate prediction errors that result from the three
functions differ throughout the range of percentiles and the range of
slopes (Fig. 9). As mentioned earlier, Laplace tends to outperform Gauss
and Lorentz at lower travel rate percentiles. This can also be seen in
Fig. 9, where Laplace 10th – 30th percentile model residuals are fairly
evenly distributed throughout the range of slopes. However, at higher
percentiles, Laplace tends to increasingly and significantly overestimate

travel rates on the fastest (slightly downhill) slopes, as evidenced by the
strong black peaks between −5° and 0°. This is due to the peaked
nature of the Laplace function. Also at higher percentiles, the sharp
decreases in travel rate that occur on either side of the Laplace peak
tend to result in underestimation of travel rates, on moderately steep
downhill slopes (∼−15° to −5°) and especially slightly uphill slopes
(∼0°–10°). Lastly, at higher percentiles, Laplace tends to overestimate
on fairly steep slopes (∼−25° to −15°; 10°–20°), and underestimate on
very steep slopes (∼<−25°;> 20°).

The Gauss-based models possess very similar patterns of error along
the slope axis throughout all of the percentiles tested. They are char-
acterized by the following trends: (1) underestimation at slightly
downhill slopes (∼−5°–0°), due to the rounded peak of the bell curve;
(2) overestimation on either side of the rounded peak (∼−15° to −5°;
0°–10°) due to the width of the rounded peak; (3) underestimation on
moderately steep slopes (∼−25°–15°; 10°–20°) due to the sharp de-
crease from the rounded peak; and (4) overestimation on very steep

Fig. 6. Optimal terms for travel rate percentile models (1st to 99th) for the Laplace, Gauss, and Lorentz functions, where the solid red line indicates the model term
and the dotted black lines indicate the terms' standard errors. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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slopes (∼<−25°;> 20°) due to the flattening of the tails.
The Lorentz-based model residuals are similar in form to those of

the Gauss-based models, but the magnitude of their over- and under-
estimations are generally lower. In fact, it appears that the Lorentz
models tend to balance out the model residuals throughout the range of
slopes the best out of the three.

Although the Strava data contained no mention of the specific mode
of travel (e.g. walking vs. jogging vs. running), and no physiological
information to suggest level of energy exertion (e.g. heartrate), a
comparison of our modeled results to existing travel rate functions re-
vealed notable similarity between the results of other, walking/hiking-
based studies and the lower travel rate percentiles from our study
(Fig. 10). None of the existing functions matches any of the individual
Lorentz-based modeled percentiles exactly, but that of Irmischer and
Clarke (2018) comes the closest to the 5th percentile. This is likely due
to their large sample size (N=200) and the use of a Gaussian function,
which is similar in form to Lorentz. With the exception of the anom-
alous Langmuir (1984) corrections, Campbell et al. (2017)'s travel rates
are higher than any of the other functions for the entire slope range,
even though they were based on a walking experiment. This is likely
due to the very short distances traversed by study subjects (100m), the
associated lack of a fatigue effect, and the quadratic function used to
model slope effects. The functions of Tobler (1993, p. 24), Naismith
(1892), Rees (2004) all tend to underestimate walking travel rates on
steeper slopes.

Fig. 11 illustrates the results of the travel time simulation on the
Lake Blanche Trail. According to these simulations, moving at the
slowest modeled rate (1st percentile) results in a total travel time of
approximately 5.5 h, which is over 6 times longer than that of the
fastest rate (99th percentile), at approximately 0.9 h. With the excep-
tion of Campbell et al. (2017), most of the existing travel rate functions
resulted in travel times similar to that of the Lorentz-based 5th per-
centile model, with Tobler (1993, p. 24), Naismith (1892)-Langmuir
(1984), and Rees (2004) resulting in slightly longer travel times than
the 5th percentile, and Irmischer and Clarke (2018) resulting in a
slightly shorter travel time. Campbell et al. (2017) is a clear outlier,
with a resultant travel time that closely approximates the Lorentz-based
45th percentile model. This is probably due to the fact that the
Campbell et al. (2017) experiments were conducted on short, 100m
transects. Thus, the study subjects were prone to faster travel than they

Fig. 7. Best-fitting models predicting travel rate percentiles (1st to 99th) for the Laplace, Gauss, and Lorentz functions based on slope.

Fig. 8. Accuracy assessment results for the best-fitting models predicting travel
rate percentiles (1st to 99th) for the Laplace, Gauss, and Lorentz functions
based on slope, including model fit (R2) and mean absolute error.
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would on a longer hike.
Existing travel rate functions do not quantify the significant varia-

bility in travel rates within a population. Fig. 12 demonstrates varia-
bility in walking/hiking travel rates, representing a distribution of total
travel times of real hiking data gleaned from the Lake Blanche Trail GPS
tracks (n=100) found on AllTrails.com. Although all of the tracks
were self-reported to be classified as “hiking” (rather than other
AllTrails.com categories such as “backpacking” or “trail running”), the
resulting travel times ranged widely from 1.9 h to 5.6 h. These extremes
corresponded most closely with the simulated travel times of the 55th
and 1st percentiles from the Lorentz-based models, respectively
(Fig. 12). The mean hiking travel time from the validation data was
about 3.7 h, which was closely approximated by both the Lorentz-based
5th percentile model and Irmischer and Clarke (2018), with the former
predicting slightly slower travel, and the latter predicting slightly
faster. According to these data, the Lorentz-based 1st percentile could
be used as a representative for the extremely slow end of the travel rate
spectrum, the 5th percentile could be used as a representative for
average hiking rates, and, depending on level of energy exertion,

anywhere between the 10th and 55th percentiles could be used to re-
present increasingly-fast hiking.

5. Discussion

The slope-travel rate models we have presented in this research are
based on the most comprehensive database of travel rate records known
to the authors in the scientific literature at the time of writing. As such,
we have provided perhaps the most generalizable and broadly-applic-
able set of functions for estimating travel rates and times along trails to
date. We have presented these models based on three different math-
ematical formulations, which, although statistically-similar, can pro-
duce notably different travel rate and time estimates, particularly over
longer distances. To predict walking travel rate as a function of slope
we suggest applying the Laplace and/or Lorentz models shown in Eqns.
(12) and (14), respectively, along with the optimal model terms found
in the supplemental material. If a single, flexible travel rate function is
desired, then we suggest applying the Lorentz function Eqn. (14), given
its superior performance at the 5th percentile, which most closely

Fig. 9. Model residuals for a selection of the best-fitting models predicting travel rate percentiles (10th – 90th, by 10) for the Laplace, Gauss, and Lorentz functions
based on slope. Black areas represent model overestimation; white areas represent model underestimation.

M.J. Campbell, et al. Applied Geography 106 (2019) 93–107

103

http://AllTrails.com
http://AllTrails.com


Fig. 10. Comparison of the Lorentz-based travel rate percentile models to the existing travel rate functions depicted in Fig. 1.

Fig. 11. Comparison of simulated travel times for hiking the Lake Blanche Trail out and back with elevation profile.
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matches the existing travel rate functions (Fig. 11) and the average
hiking rate from our validation dataset (Fig. 12), as well as its superior
performance at higher percentiles (30th – 95th). At moderately low
travel rates (10th – 25th percentile), Laplace (Eqn. (12) appears to
produce the most reliable predictions.

One of the main strengths of this research – the use of a massive
database of crowdsourced GPS-tracked travel rates – is also a source of
several potential complications. For example, the anonymity of the data
we received from Strava does not allow for a nuanced demographic
analysis. Accordingly, we were unable to generate a separate function
for males vs. females, younger users vs. older users, high vs. low body
mass index, etc. Individuals may have a difficult time understanding
where they fit relative to an anonymous body of Strava users, thus
limiting their ability to confidently place themselves into one percentile
or another. However, instead of trying to fit precisely into a percentile,
these models can be used to present a range of travel rates and times.
For example, if a wildland firefighter were using a mobile application
geared towards estimating time to safety (Campbell et al., 2017), per-
haps he or she would want to err on the side of caution, and assume a
1st-10th percentile travel rate. Similarly, if a search and rescue team
was trying to estimate the time it would take to reach an injured hiker
with a time-sensitive, life-threatening injury (Ciesa, Grigolato, &
Cavalli, 2014), they would be able to estimate a range of possible ar-
rival times (e.g. best case scenario at 99th percentile; worst-case sce-
nario at 1st percentile) and determine the chances of survivability.
Alternatively, if an elite trail runner were trying to predict their race
results, perhaps he or she would want to use a high percentile model
better calibrated to their level of athletic ability. In addition to these
examples, our hope is that in any of the existing application areas in

which terrain-based least cost path modeling is employed (e.g. ar-
chaeology, urban evacuation, social network analysis), the improved
slope-travel rate effects that we have modeled will improve the accu-
racy of simulated human movement.

Another shortcoming of the anonymity of the database is the fact
that we have no identifying information to determine how far some-
one's entire hike or run was; we only have the segment of trail and the
time traversed on a given segment. We know that the median travel
distance and time were about 6.5 km and 49min, respectively, among
the entire study population, but we do not have these data on a per-
activity basis. This is problematic because distance traveled can affect
travel rates. Fatigue will reduce travel rate over time. Also, someone
running a trail marathon would run more slowly than someone
sprinting up a short section of trail, to maintain a consistent level of
energy expenditure.

Although this research is based on a very large database of GPS
tracks drawn from a wide range of activities performed by an age- and
gender-diverse population (Table 3), it is important to consider the
degree to which data from a fitness tracking application such as Strava
are representative of “normal” pedestrian activities. As Barratt (2017)
points out, Strava, and other GPS-based fitness tracking, social media-
driven mobile applications can introduce a level of competition be-
tween users, which can act to increase the level of intensity with which
they pursue a given activity. In effect, this can result in an upward bias
of travel rate data gleaned from these applications. Thus, particularly
for the higher-percentile travel rates, it is certainly possible that our
predictive models are representative of a higher-than-average level of
exertion. In the absence of associated physiological data, such as heart
rate and/or oxygen consumption, there is no way to normalize travel

Fig. 12. Histogram of the Lake Blanche Trail hike travel times from selection of GPS tracks (n=100) obtained from AllTrails.com as compared to simulated travel
times. Circles with numbers represent Lorentz-based travel rate percentile results. Squares with letters represent existing travel rate functions (C = Campbell et al.
(2017); I = Irmischer and Clarke (2018); T=Tobler (1993, p. 24); N = Naismith (1892) with Langmuir (1984); R=Rees (2004)).
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rates for exertion level.
The data we received were noisy, as is evident in Fig. 4 by looking at

the vertical spread in travel rate records, particularly on low slopes. We
attempted to remove outliers by cutting travel rates off at 10m/s, but it
is still very likely that some records are erroneous. There could be many
causes for these errors, including GPS error, user error, and application
error, but unfortunately there was no way to determine the specific
causes and remove them accordingly. However, given the size of the
database and the vast number of non-erroneous records contained
therein, we believe that these outliers bore little effect on the modeling
results.

There are, of course, many variables that affect travel rates other
than slope, some of which are intrinsic (e.g. fitness level) and im-
possible to study using an anonymous database, but others of which are
extrinsic and potentially able to be studied using our dataset. For ex-
ample, variables such as elevation, time of day, time of year, tem-
perature, humidity, precipitation, ground surface stability and rough-
ness, vegetation density, and others could potentially be explored in the
future using similar data.

6. Conclusions

In this paper we have presented a statistically-robust and flexible set
of functions for predicting pedestrian travel rates as a function of ter-
rain slope based on a vast, crowdsourced database of GPS tracks com-
piled and provided by the popular fitness application, Strava. We aim
for these functions to serve as a reliable and accurate basis of travel rate
and time estimation moving forward, applicable in any of the abundant
disciplines in which terrain effects are of interest, be it the estimation of
the time it will take for a wildland fire crew to access a safety zone, a
search and rescue crew to reach an accident victim, or a trail runner to
complete a race. Although widely-cited, the shortcomings of the sci-
entific approaches that led to THF and Naismith's Rule, in particular,
may render them less effective than the broadly-applicable set of
functions we have presented. Specifically, if a single travel rate function
is desired across the gamut of travel modes, we recommend applying
the Lorentz-based models, with the 5th percentile being most appro-
priate for hiking travel rates. Higher-percentile models should be used
for applications where a higher level of physical exertion (e.g. jogging,
running, sprinting) is anticipated, but specific percentiles must be se-
lected based on a careful calibration to one's own travel rate. To build
upon our work, future research should aim to quantify important
variables such as load carriage, travel distance fatigue, and link the
travel rate percentiles back to quantifiable measures of energy ex-
penditure and mode of travel.
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