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There is a need to test character evolution hypotheses over human timescales
Introduced species could provide good models of some evolutionary transitions in traits
Phylogenetic and contemporary studies investigate some of the same traits

Many traits show promising evidence of rapid evolution

Trait databases can help link disciplines, particularly if expanded toward this goal
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Abstract

Plant trait evolution is a topic of interest across disciplines and scales. Phylogenetic studies are
powerful for generating hypotheses about the mechanisms that have shaped plant traits and
their evolution. Introduced plants are a rich source of data on contemporary trait evolution.
Introductions could provide especially useful tests of a variety of evolutionary hypotheses
because the environments selecting on evolving traits are still present. We review phylogenetic
and contemporary studies of trait evolution and identify areas of overlap and areas for further
integration. Emerging tools which can promote integration include broadly focused repositories
of trait data, and comparative models of trait evolution that consider both intra and interspecific
variation.
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Graphical Abstract a) Phylogenetic studies are powerful for generating hypotheses (see Table
1) about macroevolutionary associations between phenotypic or genetic trait states (shown in
blue) and potential abiotic or biotic selective environments (shown in green). Tips on the
cladogram represent species. b) Contemporary evolution in introduced and invading (l)
populations can be leveraged to test these hypotheses. Introduced populations of a lineage are
often replicated across multiple environments and vary in both traits and the genetic diversity
available for adaptation (including through admixture among native (N) subpopulations, shown
here by asterisk *).
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Introduction

Multicellular life encompasses a fascinating diversity of form and function. How these forms
evolve — trait evolution — is often explored using phylogenetic approaches. Phylogenies allow
inference of past trait shifts, their relationship to changes in habitat and biotic interactions, and
their potential impacts on lineage diversification (e.g. [1**,2]). Such phylogenetic inferences are
essential, because they provide insight into the mechanisms which generate trait variation over
evolutionary timescales. A persistent challenge in the field, however, is that ancient events
cannot be observed directly, and so mechanistic hypotheses derived from phylogenetic patterns
cannot be tested using phylogenies alone [3,4**]. While the past can no longer be observed,
cases of contemporary evolution on human timescales may offer important opportunities to test
some of the same hypotheses of character evolution that are prominent in phylogenetic
comparisons (Table 1). It is increasingly evident that trait evolution can and does take place on
contemporary timescales, and much of this evidence comes from the burgeoning field of
invasion biology [5,6]. Species have been anthropogenically introduced into new geographic
ranges at unprecedented rates during the last few centuries [7], and colonizing populations have
been increasingly observed to have evolved in response to a variety of changes in their abiotic
and biotic environments [8*,9**].

Here we argue that, while phylogenetic studies of trait evolution and studies of contemporary
evolution in introduced species largely exist as separate fields, these perspectives could be
combined for powerful insights into how and why traits evolve in plants. We review the potential
relevance of invasion biology to these questions, and outline examples of how species
introductions could yield evidence to test key hypotheses derived from phylogenetic patterns of
trait variation. We survey literature and databases for shared interests and knowledge gaps in
the traits under study across fields. Finally, we detail approaches and considerations for
integrating contemporary populations into phylogenetic studies of trait evolution.

Are introduced plants good models of trait evolution?

Similar to biogeographic transitions, vicariance, or other abrupt events associated with
speciation across phylogenies, introductions comprise populations that are evolving
independently under novel abiotic or biotic environments [10*,11*]. A special feature of species
invasions versus other microevolutionary contexts is that diverging introduced populations, their
sister lineage(s) in ancestral regions, as well as the environments imposing selection on these
populations, are all extant. This allows for tests of specific hypotheses (Table 1) about the
connections between changes in trait and environmental states (Figure 1). Phylogeographic
studies have also revealed that non-native species often include introductions of the same
lineage to multiple different locations [12—14], offering opportunities to study replicate
evolutionary trajectories of lineages across environments on human timescales.

There are several specific evolutionary mechanisms hypothesized to influence introduction
success which might also underlie phylogenetic patterns of trait evolution. These include
evolution of growth and defense traits in response to novel interactions with enemies [15-17], of
reproductive allocation and mating systems in response to selection for colonizing ability
[18,19], and of niche shifts in response to novel environments [20,21]. These same mechanisms
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are predicted to result in trait-environment associations and impacts on lineage diversification
over long evolutionary timescales, e.g. [22-27].

With diverging populations extant, it is also possible to address long-standing questions about
the nature of genetic variation that gives rise to shifts in trait means [28]. Introduced populations
are known to differ in their standing genetic variation [29,30], and whether this variation includes
contributions from hybridization, admixture, structural variants or polyploidy (Figure 1) [28,31—
33], which are also central features of interest across phylogenetic scales [34—38]. Historical
collections of introduced species are also revealing the temporal pattern of genetic change in
these populations [39**,40], with the potential to provide insight into the timing and order of
multi-locus adaptations in response to a new selective environment.

To utilize trait states measured for introduced and native populations, it is important to recognize
some caveats [41**]. The native source and introduction history of particular populations may
need to be resolved to establish evolutionary relationships. Plasticity, including
maternal/transgenerational effects in common environment experiments, can give a false
impression of trait evolution [42], though it may be of interest to identify plastic changes that
precede genetic changes [43,44]. Finally, data on patterns of selection or fithess across
environments are required to distinguish between non-adaptive (stochastic/neutral) and
adaptive evolution [21,39**,45-47].

Are traits of interest from a macroevolutionary perspective evolving in introduced
plants?

While evidence for trait evolution on contemporary timescales has been accumulating, it may be
that such cases do not include traits whose evolution is of interest over macroevolutionary
timescales, either because the nature of selection on introduced species is not representative of
deeper evolutionary history, or because fundamental differences exist between traits involved in
macro- and micro-evolution [48]. To what extent is there already overlap between the types of
traits investigated using phylogenetic comparative approaches and those studied for
contemporary evolution in introduced populations? To answer this question, we surveyed the
literature for recent studies of plant trait evolution from a phylogenetic perspective (published
2007-2017; 63 studies), and collected trait information from the PROTEUS database, a
collaborative resource holding 153,789 records of plant species-level character data, with a
focus on floral structure [49*,50]. We categorized the traits under study using the Plant Trait
Ontology (TO), a resource which aims to provide interdisciplinary frameworks for defining plant
traits [51**,52]. We compared these traits from phylogenetic studies to traits of introduced plants
grown in common garden/environment experiments (87 studies).

Our survey of this literature reveals both commonalities and differences in traits of interest to
these fields (Figure 2a). Phylogenetic studies are strongly focused on morphology, while studies
of introductions include more even emphasis on morphology, growth, and yield traits, as well as
substantial attention to fertility. Interest in growth/yield/fertility traits in the contemporary
evolution literature reflects a general interest in traits that measure fitness and potential
contributions to spread of introduced populations [53]. Nevertheless, morphological traits are the

Lu Irving et al. ~ Using species introductions to study trait evolution


https://paperpile.com/c/xgKUpj/JaQxd+1wqak+rFolt+v7Xzh+RMARs+p4WN4
https://paperpile.com/c/xgKUpj/Z5vsE
https://paperpile.com/c/xgKUpj/0NTRY+QIPf4
https://paperpile.com/c/xgKUpj/Z5vsE+3DIxn+OUTpN+f2T0Z
https://paperpile.com/c/xgKUpj/Z5vsE+3DIxn+OUTpN+f2T0Z
https://paperpile.com/c/xgKUpj/q7cnR+lufdb+kDqfx+c5Cke+qj9Nf
https://paperpile.com/c/xgKUpj/RyNBt+n10D1
https://paperpile.com/c/xgKUpj/w8E7X
https://paperpile.com/c/xgKUpj/hG23d
https://paperpile.com/c/xgKUpj/y15zs+izAv5
https://paperpile.com/c/xgKUpj/55Mof+RyNBt+4wnmc+A55DL+t5VTY
https://paperpile.com/c/xgKUpj/3vcN0
https://paperpile.com/c/xgKUpj/7wC2q+f72iI
https://paperpile.com/c/xgKUpj/4rg5P+QJkOI
https://paperpile.com/c/xgKUpj/IgtvG

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

largest single category represented in both studies of introductions and the phylogenetic
literature.

The TO system employs broad definitions of traits; eg., “morphology” includes anatomical traits
as well as traits related to plant size and the number of modular parts (such as branches,
leaves, nodes). We further explored the representation of individual traits in this category using
a graphical word cloud approach for traits in each field, as well as for traits that are shared
between fields (Figure 2b). These again highlight the differences in the objectives of these
studies, with a focus on major niche-related traits (eg. habit and life history) and taxonomically
important traits (eg. pollen, embryo and floral morphology; Figure 2b (i)) in phylogenetic studies
compared with focus on plant performance in the invasion literature (eg. biomass and time to
flowering; Figure 2b (iii)). Importantly, however, a number of focal traits are already shared (2b
(i), including characteristics of leaf and flower size, number, and shape, as well as seed and
whole plant size.

To what extent have these traits demonstrated contemporary evolution? In our dataset, more
than 50% of traits reported across studies were found to have evolved (Figure 3), with evolution
identified particularly frequently in biochemical traits (e.g. phenolic content) and traits related to
growth and development (e.g. flowering phenology). While there is likely to be publication bias
in favor of reporting significant divergence of traits, these studies support the value of exploring
introduced populations for tests of hypotheses about trait evolution. For example, variation in
leaf shape has been studied from both phylogenetic comparative and contemporary
evolutionary perspectives (Fig. 2). On long evolutionary timescales, leaf teeth and dissection are
positively correlated with cooler climates [54,55]; i.e., it is hypothesized that climatic niches
generate selective pressures which shape evolution of these traits (Table 1). Introduced species
demonstrating contemporary shifts in leaf shape [56-62] can be used to test this hypothesis. As
a specific case, some introduced populations of Centaurea solstitialis have larger, less lobed
leaves than natives [61]. Invading populations of this species occupy a variety of different
climatic niches [63], where selection on leaf shape and adaptive responses across
environments could be quantified.

Potential to integrate perspectives on trait evolution

Macroevolutionary ecologists may find it fruitful and relatively straightforward to seek out
introduced populations in clades of interest and integrate these into existing studies on an
individual basis. Accessions of introduced populations could be added directly to phylogenetic
analyses of their traits or genotypes. Genetic variation in invading and native populations could
also be included in phylogenetic models that explicitly incorporate intraspecific variance, e.g.
[64*]. At a more involved level, experimental common garden and selection studies with
invading populations could be used to identify the mechanisms driving phenotypic divergence
(including plastic, adaptive genetic, and stochastic genetic change).

Important opportunities also exist for integration across fields at the level of genes. For loci that
have already been identified as potentially important to evolutionary history, such as key

developmental genes or divergent paralogous loci [2,65,66], evolution and selection on these
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loci can be studied in introduced populations. For traits that do not yet have loci of interest,
divergent extant populations could be used to identify loci or pathways for further analyses
across phylogenetic scales, e.g. through genetic mapping or gene expression comparisons
[67,68""].

More broadly, ecological trait databases offer opportunities to bring together data across fields
and taxa to identify promising traits for contemporary analyses. A survey of two of the largest
databases, TRY v. 3 (6.9 million records of individual-level traits; [69*]) and BIEN v. 3.4 (81.7
million records of individual-level traits; [70*]), reveal shared areas of focus with both the
species introduction literature, and the phylogenetic comparative literature and PROTEUS
(Figure 2). There are biases in these overlaps, however, most notably a strong focus on
functional traits in the TRY and BIEN databases. Recent developments in plant macroevolution
leverage large trait data sets together with the availability of large scale phylogenies to explore
trait evolution across thousands of species, often representative of the entire land plant tree of
life [50,71-78]. Unless authors of such large-scale phylogenetic studies invest major effort in
data gathering (eg. [560,74,76*,79]), the types of traits examined in these studies will be heavily
influenced by the availability of existing trait data [71,72,77,78]. As databases expand, it will be
important to strive for a broader representation of traits, as well as consistent identification of the
native or introduced status of the individual plants from which trait data are collected.

Notably included in traits databases and phylogeny papers, but missing from species
introduction papers, are “sterility/fertility” and “miscellaneous” traits: respectively comprising
traits to do with breeding system, and features of plant taxa that have no equivalent TO
category, eg. geographic distribution, environmental niche, and pollination syndrome.
Contemporary evolution in these traits is rarely tested in the common-environment experiments
we surveyed. Mating system shift is predicted to often follow invasion and self-compatibility
appears to enhance invasiveness in some cases [18,53,80], suggesting that these traits would
in fact be fruitful to examine in contemporary invasions. Similarly, post-introduction climatic
niche shift is an active area of interest in plant invasions [81,82]. Thus the ecological trait
databases are a potential “common ground” which might be utilized to further develop links
across different perspectives on trait evolution.

While it is relatively recently that we have recognized that adaptive evolution can be studied on
contemporary timescales [5], it is worth considering why this has not been immediately
incorporated into phylogenetic trait comparisons. Indeed, there is a long debate about whether
evolutionary processes are equivalent across micro- and macro-evolutionary timescales (e.g.,
[48,83,84]), and statistical methods for directly combining these data in phylogenies are only
now being developed [64*]. In general, many traits studied over phylogenetic timescales are not
expected to vary at or below species level (e.g., basic floral architecture). Particularly if novel
large-effect mutations have been required for trait evolution to occur, we might not see such
mutations arise and respond to selection in contemporary time, though the first investigations of
this question in introduced populations have revealed surprising evidence of adaptation via new
mutations [85,86]. Aggressively invading introduced populations might also share particular
traits that might bias evolutionary patterns in these populations, including unusually large
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population sizes, high rates of gene flow, and repeated founding events that might facilitate
shifts in allele frequencies, making these fast evolving and perhaps adapted to colonization per
se (e.g. via dispersal-related traits, plasticity, fast development time, [87—89]), rather than other
aspects of environmental differences. Nevertheless, it has also been notoriously difficult to
identify consistent traits shared by invasive species, indicating that populations might typically
represent individual responses of a lineage to new environments [53].

Conclusions

Contemporary trait evolution in introduced plants is frequent, however the potential for plant
introductions to provide tests of phylogenetic comparative hypotheses of trait evolution is largely
untapped. We identify several features of contemporary species introductions that could make
them particularly well suited to advancing general questions in trait evolution questions, and
outline how non-native populations could be fruitfully integrated into existing individual research
programs. Approaches include incorporating accessions and trait states from known introduced
populations into phylogenetic analyses, quantifying contemporary patterns of selection on traits
and candidate genes identified in phylogenetic comparisons, and testing for predicted
evolutionary trait-environmental associations in introduced populations.

Trait databases offer perhaps the most immediate opportunities to obtain traits from a common
resource for both phylogenetic and contemporary evolution studies. It is timely now to invest in
adopting standards and practices that promote database use and cross-compatibility, including
universal trait ontology, integration of individual-level data (eg. field measurements) with
species-level data (eg. from taxonomic treatments), and identification of the native or introduced
status and source locality of the individual plants from which trait data are collected. Attention to
these issues could immediately open broad opportunities for existing data from studies of
contemporary evolution to offer insight into macroevolutionary patterns.
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Figure captions

Figure 1 a) Phylogenetic studies are powerful for generating hypotheses (see Table 1) about
macroevolutionary associations between phenotypic or genetic trait states (shown in blue) and
potential abiotic or biotic selective environments (shown in green). Tips on the cladogram
represent species. b) Contemporary evolution in introduced (l) populations can be leveraged to
test these hypotheses. Introduced populations of a lineage are often replicated across multiple
environments and vary in both traits and the genetic diversity available for adaptation (including
through admixture among native (N) subpopulations, shown here by asterisk *).

Figure 2 a) Traits by TO category from the literature (63 phylogenetic studies, 87 common
environment studies of introduced species) and databases (top 200 traits by number of
observations from PROTEUS, TRY, and BIEN). Traits with no direct match to a TO term were
assigned categories consistent with similar traits or categorized as “miscellaneous”. Lists of
individual traits and categorization schemes are available as Supplementary Material 1. b) Word
clouds visualizing most frequent terms appearing in list of traits i) investigated in phylogenetic
studies, ii) shared between phylogenetic and introduced population studies, and iii) investigated
in introduced population (common environment experiment) studies. Word size is indicative of
relative frequency within each list; frequency in (ii) is the minimum frequency between lists.

Figure 3 Number of traits showing significant fixed differences (black bars) versus no
significant fixed differences (white bars) in introduced populations under any experimental
treatment in common environments in the 87 studies reviewed.

SUPPLEMENTARY MATERIAL

Supplementary Data 1 Citations of studies reviewed for Figs. 2 and 3, with corresponding data
for traits examined (phylogenetic and common garden studies), and whether traits were found to
have evolved (fixed differences between source populations in common garden studies).

Supplementary Data 2 Categorization scheme after the Plant Trait Ontology for traits
examined from the literature and traits databases.
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Table 1 Examples of trait evolution hypotheses from phylogenetic comparative perspectives, and evidence from introduced
populations which could be used to test them. Example traits include those already of common interest to both phylogenetic
comparative and species introduction studies (Fig 2b.ii).

Hypothesis

Prediction for introduced populations

Examples from species introductions

Trait shifts are adaptive responses
to (climatic) niche shifts)

Climatic conditions select for different trait states
in introduced environment(s)

Leaf shape evolution in Centaurea
solstitialis [61], Centaurea stoebe [59],
Chromolaena odorata [60], Phyla
canescens [62], Rhododendron ponticum

[58]

Trait shifts are adaptive responses
to changes in species interactions

Interspecific interactions generate selection for
different trait states in introduced environment(s)

Flower color evolution in Raphanus taxa
[90]; tannin content evolution in Sapium
sebiferum [91]

Trait shifts are adaptive responses
to long-distance dispersal /
biogeographic transitions

Introduction events select for shifts in mating
system and dispersal traits

Mating system evolution in Eichhornia
paniculata [92]; shift to cloning in Fallopia
Japonica [93], Oxalis pes-caprae [94];
dispersal evolution in Crepis sancta [95]

Trait shifts promote (i.e., happen
before) speciation

Increased divergence/reproductive isolation
between populations with varying trait states

Life history evolution (perenniality) in
Centaurea stoebe [59], Senecio
inaequidens [96]. Additional examples of
evolution in time to flowering and
senescence are listed in Supp. Data 1.

Traits shift gradually via
incremental mutations (vs. rapidly
by mutations of large effect)

Increasing magnitude of trait differences
between populations over time, due to
accumulation of multiple additive/epistatic
mutations

Evolution of frost tolerance in Ambrosia
artemisiifolia [97], Rhododendron ponticum
[58]. See also examples above.

Trait shift is more likely in some
plant lineages than others (i.e.,

Increased frequency of trait state changes in
populations of some taxa relative to others

Comparisons across multiple systems (e.g.,
Supp. Data 1 includes 70 species in 26
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some lineages experience higher
rates of trait evolution)

plant families)

Groups of traits covary and shift en
suite (vs. individual traits shift
independently)

Patterns of correlated trait shifts across
populations

Correlated evolution of growth and
reproductive traits in Lythrum salicaria [98])
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