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29 Abstract
30 Plant trait evolution is a topic of interest across disciplines and scales. Phylogenetic studies are 
31 powerful for generating hypotheses about the mechanisms that have shaped plant traits and 
32 their evolution. Introduced plants are a rich source of data on contemporary trait evolution. 
33 Introductions could provide especially useful tests of a variety of evolutionary hypotheses 
34 because the environments selecting on evolving traits are still present. We review phylogenetic 
35 and contemporary studies of trait evolution and identify areas of overlap and areas for further 
36 integration. Emerging tools which can promote integration include broadly focused repositories 
37 of trait data, and comparative models of trait evolution that consider both intra and interspecific 
38 variation.
39

40
41
42 Graphical Abstract  a) Phylogenetic studies are powerful for generating hypotheses (see Table 
43 1) about macroevolutionary associations between phenotypic or genetic trait states (shown in 
44 blue) and potential abiotic or biotic selective environments (shown in green). Tips on the 
45 cladogram represent species. b) Contemporary evolution in introduced and invading (I) 
46 populations can be leveraged to test these hypotheses. Introduced populations of a lineage are 
47 often replicated across multiple environments and vary in both traits and the genetic diversity 
48 available for adaptation (including through admixture among native (N) subpopulations, shown 
49 here by asterisk *).
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50 Introduction
51 Multicellular life encompasses a fascinating diversity of form and function. How these forms 
52 evolve – trait evolution – is often explored using phylogenetic approaches. Phylogenies allow 
53 inference of past trait shifts, their relationship to changes in habitat and biotic interactions, and 
54 their potential impacts on lineage diversification (e.g. [1**,2]). Such phylogenetic inferences are 
55 essential, because they provide insight into the mechanisms which generate trait variation over 
56 evolutionary timescales. A persistent challenge in the field, however, is that ancient events 
57 cannot be observed directly, and so mechanistic hypotheses derived from phylogenetic patterns 
58 cannot be tested using phylogenies alone [3,4**]. While the past can no longer be observed, 
59 cases of contemporary evolution on human timescales may offer important opportunities to test 
60 some of the same hypotheses of character evolution that are prominent in phylogenetic 
61 comparisons (Table 1). It is increasingly evident that trait evolution can and does take place on 
62 contemporary timescales, and much of this evidence comes from the burgeoning field of 
63 invasion biology [5,6]. Species have been anthropogenically introduced into new geographic 
64 ranges at unprecedented rates during the last few centuries [7], and colonizing populations have 
65 been increasingly observed to have evolved in response to a variety of changes in their abiotic 
66 and biotic environments [8*,9**].
67  
68 Here we argue that, while phylogenetic studies of trait evolution and studies of contemporary 
69 evolution in introduced species largely exist as separate fields, these perspectives could be 
70 combined for powerful insights into how and why traits evolve in plants. We review the potential 
71 relevance of invasion biology to these questions, and outline examples of how species 
72 introductions could yield evidence to test key hypotheses derived from phylogenetic patterns of 
73 trait variation. We survey literature and databases for shared interests and knowledge gaps in 
74 the traits under study across fields. Finally, we detail approaches and considerations for 
75 integrating contemporary populations into phylogenetic studies of trait evolution. 
76
77 Are introduced plants good models of trait evolution?
78 Similar to biogeographic transitions, vicariance, or other abrupt events associated with 
79 speciation across phylogenies, introductions comprise populations that are evolving 
80 independently under novel abiotic or biotic environments [10*,11*]. A special feature of species 
81 invasions versus other microevolutionary contexts is that diverging introduced populations, their 
82 sister lineage(s) in ancestral regions, as well as the environments imposing selection on these 
83 populations, are all extant. This allows for tests of specific hypotheses (Table 1) about the 
84 connections between changes in trait and environmental states (Figure 1). Phylogeographic 
85 studies have also revealed that non-native species often include introductions of the same 
86 lineage to multiple different locations [12–14], offering opportunities to study replicate 
87 evolutionary trajectories of lineages across environments on human timescales.
88
89 There are several specific evolutionary mechanisms hypothesized to influence introduction 
90 success which might also underlie phylogenetic patterns of trait evolution. These include 
91 evolution of growth and defense traits in response to novel interactions with enemies [15–17], of 
92 reproductive allocation and mating systems in response to selection for colonizing ability 
93 [18,19], and of niche shifts in response to novel environments [20,21]. These same mechanisms 
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94 are predicted to result in trait-environment associations and impacts on lineage diversification 
95 over long evolutionary timescales, e.g. [22–27].
96
97 With diverging populations extant, it is also possible to address long-standing questions about 
98 the nature of genetic variation that gives rise to shifts in trait means [28]. Introduced populations 
99 are known to differ in their standing genetic variation [29,30], and whether this variation includes 

100 contributions from hybridization, admixture, structural variants or polyploidy (Figure 1) [28,31–
101 33], which are also central features of interest across phylogenetic scales [34–38]. Historical 
102 collections of introduced species are also revealing the temporal pattern of genetic change in 
103 these populations [39**,40], with the potential to provide insight into the timing and order of 
104 multi-locus adaptations in response to a new selective environment.
105
106 To utilize trait states measured for introduced and native populations, it is important to recognize 
107 some caveats [41**]. The native source and introduction history of particular populations may 
108 need to be resolved to establish evolutionary relationships. Plasticity, including 
109 maternal/transgenerational effects in common environment experiments, can give a false 
110 impression of trait evolution [42], though it may be of interest to identify plastic changes that 
111 precede genetic changes [43,44]. Finally, data on patterns of selection or fitness across 
112 environments are required to distinguish between non-adaptive (stochastic/neutral) and 
113 adaptive evolution [21,39**,45–47].
114
115 Are traits of interest from a macroevolutionary perspective evolving in introduced 
116 plants?
117 While evidence for trait evolution on contemporary timescales has been accumulating, it may be 
118 that such cases do not include traits whose evolution is of interest over macroevolutionary 
119 timescales, either because the nature of selection on introduced species is not representative of 
120 deeper evolutionary history, or because fundamental differences exist between traits involved in 
121 macro- and micro-evolution [48]. To what extent is there already overlap between the types of 
122 traits investigated using phylogenetic comparative approaches and those studied for 
123 contemporary evolution in introduced populations? To answer this question, we surveyed the 
124 literature for recent studies of plant trait evolution from a phylogenetic perspective (published 
125 2007-2017; 63 studies), and collected trait information from the PROTEUS database, a 
126 collaborative resource holding 153,789 records of plant species-level character data, with a 
127 focus on floral structure [49*,50]. We categorized the traits under study using the Plant Trait 
128 Ontology (TO), a resource which aims to provide interdisciplinary frameworks for defining plant 
129 traits [51**,52]. We compared these traits from phylogenetic studies to traits of introduced plants 
130 grown in common garden/environment experiments (87 studies). 
131
132 Our survey of this literature reveals both commonalities and differences in traits of interest to 
133 these fields (Figure 2a). Phylogenetic studies are strongly focused on morphology, while studies 
134 of introductions include more even emphasis on morphology, growth, and yield traits, as well as 
135 substantial attention to fertility. Interest in growth/yield/fertility traits in the contemporary 
136 evolution literature reflects a general interest in traits that measure fitness and potential 
137 contributions to spread of introduced populations [53]. Nevertheless, morphological traits are the 
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138 largest single category represented in both studies of introductions and the phylogenetic 
139 literature.
140
141 The TO system employs broad definitions of traits; eg., “morphology” includes anatomical traits 
142 as well as traits related to plant size and the number of modular parts (such as branches, 
143 leaves, nodes). We further explored the representation of individual traits in this category using 
144 a graphical word cloud approach for traits in each field, as well as for traits that are shared 
145 between fields (Figure 2b). These again highlight the differences in the objectives of these 
146 studies, with a focus on major niche-related traits (eg. habit and life history) and taxonomically 
147 important traits (eg. pollen, embryo and floral morphology; Figure 2b (i)) in phylogenetic studies 
148 compared with focus on plant performance in the invasion literature (eg. biomass and time to 
149 flowering; Figure 2b (iii)). Importantly, however, a number of focal traits are already shared (2b 
150 (ii)), including characteristics of leaf and flower size, number, and shape, as well as seed and 
151 whole plant size.  
152
153 To what extent have these traits demonstrated contemporary evolution? In our dataset, more 
154 than 50% of traits reported across studies were found to have evolved (Figure 3), with evolution 
155 identified particularly frequently in biochemical traits (e.g. phenolic content) and traits related to 
156 growth and development (e.g. flowering phenology). While there is likely to be publication bias 
157 in favor of reporting significant divergence of traits, these studies support the value of exploring 
158 introduced populations for tests of hypotheses about trait evolution. For example, variation in 
159 leaf shape has been studied from both phylogenetic comparative and contemporary 
160 evolutionary perspectives (Fig. 2). On long evolutionary timescales, leaf teeth and dissection are 
161 positively correlated with cooler climates [54,55]; i.e., it is hypothesized that climatic niches 
162 generate selective pressures which shape evolution of these traits (Table 1). Introduced species 
163 demonstrating contemporary shifts in leaf shape [56–62] can be used to test this hypothesis. As 
164 a specific case, some introduced populations of Centaurea solstitialis have larger, less lobed 
165 leaves than natives [61]. Invading populations of this species occupy a variety of different 
166 climatic niches [63], where selection on leaf shape and adaptive responses across 
167 environments could be quantified.
168
169 Potential to integrate perspectives on trait evolution 
170 Macroevolutionary ecologists may find it fruitful and relatively straightforward to seek out 
171 introduced populations in clades of interest and integrate these into existing studies on an 
172 individual basis. Accessions of introduced populations could be added directly to phylogenetic 
173 analyses of their traits or genotypes. Genetic variation in invading and native populations could 
174 also be included in phylogenetic models that explicitly incorporate intraspecific variance, e.g. 
175 [64*]. At a more involved level, experimental common garden and selection studies with 
176 invading populations could be used to identify the mechanisms driving phenotypic divergence 
177 (including plastic, adaptive genetic, and stochastic genetic change).
178
179 Important opportunities also exist for integration across fields at the level of genes. For loci that 
180 have already been identified as potentially important to evolutionary history, such as key 
181 developmental genes or divergent paralogous loci [2,65,66], evolution and selection on these 
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182 loci can be studied in introduced populations. For traits that do not yet have loci of interest, 
183 divergent extant populations could be used to identify loci or pathways for further analyses 
184 across phylogenetic scales, e.g. through genetic mapping or gene expression comparisons 
185 [67,68**].
186
187 More broadly, ecological trait databases offer opportunities to bring together data across fields 
188 and taxa to identify promising traits for contemporary analyses. A survey of two of the largest 
189 databases, TRY v. 3 (6.9 million records of individual-level traits; [69*]) and BIEN v. 3.4 (81.7 
190 million records of individual-level traits; [70*]), reveal shared areas of focus with both the 
191 species introduction literature, and the phylogenetic comparative literature and PROTEUS 
192 (Figure 2). There are biases in these overlaps, however, most notably a strong focus on 
193 functional traits in the TRY and BIEN databases. Recent developments in plant macroevolution 
194 leverage large trait data sets together with the availability of large scale phylogenies to explore 
195 trait evolution across thousands of species, often representative of the entire land plant tree of 
196 life [50,71–78]. Unless authors of such large-scale phylogenetic studies invest major effort in 
197 data gathering (eg. [50,74,76*,79]), the types of traits examined in these studies will be heavily 
198 influenced by the availability of existing trait data [71,72,77,78]. As databases expand, it will be 
199 important to strive for a broader representation of traits, as well as consistent identification of the 
200 native or introduced status of the individual plants from which trait data are collected.
201
202 Notably included in traits databases and phylogeny papers, but missing from species 
203 introduction papers, are “sterility/fertility” and “miscellaneous” traits: respectively comprising 
204 traits to do with breeding system, and features of plant taxa that have no equivalent TO 
205 category, eg. geographic distribution, environmental niche, and pollination syndrome. 
206 Contemporary evolution in these traits is rarely tested in the common-environment experiments 
207 we surveyed. Mating system shift is predicted to often follow invasion and self-compatibility 
208 appears to enhance invasiveness in some cases [18,53,80], suggesting that these traits would 
209 in fact be fruitful to examine in contemporary invasions. Similarly, post-introduction climatic 
210 niche shift is an active area of interest in plant invasions [81,82]. Thus the ecological trait 
211 databases are a potential “common ground” which might be utilized to further develop links 
212 across different perspectives on trait evolution.
213
214 While it is relatively recently that we have recognized that adaptive evolution can be studied on 
215 contemporary timescales [5], it is worth considering why this has not been immediately 
216 incorporated into phylogenetic trait comparisons. Indeed, there is a long debate about whether 
217 evolutionary processes are equivalent across micro- and macro-evolutionary timescales (e.g., 
218 [48,83,84]), and statistical methods for directly combining these data in phylogenies are only 
219 now being developed [64*]. In general, many traits studied over phylogenetic timescales are not 
220 expected to vary at or below species level (e.g., basic floral architecture). Particularly if novel 
221 large-effect mutations have been required for trait evolution to occur, we might not see such 
222 mutations arise and respond to selection in contemporary time, though the first investigations of 
223 this question in introduced populations have revealed surprising evidence of adaptation via new 
224 mutations [85,86]. Aggressively invading introduced populations might also share particular 
225 traits that might bias evolutionary patterns in these populations, including unusually large 
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226 population sizes, high rates of gene flow, and repeated founding events that might facilitate 
227 shifts in allele frequencies, making these fast evolving and perhaps adapted to colonization per 
228 se (e.g. via dispersal-related traits, plasticity, fast development time, [87–89]), rather than other 
229 aspects of environmental differences. Nevertheless, it has also been notoriously difficult to 
230 identify consistent traits shared by invasive species, indicating that populations might typically 
231 represent individual responses of a lineage to new environments [53].
232
233 Conclusions
234 Contemporary trait evolution in introduced plants is frequent, however the potential for plant 
235 introductions to provide tests of phylogenetic comparative hypotheses of trait evolution is largely 
236 untapped. We identify several features of contemporary species introductions that could make 
237 them particularly well suited to advancing general questions in trait evolution questions, and 
238 outline how non-native populations could be fruitfully integrated into existing individual research 
239 programs. Approaches include incorporating accessions and trait states from known introduced 
240 populations into phylogenetic analyses, quantifying contemporary patterns of selection on traits 
241 and candidate genes identified in phylogenetic comparisons, and testing for predicted 
242 evolutionary trait-environmental associations in introduced populations. 
243
244 Trait databases offer perhaps the most immediate opportunities to obtain traits from a common 
245 resource for both phylogenetic and contemporary evolution studies. It is timely now to invest in 
246 adopting standards and practices that promote database use and cross-compatibility, including 
247 universal trait ontology, integration of individual-level data (eg. field measurements) with 
248 species-level data (eg. from taxonomic treatments), and identification of the native or introduced 
249 status and source locality of the individual plants from which trait data are collected. Attention to 
250 these issues could immediately open broad opportunities for existing data from studies of 
251 contemporary evolution to offer insight into macroevolutionary patterns.
252
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535 Figure captions
536 Figure 1  a) Phylogenetic studies are powerful for generating hypotheses (see Table 1) about 
537 macroevolutionary associations between phenotypic or genetic trait states (shown in blue) and 
538 potential abiotic or biotic selective environments (shown in green). Tips on the cladogram 
539 represent species. b) Contemporary evolution in introduced (I) populations can be leveraged to 
540 test these hypotheses. Introduced populations of a lineage are often replicated across multiple 
541 environments and vary in both traits and the genetic diversity available for adaptation (including 
542 through admixture among native (N) subpopulations, shown here by asterisk *).
543
544 Figure 2  a) Traits by TO category from the literature (63 phylogenetic studies, 87 common 
545 environment studies of introduced species) and databases (top 200 traits by number of 
546 observations from PROTEUS, TRY, and BIEN). Traits with no direct match to a TO term were 
547 assigned categories consistent with similar traits or categorized as “miscellaneous”. Lists of 
548 individual traits and categorization schemes are available as Supplementary Material 1. b) Word 
549 clouds visualizing most frequent terms appearing in list of traits i) investigated in phylogenetic 
550 studies, ii) shared between phylogenetic and introduced population studies, and iii) investigated 
551 in introduced population (common environment experiment) studies. Word size is indicative of 
552 relative frequency within each list; frequency in (ii) is the minimum frequency between lists.
553
554 Figure 3  Number of traits showing significant fixed differences (black bars) versus no 
555 significant fixed differences (white bars) in introduced populations under any experimental 
556 treatment in common environments in the 87 studies reviewed.
557
558 SUPPLEMENTARY MATERIAL
559 Supplementary Data 1  Citations of studies reviewed for Figs. 2 and 3, with corresponding data 
560 for traits examined (phylogenetic and common garden studies), and whether traits were found to 
561 have evolved (fixed differences between source populations in common garden studies). 
562
563 Supplementary Data 2  Categorization scheme after the Plant Trait Ontology for traits 
564 examined from the literature and traits databases.
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Table 1  Examples of trait evolution hypotheses from phylogenetic comparative perspectives, and evidence from introduced 
populations which could be used to test them. Example traits include those already of common interest to both phylogenetic 
comparative and species introduction studies (Fig 2b.ii).

Hypothesis Prediction for introduced populations Examples from species introductions

Trait shifts are adaptive responses 
to (climatic) niche shifts)

Climatic conditions select for different trait states 
in introduced environment(s)

Leaf shape evolution in Centaurea 
solstitialis [61], Centaurea stoebe [59], 
Chromolaena odorata [60], Phyla 
canescens [62], Rhododendron ponticum 
[58]

Trait shifts are adaptive responses 
to changes in species interactions

Interspecific interactions generate selection for 
different trait states in introduced environment(s)

Flower color evolution in Raphanus taxa 
[90]; tannin content evolution in Sapium 
sebiferum [91]

Trait shifts are adaptive responses 
to long-distance dispersal / 
biogeographic transitions

Introduction events select for shifts in mating 
system and dispersal traits

Mating system evolution in Eichhornia 
paniculata [92]; shift to cloning in Fallopia 
japonica [93], Oxalis pes-caprae [94]; 
dispersal evolution in Crepis sancta [95]

Trait shifts promote (i.e., happen 
before) speciation

Increased divergence/reproductive isolation 
between populations with varying trait states

Life history evolution (perenniality) in 
Centaurea stoebe [59], Senecio 
inaequidens [96]. Additional examples of 
evolution in time to flowering and 
senescence are listed in Supp. Data 1.

Traits shift gradually via 
incremental mutations (vs. rapidly 
by mutations of large effect) 

Increasing magnitude of trait differences 
between populations over time, due to 
accumulation of multiple additive/epistatic 
mutations 

Evolution of frost tolerance in Ambrosia 
artemisiifolia [97], Rhododendron ponticum 
[58]. See also examples above.

Trait shift is more likely in some 
plant lineages than others (i.e., 

Increased frequency of trait state changes in 
populations of some taxa relative to others

Comparisons across multiple systems (e.g., 
Supp. Data 1 includes 70 species in 26 
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some lineages experience higher 
rates of trait evolution)

plant families)

Groups of traits covary and shift en 
suite (vs. individual traits shift 
independently)

Patterns of correlated trait shifts across 
populations

Correlated evolution of growth and 
reproductive traits in Lythrum salicaria [98])

https://paperpile.com/c/WWdGyH/yNKm

