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ABSTRACT
We consider the problem of analyzing timestamped relational events

between a set of entities, such as messages between users of an

on-line social network. Such data are often analyzed using static or

discrete-time network models, which discard a significant amount

of information by aggregating events over time to form network

snapshots. In this paper, we introduce a block point process model

(BPPM) for continuous-time event-based dynamic networks. The

BPPM is inspired by the well-known stochastic block model (SBM)

for static networks. We show that networks generated by the BPPM

follow an SBM in the limit of a growing number of nodes. We use

this property to develop principled and efficient local search and

variational inference procedures initialized by regularized spectral

clustering. We fit BPPMs with exponential Hawkes processes to

analyze several real network data sets, including a Facebook wall

post network with over 3, 500 nodes and 130, 000 events.

CCS CONCEPTS
• Mathematics of computing → Random graphs; Probabilis-
tic representations; Probabilistic reasoning algorithms; Stochastic

processes; • Computing methodologies → Learning latent rep-
resentations; Spectral methods.

KEYWORDS
block Hawkes model; event-based network; continuous-time net-
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1 INTRODUCTION
Many application settings involve analysis of timestamped rela-

tional event data in the form of triplets (sender, receiver, timestamp),

as shown in Figure 1a. Examples include analysis of messages be-

tween users of an on-line social network, emails between employ-

ees of a company, and transactions between buyers and sellers on

e-commerce websites. These types of data can be represented as

dynamic networks evolving in continuous time due to the fine gran-

ularity on the timestamps of events and the irregular time intervals

at which events occur.

Statistically modeling these types of relations and their dynamics

over time has been of great interest, especially given the ubiquity
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Sender Receiver Time

1 2 0.1

2 3 0.4

3 2 0.6

1 2 1.2

1 3 1.3

2 1 1.6

(a) Event table

A[0,1) =


0 1 0

0 0 1

0 1 0


A[1,2) =


0 1 1

1 0 0

0 0 0


(b) Adjacency matrix

Figure 1: Two representations of a continuous-time event-
based dynamic network. The adjacencymatrices discard the
exact times and ordering of events.

of such data in recent years. Most prior work has involved mod-

eling these relations using network representations, with nodes

representing senders and receivers, and edges representing events.

Such representations often either discard the timestamps altogether,

which transforms the dynamic network into a static network, or

aggregate events over time windows to form network snapshots

evolving in discrete time as in Figure 1b. There have been numer-

ous statistical models proposed for static networks dating back to

the 1960s [12, 18], and more recently, for discrete-time networks

[5, 15, 17, 26, 32, 39–42], but comparatively less attention has been

devoted to continuous-time networks of timestamped relations.

The development of such continuous-time or point process-based

network models [2, 7, 8, 11, 27, 38] appears to have progressed sep-

arately from recent advances in static and discrete-time network

models. There have been many recent developments on estimation

for static network models such as the stochastic block model (SBM),

including the development of consistent estimators such as regular-

ized spectral clustering [31, 34]. Although some continuous-time

models have drawn their inspiration from static network models, to

the best of our knowledge, there has not been prior work connect-

ing the two types of models, and in particular, examining whether

provably accurate estimators for static network models can be used

to estimate continuous-time models.

In this paper we introduce the block point process model (BPPM)

for continuous-time event-based dynamic networks, inspired by

the SBM for static networks. Our main contributions are as follows:



• We demonstrate an asymptotic equivalence between our

proposed BPPM and the SBM in the limit of growing num-

ber of nodes, which allows us to use provably accurate and

efficient estimators for the SBM, such as regularized spectral

clustering, as a starting point to fit BPPMs.

• We develop efficient local search and variational inference

procedures for the BPPM initialized by regularized spectral

clustering on an aggregated adjacency matrix.

• We fit the BPPM to several real network data sets, including a

Facebook network with over 3, 500 nodes and 130, 000 events

and demonstrate that it is more accurate at predicting future

interactions compared to discrete-time SBMs.

2 BACKGROUND
We consider dynamic networks evolving in continuous time through

the observation of events between pairs of nodes at recorded times-

tamps, as shown in Figure 1a. We assume that events are directed,

so we refer to the two nodes involved in an event as the sender and

receiver (although the model we propose can be trivially modified

to handle undirected events by reducing the number of parameters).

Such event data can be represented in the form of a matrix E where

each row is a triplet e = (u,v, t) denoting an event from node u to

node v at timestamp t . Let N denote the total number of nodes in

the network, and let T denote the time of the last interaction, so

that the interaction times are all in [0,T ].
From an event matrix E, one can obtain an adjacency matrix

A[t1,t2) over any given time interval [t1, t2) such that 0 ≤ t1 <
t2 ≤ T . To simplify notation, we drop the time interval from the

adjacency matrix, i.e. A = A[t1,t2). In this adjacency matrix, ai j = 1

if there is at least one event from node i to node j in [t1, t2), and
ai j = 0 otherwise. For example, Figure 1b shows two adjacency

matrices constructed by aggregating events from the event table

shown in Figure 1a over [0, 1) and [1, 2).

2.1 The Stochastic Block Model
Most statistical models for networks consider an adjacency matrix

rather than event-based representation; many commonly used mod-

els of this type are discussed in the survey by Goldenberg et al. [12].

One model that has received significant attention is the stochas-
tic block model (SBM), which is defined as follows (adapted from

Definition 3 in Holland et al. [18]):

Definition 2.1 (Stochastic block model). Let A denote a random

adjacency matrix for a static network, and let c denote a class

membership vector. A is generated according to a stochastic block

model with respect to the membership vector c if and only if,

(1) For any nodes i , j , the random variables ai j are statistically
independent.

(2) For any nodes i , j and i ′ , j ′, if i and i ′ are in the same class,

i.e. ci = ci′ , and j and j ′ are in the same class, i.e. c j = c j′ ,
then ai j and ai′j′ are identically distributed.

The classes in the SBM are also commonly referred to in the

literature as blocks. The class membership vector c has N entries

where each entry ci ∈ {1, . . . ,K} denotes the class membership

of node i , and K denotes the total number of classes. Recent work

has focused on estimating the class memberships from the adja-

cency matrix A. In this setting, spectral clustering (and regularized

variants) has emerged as an efficient estimator that has theoretical

accuracy guarantees [22, 31, 33–35], scales to large networks with

thousands of nodes, and is generally not sensitive to initialization.

2.2 Related Work
Most existing work on modeling dynamic networks has consid-

ered a discrete-time representation, where the observations consist

of a sequence of adjacency matrices. This observation model is

ideally suited for network data collected at regular time intervals,

e.g. weekly surveys. In practice, however, dynamic network data is

often collected at much finer levels of temporal resolution (e.g. at the

level of a second or millisecond), in which case it likely makes more

sense to treat time as continuous rather than discrete. In order to

apply discrete-time dynamic network models to such data, it must

first be pre-processed by aggregating events over time windows

to form network snapshots, and this technique is used in many

real data experiments [15, 27, 40–42]. For example, an aggregated

representation of the network in Figure 1a with time window of 1

is shown in Figure 1b.

Aggregating continuous-time network data into discrete-time

snapshots presents several challenges. Onewould ideally choose the

time window to be as short as possible for the maximum temporal

resolution. However, this increases the number of snapshots, and

accordingly, the computation time (typically linear in the number

of snapshots). More importantly, models fit using shorter time

windows can lead to worse predictors than models fit using longer

timewindows because themodels often assume short-termmemory,

such as the Markovian dynamics in many discrete-time SBMs [17,

26, 39–42]. We demonstrate some of these practical challenges in

an experiment in Section 6.2.2.

Another line of research that has evolved independently of

discrete-time network models involves the use of point processes

to estimate the structure of a latent network from observations

at the nodes [10, 13, 16, 24, 36]. These models are often used to

estimate networks of diffusion from information cascades. Such

work differs from the setting we consider in this paper, where we

directly observe events between pairs of nodes and seek to model

the dynamics of such event sequences.

There have been several other models proposed using point

processes to model continuous-time event-based networks [2, 7, 8,

11, 23, 27, 38], which is the setting we consider in this paper. These

models are typically fit using Markov chain Monte Carlo (MCMC)

methods, which do not scale to large networks with thousands of

nodes. The BPPM that we propose in this paper is a simpler version

of the Hawkes IRM [2]. The relational event model (REM) [7] is

related to the BPPM in that it is also inspired by the SBM and shares

parameters across nodes in the network in a similar manner. We

discuss the Hawkes IRM and REM in greater detail and compare

them to our proposed model in Section 3.4.

3 THE BLOCK POINT PROCESS MODEL
3.1 Model Specification
We propose to model continuous-time dynamic networks using a

generative point process network model. Motivated by the SBM



Algorithm 1 Generative process for BPPM

1: for node i = 1 to N do
2: Sample class ci from categorical distribution with parameter

vector π
3: for block pair b = 1 to p do
4: loop
5: Sample next event time tb from bth point process

6: if tb > T then
7: break
8: Randomly select nodes i ∈ b1, j ∈ b2 to form an edge from

node i to node j at time tb

for static networks, we propose to divide nodes into K classes or

blocks and to associate a univariate point process with each pair

of node blocks b = (b1,b2) ∈ {1, . . . ,K}
2
, which we refer to as a

block pair. Let p = K2
denote the total number of block pairs. Let

π = {π1, . . . , πK } denote the class membership probability vector,

where πq denotes the probability that a node belongs to class q. We

call our model the block point process model (BPPM). The generative

process for the BPPM for a network of duration T time units is

shown in Algorithm 1.

The BPPM is a very general model—notice that we have not

specified what type of point process to use in the model (we discuss

this in Section 3.3). The proposed BPPM is less flexible than existing

point process network models such as the Hawkes IRM and the

REM (we compare the BPPM to these models in Section 3.4), but

its simplicity enables theoretical analysis of the model. We then

use the findings of our analysis to develop principled and efficient

inference procedures that scale to large networks with thousands

of nodes and hundreds of thousands of events. The proposed infer-

ence procedures, which we discuss in Section 4, take advantage of

the close relationship between the BPPM and the SBM, which we

discuss next.

3.2 Asymptotic Equivalence with the
Stochastic Block Model

The BPPM is motivated by the SBM, where the probability of form-

ing an edge between two nodes depends only the classes of the two

nodes. Given the relation between the point process and adjacency

matrix representations discussed in Section 2, a natural question is

whether there is any equivalence between the BPPM and the SBM.

Specifically, does an adjacency matrixA = A[t1,t2) constructed from
an event matrix E generated by the BPPM follow an SBM? As far as

we know, this connection between point process and static network

models has not been previously explored in the literature.

We first note that A meets criterion 2 (identical distribution

within a block pair) in Definition 2.1 due to the random selection of

node pair for each event in step 8 of Algorithm 1. To check criterion

1 (independence of all entries of A), we first note that entries ai j
and ai′j′ in different block pairs, i.e. (ci , c j ) , (ci′, c

′
j ), depend on

different independent point processes (unlike in the Hawkes IRM),

so ai j and ai′j′ are independent.
Next, consider entries ai j and ai′j′ in the same block pair b =

(ci , c j ) = (ci′, c j′). In general, these entries are dependent so that

criterion 1 is not satisfied.
1
For example, if a Hawkes process [21]

is used in step 5 of Algorithm 1, then ai′j′ = 1 indicates that at

least one event was generated in block pair b, i.e. there was at

least one jump in the intensity of the process. This indicates that

the probability of another event is now higher, so the conditional

probability Pr(ai j = 1|ai′j′ = 1) should be higher than the marginal

probability Pr(ai j = 1). Thus ai j and ai′j′ are dependent, so A does

not follow an SBM!

We denote the deviation from independence using the terms δ0
and δ1 defined by

δ0 = Pr(ai j = 0|ai′j′ = 0) − Pr(ai j = 0) (1)

δ1 = Pr(ai j = 0|ai′j′ = 1) − Pr(ai j = 0). (2)

If δ0 = δ1 = 0, then the two adjacency matrix entries are inde-

pendent. If δ0 , 0 or δ1 , 0, then the two entries are dependent,

with smaller values of |δ0 |, |δ1 | indicating less dependence. The

following theorem bounds these values.

Theorem (Asymptotic Independence Theorem). Consider an adja-
cency matrix A constructed from the BPPM over some time interval
[t1, t2). Then, for any two entries ai j and ai′j′ both in block pair b,
the deviation from independence given by δ0, δ1 defined in (1), (2) is
bounded in the following manner:

|δ0 |, |δ1 | ≤ min {1, µb/nb } (3)

where µb denotes the expected number of events in block pair b in
[t1, t2), andnb denotes the size of block pairb. In the limit asnb →∞,
δ0, δ1 → 0 provided µb grows at a slower rate than nb . Thus ai j and
ai′j′ are asymptotically independent for growing nb .

The proof of the Asymptotic Independence Theorem is provided

in Appendix A. We evaluate the tightness of the bound in (3) via

simulation in Section 5.1. Since it depends only on the expected

number of events µb and not the distribution, it is likely to be loose

in general but applies to any choice of point process.

The Asymptotic Independence Theorem states that the deviation

given by δ0, δ1 is non-zero in general for fixed nb , so the entries ai j
and ai′j′ are dependent, but the dependence decreases as the size
of a block (and thus, a block pair) grows. This can be achieved by

letting the number of nodes N in the network grow while holding

the number of classes K fixed. In this case, the sizes of block pairs

would be growing at rateO(N 2), so the asymptotic behavior should

be visible for networks with thousands of nodes. Thus, an adjacency

matrix constructed from the BPPM approaches an SBM in the limit

of a growing network! To the best of our knowledge, this is the

first such result linking networks constructed from point process

models and static network models. It is also practically useful in

that it allows us to leverage recent work on provably accurate and

efficient inference on the SBM for the BPPM.

3.3 Choice of Point Process Model
Any temporal point process can be used to generate the event times

in the BPPM. We turn our attention to a specific point process: the

Hawkes process [21], which is a self-exciting process where the

occurrence of events increases the probability of additional events

in the future. The self-exciting property tends to create clusters of

1
An exception is the case of a homogeneous Poisson process, for which the entries are

independent by the splitting property.



events in time, which are empirically observed in many settings.

Prior work has suggested that Hawkes processes with exponential

kernels provide a good fit to many real social network data sets,

including email and conversation sequences [14, 25] and re-shares

of posts on Twitter [43]. Hence, we also adopt the exponential

kernel, which has intensity function

λ(t) = λ∞ +
∑
ti<t

αe−β (t−ti ),

where λ∞ denotes the background rate that the intensity reverts

to over time, α denotes the jump size for the intensity function, β
denotes the exponential decay rate, and the ti ’s denote times of

events that occurred prior to time t . We refer to this model as the

block Hawkes model (BHM).

3.4 Relation to Other Models
The block Hawkes model we consider is a simpler version of the

Hawkes IRM, which couples a non-parametric Bayesian version

of the SBM called the infinite relational model (IRM) [20] with

mutually-exciting Hawkes processes. By utilizingmutually-exciting

Hawkes processes, the Hawkes IRM allows for reciprocity of events

between block pairs. Similar to the BHM, node pairs in a block pair

are selected at random to form an edge. The authors use MCMC-

based inference that scales only to very small networks.

The BHM simplifies the Hawkes IRM by using a fixed number

of classes K and univariate rather than multivariate Hawkes pro-

cesses. The use of univariate Hawkes processes is crucial because it

allows for independence between block pairs, which we used in the

analysis in Section 3.2 to demonstrate an asymptotic equivalence

with an SBM. We use this asymptotic equivalence in Section 4 to

devise an efficient inference procedure that scales to networks with

thousands of nodes.

The BHM also has similarities with the relational event model

(REM) [7], which associates a non-homogeneous Poisson process

with each pair of nodes, where the intensity function is piecewise

constant with knots (change points) at the event times. Different

node pairs belonging to the same block pair are governed by the

same set of parameters. The REM also incorporates other edge

formation mechanisms within block pairs such as reciprocity and

transitivity, similar to an exponential random graph model. The

authors also use MCMC for inference.

4 INFERENCE PROCEDURE
The observed data is in the form of triplets es = (us ,vs , ts ) for each
event s denoting the nodes us ,vs involved and the timestamp ts .
Consider an event matrix E where each row corresponds to an event

in the form of a triplet es . Fitting the BPPM involves estimating

both the unknown classes or blocks for each node and the point

process parameters θb for each block pair b from E. In the case of

an exponential Hawkes process, the parameters are given by

θb =
(
αb , βb , λ

∞
b

)
for each block pair b. Let θ = {θb }

p
b=1 denote the set of point

process parameters over all p block pairs.

Exact inference is impractical for all but the smallest networks

due to the discrete class memberships c. Thus, we consider two

approximate inference methods: a greedy local search (Section

4.1) and variational inference (Section 4.2). Both approaches are

iterative and converge to a local maximum and are thus sensitive

to the choice of initialization, which we discuss in Section 4.3.

4.1 Local Search
Consider a conditional likelihood function for the point process

parameters θ given the values of the class memberships c that

determine the block pairs. Let E(b) denote rows of E corresponding

to events involving block pair b = (b1,b2); that is, rows es where
us ∈ b1 and vs ∈ b2. The p row blocks E(b) = [u(b), v(b), t(b)] form
a partition of the rows of matrix E. Letmb denote the number of

events observed in block pair b. Let nb denote the size of block pair

b, i.e. the number of node pairs or possible edges in block pair b,
which is given by |b1 |(|b1 | − 1) if b1 = b2 and |b1 | |b2 | otherwise.
The conditional log-likelihood function is given by

log Pr(E |θ , c) = log

p∏
b=1

Pr

(
u(b), v(b), t(b)

���θb , c)
= log

p∏
b=1

Pr

(
t(b)

��θb ) ∏
s ∈b

Pr(us ,vs |c)

= log

p∏
b=1

Pr

(
t(b)

��θb ) (
1

nb

)mb

=

p∑
b=1

[
log Pr

(
t(b)

��θb ) −mb lognb

]
(4)

where the expression for Pr(us ,vs |c) follows from the random se-

lection of nodes in step 8 of the BPPM generative process. The term

log Pr

(
t(b) |θb

)
is simply the log-likelihood of the point process

model parameters given the timestamps of events in block pair b.
For the block Hawkes model, this term can be expressed in the

following form [21, 30]:

log Pr

(
t(1), . . . , t(m) |αb , βb , λ

∞
b

)
=

m∑
s=1

{
αb
βb

[
e−βb (t(m)−t(s )) − 1

]
+ log

[
λ∞b + αb

s−1∑
r=1

e−βb (t(s )−t(r ))

] }
− λ∞b t(m), (5)

where t(s) denotes the sth event corresponding to block pair b. (5)
can be written in a recursive form as shown in [29].

The conditional log-likelihood (4) requires knowledge of class

memberships c, which are used to partition the event matrix into

row blocks E(b) and thus affect both terms in (4) through t(b),mb ,

and nb . However, in practice, class memberships are unknown, so

we must maximize (4) over all possible class assignments.

We use a local search (hill climbing) procedure, which is also

often referred to as label switching or node swapping in the net-

work science literature [19, 44] to iteratively update the class as-

signments to reach a local maximum in a greedy fashion. Recent

work has found that such greedy algorithms are competitive with

more computationally demanding estimation algorithms in both

the static SBM [4] and discrete-time dynamic SBM [5, 41] while

scaling to much larger networks. At each iteration, we swap a sin-

gle node to a different class by choosing the swap that increases



the log-likelihood the most. For each possible swap, we evaluate

the log-likelihood by partitioning events using to the new class

assignments, obtaining the maximum-likelihood estimates of the

point process model parameters, and substituting these estimates

along with the new class assignments into (4). For the block Hawkes

model, we maximize (5) with respect to (αb , βb , λ
∞
b ) for each block

using a standard interior point optimization routine [3].

Each iteration of the local search considers N (K − 1) possible
swaps. Computing the log-likelihood for each swap involves iterat-

ing over the timestamps of allM events. Thus, each iteration of the

local search has time complexity O(KMN ), which is linear in both

the number of nodes and events, allowing it to scale to large net-

works. We verify this time complexity experimentally in Section 5.3.

The local search is easily parallelized by evaluating each possible

swap on a separate CPU core. We terminate the local search proce-

dure when no swap is able to increase the log-likelihood, indicating

that we have reached a local maximum.

4.2 Variational Inference
Variational inference is commonly used as an optimization-based

alternative to MCMC and scales to much larger data sets. We im-

plement a mean-field variational inference approach for the BPPM

to approximate the intractable posterior distribution by a fully fac-

torizable variational distribution. To reduce the Kullback-Leibler

(KL) divergence between the true posterior and the mean-field ap-

proximation, we derive the evidence lower bound (ELBO) using an

approach similar to the derivation in [6] for a static SBM.

Let Z denote an N × K class membership matrix, where the

notation ziq = 1 is equivalent to ci = q, both denoting that node

i is in class q. We use a K-dimensional multinomial distribution

for each row zi = [zi1, zi2, . . . , ziK ] of Z resulting in the following

variational distribution:

RE (Z ) =
N∏
i=1

Multinomial(zi |τ i ), (6)

where τ i denotes the variational parameter for node i . Unlike for a
static SBM, we don’t have a closed-form update equation for the

block Hawkes model, so we optimize the ELBO using coordinate

ascent. The derivation of the ELBO and the variational expectation-

maximization algorithm are provided in Appendix B.

4.3 Spectral Clustering Initialization
In order to ensure that the local search or variational inference

procedures do not get stuck in poor local maxima, it is important to

provide a good initialization. Methods used to initialize class esti-

mates in static and discrete-time SBMs include variants of k-means

clustering [4, 26, 27] and spectral clustering [40, 41]. Variational

inference is often executed with multiple random initializations,

although some structured approaches have been used successfully

in practice for certain models. Given the close relationship between

the proposed BPPM and the SBM discussed in Section 3.2, we use

a spectral clustering initialization, which is much faster and more

principled than the typical approach of multiple random initializa-

tions. Spectral clustering is an attractive choice because it scales to

large networks containing thousands of nodes and has theoretical

performance guarantees applicable to the BPPM, as we discuss next.

Algorithm 2 Regularized spectral clustering algorithm used to

initialize the local search in the BPPM inference procedure

Require: Adjacency matrixA, number of classes K , regularization
parameter τ ≥ 0 (Default: τ = average node degree)

1: Compute diagonal matrices Oτ
with entries oτii =

∑
j ai j + τ

and Pτ with entries pτj j =
∑
i ai j + τ

2: Compute regularized graph Laplacian L = (Oτ )−1/2A(Pτ )−1/2

3: Compute singular value decomposition of L
4: Σ̃← diagonal matrix of K largest singular values of L
5: (Ũ , Ṽ ) ← left and right singular vectors for Σ̃
6: Z̃ ← [Ũ , Ṽ ] {concatenate left and right singular vectors}

7: Normalize each row of Z̃ to have magnitude of 1

8: ĉ← k-means clustering on rows of Z̃
9: return ĉ

Recent work has demonstrated that applying spectral clustering

(or a regularized variant) to a network generated from an SBM

results in consistent estimates of class assignments as the number

of nodes N → ∞ [22, 31, 33–35]. These theoretical guarantees

typically require the expected degrees of nodes to grow polyloga-

rithmically with the number of nodes so that the network is not too

sparse. Networks that satisfy this requirement belong to the polylog

degree regime. On the other hand, the Asymptotic Independence

Theorem shows an asymptotic equivalence between the BPPM and

SBM provided that there are not too many events, i.e. the network

is not too dense.

In the polylog degree regime, the ratio

µb
nb
= O

(
N poly(logN )

N 2

)
→ 0 as N →∞,

so the network is not too dense, and the Asymptotic Independence

Theorem holds. Thus, spectral clustering should provide an accu-

rate estimate of the class assignments in the polylog degree regime,

which is commonly observed in real networks such as social net-

works. Since we consider directed relations, we use a regularized

spectral clustering algorithm for directed networks (pseudocode

provided in Algorithm 2) to initialize the local search. It is a variant

of the DI-SIM co-clustering algorithm [34] modified to produce a

single set of clusters for directed graphs by concatenating scaled left

and right singular vectors in a manner similar to Sussman et al. [35].

For variational inference, we require an initialization on the varia-

tional parameters τ i rather than a hard clustering solution, so we

set τ i to the ith row of Z̃ to represent a soft clustering initialization.

5 SIMULATED DATA EXPERIMENTS
5.1 Deviation from Independence
The Asymptotic Independence Theorem demonstrates that pairs

of adjacency matrix entries in the same block pair are dependent,

but that the dependence is upper bounded by (3), and that the

dependence goes to 0 for growing blocks. To evaluate the slackness

of the bounds, we simulate networks from the block Hawkes model

(BHM). Since δ0 and δ1 depend only on the size of the blocks, we

simulate networks with a single block and let the number of nodes

N grow from 10 to 1, 000. For each number of nodes, we simulate

100, 000 networks from the block Hawkes model for a duration of
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Figure 2: Comparison of empirical deviation from indepen-
dence with theoretical upper bound. Empirical deviations
are well within the theoretical bound.
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Figure 3: Mean adjusted Rand indices (± standard error) for
class estimation simulation experiment with varying du-
rations. Spectral clustering with local search produces the
most accurate class estimates, while the spectral initializa-
tion for variational EM does not appear to work well.

T = 20 time units. We choose the Hawkes process parameters to

be α = 5N , β = 10N , and λ∞ = 0.5N . The expected number of

events µ = NT = 20N , which grows with N and is slower than the

growth of the size n = N (N −1) of the block pair, so the Asymptotic

Independence Theorem applies.

We evaluate the absolute difference between the empirical mar-

ginal probability P̂r(ai j = 0) and the empirical conditional proba-

bilities P̂r(ai j = 0|ai′j′ = 0) and P̂r(ai j = 0|ai′j′ = 1). The empirical

deviation from independence is shown to be well below the upper

bound in Figure 2. The bound (3) in the Asymptotic Independence

Theorem depends only on the mean number of events, so it is

somewhat loose when applied to the block Hawkes model.

5.2 Class Estimation
This simulation experiment is based on the synthetic network gen-

erator from Newman and Girvan [28], where all the diagonal block

pairs have the same parameters, and the off-diagonal block pairs

have the same parameters, but different from the diagonal block

pairs. We generate networks with 128 nodes and 4 classes from the

block Hawkes model using Algorithm 1 with varying durations

from 20 to 80 time units. We generate 10 networks for each dura-

tion, with Hawkes process parameters α and β being 0.6 and 0.8,
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Figure 4: CPU time per iteration of local search inference in
seconds with varying number of nodes and events.

respectively, for all block pairs. The baseline rates λ∞ are 1.8 for

diagonal block pairs and 0.6 for off-diagonal block pairs. Classes

are estimated using 5 methods: spectral clustering, local search

initialized with spectral clustering, variational EM initialized with

spectral clustering, variational EM with 10 random initializations,

and local search with 10 random initializations.

The results shown in Figure 3 demonstrate that local search ini-

tialized with spectral clustering (Spectral+LS) is the most accurate.

Conversely, the spectral clustering initialization for variational EM

(Spectral+VEM) results in significantly worse results. Variational

EM and local search using 10 random initializations (Random+VEM

and Random+LS) take significantly longer than Spectral+LS; how-

ever, they are also less accurate, so we use Spectral+LS in the re-

mainder of this paper.

5.3 Scalability of Local Search
We evaluate the scalability of the proposed local search inference

procedure by generating networks with varying number of nodes

and events from the block Hawkes model. When varying the num-

ber of nodes, we choose a time duration of 1, 200 time units and set

the Hawkes process parameters (α, β, λ∞) to (1.6, 2, 1.2) for diago-
nal block pairs and (0.6, 0.8, 0.6) for off-diagonal block pairs. When

varying the number of events, we choose a network with 128 nodes

and set the Hawkes process parameters (α, β, λ∞) to (0.6, 0.8, 1.8)
for diagonal block pairs and (0.6, 0.8, 0.6) for off-diagonal block

pairs. We keep the number of classes fixed to be 4 in both settings

and simulate 5 networks for each configuration.

The CPU times per iteration for both varying number of nodes

and events are shown in Figure 4 along with best-fit lines for a

power law relationship (beginning with 512 nodes for the varying

nodes experiment). The best-fit line has slope 0.9 in both cases,

confirming the linear time complexity both in terms of the number

of nodes N and the number of events M , which is as expected

according to the computed time complexity in Section 4.1. All CPU

times are recorded on a Linux workstation using 18 Intel Xeon

processor cores operating at 2.8 GHz.
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Figure 5: Block Hawkes model fit on Reality Mining data with 2 blocks. Nodes 1-15 belong to block 1 and the rest to block 2.
(a) First 15 singular values of the adjacency matrix. (b)-(d) Hawkes process parameter estimates.

6 REAL DATA EXPERIMENTS
6.1 MIT Reality Mining
We analyze the MIT Reality Mining data [9], using start times of

phone calls as events from the caller to the recipient. Nodes in this

data set correspond to students and staff at MIT. The data were

collected over approximately 10 months beginning in August 2004.

We remove all nodes who do not either make or receive a call at

any point in the data trace, resulting in a network with 86 nodes.

We observe a significant gap after the second largest singular

value of the regularized graph Laplacian, as shown in Figure 5a so

we choose K = 2 blocks. From examining the block Hawkes model

parameter estimates shown in Figure 5b-5d, block pair (1, 1) has

both higher background intensity λ∞ and longer bursts due to high

α and low β . Thus, not only does it appear to be a community, but

phone calls within the community tend to happen in prolonged

bursts. On the other hand, block pair (2, 2) has higher background

intensity than the off-diagonal block pairs but without the large

jump sizes, indicating a lack of bursty behavior compared to block

pair (1, 1). Block pair (1, 2) has high values for both α and β , indicat-
ing large bursts of short duration. However, since block pair (1, 2)

has a lower background intensity than (2, 2), the overall density of

the block pair in the aggregated adjacency matrix is not necessarily

higher. Indeed, block pair (2, 2) has a density of 0.041, while block

pair (2, 1) has a density of 0.034. Thus, the continuous-time model

of the network enables greater analysis of the dynamics of interac-

tions over both short and long periods of time, and the findings may

be quite different from those of static and discrete-time network

representations.

6.2 Facebook Wall Posts
6.2.1 Model-Based Exploratory Analysis. We analyze the Facebook

wall post data collected by Viswanath et al. [37], which contains

over 60, 000 nodes. We consider events between January 1, 2007

and January 1, 2008. We remove nodes with degree less than 10,

resulting in a network with 137, 170 events among 3, 582 nodes.

We select a model with K = 2 blocks, as suggested by the singu-

lar values of the regularized graph Laplacian shown in Figure 6a.

The parameters inferred from the BHM fit on the Facebook data

are shown in Figure 6b-6d. The diagonal block pairs have larger

values of background intensity λ∞, indicating that the blocks form

communities. This finding could also have been yielded by static

and discrete-time SBMs. The diagonal block pairs also have higher

values of jump sizes α , indicating that wall posts between mem-

bers of a community are more bursty. A portion of the Hawkes

process intensity function for block pair (1, 1) is shown in Figure 7.

In addition to diurnal patterns, one can observe bursty periods of

wall posts throughout the day. This finding could not have been ob-

tained from static and discrete-time SBMs. From the values of α on

the diagonal block pairs, we see that wall posts within block 2 are

more bursty, with higher jump sizes and roughly equal jump decay

rates compared to posts within block 1. By observing the values

of α on off-diagonal block pairs, we notice that there isn’t much

asymmetry, but the decay rate β exhibits asymmetry. Specifically,

events from block 1 to 2 have longer sustained bursts than events

from block 2 to 1 due to the lower value of β12 compared to β21.

6.2.2 Comparison with Discrete-Time SBM. To compare our pro-

posed continuous-time BHM with a discrete-time SBM [41], we

consider the task of predicting the time to the next event in each

block pair. We believe that this is a fair comparison because both

the BHM and discrete-time SBM require that pairs of nodes in the

same block pair have identical edge probabilities. We split the data

into two sets, with the first 8months of data for training and the last

4 months for testing. During each week of the test set, we attempt

to predict the time to the next event in each block pair. Afterwards,

we update the model with all events during that week. This results

in 16 predictions in the test set for each block pair.

The BHM directly models event times, so we use the expected

next event time for each block as the prediction. The discrete-time

SBM does not directly model event times, so we multiply the ex-

pected number of time snapshots that will elapse before the next

edge formation, which is geometrically distributed, by the snapshot

length and then subtract half the snapshot length (to center the pre-

diction within the snapshot) to get a prediction for the next event

time. Since the prediction for the discrete-time SBM is dependent

on the snapshot length, we test several different snapshot lengths.

We estimate class assignments for both models using regularized

spectral clustering with 2 classes (with no local search iterations) so

that differences in class estimates between the two models do not

play a role in the accuracy. We believe this is a valid comparison

because spectral clustering is used as the initialization to local

search in the inference procedure for both models, as discussed in

Section 4.1 for the BHM and in [41] for the discrete-time SBM.
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Figure 6: Block Hawkes model parameter estimates on Facebook wall post data with 2 blocks. Nodes 1-1421 belong to block 1
and the rest to block 2. (a) First 15 singular values of the adjacency matrix. (b)-(d) Hawkes process parameter estimates.
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We evaluate the accuracy of the predictions by computing the

root mean-squared error (RMSE) between predicted event times

and actual event times for the first event in each block pair during

a week. Since the blocks form communities, we expect events to

arrive much more frequently within blocks. Thus we separate the

evaluation into within-block and between-block prediction RMSE.

As shown in Figure 8, the accuracy of the discrete-time SBM is

highly dependent on the snapshot length. For snapshots of 6 hours

and longer, the loss in temporal resolution is the main contributor

to the high RMSE. The shorter snapshots such as 1 hour and 2

hours have excellent temporal resolution for within-block predic-

tion but are less accurate for between-block prediction. Choosing

3-hour long snapshots results in the most accurate between-block

predictions. Due to the different rates of events within and between

blocks, the discrete-time representation must trade off between

within-block and between-block prediction accuracy when choos-

ing the snapshot length. Using our continuous-time BHM, we avoid

this complex problem of choosing the snapshot length and produce

more accurate predictions (in total RMSE) than the discrete-time

model for any snapshot length, as shown in Figure 8.

7 CONCLUSION
In this paper, we introduced the block point process model (BPPM)

for dynamic networks evolving in continuous time in the form of

timestamped events between nodes. Our model was inspired by

the well-known stochastic block model (SBM) for static networks

and is a simpler version of the Hawkes IRM. We demonstrated

1 2 3 4 5 6

Time snapshot length (hours)

0

5

10

15

20

25

30

R
M

S
E

 (
h

o
u

rs
)

Block Hawkes model (within blocks)

Discrete-time SBM (within blocks)

Block Hawkes model (between blocks)

Discrete-time SBM (between blocks)

Figure 8: Prediction RMSE in hours for blockHawkesmodel
and discrete-time SBMs on Facebook data.

that adjacency matrices constructed from the BPPM follow an SBM

in the limit of a growing number of nodes. To the best of our

knowledge, this is the first result of this type connecting point

process network models with adjacency matrix network models.

Additionally we proposed a principled and efficient algorithm to fit

the BPPM using spectral clustering and local search that scales to

large networks and apply it to analyze several real networks.

A PROOF OF ASYMPTOTIC INDEPENDENCE
THEOREM

We begin with a well-known lemma on the difference of powers

that will be used both to upper and lower bound the deviation from

independence.

Lemma A.1 (Difference of powers). For a real number x > 1

and integerm ≥ 1, we have the following identity:

m(x − 1)m−1 ≤ xm − (x − 1)m ≤ mxm−1. (7)

Proof. The proof follows straightforwardly from factorizing a

difference of powers. Specifically, for real numbers x > y > 0 and

integerm ≥ 1,

xm − ym = (x − y)
m−1∑
i=0

xm−1−iyi . (8)



If x > 1 and y = x − 1, then (8) becomes

xm − (x − 1)m =
m−1∑
i=0

xm−1−i (x − 1)i .

There are m terms in the summation. The largest term is xm−1,
and the smallest term is (x − 1)m−1. Thus, we can upper and lower

bound the sum bymxm−1 andm(x − 1)m−1, respectively, to arrive

at (7). □

The next lemma will be used in the upper bound.

Lemma A.2. For a real number x > 1 and integerm ≥ 1,(
n − 1

n

)m
≥ 1 −

m

n
.

Proof. (
n − 1

n

)m
− 1 =

(n − 1)m − nm

nm

= −
nm − (n − 1)m

nm

≥ −
mnm−1

nm
(9)

= −
m

n
, (10)

where (9) follows from applying Lemma A.1. Adding 1 to both sides

of (10), we arrive at the desired result. □

We now prove the Asymptotic Independence Theorem.

Proof of Asymptotic Independence Theorem. First compute

the marginal probability Pr(ai j = 0). ai j = 0 implies that no events

between nodes i and j occurred. To compute this probability, we

first compute the conditional probability given that the number

of events in block pair b ismb . To simplify notation, we drop the

subscript b frommb and nb in the remainder of the proof, so the

conditional probability can be written as

Pr(ai j = 0|m) =

(
n − 1

n

)m
, m ≥ 0,

where the equality follows by noting that, conditioned onm total

events in block pair b, the number of events between nodes i and j
follows a binomial distribution withm trials and success probability

1/n. The 1/n success probability is due to step 8 of the generative

process of the BPPM, which involves selecting node pairs randomly

to receive an event. By the Law of Total Probability, the marginal

probability is

Pr(ai j = 0) =

∞∑
m=0

p(m) Pr(ai j = 0|m)

=

∞∑
m=0

p(m)

(
n − 1

n

)m
, (11)

where the probability mass function p(m) denotes the probability
thatm events in block pair b occurred.

Next consider the joint probability Pr(ai j = 0,ai′j′ = 0). As

before, condition on the number of eventsm. The conditional joint

probability is

Pr(ai j = 0,ai′j′ = 0|m) =

(
n − 2

n

)m
, m ≥ 0,

because the number of events for each node pair in block pair

b follow a multinomial distribution with m trials and all event

probabilities equal to 1/n. By the Law of Total Probability,

Pr(ai j = 0,ai′j′ = 0) =

∞∑
m=0

p(m)

(
n − 2

n

)m
. (12)

We first lower bound δ0 by noting that

δ0 = Pr(ai j = 0|ai′j′ = 0) − Pr(ai j = 0)

≥ Pr(ai j = 0,ai′j′ = 0) − Pr(ai j = 0)

=

∞∑
m=0

p(m)

[(
n − 2

n

)m
−

(
n − 1

n

)m ]
(13)

= −

∞∑
m=0

p(m)
(n − 1)m − (n − 2)m

nm

≥ −

∞∑
m=0

p(m)
m(n − 1)m−1

nm
(14)

= −
1

n

∞∑
m=0

mp(m)

(
n − 1

n

)m−1
≥ −

1

n

∞∑
m=0

mp(m) (15)

= −
µ

n
, (16)

where (13) follows from (11) and (12), (14) follows from Lemma A.1,

and (15) follows by observing that

( n−1
n

)m−1
≤ 1.

We now upper bound δ0 by noting that

δ0 = Pr(ai j = 0|ai′j′ = 0) − Pr(ai j = 0)

≤ 1 − Pr(ai j = 0)

= 1 −

∞∑
m=0

p(m)

(
n − 1

n

)m
≤ 1 −

∞∑
m=0

p(m)
(
1 −

m

n

)
(17)

= 1 −

∞∑
m=0

p(m) +
1

n

∞∑
m=0

mp(m)

= 1 − 1 +
µ

n

=
µ

n
, (18)

where (17) follows from Lemma A.2.



Next we lower bound δ1 by noting that

δ1 = Pr(ai j = 0|ai′j′ = 1) − Pr(ai j = 0)

=
Pr(ai j = 0,ai′j′ = 1) − Pr(ai j = 0) Pr(ai′j′ = 1)

Pr(ai′j′ = 1)

≥ Pr(ai j = 0,ai′j′ = 1) − Pr(ai j = 0) Pr(ai′j′ = 1)

= Pr(ai j = 0) − Pr(ai j = 0,ai′j′ = 0)

− Pr(ai j = 0)[1 − Pr(ai′j′ = 0)]

= −[Pr(ai j = 0,ai′j′ = 0) − Pr(ai j = 0) Pr(ai′j′ = 0)]

= − Pr(ai′j′ = 0)[Pr(ai j = 0|ai′j′ = 0) − Pr(ai j = 0)]

= − Pr(ai′j′ = 0)δ0

≥ −δ0

≥ −
µ

n
, (19)

where (19) follows from (18).

Finally we upper bound δ1 using the same approach as for δ0:

δ1 = Pr(ai j = 0|ai′j′ = 1) − Pr(ai j = 0)

≤ 1 − Pr(ai j = 0)

≤
µ

n
, (20)

where the final inequality is obtained from (18).

Combining (16), (18), (19), and (20), and noting that themaximum

deviation between two probabilities is 1, we arrive at the desired

result |δ0 |, |δ1 | ≤ min{1, µ/n}, which completes the proof. □

B VARIATIONAL INFERENCE DETAILS
We begin by deriving the complete-data log-likelihood for the block

point process model.

log Pr(E,Z |θ ,π )

= log Pr(Z |π ) + log Pr(u, v, t|Z , θ )

= log Pr(Z |π ) + log Pr(u, v|Z ) + log Pr(t|u, v,Z , θ ) (21)

The first term in (21) represents the prior class probability and is

given by

log Pr(Z |π ) = log

©­«
N∏
i=1

K∏
q=1

π
ziq
iq

ª®¬ =
N∑
i=1

K∑
q=1

ziq log(πiq ).

The second term in (21) represents the uniform distribution of

events to nodes inside a block pair and is given by

log Pr(u, v|Z ) = log


K∏
q=1

K∏
l=1

(
1

nql

)mql 
= −

K∑
q=1

K∑
l=1

mql log(nql )

= −

K∑
q=1

K∑
l=1

zT
:qW z

:l log(z
T
:qz:l ),

where mql and nql are defined in the same manner as mb and

nb in Section 4.1. The last equality represents these two terms

as a function of Z , where z:q denotes the qth column of z, and a

weighted adjacency matrixW where the weightwi j corresponds to

the total number of events from node i to node j . The third term in

(21) depends on the choice of point process; for the block Hawkes

model, it is given by

log Pr(t|u, v,Z , θ ) =
K∑
q=1

K∑
l=1

( M∑
s=1

{
zusqzvs l

αql

βql

[
e−βql (tM−ts ) − 1

]
+ log

[
λ∞ql +

s−1∑
r=1

zurqzvr lαqle
−βql (ts−tr )

]}
− tMλ∞ql

)
,

where us and vs denote the sender and receiver nodes for event s .
The complete-data log-likelihood (21) is intractable since changing

the class membership of one node might affect the class member-

ships of other nodes, so all possibilities of Z need to be considered.

We derive a mean-field variational inference procedure in which

we approximate the posterior with the fully factorizable variational

distribution given by (6). We now try to find the best distribution

from the family of multinomial distributions that can get us closest

in KL divergence to the posterior. But calculating KL divergence

requires calculating the intractable posterior, so we instead max-

imize the evidence lower bound (ELBO), which is equivalent to

minimizing KL divergence [1]. The ELBO is given by

ELBO(RE ) = E [log Pr(E,Z |θ,π )] − E [logRE (Z )] .

Now expand and calculate expectation of individual terms in the

complete-data log-likelihood (21). The expectation of the log of the

summations in the second and third terms in (21) can be bounded

using Jensen’s inequality:

E[f (x)] ≥ f (E(x)).

After bounding the log sums using Jensen’s inequality and calculat-

ing the expectations with respect to RE , we arrive at the simplified

expression for the ELBO:

E(RE ) =
N∑
i=1

K∑
q=1

τiq log(πiq ) −
K∑
q=1

K∑
l=1

τT
:qWτ

:l log(τ
T
:qτ :l )

+

K∑
q=1

K∑
l=1

( M∑
s=1

{
τusqτvs l

αql

βql

[
e−βql (tM−ts ) − 1

]
+ log

[
λ∞ql

+

s−1∑
r=1

τurqτvr lαqle
−βql (ts−tr )

]}
− tMλ∞ql

)
+

N∑
i=1

K∑
q=1

τiq log(τiq )

(22)

where τ :q denotes the vector of variational parameters for class q
over all N nodes. The variational expectation-maximization (VEM)

algorithm alternates between a variational E step, in which we use

coordinate ascent to optimize the ELBO (22) over the variational

parameters τ i for each node i , and an M step, in which we optimize

the ELBO over the Hawkes process parameters

(
αql , βql , λ

∞
ql

)
for

all block pairs (q, l) ∈ {1, . . . ,K}2.
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