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ABSTRACT

In recent years, neuromorphic computing systems (NCS) have
gained popularity in accelerating neural network computation be-
cause of their high energy efficiency. The known vulnerability of
neural networks to adversarial attack, however, raises a severe se-
curity concern of NCS. In addition, there are certain application
scenarios in which users have limited access to the NCS. In such
scenarios, defense technologies that require changing the training
methods of the NCS, e.g., adversarial training become impracticable.
In this work, we propose AdverQuil - an efficient adversarial detec-
tion and alleviation technique for black-box NCS. AdverQuil can
identify the adversarial strength of input examples and select the
best strategy for NCS to respond to the attack, without changing
structure/parameter of the original neural network or its training
method. Experimental results show that on MNIST and CIFAR-
10 datasets, AdverQuil achieves a high efficiency of 79.5 - 167K
image/sec/watt. AdverQuil introduces less than 25% of hardware
overhead, and can be combined with various adversarial alleviation
techniques to provide a flexible trade-off between hardware cost,
energy efficiency and classification accuracy.

CCS CONCEPTS

« Computing methodologies — Cognitive science; Neural net-
works; « Hardware — Neural systems;

1 INTRODUCTION

Deep neural networks (DNNs) have achieved a remarkable success
in real-world applications such as image and audio recognitions, nat-
ural language processing, and semantic understanding [1][2][3][4],
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etc. These deployed DNNSs often have a large number of parame-
ters and involve extensive computations. However, performance
of conventional computing hardware that based on von Neumann
architecture is greatly hindered by the increasing gap between high
computing capacity and limited memory bandwidth.

Inspired by the insight of neural science, neuromorphic com-
puting systems (NCS) are proposed to accelerate computations of
neural networks. Neurons/axons and synapses are two basic units
of a NCS. Similar to biologic neural networks, a NCS is composed
of a large amount of parallel, extensively connected neurons/axons.
Such a design offers a high computation efficiency and is often able
to be reconfigured to various complex DNN models such as convolu-
tional neural networks (CNNs) [5]. As a recent important research
outcome, the IBM TrueNorth Neurosynaptic System that built on
so-called IBM TrueNorth chip(s) can perform an event-driven hand
gesture recognition in real-time with a power consumption less
than 200mW [6].

However, recent studies show that many machine learning mod-
els including DNNs are vulnerable to adversarial examples - a type
of malicious inputs crafted with slight perturbations [7] [8]. From
a security perspective, the attack to the machine learning model
using adversarial examples is often referred to as adversarial at-
tack [9][10]. In addition, recent studies also show that adversarial
attack has a certain level of transferability, i.e., an adversarial attack
that is harmful to one model may be also harmful to the others [11].
For instance, [12] demonstrates that adversarial attack has a wide
transferability to fool ResNet, VGG and GoogleNet.

To protect machine learning model from being attacked by adver-
sarial examples, many defense methods have been proposed, such as
adversarial training, ensemble model and cascade model [7][13][14].
These methods can recover the model accuracy from the degrada-
tion caused by the attack. However, there are multiple things are
overlooked in these technologies.

First, many of these defense methods such as adversarial training
require the changes of training process of the DNN models, includ-
ing training samples, model parameters, and model configuration.
Hence, the applicability of these methods is constrained by the
accessibility to the DNN model and the training examples, which
are often limited by intellectual property and other considerations;
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Second, computation workload, hardware implementation cost,
and energy consumption of these defense methods have not been
carefully optimized as these performance metrics are usually not
the primary concerns of the target applications. Such a design phi-
losophy greatly hinders the deployment of these defense methods
in edge and mobile applications.

In this work, we propose AdverQuil — An efficient adversarial
detection and alleviation technique for black-box NCS. Compared
to the existing defense methods to adversarial attack, AdverQuil
has the following unique properties and advantages:

(1) AverQuil can identify the adversarial strength of input exam-
ples and guide the NCS to select the best strategy to respond
to the attack. No changes in the parameters, the configura-
tion and the training method of the protected DNN model
running on the NCS are needed,;

(2) AdverQuil treats the protected DNN model as a black-box
during the adversarial strength detection process and does
not need any information about the DNN model. This design
offers a great flexibility in the deployment of AdverQuil;

(3) AdverQuil is transparent to the protected DNN model and
can be combined with other defense methods (either black-
box or white-box), e.g., spatial smoothing and adversarial
training for an enhanced protection;

(4) AdverQuil enables a flexible design framework to explore the
tradeoff between protection effectiveness and the hardware
and energy costs.

The rest of this paper is organized as follows: Section 2 gives
background about NCS and adversarial attack on DNN model; Sec-
tion 3 and 4 present the motivation and design details of AdverQuil;
Section 5 shows our experimental results and discussions; Section 6
concludes our work.

2 BACKGROUND

2.1 Neuromorphic Computing System

Neuromorphic Computing System (NCS) was originally referred to
as the hardware that mimics neuro-biological architectures to im-
plement models of neural systems. The concept was then extended
to computing systems that can run bio-inspired computing models,
e.g., neural networks. IBM Neurosynaptic System is a famous NCS
that is built on a neuromorphic ASIC chip named TrueNorth. Unlike
conventional von Neumann architectures where data processing
and storage are separated, a TrueNorth chip is composed of 4,096
highly parallel and connected neurosynaptic cores. Every neurosy-
naptic core consists of 256 input axons and 256 output neurons that
are connected with a 256X256 synapse crossbar. The input to the
TrueNorth chip is encoded as spikes. By leveraging the ON/OFF
state of a pair of neurons, the weight represented at each cross-point
of the synapse crossbar can be selected from {-1, 0, 1}. A floating-
point input can be approximated by the occurrence probability of
the spikes during a time frame, and a floating-point weight can
be approximated using multiple hardware copies of the synapse
crossbar. The output from the synapse crossbar is processed by an
activation function circuitry [15][16][17][18].
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Figure 1: Executing neural Networks on TrueNorth.

An artificial neural network’s operation can be generally de-
scribed as:
y=Wwx
a=f(y).
Here y is an inner product of a weight vector (w) and an input
vector(x). f(:) is a nonlinear activation function. As shown in Figure
1, to map an artificial neural network to TrueNorth neurosynap-
tic cores, we quantize the weight (w) and input vector (x) to w’
and x’, respectively. Assuming McCulloch-Pitts neuron model is
adopted, the corresponding stochastic operation on TrueNorth can
be represented by Equations (2) - (5) as:

1)

n—1
y'= ) wix], )
i=1
P(W{ i Ci)_: pi )
P(w; =0) =1-p;,
pi = wi/ci, 4
P(x] =1)=x;
’ ‘ 6)

P(x;=0)=1-x;.

Here, i is the index of an input and its weight. Equation (3)
explains the ON/OFF state of the synapse follows the Bernoulli
distributions with probability p;. That is to say, if the synaptic
connection is ON, a value c; is assigned as its weight, otherwise the
synapse is in an OFF connection with a weight of 0. Equation (4)
assures that the expected value of the synaptic weight in TrueNorth
equals the corresponding weight in the mapped ANN. In Equation
(5), the input x is transformed to a bitstream of 0 and 1 and therefore,
the probabilities of x] = 1 and x] = 0 are x; and 1 — x;, respectively.

2.2 Adversarial Attack on a NCS

Adversarial attack denotes the method of adding an impercepti-
ble perturbation to input examples (i.e., adversarial examples) to
mislead a learning-based model. An adversarial example % can be
generated by injecting perturbation 7 to the original input sample
x such as £ = x + 17 [7]. The linear transformation of X with respect
to a given weight vector w can then be expressed as:

WX = WX + W1 6)



For a fixed adversarial perturbation, wX increases linearly with the
dimensionality of w. Since the dimensionality of w is high in practi-
cal problems, a minor perturbation 1 could induce a large change of
wxX. The adversarial example, hence, may be mistakenly recognized
as a wrong class. Adversarial attacks can also be implemented on a
NCS. In TrueNorth, for example, a perturbation w;#n; can be added
to each w;x;. By injecting a perturbation, the summation term, 7,
is therefore perturbed to y’ as:

n-1
Yy = Z wl{xlf + w{r]i. (7)
i=0

Now we have to prove that the expected value of y’ equals
wx + wr. Suppose w’ and x’ are independent, the expectation of y’
can be computed as:

n-1 n-1
E{y'} = B{ ) wix/} +E{ ) winj}. ®)
i=0 i=0

Since w; equals p;c; based on Equation (4), we have:

n—1 n—1
E{y'} = ZPiCixi + Zpicmi
i=0 iz0

n-1 n-1
i=0 i=0

= WX + w7

©

The above explanation indicates that added perturbation would also
be implemented on the IBM Neurosynaptic System, i.e., an adver-
sarial example can be represented as a series of spikes that disguise
as a legitimate data but cause TrueNorth chips unable to classify
it correctly. This conclusion will be experimentally validated in
Section 3.

2.3 Existing Detection and Defense Methods

Many approaches have been proposed to defend adversarial attack.
Here we list three methods most relevant to our work.

(1) Spatial Smoothing: Spatial Smoothing is one kind of image
pre-processing techniques that blurs the input image in order
to suppress the noises on the image [19]. The low computa-
tion cost of spatial smoothing make it ideal for low-power
and cost-sensitive applications.
Cascaded Structure: Recent studies show that cascading mul-
tiple base classifier can improve the overall classification
accuracy [20]. Theoretically, similar structure can also be
applied to improve the robustness on a NCS by cascading
multiple subnetworks. However, such a cascaded structure
inevitably increases the hardware overhead and prolong the
data processing latency.

(3) Adversarial Training: It has been shown that the resilience of
learning models to adversarial attack can be enhanced by be-
ing trained with adversarial examples [7]. Grouping normal
and adversarial examples into the training dataset, for exam-
ple, can enhance the resilience of the learning model [21].
Since the training dataset has been changed, adversarial
training indeed alters the parameters of the learning model

—
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-
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(c) images with
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(a) original
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Figure 2: The MNIST dataset with different types of noises.
The examples with adversarial noise and Gaussian noise
share some similarities.

from the original ones that are obtained from the original
training dataset.

3 MOTIVATION

Although many approaches have been proposed to defend adver-
sarial attack, almost all of these approaches will either degrade the
model accuracy of classifying the non-adversarial testing examples,
or drastically increase hardware overhead. Therefore, when to ap-
ply these approaches becomes the essential to achieve a successful
defense. In this section, we will present the motivation of our work
through the analysis of the limitations of two existing adversarial
defense methods - spatial smoothing and adversarial training.

3.1 Spatial Smoothing’s Limitations

Because adversarial examples are generated by injecting perturba-
tions into the original examples, the adversarial examples appear
as the images contaminated by noises, as depicted in Figure 2.

Spatial smoothing is a nonlinear noise suppression technique
that amortizes the noise through averaging the pixel values of the
images. In spatial smoothing, every image pixel is replaced with
the median value of its neighbor pixels. Spatial smoothing has been
proven capable of reducing Gaussian noise on the images [19].

By considering the perturbation injected to the adversarial ex-
amples as a type of noises, spatial smoothing can be also applied to
filter out such (adversarial) noises before the images are sent to the
classifier for classification. Such a mechanism does not require any
changes on the classifier and hence, is applicable to black-box adver-
sarial defense scenario. During the application of spatial smoothing,
we need to find out the best filter size that results in the most ef-
fective protection of the model against the adversarial attack (e.g.,
using training dataset).

Figure 3 illustrates the classification accuracies of the test exam-
ples with different adversarial strengths without (‘Original’) and
with (‘Spatial smoothing’) spatial smoothing for both MNIST and
CIFAR-10. When the adversarial strength is high, adding spatial
smoothing produces a better accuracy than the original model, im-
plying that the adversarial noises are effectively filtered out. When
the adversarial strength is low, however, the accuracy of applying
spatial smoothing becomes lower than that of the original model.
This is because that in such a case, spatial smoothing blurs the
images that being classified and leads to an accuracy degradation
larger than the one recovered from the adversarial attack when the
adversarial strength is small.
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Figure 3: The classification accuracies before and after ap-
plying spatial smoothing under adversarial attacks with dif-
ferent adversarial strengths on a) MNIST and b) CIFAR-10.
Spatial smoothing harms the model accuracy when adver-
sarial strength is low.

3.2 Adversarial Training’s Limitations

We also perform adversarial training on the learning models adopted
in Figure 3 and compare the results to the ones of original mod-
els, as shown in Figure 4. Here the adversarial strengths adopted
during the adversarial training £=0.05 (for MINIST) and £=0.03 (for
CIFAR-10), respectively. Similar to the spatial smoothing, adver-
sarial training performs worse when the adversarial strength of
the adversarial attack is low. It is because that adversarial training
harms the intrinsic classification accuracy of the learning model
on the original test examples.

The results in Figure 3 and Figure 4 demonstrate that many ex-
isting defense methods work effectively over only limited ranges
of the adversarial strength under the adversarial attack and gener-
ally perform badly on the non-adversarial test examples. To solve
this problem, we have to accurately identify when these defense
methods should or should not be applied.

4 PROPOSED METHOD

In this section, we explain how to utilize the advantage of a NCS and
combine with our proposed method to defend against adversarial
attack. The following sections are organized as follows. First, we
set up the adversarial environment in a real-world scenario by
adopting various types of adversarial attacks. Second, we introduce
the workflow of AdverQuil. Finally, we explain the function and
outcome of each component.

4.1 Robustness in a Real-world Scenario

Previous studies only consider an ideal scenario of adversarial attack
[22]. However, in a real-world scenario, an adversarial attack can
be any type. Therefore, in out experimental setup, we consider
multiple adversarial attacks to simulate the real-world scenario. In
particular, we adopt the following three attacking methods with a
wide range of strength to testify the robustness in different aspects.
(1) Gaussian noise attack: To test whether the model is robust to
natural noise, we adopt Gaussian noise as one of the attack
methods. Gaussian noise is commonly exist and continuous.

H. Cheng et al.

— Original — Adversarial Training Network

100%
E; 80%
.,
§ 60%
<

40%

MNIST | CIFAR-10 |
Adversarial Adversarial
0« Strength — 03 0« Strength —0.16

Figure 4: The classification accuracies of original model and
adversarial trained model under adversarial attacks with
different adversarial strengths on a) MNIST and b) CIFAR-
10. The adversarial strengths adopted during the adversarial
training network ¢=0.05 (for MNIST) and ¢=0.03 (for CIFAR-
10), respectively. Adversarial training performs badly when
the adversarial strength is low.

This adversarial example is easy to be generated and we

assume NCSs are robust to Gaussian noise to some extent.
(2) Fast gradient sign method (FGSM): The main idea of FGSM is
that the adversarial example can be crafted by adding a per-
turbation orthogonal to the classification model’s decision
boundary. This perturbation causes the example to cross to
another class. Since most of the machine learning model
has a similar shape of decision boundary, it is very likely
to transfer adversarial example from one model to another.
We use this method to test whether a model is robust to
adversarial examples transferred from a different model.
Carlini & Wagner method (CW): CW attack is a recently
proposed effective attacking method [23]. It iteratively con-
struct the adversarial example by solving the minimization
problem as:

—
w
=

minimize D(x,x + 1)

sit. Clx+n) =t (10)

Here D is a distance measurement metric that measures the
distance between legitimate example, x, and adversarial x +7.
By iteratively minimizing the distance and also satisfying
the constrain, this method demonstrates a strong attack to
the machine learning model

In this paper, the above three attack methods are utilized to testify
whether a NCS is robust to natural noise, common adversarial
examples, and strongest adversarial examples, respectively.

4.2 Structure of AdverQuil

The proposed AdverQuil framework can be conceptually depicted
in Figure 5. AdverQuil is composed of three main components -
spike-efficient encoding, adversarial detector, and alleviation. These
components are serially connected to perform the function.
(1) Spike-efficient encoding: Spike-efficient encoding is a novel
spike encoding method that specifically designed for the
adversarial detector allowing the adversarial detector using
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Figure 5: The workflow of AdverQuil.

less spike to efficiently distinguish adversarial attacks. This
method can be combined with other existing input coding
methods such as rate coding and time coding;

(2) Adbversarial detector: This component detects whether the
input is a strong adversarial example or a weak adversarial
example.

(3) Alleviation: We alleviate the impact of the adversarial at-
tack by adopting existing defense methods such as spatial
smoothing or adversarial-training.

The whole workflow of AdverQuil can be summarized as the
follows: An input example first passes through the adversarial
detector and is classified as either a weak adversarial example or
strong adversarial example. When the adversarial detector identifies
the input example as a strong one, it will be passed to the alleviation
part; Otherwise, it will be directly sent to the original classifier
without any special handling; It is worth noting that AdverQuil
is transparent to the embedded adversarial alleviation technique.
AdverQuial can effectively overcome the limited working range
issue of many adversarial alleviation techniques by guiding the
application of these techniques based on the adversarial strength of
the input examples. In addition, AdverQuil offers great scalability
and expandability by classifying the input examples into more than
one group, each of which that can be properly handled by different
adversarial alleviation techniques.

4.3 Spike-efficient Encoding

Spike-efficient encoding can be divided to a training phase where it
searches the adversarial examples’ saliency map, and a testing phase
which reorders the spikes according to their importance ranks. This
encoding method provides the adversarial detector an efficient

Less important for detector Best features for detector
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Figure 6: The best features have higher priority to be trans-
mitted
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scheme to encode the input examples with spikes, enabling less
communication cost and faster detection of the adversarial strength
of the input examples.

Without loss of generality, we denote the pixels of an input ex-
ample’s saliency map as the features of the input example. Suppose
we use a saliency map with a width of x;, we will have x? features.
With coding rate C, the total coding cost would be s(x;) = C - x2.
Therefore the saliency map width can be serve as a good metric of
the coding cost.

The goal of the proposed spike-efficient encoding scheme is to
find an optimum saliency map width (x*) of the input examples
which would lead to a minimum coding cost. We can write the
optimization objective as:

x* = argmin s(x;)

Xt

(11)
= argminC - x%.
Xt

During the search of the optimum spike number, we also need
apply a constraint to ensure that the adversarial detector’s accuracy
of A(x;) does not fall lower than its original accuracy A(xg). The
goal of the constrained optimization can then be rewritten as:

x* = argminC - x?
xe (12)
s.t. A(xg) — A(xy) < 0.

In practical, we may tolerate a small amount of accuracy loss
by penalizing the objective function with an additional term of
MA(xg) — A(xt)). Here A is a positive constant. The objective func-
tion can then be written in a Lagrangian as:

x* = argminC - x2 + A(A(xo) — A(x;)), A > 0. (13)
Xt

In the objective of Equation (13), the accuracy term A(-) may not
be convex and is hard to be optimized directly. Hence, we use greedy
search to find the optimal x; in the training phase of spike-efficient
encoding. As depicted in Algorithm 1, it greedily searches x; by
iteratively discarding the least important feature in the original
input. Here the importance of a feature is measured by weight
connection method [24].

We first use all the pixels as the features of an input example.
Since features that have small pixel variances generally carry lim-
ited information, we discard 10% of the features with the least
variances; We then train the adversarial detector using the rest
90% features. If the accuracy degradation of the trained adversarial
detector is still within the allowable range, we will repeat the above
steps; Otherwise, we will stop and use the feature set before the
10% reduction of the current iteration as the final choice x;.

In the testing phase, we reorder the sequence of the pixels based
on the choice of x;: the pixels belonging to saliency map of a width
of x; are place in the front while the other pixels are placed to the tail
of the bitstream, as shown in Figure 6. This encoding method allows
the adversarial detector to quickly identify adversarial examples

Table 1: The contribution of spike-efficient encoding.

Dataset MNIST CIFAR-10
spike saved 71.31% 43.75%
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Algorithm 1 Spike-efficient encoding

1: procedure TRAINING PHASE(feature, n)

2 Discard the features have lowest variance

3 // Use the rest of the features to train

4 // Decrease these features to n

5: while len(rest) > n do

6 features = features|rest]

7 // train the features with detector model
8 detector.train(features, y)

9 // Rank the remaining features

10: if detector.coed.ndim > 1 then

11 x; = sort(detector.coef's)

12: Discard the lowest rank features and repeat
13: return x;

14: procedure TESTING PHASE(feature, x;)

15: sort the features according to importance

16: encode with rate coding

without reading all the input spikes. Table 1 illustrates the saving of
the number of spikes for adversarial detection using the proposed
spike-efficient encoding scheme and adversarial detector.

4.4 Network Structure of Adversarial Detector

Without losing generality, we assume our designed adversarial
detector needs to classify the testing examples into two groups:

(1) Weak adversarial examples — the images without or with min-
imum adversarial perturbations so that they can be directly
processed using the original classifier;

(2) Strong adversarial examples — the images with large adversar-
ial perturbations so that they have to be specially processed,
e.g., passing through spatial smoothing or using adversarial
training network.

An efficient way to implement the adversarial detector is to
train a neural network that can classify the test examples into two
classes that corresponding to the above two groups, respectively. In
our work, for example, we use a simple neural network composed
of three convolutional layers and one fully connected layer. The
second and the third convolutional layers also serve as subsampling
or pooling layers with a stride size of 2. The output of the network is
Pour €10, 1}, where label 0 and 1 denotes weak adversarial examples
and strong adversarial examples, respectively.

4.5 Adversarial Detector’s Training Dataset

In our design, we construct the training dataset of the adversarial
detector with two parts: The first half are the training examples
from the original training dataset without adversarial perturbations.
Their labels are uniformly set to 0; The second half are the adver-
sarial examples with certain adversarial strength. Their labels are
uniformly set to 1.

In this work, we use the format Tp 4 to denote the training
dataset of the adversarial detector. Here D denotes MNIST or CIFAR-
10 and as denotes the adversarial strength that is used in adversarial
example crafting. For example, TpiN1sT 0.01 means that this de-
tector training dataset is crafted based on MNIST training dataset

H. Cheng et al.

Table 2: Detection accuracy vs. adversarial strength used in
training dataset construction on MNIST and CIFAR-10.

MNIST | CIFAR-10

Training set
TMNIST 0.04 0.54
TMNIST 0.05 0.99
TMNIST 0.06 1
TMNIST 0.07 1

Accuracy | Training set Accuracy
TcrFAR-10_0.06 051
TciFAR-10 0.07  0.53
TcIFAR-10 0.08 098

TcIFAR-10_0.09  0.99

and it has adversarial examples crafted with adversarial strength
of 0.01.

To investigate the best adversarial strength that is adopted in
adversarial example crafting for the construction of the training
dataset of the adversarial detector, we obtain the detection accuracy
of the adversarial detector with different training datasets, as listed
in Table 2. Here the adversarial test dataset is crafted from the same
dataset as that the training dataset were generated from. The adver-
sarial strength of the adversarial test dataset is the same as the one
used in the training dataset construction. As we can observe, the
detection accuracy quickly converges to 99% when the adversarial
strength that used in the training dataset construction increases. In
our design, we choose the minimum adversarial strength that gives
the acceptable accuracy in Table 2 for the training dataset construc-
tion of the adversarial detector. A higher adversarial strength will
degrade the detection accuracy on the adversarial test examples
with a low adversarial strength, i.e., 0.05 for MNIST dataset and
0.08 for CIFAR-10 dataset, respectively. After being trained with
the above datasets, the detector’s accuracy among all adversarial
strength is shown in Figure 7.

5 EXPERIMENT RESULTS

5.1 Evaluation Platform

We choose the IBM TrueNorth Neurosynaptic System as our evalua-
tion platform and implement different designs on the IBM TrueNorth
chip for design evaluations. Note that the highly parallel and uni-
form computing architecture of the TrueNorth chip provides a
much more representative case study of the NCS hardware cost
than conventional von Neumann architectures. All the experiments
are conducted on IBM development Eedn environment [25]. Our
baseline designs use the exemplary networks from the Eedn plat-
form that are carefully tweaked and trained: The MNIST baseline
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Figure 7: Adversarial detection accuracy.



== Original = Spatial Smoothing
AdverQuil with Spatial Smoothing

100"
§ 80%
g
3 60%
Q
<
40%
MNIST | CIFAR-10 |
Adversarial Adversarial
0+ Strength — 03 0+ Strength —0.16

(a)

ASP-DAC 2019, Jan. 2019, Tokyo, Japan

= Original = Adversarial Training Network
AdverQuil with Adversarial Training Network

1007 fuosns
s .F
< g% o
? 80 &
2 60%
Q
<

40%

MNIST | CIFAR-10 |
Adversarial Adversarial
0« Strength — 03 0+ Strength —0.16

(b)

Figure 8: (a).Overall accuracy comparison with original classifier, spatial smoothing and AdverQuil with spatial smoothing.
(b). Overall accuracy comparison with original classifier, spatial smoothing and AdverQuil with adversarial training network.

network is composed of 2467 neurosynaptic cores with a classifi-
cation accuracy of 99.3%, while the CIFAR-10 baseline network is
composed of 4042 neurosynaptic cores with a classification accu-
racy of 83.1%.

5.2 Hardware Cost

We implemented the different components of AdverQuil on the IBM
TrueNorth Neurosynaptic System. The corresponding hardware
costs of these designs in the unit of ‘core count’ are summarized
in Table 3. Here the column ‘TrueNorth Utilization’ shows the
utilization rate of the IBM TrueNorth chip. In general, the hardware
cost of the adversarial detector (‘Adv. Detr’) is less than one quarter
of the classifier for both MNIST and CIFAR-10. Our result also shows
that the extra hardware cost of the spatial smoothing is negligible,
that is, the total cost of AdverQuil with the spatial smoothing is
almost the same as the combination of both the adversarial detector
and the classifier.

5.3 Adversarial Alleviation Options

As aforementioned, AdverQuil can adopt different adversarial al-
leviation techniques. In this work, we use spatial smoothing and
adversarial training as two examples of the adversarial alleviation

Table 3: Hardware cost comparison.

TrueNorth
Network Core count Utilization
MNIST Adv. Detr. 477 11.64%
MNIST Classifier 2467 60.23%
CIFAR-10 Adv. Detr. 1002 24.46%
CIFAR-10 Classifier 4042 98.68%

Table 4: Filter size optimization of spatial smoothing based
on the accuracy recovery.

Filter Size 2Xx2 3x3 5%5
MNIST 24.79% 23.16% 8.14%
CIFAR-10 6.17% 8.68% -4.39%

techniques to demonstrate some possible design explorations of
AdverQuil.

When spatial smoothing is adopted, the filter size must be opti-
mized to achieve the best noise filtering effect. Table 4 presents the
model accuracy recovered by spatial smoothing with different filter
sizes under an adversarial attack where the adversarial strength
is £ = 0.3 for MNIST or ¢ = 0.16 for CIFAR-10, respectively. As can
be seen from the table, the best filter size is 2 X 2 for MNIST and
3 % 3 for CIFAR-10, respectively. Figure 8(a) shows the accuracies of
the original classifier, the classifier with spatial smoothing prepro-
cessing, and the AdverQuil with spatial smoothing. As expected,
the AdverQuil achieves the highest accuracy over the concerned
adversarial strength range and outperforms any other two designs.

Similarly, we also need to identify the optimal adversarial strength
that is used for adversarial training. Here we adopt the method
from [21] to identify the optimal adversarial strength and the cor-
responding training dataset. The accuracies of different designs are
depicted in Figure 8(b), which demonstrates a trend very similar to
that of Figure 8(a).

We use the built-in power monitor of the TrueNorth Eedn plat-
form [25] to measure the energy consumptions of different compo-
nents of AdverQuil, as shown in Table 5. For comparison purpose,
we fix the execution time of TrueNorth to 1ms for all the tests, and
also list the energy consumptions of different design components

@ Spatial Smoothing @ Adversarial Training Network

Energy Efficiency

Energy Efficiency

Hardware Cost Accuracy  Hardware Cost Accuracy

Figure 9: The tradeoffs between hardware cost, energy ef-
ficiency and accuracy of two adversarial alleviation tech-
niques.
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Table 5: Performance comparisons on different hardware. !
TrueNorth GPU

Network Power Time Energy E.-Efficiency | Power Time Energy E.-Efficiency

MNIST Ady. Detr. 0.0059 1 0.0059 1.67 x 10° 30 0.076 2.28 437.0

MNIST classifier 0.0377 1 0.0377  2.65 x 10% 59 0.120 7.08 141.2

CIFAR-10 Adv. Detr. | 0.0125 1 0.0125 7.95 x 104 60 0.087 5.22 190.0

CIFAR-10 classifier 0.0526 1 0.0526 1.90 x 10% 120 0.356  42.72 23.4

IThe unit of power, time, energy and energy-efficiency (E.-Efficiency) is watt, ms, mJ and image/sec/watt respectively.

on both IBM TrueNorth chip and GPU (NVIDIA GTX 1080) in the
table. As we can see, AdverQuil uses less than 1/4 and 1/3 of the
energy compared to the classifier network on the IBM TrueNorth
chip and GPU, respectively. Not surprisingly, the IBM TrueNorth
neurosynaptic system demonstrates extremely higher energy ef-
ficient than GPU, e.g., more than 400X. As aforementioned, there
exists a tradeoff between hardware cost, energy efficiency and ac-
curacy for different adversarial alleviation techniques, as depicted
in Figure 9.

6 CONCLUSION

This paper introduces AdverQuil, an efficient adversarial defense
method to detect and alleviate adversarial attack for black-box neu-
romorphic computing system. AdverQuil eliminates the drawback
of existing adversarial alleviation techniques, say, the degraded
classification accuracy of non-adversarial images, by categorizing
the input images into different groups that are processed in strategy.
Besides, AdverQuil can detect adversarial attack with an energy-
efficiency up to 167k image/sec/watt (on MNIST) and increase the
hardware cost by less than 25%. AdverQuil can adopt various ad-
versarial alleviation techniques, offering very flexible trade-offs
between hardware cost, energy efficiency and accuracy.
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