MobiEye: An Efficient Cloud-based Video Detection System for
Real-time Mobile Applications

Jiachen Mao, Qing Yang, Ang Li, Hai Li, Yiran Chen
Duke University
{jiachen.mao,qing.yang21,ang.li630,hai.li,yiran.chen}@duke.edu

ABSTRACT

In recent years, machine learning research has largely shifted focus
from the cloud to the edge. While the resulting algorithm- and
hardware-level optimizations have enabled local execution for the
majority of deep neural networks (DNNs) on edge devices, the sheer
magnitude of DNNs associated with real-time video detection work-
loads has forced them to remain relegated to remote execution in
the cloud. This problematic when combined with the strict latency
requirements that are coupled with these workloads, and imposes
a unique set of challenges not directly addressed in prior works. In
this work, we design MobiEye, a cloud-based video detection system
optimized for deployment in real-time mobile applications. MobiEye
is able to achieve up to a 32% reduction in latency when compared
to a conventional implementation of video detection system with
only a marginal reduction in accuracy.

1 INTRODUCTION

Deep neural networks (DNNs) are now utilized in many applica-
tions on mobile, including automated speech recognition, natu-
ral language processing, object detection and classification, facial
recognition, and etc. Of these, real-time video detection systems
are among the most computationally-demanding tasks.

Input frames received by a video detection system may contain
multiple objects. This possibility imposes a significant increase in
resource requirements for two main reasons: 1) With the potential
for multiple objects within a single frame, the resolution of the
input image must be increased in order to reliably identify the
characteristic details within each object. 2) As an individual object
may occupy only a small section of an input frame, real-time video
detection systems actually involve the two separate tasks of object
localization and object classification.

Many attempts have been made to minimize "data-to-decision-
availability” latency in real-time video detection on mobile. For local
execution on the device itself, model compression has been explored.
By reducing the size of DNN models with various methodologies,
e.g. weight quantization [5], group lasso [16], or low rank [2], ex-
ecution speed can be increased. However, these techniques have
individually been shown to result in loss of classification accu-
racy for the underlying network. When it is considered that they

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 19, June 2-6, 2019, Las Vegas, NV, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6725-7/19/06...$15.00
https://doi.org/10.1145/3316781.3317865

would need to be used in unison in order to allow for real-time
computation on a mobile device, these solutions remain unideal.

The best existing solution for real-time video detection systems
on mobile relies on cloud computation, in which the mobile device
is only responsible for data collection, with all evaluative tasks (e.g.,
DNN inference) being performed server-side following transmis-
sion of the data [6]. However, a remaining challenge is that such a
client-server paradigm depends heavily on the capabilities of the
remote system, making it difficult to guarantee latency because of
dynamic server workload.

In this paper, we propose MobiEye, a cloud-based, real-time video
detection system optimized around reducing latency in cloud com-
putation contexts. MobiEye achieves this through novel advances
in both system- and algorithm-level design:

e We adopt Deep Feature Flow (DFF) in MobiEye and utilize
asynchronous computing methods, namely ADFF, to opti-
mize the execution pipeline of DFF from system-level.

e We propose Video-based Dynamic Scheduling (VDS) scheme,
which utilizes the motion vector in video decoding procedure
to dynamically adjust the inference frequency.

e We propose Spatial Sparsity Inference (SSI), which further
accelerates the inference time for each video frame base on
designed computation masks.

e We implement MobiEye components on both mobile and
server and evaluate it with state-of-the-art DNNs.

2 PRELIMINARY
2.1 DNN Model Profiling on Mobile Devices

Although DNNs allow for state-of-the-art accuracy when running
on high-performance platforms (e.g., FPGA, GPU, TPU), the lim-
ited computing resources available on embedded platforms (e.g.,
smartphones) limit DNN accuracy and/or viability in those con-
texts [12] [11]. Many prior works have focused on the speed-accuracy
tradeoff between different DNN model structures. Table 1 illustrates
the inference time of two representative DNNs [8][14] when run
on flagship smartphones, as well as their realized Top-1 accuracy
on the ImageNet dataset [9]. MobileNet [8] is an efficient network
structure designed for mobile devices, while Inception-v4 [14] rep-
resents state-of-the-art in accuracy. It can be seen that even the
highly-optimized MobileNet is limited to only 6fps on Pixel 2. Note
that the inference times in Table 1 are measured from image classi-
fication tasks, where the input image size and network complexity
is greatly reduced when compared to video detection.

Table 1: Profiling of 2 state-of-the-art DNN models.

Pixel 2 iPhone 8 Top-1 Acc Param Input Size
MobileNet 166.5 ms 32.2 ms 70.9% 17MB 224 X 224
Inception-v4 3180 ms 611 ms 80.2% 171MB 229 % 229

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

Video
Decoder

Detector

Meta Data | /.Asynchronous
DFF

3.SSI g

Figure 1: System overview of MobiEye.

2.2 Feature Map Sparsity in DNNs

Different from traditional model compression which focuses on
weight compression, feature map sparsity leverages the zeros in
feature maps to accelerate DNN inference. Many priors works ac-
celerate DNN execution based on the feature map sparsity derived
from the semantic content of input images. In [10], Li et al. convert
a DNN model into a cascaded structure for image segmentation
so that some simple objects can be identified in earlier cascaded
layers. In [4], Figurnov et al. proposed PerforatedCNNs, which skips
convolution operations utilizing a perforated mask, utilizing in-
terpolation to restore skipped feature maps. In SBNet [13], gather
and scatter operators are designed to compute only the sub-blocks
when a non-zero number in the feature map surpasses a threshold.

Compared to model compression, the advantage of feature map
sparsity with semantic properties (e.g., saliency) lies in the reduced
amount of modification to the underlying DNN structure. In Mo-
biEye, we design Spatial Sparsity Inference (SSI), which spatially
skips the feature map based on the proposed computation masks
to achieve speedup target with tiny accuracy loss.

2.3 Motion Vector in H.264 Video Codec

Considering the network bandwidth, video contents captured from
mobile camera are compressed before being distributed. H.264 is
a widely-used format, which is also known as MPEG-4 Part 10,
Advanced Video Coding [15]. The fierce compression rate of H.264
lies in its motion compensation scheme. H.264 gather several contin-
uous video frames in a group, referred as Group of Pictures (GoP).
Each GoP consists of one I frame ("I" for Intra) and multiple P and
B frames ("P" for Prediction or "B" for Bidirectional). I frame inde-
pendently encodes a complete frame, which serves as the reference
point for P and B frame in the same GoP. P and B frame only encode
the difference between frames and thus need less data size. The
video frame are divided into several macroblocks, serving as the ba-
sic unit for predicting the frame difference. The size of macroblock
are typically set to 16 X 16 in H.264. The difference between frames
are described by motion vector, including the source and destination
of all macroblocks. In this work, we adopt H.264 codec for efficient
communication between mobile camera and cloud execution under
wireless network such as Wi-Fi or LTE networks.

3 SYSTEM FRAMEWORK OF MOBIEYE

Figure 1 depicts an overview of MobiEye, which includes three
system-level and algorithm-level optimization methods:

(1) Asynchronous Deep Feature Flow (ADFF): A system-level
optimization of the DFF video detection framework [17] using multi-
threading method, which will be detailed in Section 3.2;

Jiachen Mao, Qing Yang, Ang Li, Hai Li, Yiran Chen

Feature Map
: » FeatNet == IIIIIIII' ===> Dets
Key Frame \\
X \/

=+ FlowNet =+ Propagation =% Dets

Inter Frame

Figure 2: Network architecture of DFF [17].

(2) Video-based Dynamic Scheduling (VDS): An algorithm-
level optimization which dynamically adjusts keyframe detection
rate based on metadata already present in H.264 encoded video,
which will be detailed in Section 4;

(3) Spatial Sparsity Inference (SSI): An algorithm-level opti-
mization which accelerates DNN inference by focusing only on
visual saliency areas, which will be detailed in Section 5.

3.1 Video Detection Framework (DFF)

We adopt a state-of-the-art video detection system: Deep Feature
Flow (DFF) [17] in MobiEye. DFF divides video frames into key
frames and inter frames. Key frames are detected with DNN while
inter frames use a comparatively smaller DNN to compare them-
selves with key frame, generating their feature map based on inter-
polation from the key frame feature map.

Figure 2 shows the architecture of DFF, which consists of three
networks: (1) Feature Network (FeatNet): FeatNet extracts the fea-
ture maps of the input frame utilizing ResNet-101 [7]. (2) Opti-
cal Flow Network (FlowNet): The most recent key frame and the
current inter frame are provided as input to FlowNet [3], which
calculates the spatial difference between the two frames in terms
of optical flow. (3) Propagation Function (Propagation): The key
frame feature map is propagated from the calculated optical flow
using bilinear interpolation, generating the feature map for the
current inter frame. Note that the computational cost of FlowNet
and the propagation function are much smaller than that of FeatNet,
causing average time consumption per frame to be most heavily
influenced by the key frame interval.

3.2 Asynchronous Computation (ADFF)

One limitation of DFF is that although it can achieve high framerate
on average, inference requires different computation time depend-
ing on whether the current frame is a key frame or an inter frame.
This is a result of the different network structures utilized by each
type of data. Such sequential execution is described in Algorithm 1,

Algorithm 1 Original Computation Procedure in DFF.

1: Init Keyframe Interval: i
2. for each Current Frame f;,, with Index idx do
3: if feur is keyframe then

4 Dets, featkey = FeatNet(f¢yr)

5 else if f;,, is interframe then

6: Dets = FlowNet(feur, fkey-featrey)
7 end if

8: end for

MobiEye: An Efficient Cloud-based Video Detection System for Real-time ...

..... Distance =6_---......

Thread 1 .—I—I—I—I—I—I".—I—I—I—I

0650 ZVOrlgmal Sequential Detection 0.65 0.25
<4 ---- KeyFrame Interval=7 =----p | € -Delay =3-%»
Vs
Threadl{ 1T — 1T — 1 —1—1—1—1-+ -1 — 1
- 02? Distance =9 ="
Thread 2 .‘ """"
_ 0.65 Proposed Parallel Detection

Figure 3: Original sequential execution of DFF (top) vs pro-
posed asynchronous execution of DFF (bottom).

and leads to unbalanced inference time, which is not desirable for
real-time applications.

Therefore, in MobiEye, we execute the feature network and opti-
cal flow network asynchronously. Figure 3 compares the original
sequential (top) with proposed asynchronous (bottom) execution
of DFF when the key frame interval is set as 7. In sequential execu-
tion, the first and eighth frame require 0.6s, while asynchronous
execution allows for an inference time of 0.2s for every frame. In
asynchronous execution, we set utilize two threads: one to execute
key frame inference and the other to execute inter frame inference.
Before the current key frame feature map is generated, the inter
frame uses the feature map of the last key frame and thus asyn-
chronously gets the detection results. By performing computations
asynchronously, detection latency only depends on the execution
time of the optical flow network and the transmission time of video
frames. Correctness is assured by utilizing a mutex to indicate when
the current key frame feature map is available. In the example of Fig-
ure 3, the feature map delay is 3 frames as FeatNet is approximately
3x slower then FlowNet. More formally,

Df _ {;FeatNet} (1)
FlowNet

where TrearNer and Trjo, Nep are the inference times for FeatNet
and FlowNet, respectively, [-] rounds up to the nearest integer, and

Algorithm 2 Asynchronous Computation in MobiEye (ADFF).

1: KeyframeThread (FeatNet, f;y,):
_ ,feat]izrynp = FeatNet(fcyr), threadLock.acquire()

»

3 featgey = feat;czmp, threadLock.release()

4: Init Thread Lock: threadLock, Keyframe Interval: i, Delay: d
5: for each Current Frame f;,, with Index idx do

6: if fcyr is the first frame in video then

7 Dets, featye, = FeatNet(feur)

8: else

9: if feur is keyframe then

10: thread = new KeyframeThread()

1t: thread.start(FeatNet, f), threadLock.acquire()
12: else if idx % i == d then thread join()

13: else if idx % i == d — 1 then threadLock.release()
14: end if

15: Dets = FlowNet(feur, frey.f€atkey)

16: end if

17: end for

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

nOiNGIONHIGIN 6N

Standard H.264 GoP Fncodmz Pattern
Ll\eslre 1mm o H. 7(:4 GoP Encoding Pattern in MobiEye

no[ain n

Figure 4: Standard H.264 GoP pattern (top) and adopted
H.264 GoP pattern in MobiEye (bottom).

of frames in a GoP

Dy is the feature map delay in terms of frame count. In practice,
Dy can be even smaller because of the communication overhead.
The details of ADFF are illustrated in Algorithm 2.

4 VIDEO-BASED DYNAMIC SCHEDULING

In DFF, key frames are selected at a set interval, regardless of the
underlying video data [17]. This overlooks the case where video
clips may contain long runs where there is very little change from
one frame to the next. In such a case, key frame interval can be
greatly increased without loss of accuracy, reducing the require-
ment for expensive key frame inference calculations. In MobiEye,
we design a Video-based Dynamic Scheduling (VDS) scheme to
dynamically determine whether the current frame is a key frame
or not. By adopting VDS, the feature map network is frequently
executed when the movement in video is fast, and rarely executed
when movement is slow.

4.1 H.264 Motion Vector Extraction

The key idea of capturing inter-frame movement quantity informa-
tion is based on the H.264 video codec. During server-side video
decoding, the motion vector of the frame is extracted at the same
time. The H.264 GoP pattern adopted in MobiEye is described in
the bottom of Figure 4, the top part of which shows a standard GoP
pattern. The GoP pattern of MobiEye does not include B frames as
the nature of live video streaming means the required information
from future frames is never available. Targeting dynamic key frame
scheduling, the number of reference frames is set to 1. In this way,
all P frames motion vectors are calculated based on a single prior
frame, as shown in the bottom of Figure 4. Note that motion vector
extraction incurs no additional computation cost as the motion
vector is already encoded as part of the H.264 video stream.

4.2 Video-based Dynamic Scheduling (VDS)

In order to achieve high efficiency, VDS is a simple scheduling
scheme. As described in Algorithm 3, VDS initializes the dynamic
frame interval ranging from fiipn to fimax, and the motion vector
magnitude from mvp, i, to mupyex. For each video frame, VDS cal-
culates a scalar mvmeqn, representing the mean of the magnitude
of the incoming mv,y,,. Following this, VDS maps mvmean to a
new key frame interval (fi.y,) using Min-Max linear mapping. We
utilize mvg¢c, the accumulated motion vector over several contin-
uous frames, to denote the total motion from the last key frame
until the current frame. When mugc. is larger then mvy, 4y, the
minimum frame interval (fimin) will be assigned to the current
frame interval (ficyr).

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

Algorithm 3 Video-based Dynamic Scheduling Scheme (VDS).

. Init Dynamic key frame interval range : fimin, fimax
: Init Motion vector value range : mvm,in, MUmax
: Init Accumulated motion value : movgee = 0
: for each new frame motion vector mv¢,, from key frame do
MUmean+ =Mean(Abs(mvcyr)), MUgce+ = MUmean
if mugee > Mumax then ficyr = fimin
end if
. . . . mo, —mo,
ficur = fimin + (fimax — fimin) * W

: end for

NI R B . e

5 INFERENCE WITH SPATIAL SPARSITY

In Section 4, temporal redundancy in video detection system is
eliminated via VDS. In this section, a method for removal of spacial
redundancy in video detection system is also detailed.

5.1 Spatial Sparsity Inference (SSI)

The key idea of Spatial Sparsity Inference (SSI) lies in skipping unim-
portant pixels in order to accelerate DNN execution. In MobiEye,
we design two computation masks, indicating the spatial position
to be skipped: (1) Computation mask based on feedback detec-
tion results: Note that, in DFF, the inter frame is detected based
on the key frame and the optical flow between these two frames.
Therefore, the background part of both frames need not be exam-
ined by FlowNet in DFF, as background movement would not affect
final detection results. Figure 5 shows an example of a feedback
computation mask, where only the region within the red bounding
box is executed. The red bounding box is defined by the detection
results from the key frame (green box), with an additional margin
of constant size. In MobiEye, we set Margin = 64 due to the fact
that the ratio between the spatial size of the input image and the
feature map of the last layer in FlowNet is 64 : 1. For the feedback
computation mask in SSI, the non-zero mask area grows with the
increase in interval frames between the last key frame and current
inter frame due to the expected increase in movement. (2) Compu-
tation mask based on brightness error: Feedback computation
masks reduce computational redundancies due to reprocessing of
the image background. However, they can not be applied when

Key ram Inter Frame

Brightness Error Mask

Figure 6: Brightness error computation mask.

Jiachen Mao, Qing Yang, Ang Li, Hai Li, Yiran Chen

Feature Map | Comp 1¢\/Iask Feature Map
1
|
1
[Conv | i [Mask to Indext—Index
12 . 12

Figure 7: Original layers (left) and layers in SSI (right).

feedback detection results cover the entire video frame. To deal with
such a case, we design a computation mask based on brightness
error calculated by subtracting inter frame from key frame, which
is defined as:

Mask = 0 where |Bkey — Binter| < thd, else1; (2)

where thd stands for threshold of brightness error to be skipped
and By, and Binter represent pixel value of key frame and inter
frame, respectively. Figure 6 shows the brightness error mask of
an elephant video with a brightness threshold of 15. It can be seen
that a large region is unnecessary for re-calculation even though it
falls within the detection bounding box.

5.2 Realization of SSI

The realization of SSI is jointly inspired from PerforatedCNNs [4]
and SBNet [13], with necessary modifications. The reason why we
combine the idea of PerforatedCNNs with SBNet in MobiEye is due
to their functional limitations when taken separately. If individually
adopted, (1) PerforatedCNNs support efficient pixel-wise skipping
but the skip index is static with the same computation mask for
all input images, while (2) SBNet supports dynamic computation
mask but only realizes convolution operation speedup in block-wise
situations.

Figure 7 presents the original layer modules (left) and their cor-
responding SSI modules (right), except that SSI skips the spatial
pixels for fast execution. Compared with the original layer module
with feature map as input, the SSI module is fed the same spatial
size computation mask (as described in Section 5.1) and feature
map. To deal with the scale change in different DNN layers, we
borrow the idea from SBNet [13] which uses a pooling operation fol-
lowed by a threshold to downsample the input computation mask.
The convolution in the original layer module is replaced with a
SSI_Conv Layer, which is similar to the perforated convolutional
layer in Perforated CNNs.

Because SSIbelongs to structured sparsity, it can better accelerate
DNN execution with fully-optimized, dense GEMM in both CPU
and GPU mode. Figure 8 details the procedures of the SSI_Conv
operation layer. Before matrix to matrix multiplication in step 2,
the input feature map is first expanded from a 3-dimension to a

Step 2: Matnx to Matnx Mult1p11cat10n Step 3: Reshape to Original Output Feature

3! Ch‘mnel 1 Channel 1 |ES
ind lal =
=8 x 2’ § g _ | Channel 2 | _., Channel 2 ';s
Kerel 3 <§ : E ‘;” (h‘mnel 3 Q Channel 3 5
: b B =1 :
| ofNon zeros Patches &] 3
Kernel Size H 1[2]3] # of Non-: -zerog P Patches #of Total Patches
6 T
Step 1: Patch to Column +————Non-zero Index: [1,3,6]

Figure 8: SSI convolution operation.

MobiEye: An Efficient Cloud-based Video Detection System for Real-time ...

2-dimension tensor with a patch to column operation. Originally,
the each patch in the feature map are flatten to a single matrix
column iteratively through X-axis and Y-axis. In SSI_Conv, patch to
column operation take the non-zero index as input and iteratively
assigns the column base on the patches with the non-zero index.

6 EXPERIMENTS

6.1 Experimental Setup

Test Benches: We implement MobiEye using the DFF [17] frame-
work, with all optimization schemes in MobiEye compared to DFF
as baseline. For fairness of comparison, we directly utilize trained
models from DFF without fine-tuning for all experiments. We adopt
the ImageNet VID dataset for evaluation, which includes 5354 an-
notated videos. The model structures adopted for the feature ex-
traction network and optical flow network are ResNet101 [7] and
FlowNet [3], respectively. Video frames are resized to 600 pixels
on the shorter side as the input of the feature network, and 300
pixels on the shorter side for the optical flow network. In our exper-
iments, accuracy-related performance of the video detection system
is reported using a mean average precision (mAP), speed-related
performance is evaluated in terms of sparsity and milliseconds (ms).

System Environment: For the client side of MobiEye, we adopt
the Nexus 5 and and the Pixel 2, representing two popular Android-
based smartphones. The Nexus 5 is powered by a Quad-core Krait
CPU with an Adreno 330 GPU and 2GB of RAM. The Pixel 2 is
equipped with an Octa-core Kryo CPU with an Adreno 540 GPU
and 4 GB RAM. We implement and deploy a H.264 video encod-
ing application on both devices which utilizes the EGL interface
for efficient GPU-accelerated encoding. For the server side, we de-
ploy MobiEye on a server running Ubuntu 16.04, with a 16-core,
2.4GHz Intel Xeon CPU, two NVIDIA GPU’s (GeForce GTX 1080
and GeForce GTX TITAN), and 128GB RAM. Corresponding to the
video encoding performed on the Android devices, we establish a
video decoding application on the server with low-level ffmpeg and
%264 libraries. For the DNN video frame inference module on the
server side, we extend the existing DFF project with our optimiza-
tions from MobiEye. DFF itself is based on MXNet [1], a powerful
deep learning framework developed by DMLC team. Figure 9 (a)
shows the histogram of the motion value derived from ImageNet
VID. For ease of visualization, all motion values larger than 10 are
truncated. From the figure, it can be seen that the distribution of mo-
tion values is polarized: 29% of the video motion values are smaller
than 1 while 23% of the values are larger than 9. The mean of the
motion values is 6.83, and the median is 3.05. Figure 9 (b) shows

gg O e Pixel 2
Mean: 6.83
f ~=30[| " Nexus 5
g;g Median: 3.05 §/20 Ubuntu
S
£15 E
~ 10, =10
5
0 0
012 3 45678910 20k 77k 101k 307k 346k 384k 480k 1229k
Motion Value # of Frame Pixels

Figure 9: (a) Motion value histogram on ImageNet VID with
H.264, and (b) encode/decode time on tested hardware.

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

the relationship between different image scales and their corre-
sponding encoding/decoding time. Generally, Pixel 2 is faster than
Nexus 5 for video encoding, which consumes 14.9ms and 22.8ms on
average, respectively. When the image scale reaches 246K on the
Pixel 2, the encoding time becomes shorter than when encoding
lower-scale images. This is due to the highly-parallel nature of both
the encoding operation and of the mobile GPU itself, resulting in
more efficient computation when performed at scale. The video
decoding time from server side is 3.9ms per frame on average.

6.2 Evaluation of ADFF

Figure 10 compares DNN inference time between original sequential
DFF and our proposed ADFF. As indicated in Figure 10, the time
consumption of each video frame always equals the time for inter
frame in ADFF. We find that the inference time for key frame and
inter frame are 93ms and 20ms for GTX TITAN, and 89ms and 19ms
for GTX 1080. Given this, we deploy the key frame thread on GTX
TITAN and the inter frame on GTX 1080, as the latter card results
in lower latency for ADFF. In all cases, the time consumption per
frame in the original sequential DFF baseline is much higher than
ADFF, which is due to the bottleneck of key frame execution. Note
that delay in ADFF is set as 3, and that delay should be no bigger
than the key frame interval. Hence, Figure 10 shows the key frame
interval from 6. From the dotted line in Figure 10, we find that
ADFF achieves 1.05 — 1.47Xx and 1.1 — 1.5X speedup compared with
sequential DFF on RTX 1080 and RTX TITAN, respectively.

6.3 Evaluation of VDS

Figure 11 presents the results of VDS scheme in MobiEye, where the
gray dots show the baseline speed-accuracy tradeoff with a static
key frame interval. For VDS, we try three max motion values: 10,
20, and 30, the results of which are colored as orange, yellow, and
green. For each max motion value setting, we set the minimum key
frame interval as 5, 10, 15 and max key frame interval as 20, 30, 40,
forming totally 9 dynamic interval ranges. As shown in Figure 11,
when the key frame interval is small (e.g., <12), VDS does not show
an advantage compared to static key frame scheduling. The reason
for this is that the dynamic interval range is small and thus there
exists little optimization space for higher accuracy. The maximum
accuracy that can be reached is the situation where all the video
frames are considered as key frame. With the increase of key frame
interval, we derive a higher accuracy than baseline when adopting
VDS. For example, when the average key frame interval is 21.6,
the mAP reaches 70.6%. Meanwhile, the mAP of static key frame

= (030 mmmm TITAN 1.6

S 1080+ TITAN vs 1080 L5

2 —o— vs TITAN 14 ¥
s 30 13 &
S5 o
= 20 . 12 £
[}

& 10 1.1
2o 1.0
-E 678 910111213141516171819202122232425 -

Key Frame Interval

Figure 10: Computation time comparison between sequen-
tial and asynchronous execution of DFF.

DAC ’19, June 2-6, 2019, Las Vegas, NV, USA

s e o ® static ¢ VDS_30

74 ® . VDS 20 = VDS_10
§73 - Do u

72 Al i
% 71 LS TSN

) *
70 o
69 °
0 5 10 15 20 25

Average Key Frame Interval

Figure 11: mAP under different average key frame interval
with static scheme and VDS scheme.

scheduling only achieves 69.9% when the key frame interval is 21.

Therefore, we find that VDS does help the prediction of key frame

scheduling to achieve better accuracy with lower computation cost.

6.4 Evaluation of SSI

To evaluate SSI, we set three brightness error mask thresholds:
10, 20, and 30 to show the tradeoff between the spatial sparsity
and accuracy. Figure 12 shows the sparsity-accuracy tradeoff when
adopting SSI in MobiEye. The average spatial sparsity equals 52.8%
when only applying the feedback computation mask and the mAP

drop is controlled within 1% for all the key frame interval settings.

Furthermore, the mAP drop is negligible (e.g. < 0.5%) when the
key frame interval is small (e.g.< 9). With the increase of the key
frame interval, the spatial sparsity keeps decreasing because more
computation is needed due to feedback computation mask. The
reason lies in that larger key frame interval incurs larger movement
between key frame and inter frame and thus the bounding box in
the feedback computation mask is larger. As illustrated in Figure 12,
the spatial sparsity increases with the increase of brightness error
mask thresholds. Take the key frame interval 9 as an example, the
53%, 68%, and 75% for threshold 10, 20, and 30, respectively. Their
corresponding mAP is 72.53%, 72.18%, and 71.85%, incurring 0.35%
and 0.68% mAP drop. Therefore, we find that setting the brightness
error mask threshold as a small number(e.g. 10) leads to a better
sparsity-accuracy tradeoff. One limitation of SSI is that it could not
achieve speedup when the input feature map is large in height and
width. So, we apply SSI after 2 pooling operations in FlowNet. In our
experiments, SSI achieves 1.06X — 4.25X speedup on convolutional
layers of FlowNet with 60% — 90% spatial sparsity. Because FlowNet
only contains 12 convolutional layers after 2 pooling operations,
the impact of SSI on speedup of the whole inference operation is
limited to 1.01X — 1.15X under 60% — 90% spatial sparsity due to
operations such as region proposal network, deconvolution, etc.

Mask thd 0 mssssm Mask thd 10 s Mask thd 20
—— Baseline Mask_thd_10| 80

= —®— Mask_thd_0

> —— Mask_thd 20 76

z E
s =]
280 68 ~
2 =X
g 0

% 3 5 7 9 11 13 15 17 19 21 23

Key Frame Interval

Figure 12: Sparsity-accuracy tradeoff with SSIL

Jiachen Mao, Qing Yang, Ang Li, Hai Li, Yiran Chen

6.5 Overall Evaluation of MobiEye

We evaluate MobiEye under the setting of key frame interval = 20,
video scale = 800 X 600, network throughput = 10Mbps, video size
per frame = 47K B, and H.264 Bitrate = 2Mbit/s. The corresponding
communication and codec latency sums up to 30ms.

The baseline inference latency from the server side is 89.8ms for
FeatNet and 19ms for FlowNet. After adopting ADFF, the execution
of FeatNet is hidden so that the execution bottleneck becomes only
FlowNet latency. With the same key frame interval, VDS increase
the mAP by 0.6%. Finally, If we want to further exchange accuracy
with computation cost, SSI saves another 0.2ms on FlowNet by
sacrificing 0.6% mAP.

7 CONCLUSION

In this work, we propose MobiEye, an efficient cloud-based video
detection system for real-time applications. MobiEye adopts the
state-of-the-art video detection framework DFF with several opti-
mizations. From system level, we utilize multi-thread technology to
asynchronously execute the DNNs in DFF while insure the function-
ality correctness via thread lock. From algorithm level, we propose
VDS to dynamically decide the key frame based on H.264 motion
vector and design SSI for spatially partial inference based on both
feedback detection results and brightness error. MobiEye is able
to reach real-time requirement of video detection applications on
mobile platforms with marginal accuracy drop.

8 ACKNOWLEDGMENT

This work was supported in part by NSF CNS-1717657, SPX-1725456
and DOE DE-SC0018064.

REFERENCES

[1] Tiangi Chen et al. 2015. MXNet: A Flexible and Efficient Machine Learning
Library for Heterogeneous Distributed Systems. CoRR abs/1512.01274 (2015).

[2] Misha Denil et al. 2013. Predicting parameters in deep learning. In NIPS. 2148-
2156.

[3] Alexey Dosovitskiy et al. 2015. Flownet: Learning optical flow with convolutional
networks. In ICCV. 2758-2766.

[4] Mikhail Figurnov et al. 2016. Perforatedcnns: Acceleration through elimination
of redundant convolutions. In NIPS. 947-955.

[5] Song Han et al. 2015. Deep Compression: Compressing Deep Neural Network
with Pruning, Trained Quantization and Huffman Coding. CoRR abs/1510.00149
(2015).

[6] J. Hauswald et al. 2014. A hybrid approach to offloading mobile image classifica-
tion. 8375-8379. https://doi.org/10.1109/ICASSP.2014.6855235

[7] Kaiming He et al. 2016. Deep residual learning for image recognition. In ICCV.
770-778.

[8] Andrew G. Howard et al. 2017. MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. CoRR abs/1704.04861 (2017).

[9] Alex Krizhevsky et al. 2012. ImageNet Classification with Deep Convolutional

Neural Networks. In NIPS. 1097-1105.

Xiaoxiao Li et al. 2017. Not all pixels are equal: Difficulty-aware semantic seg-

mentation via deep layer cascade. In CVPR. 2.

[11] Jiachen Mao et al. 2017. AdaLearner: An adaptive distributed mobile learning

system for neural networks. In ICCAD. IEEE, 291-296.

[12] Jiachen Mao et al. 2017. Mednn: A distributed mobile system with enhanced

partition and deployment for large-scale dnns. In ICCAD.

[13] Mengye Ren et al. 2018. SBNet: Sparse Blocks Network for Fast Inference. In

CVPR. 8711-8720.

Christian Szegedy et al. 2016. Inception-v4, Inception-ResNet and the Impact of

Residual Connections on Learning. CoRR abs/1602.07261 (2016).

[15] H-YC Tourapis et al. 2003. Fast motion estimation within the H. 264 codec. In

ICME, Vol. 3. IEEE, III-517.

[16] Wei Wen et al. 2016. Learning Structured Sparsity in Deep Neural Networks. In

NIPS.

Xizhou Zhu et al. 2017. Deep feature flow for video recognition. In Proc. CVPR,

Vol. 2. 7.

=
=2

=
&

=
=

