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Abstract

We present a stochastic framework for emergent quantum gravity coupled to matter. The Hamil-

tonian constraint in diffeomorphism-invariant theories demands the identification of a clock relative

to which dynamics may be defined, and other degrees of freedom can play the role of rulers. How-

ever, a global system of clock and rulers is generally not available. We provide evidence that

stochasticity associated with critical points of clock and ruler fields can be related to the emer-

gence of both a probabilistic description consistent with ordinary quantum theory, and gravitation

described by general relativity at long distances. We propose a procedure for embedding any

Lorentz-invariant field theory, including the Standard Model and its Lorentz-invariant extensions,

in this framework.
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I. INTRODUCTION

Spacetime appears to play conflicting roles in the two overarching frameworks of modern

physics, quantum field theory and general relativity. In quantum field theory, spacetime

provides a parametrization for dynamics. We ask about correlations between observables at

different points in spacetime. In the Schrödinger representation, the Schrödinger equation

describes evolution of the quantum state relative to a parameter that we call “time.” How-

ever, in general relativity spacetime is itself the object of the dynamics. With respect to

what clock does time-evolution refer if the quantum state provides a probabilistic descrip-

tion of spacetime itself? Initial attempts at quantization of general relativity provide an

uncomfortable response to this puzzle: In diffeomorphism-invariant theories such as general

relativity, the Hamiltonian vanishes up to boundary terms and constraints, and in spacetimes

without boundaries the Schrödinger equation is replaced with a constraint schematically of

the formH|ψ〉 = 0. The Wheeler-DeWitt equation of canonical quantum gravity [1] is a con-

straint of this type. States are not dynamical with respect to any external time parameter,

so the problem of reconciling different notions of time-evolution would appear to be moot.

However, the timeless description of the quantum state only underscores the basic puzzle of

how conventional notions of time might arise from a background-independent formulation

of quantum gravity.

The a priori absence of dynamics in diffeomorphism-invariant quantum theories suggests

that an internal degree of freedom should be identified as a clock relative to which dynam-

ics may be defined. Additional degrees of freedom might be identified as rulers, and the

clock and rulers then provide a spacetime backdrop for the theory. Physical questions be-

come relational: What is the correlation between Observable A when the clock and rulers

have values (TA,XA), and Observable B when the clock and rulers have values (TB,XB)?

Such a Machian view of dynamics has been embraced as a cornerstone of the search for a

background-independent quantum theory of gravity by Barbour [2–7], Page and Wootters

[8], Smolin [9], Rovelli [10] and others.

But what makes for an appropriate identification of clock and rulers? It seems inevitable

that any notion of space and time derived from quantum observables will inherit some form

of quantum fuzziness. This may be avoided if the clock and rulers are classical or gauge-

fixed, taking definite values, while the remainder of the system is quantum mechanical [11].
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But even then, the mapping of coordinates to fields need not be invertible, and a globally

defined system of clock and rulers is generally not available. This difficulty is referred to as

the global problem of time [12–15].

The generic absence of a good system of clock and rulers hints that quantum mechanics

and general relativity are not to be reconciled as fundamental aspects of the description

of nature. It is possible that both quantum theory and general relativity derive from a

more primitive microscopic framework out of which the smooth, continuous dynamics of

our experience emerges as an approximation. This is not a new idea [16], although to the

author’s knowledge there is as yet no straightforward realization of a framework of emergent

relativistic quantum field theory and general relativity.

We claim that if quantum field theory emerges from a more primitive framework that

would become manifest at some short distance scale, then with little more than the presump-

tion of diffeomorphism invariance in the fundamental framework, gravitation is an emergent

interaction at long distances. The graviton is a massless composite state, with coupling

strength dependent on the fundamental short-distance scale. This claim may be considered

an extension of Sakharov’s induced gravity paradigm [17], which requires a physical short-

distance regulator for field-theory divergences that is provided here by the new physics that

replaces the quantum theory at short distances. Diffeomorphism invariance, rather than cre-

ating a conflict between quantum theory and general relativity, instead becomes an integral

component in the origin of them both.

As an illustration of this possibility, we propose that quantum theory and gravitation

emerge from a stochastic dynamics of fields, including those fields that serve as clock and

rulers. There are certain similarities between the framework that we develop here and

the stochastic approach to quantum gravity proposed by Markopoulou and Smolin [18].

However, contrary to their construction based on graphs with discrete nodes, in the present

approach there is no fundamental discreteness other than that of a stochastic evolution of

fields, and physics is classical and nongravitational at ultra-short distances. Furthermore,

the present framework suggests a natural procedure for incorporating any Lorentz-invariant

quantum field theory, although the description of Grassmann (fermionic) fields [19] and gauge

fields in a stochastic setting require further clarification. We note that the present framework

is not, at least directly, related to stochastic gravity [20, 21], in which a stochastic evolution

of the spacetime metric is postulated from the outset. (See also the stochastic approach to
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gravity of Ref. [22].)

As a model for this picture, we are motivated by some recent analyses of induced emergent

gravity models in which scalar fields were identified as a system of clock and rulers. In those

models, quantization was shown to give rise to scattering amplitudes that include long-range

gravitational interactions consistent with general relativity [23, 24], including gravitational

self-interactions [25]. Similar models have also been studied from the perspective of the

gravitational effective action [26, 27], with a similar conclusion.

In the analyses of scattering amplitudes in those models, only configurations in which

the scalar clock and ruler fields had profiles monotonic in a particular sense with respect to

the spacetime coordinates were included in computations. In other words, those fields were

forced to act as a good system of clock and rulers. Other field profiles were argued to be

nonperturbative in that approach, and their contribution to functional integrals determin-

ing scattering amplitudes was postponed to later consideration. Here we suggest that the

additional field configurations, which might appear to make the choice of clock and ruler

fields ill considered, do not contribute separately to functional integrals defining correlation

functions. Instead, we propose that those configurations are related to a multivaluedness

of physical degrees of freedom over spacetime that is associated with the emergence of the

quantum-mechanical description in the first place.

We summarize our proposal for stochastic emergent quantum gravity by the following

constructive procedure, which begins with some Lorentz-invariant classical field theory:

1. Add to a classical d-dimensional Lorentz-invariant field theory d massless and uncou-

pled scalar fields that we refer to as “clock and ruler fields.” The clock field has the

wrong-sign kinetic term.

2. Embed the theory covariantly in an auxiliary spacetime.

3. Specify the auxiliary spacetime metric, or the vielbein up to local Lorentz transforma-

tions, as functions of the other fields by a constraint of vanishing energy-momentum

tensor. An example of this step is the transition from the Polyakov action for the

relativistic bosonic string to the Nambu-Goto action.

4. The resulting theory is diffeomorphism invariant and background independent, and

there are solutions to the equations of motion for arbitrary profiles of the clock and
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ruler fields. Assume a stochastic evolution of fields, including the clock and ruler fields.

The strength of the emergent gravitational interaction is ultimately related to the typ-

ical spacing between stochastic impulses. The stochastic description is modeled by the

dynamics of Nelson’s stochastic mechanics [28, 29] and its field-theory generalization

by Guerra and Ruggiero [30].

The probabilistic description of the stochastic theory resembles the standard quantization

of the original classical theory at distances and times much longer than the typical spacing

between critical points. The discreteness of critical points provides a physical ultraviolet

regulator for the emergent quantum field theory, and gravitation emerges at long distances

as an artifact of the short-distance regulator.

II. WHY SCALAR CLOCK AND RULER FIELDS?

Familiar examples of theories with scalar clock and/or ruler fields include the Nambu-

Goto theory of the relativistic string, and the covariant formulation of the free massive

relativistic particle. We can illustrate the basic ideas in our construction by consideration

of these theories, so we begin with discussion of the relativistic particle. The action is

proportional to the proper time elapsed on the particle’s worldline, and is given in a non-

covariant form by,

Sparticle = −m
∫
dt
√

1− Ẋ2, (2.1)

where we use the dot notation Ẋ ≡ dX/dt. The Euler-Lagrange equations for the particle

position X are,

d

dt

(
mẊ√
1− Ẋ2

)
= 0, (2.2)

and solutions are of the form X(t) = vt + x0 for constants v and x0. This description is

not manifestly Lorentz covariant, as the position degrees of freedom X play a different role

than the time parameter t.

In order to formulate the theory covariantly we introduce a clock T (t), and write

Sparticle = −m
∫
dt
√
Ṫ 2 − Ẋ2. (2.3)

Lorentz invariance of the action is now manifest, and acts as a global symmetry on the
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degrees of freedom T and X (with speed of light c = 1). The introduction of the clock

T (t) has not increased the number of degrees of freedom of the theory because in addition

to the Lorentz symmetry, Eq. (2.3) is invariant under arbitrary diffeomorphisms that take

T (t) → T (t′(t)) and X(t) → X(t′(t)). Consequently, T (t) can be considered to be a gauge

degree of freedom. The equations of motion are now,

d

dt

(
−mṪ√
Ṫ 2 − Ẋ2

)
= 0, (2.4)

d

dt

(
mẊ√
Ṫ 2 − Ẋ2

)
= 0. (2.5)

There are solutions of the form X[T (t)] = v T (t) + x0 for any T (t) and constants v and x0.

Comparing the solutions of the equations of motion in the covariant and non-covariant

descriptions, it should be evident that T (t) plays the role of a clock and provides an in-

terpretation for time in the covariant formulation. The parameter t plays little role in the

interpretation of the dynamics of the covariantly described motion; dynamics is interpreted

in terms of the relation between X and clock time T . As long as T (t) is monotonic it can

be transformed to the static gauge T (t) = t by a diffeomorphism. In the static gauge we are

left with the original, non-covariant, description of the theory.

While this example is quite basic, it succeeds in the Machian objective of identifying

inertial frames based on the state of the universe rather than a priori. Here the relevant

aspect of the state of the universe is the configuration of the clock T (t). A completely

relational theory should also include rulers that together with the clock provide a frame

relative to which dynamics may be described.

With T (t) treated as a dynamical degree of freedom, the Hamiltonian vanishes in the

covariant description. However, there is a primary constraint (a constraint independent of

the equations of motion) among the canonical momenta that defines the dynamics, namely

p2T −p2
X = m2, with canonical momenta pT and pX defined from the action Eq. (2.3) in the

conventional manner, so that:

pT =
−mṪ√
Ṫ 2 − Ẋ2

, pX =
mẊ√
Ṫ 2 − Ẋ2

. (2.6)

The primary constraint is preserved by the equations of motion. If we tentatively define the

6



quantum theory by functional integral quantization in configuration space, but restricted to

include only those profiles of T (t) that can be transformed to static gauge by a coordinate

transformation, then the resulting theory is equivalent to quantization of the non-covariant

formulation of the theory. The Fadeev-Popov procedure allows T (t) to be put in static

gauge without the introduction of ghosts. Note that the condition Ṫ 6= 0 is invariant under

nonsingular coordinate transformations, so that even with the restriction to monotonic T (t)

the description of the theory is generally covariant.

There are other approaches to quantization of constrained systems of this type. In Dirac’s

formalism, the constraint is added to the Hamiltonian multiplying a Lagrange multiplier,

and a canonical quantization procedure is then possible. Alternatively, with the constraint

added to the Hamiltonian, the quantum theory can be defined by functional integration in

phase space [31]. We generally focus on configuration-space descriptions because they more

cleanly illustrate the Machian nature of these systems.

The discussion of the free particle generalizes to theories with covariant interactions. For

example, the relativistic particle coupled to a background electromagnetic field AM(T,X) is

described by the diffeomorphism-invariant action

Sparticle =

∫
dt
[
−m

√
Ṫ 2 − Ẋ2 + qẊMAM(T,X)

]
, (2.7)

where we use the notation X0 ≡ T , X i ≡ Xi, i ∈ {1, . . . , d− 1}. In terms of XM [T (t)] the

Euler-Lagrange equations for this system can be written,

Ṫ

(
d

dT

[
XM ′(T )√
1−X′(T )2

]
− qFM

N X
N ′(T )

)
= 0, (2.8)

where FMN ≡ ∂MAN(X)−∂NAM(X) and indices are raised and lowered with the Minkowski

metric ηMN . As in the free theory, there are solutions for any T (t), and T (t) plays the role

of a clock in the dynamics. The background electromagnetic field breaks Lorentz invariance,

but not the diffeomorphism invariance of the description. One can check that the equation

of motion for T follows from the equations of motion for X, which is consistent with the

interpretation of X0 as a gauge degree of freedom.

To summarize this discussion, the introduction of a clock T (t) in this (0+1)-dimensional

field theory at the same time makes global Lorentz invariance manifest when it is a symmetry
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of the theory, and gives rise to a diffeomorphism-invariant description of the theory. The

clock does not add a physical degree of freedom to the non-covariant description of the

theory; the new degree of freedom is eliminated by the diffeomorphism invariance of the

covariant formulation. A subtlety in the covariant formulation is the possibility of branch

points in the Lagrangian and in the canonical momenta if Ṫ = 0 somewhere along the

trajectory of the particle. The presence of such branch points will be relevant in what

follows.

String theory, as a background-independent theory on the worldsheet (but not the target

spacetime), provides another useful point of comparison to these ideas. The Nambu-Goto

action for the bosonic string in d spacetime dimensions is proportional to the area of the

string worldsheet parametrized by XM(τ, σ), M ∈ {0, . . . , d− 1}:

Sstring = −T0
∫
d2x

√
det

(
ηMN

∂XM

∂xµ
∂XN

∂xν

)
, (2.9)

where x0 ≡ τ , x1 ≡ σ, and ηMN is the Minkowski metric in mostly minus signature. The

action is invariant under diffeomorphisms XM(x)→ XM [x′(x)] for any invertible coordinate

transformation x→ x′(x). In order to analyze the dynamics of the string it is convenient to

choose a static gauge for which X0(τ, σ) = τ . The coordinate τ is taken to range over the

real line.

The static gauge choice is possible because we assume that the action describes the world-

sheet area of a string. This is a restriction on the class of configurations of the fields XM(x).

For example, if in some parametrization X0(x) = constant, then no reparametrization of

coordinates τ and σ will make the scalar field X0 anything other than its constant value, and

there would be no static gauge. A similar conclusion follows if X0 has critical points at which

derivatives with respect to the worldsheet coordinates vanish. At the critical points the La-

grangian vanishes, and from the target-space perspective there is no timelike tangent vector

at such points [32]. From the perspective of the (1+1)-dimensional worldsheet field theory,

restriction to static gauge is a physical restriction on the space of allowed field configura-

tions. We note that the possibility of topology-changing and metric-changing configurations

in general relativity, strings and branes, which suffer similar questions of interpretation, have

long been of interest [33–38].
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III. JITTERY CLOCKS AND STOCHASTIC MECHANICS

In the covariant description of the relativistic particle, if the clock profile T (t) is non-

monotonic then its interpretation as an identifier of time would appear to be problematic.

There may be different coordinate values ti that correspond to the same clock time T , so

physical degrees of freedom would visit the same clock time more than once while scanning

coordinate time t. In the generalization to higher-dimensional field theories, we assume

that there are both clock and ruler fields relative to which spacetime dynamics is defined.

In that case, the global problem of spacetime is that generically there are critical points

xcrit such that det
(
∂XI/∂xµ

)
|xcrit = 0, in which case the mapping from coordinates xµ to

fields XI(xµ) is in general not invertible, and the remaining fields in the theory could be

multivalued if considered functions of the values of the clock and ruler fields.

As a better system of clock and rulers does not appear to be available, we choose to

embrace the possibility that nature may have granted us only jittery clocks and folded

rulers, and follow this rabbit hole where it leads. We will find that critical points of clock

and ruler fields fit naturally into a stochastic description of quantum fields. We illustrate

how stochasticity associated with critical points of clock and ruler fields can be related to

the uncertainties of quantum theory by considering again the covariant description of the

relativistic particle. As discussed earlier, due to diffeomorphism invariance the equations of

motion for T and X are not independent, and there are solutions with arbitrary T (t).

At critical times when Ṫ = 0 the progression of clock time ceases, and in general changes

direction with respect to coordinate time t. At these critical times, the equations of motion

force Ẋ to zero, and the square root in the relativistic Lagrangian reaches a branch point.

One possibility is that the solution X(T ) remains single-valued at all clock times, even when

passing through the branch points. This is what is suggested by the classical equations of

motion, which demand continuity of the canonical momenta even through the branch points

and determines the choice of branch upon passing through such points. In this scenario

classical physics evolves both forward and backward in clock time T , but simply backtracks

while moving backward in clock time, and then repeats the same motion while moving

forward once again. The global problem of time is resolved in this classical setting because

the dynamics requires that physical degrees of freedom depend only on the clock time, even

as the hands of our fundamental clock fluctuate both forward and backward. This is a
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curious situation, but is not particularly interesting except perhaps through a philosophical

lens.

Instead of this repetitive forward-backward motion, we will postulate that the canonical

momenta pX and pT receive stochastic impulses, which may themselves be responsible for

critical points of the clock T (t). We do not provide a mechanism for the impulses, which

we take to be an irreducible component of this framework. The stochastic impulses for each

degree of freedom may occur at independent times unrelated to the clock profile, but for

simplicity of presentation we imagine that the impulses are imparted to all of the degrees

of freedom precisely at the critical times. These random impulses are responsible for an

inability to predict with certainty the trajectory of the particle, so our object of interest

will be the probability distribution over the space of possible trajectories. By associating

the impulses with the critical points of the clock T (t), or the clock and ruler fields in the

field-theory context, the role of the critical points is to connect different solutions of the

classical equations of motion, acting as a localized instanton of sorts.

We still consider the particle position X to be dependent on clock time T , but as a conse-

quence of the presumed impulses X(T ) need not precisely retrace its steps as T (t) regresses

and then progresses forward again, and X(T ) may now be multivalued as in Fig. 1(b). One

could instead imagine a stochastic evolution consistent with X depending only on the value

of T , but one of our conclusions will be that the multivalued nature of physical degrees of

freedom fits nicely into the framework of stochastic mechanics. Quantization in this scheme

will refer to the dynamics imposed on the stochastic trajectories, and in a coarse-grained

approximation we will describe what choices are necessary in order to reproduce the rules

of standard quantum mechanics.

This stage of the discussion has not paid consideration to Lorentz invariance, as the role

of the clock has been distinguished from that of the position degrees of freedom. As the

present discussion is being framed in terms of particle mechanics for simplicity of illustration,

we do not pursue a Lorentz-invariant framework at this stage. Lorentz invariance is more

natural (but still at risk due to the discreteness of the impulses) in the higher-dimensional

field-theory generalization of this picture because of the addition of ruler fields that play a

similar role to the clock field. For the present discussion we will just assume that there is

some non-dissipative distribution of impulses at the critical points. The presumed absence of

dissipation implies that the fluctuation-dissipation theorem, which would relate the stochas-
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(a) (b) (c)

FIG. 1: (a) Random oscillatory evolution of clock time. The oscillations need not be regularly

spaced in either t or T , and can be assumed to take the form of a smoothed (i.e. differentiable)

stochastic process with drift. (b) A forward-backward trajectory with position X±i at critical

times T±i labeled. The ± superscript refers to whether the critical point is at arrived at along

the trajectory from the direction of increasing T (+) or decreasing T (−). The effective position

jump ∆X4 is indicated. There are effective jumps corresponding to first and next arrival at each

critical clock time T+
i . (c) The same trajectory described by forward motion in clock time and

discontinuous jumps in position.

tic diffusion constant to a frictional interaction strength, does not apply. The absence of

dissipation is crucial here in that it allows for a notion of time-reversibility of the stochastic

dynamics [29].

We assume that there are many critical points between intervals of T over which classical

forces would cause significant change in motion. The particle explores a region in the space

of trajectories by backtracking repeatedly in clock time and sampling different velocities

Ẋ(T ) from nearby initial positions, before ultimately progressing forward in clock time and

traveling an observably significant distance. There is a similarity between this sampling of

paths and the path-integral approach to quantum mechanics, though they are conceptually

distinct pictures.

We can define an effective trajectory that moves only forward in clock time (Fig. 1(c)),

but because of the forward-backward trajectory in clock time and the stochastic behavior of

X, at each critical point there is in effect a random jump in position (e.g. ∆X4 in Fig. 1(b))

in addition to the random change in velocity. At a microscopic level both the absence of

dissipation and the effective jumps in position distinguish the process from classical Brownian

diffusion, in which each particle experiences effectively random impulses by interactions

with molecules in a fluid, but the position of each particle is continuous. However, over

mesoscopic scales between the typical difference between neighboring critical times and

scales of experimental relevance, the effect of the microscopic jumps on the particle position
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are well modeled kinematically by a Brownian motion rather than a jump process. The

difference between Brownian diffusion and the present situation lies more in the dynamics

of the diffusion than the kinematics.

We constrain the stochastic distribution of impulses by comparison with Nelson’s stochas-

tic formulation of quantum mechanics [28, 29]. Forward and backward derivatives in the

stochastic formalism now describe average rates of change forward and backward in clock

time rather than coordinate time, but aside from minor changes in its interpretation the

formalism of stochastic mechanics can be adopted in its entirety. The main result of Nel-

son’s mechanics is that the probabilistic description of an ensemble of stochastic trajectories

satisfying Newton’s second law F = ma, for an appropriately defined acceleration a, is gov-

erned by the Schrödinger equation and the Born rule [28]. Because the ideas underlying

stochastic mechanics have maintained a level of interest among those interested in founda-

tional issues, descriptions of stochastic mechanics appear in many places. Nice summaries

with perspectives on challenges to the framework can be found in Ref. [39] and the early

chapters of Ref. [40].

We now explain how the stochastic system described here can realize Nelson’s stochastic

mechanics. The essential observation is that the possibility of clock time running both

forward and backward fits naturally into the framework of stochastic mechanics. Our goal is

not to derive stochastic mechanics from a new framework, but to use stochastic mechanics to

constrain the allowed probability distributions for the stochastic trajectories in the present

setting. The effective jumps in position due to the oscillations in clock time modify Nelson’s

description only slightly.

We decompose the effective forward motion in two components: the continuous compo-

nents and the jumps ∆Xi. We denote by bi the (assumed) nearly constant velocity of the

particle along the segment between X−i−1 and X+
i in the notation of Fig. 1, i.e.,

bi ≡
X+
i −X−i−1

T+
i − T−i−1

. (3.1)

We define the time-averaged velocity over the interval ∆Tmn between times T+
m and T+

n as
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the rate of change in particle position over that interval, with the discrete jumps removed:

〈bmn〉 ≡
X+
n −X+

m −
∑n−1

i=m ∆Xi

T+
n − T+

m

, (3.2)

=
∆Xmn −∆ξmn

∆Tmn
, (3.3)

where

∆Xmn ≡ X+
n −X+

m, (3.4)

∆ξmn ≡
n−1∑
i=m

∆Xi. (3.5)

We will be interested in evolution of the particle position over times long compared to

the typical difference between successive critical times. We therefore summarize the above

relations by modeling the particle motion as a Markov process in a form that resembles a

Langevin equation,

dX = 〈b〉 dT + dξ̃. (3.6)

Averaging over many jumps, the stochastic variable ξ̃ is modeled as an isotropic Brownian

motion with Gaussian distribution, such that the ensemble average of dξ̃(T ) vanishes, and

all correlations of products of dξ̃ vanish except the quadratic variance.

We note that 〈b〉 in Eq. (3.6) is a time-averaged velocity over the interval dT for a par-

ticular trajectory, not an ensemble average. Hence, 〈b〉 is defined only along the trajectory

of the particle, and Eq. (3.6) is not a stochastic differential equation that can be solved for

general trajectories. To turn Eq. (3.6) into a stochastic differential equation we consider an

ensemble of trajectories and replace 〈b〉 by an ensemble average drift velocity b(X, T ). We

assume that the displacements dξ from the ensemble average remain Gaussian distributed,

with

E
[
dξI(T )dξJ(T )

]
= 2D δIJdT, (3.7)

for some diffusion constant D. The notation E refers to an ensemble average, which depends

on the probability distribution for the stochastic trajectory, and D is the diffusion constant

for the process. The indices I, J label components of the spatial vector dξ. The averages
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of products of dξ along non-overlapping infinitesimal time intervals vanish because of the

independence of the impulses.

The Langevin equation for this system is then

dX = b(X, T ) dT + dξ. (3.8)

The introduction of the ensemble here is used to parametrize our ignorance regarding the

evolution of the forward-moving time-average velocity 〈b〉 along the particle’s trajectory.

Given an initial ensemble probability density ρ(X, T0) and a form for b(X, T ), the Langevin

equation predicts that the probability density ρ(X, T ) for later times satisfies the corre-

sponding Fokker-Planck equation, or Kolmogorov forward equation,

∂ρ

∂T
= −∇ · (bρ) +D∇2ρ. (3.9)

For readers unfamiliar with this hydrodynamic formalism, a short route from the Langevin

equation to the Fokker-Planck equation is the following [41]: Consider some smooth function

f(X) that does not depend explicitly on T , taken along a trajectory satisfying the Langevin

equation Eq. (3.8). One of the key results of the theory of Brownian motion is that the

quadratic variation of the motion is proportional to the time elapsed dT , as in Eq. (3.7).

As a result, we must be careful in Taylor expanding smooth functions, and we are led to an

application of Ito’s lemma [42], which allows us to remove the expectation value in Eq. (3.7).

(We ultimately only require expectation values to deduce the associated probability distri-

bution, so this detail is not critical to what follows.) Using Eq. (3.8) and expanding to

O(dT, dξ) we obtain,

df(X) = ∇f · dX +
1

2

∂2f

∂XI∂XJ
dXI dXJ + . . . (3.10)

=
(
∇f · b +D∇2f

)
dT +∇f · dξ + . . . , (3.11)

where the ellipses refer to terms of higher order in dT . Given an ensemble with probability

distribution ρ(X, T ), we can calculate the change in the average location of X over a time

interval dT . Using the vanishing of E[g(X, T )dξT ] in the Ito convention, for which dξT
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corresponds to the change in X over a differential time elapsed after time T , we have,

E[df(X)] = dE[f(X)] ≡
∫
dX ρ(X, T ) df(X) (3.12)

= dT

∫
dX ρ(X, T )

(
∇f · b +D∇2f

)
. (3.13)

In the first line we used the definition of the expectation value and in the second line we

also used Eq. (3.11). Written differently,

d

dT

∫
dX ρ(X, T ) f(X) =

∫
dX f(X)

∂ρ

∂T
(3.14)

=

∫
dX f(X)

(
−∇ · (bρ) +D∇2ρ

)
, (3.15)

where we have integrated by parts to isolate f(X) in the integrands. But the function f(X)

was arbitrary, so we are led to identify the integrands in Eqs. (3.14) and (3.15), which gives

the Fokker-Planck equation for the probability density function, Eq. (3.9).1

Because of the importance of time-reversibility of the dynamics in the quantum theory

we follow Nelson in defining a Langevin equation for the same stochastic motion considered

backwards in time, written in terms of dT > 0 [28, 29]:

dX = −b∗(X, T ) (−dT ) + dξ∗. (3.16)

In general b 6= b∗ and dξ 6= dξ∗, but dξ∗ is a Brownian process with the same diffusion

constant D that describes the distribution of dξ. The corresponding backwards Fokker-

Planck equation has the form

∂ρ

∂T
= −∇ · (b∗ρ)−D∇2ρ. (3.17)

1 To be more precise in our consideration of the effective position jumps, we may consider the jumps as

an added Poisson white noise in the Langevin equation rather than a contribution to the Gaussian white

noise, with ξP (T ) =

n(t)∑
i=1

∆Xiδ(T−Ti), where n(t) is Poisson-distributed and ∆Xi is Gaussian distributed.

The Fokker-Planck equation is modified in this situation [43], but can be shown to reduce to Eq. (3.9) for

narrow distribution of ∆Xi. Though we assume an absence of large flights, the modification of the Fokker-

Planck equation incorporating significant Poisson noise would likely lead to a dangerous modification of

the emergent quantum theory.
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Adding the forward and backward Fokker-Planck equations and defining

v ≡ b + b∗
2

(3.18)

gives a continuity equation for the probability distribution function:

∂ρ

∂T
+∇ · (vρ) = 0, (3.19)

while subtracting the two equations gives an equation that can be solved for b − b∗ up to

a curl which is assumed to vanish:

u ≡ b− b∗
2

= D
∇ρ
ρ
. (3.20)

We still need a dynamical condition for acceptable stochastic functions b(X, T ) and

b∗(X, T ), and hence for the allowed states in this system. This comes in the form of F = ma,

but the classical forces only affect the non-stochastic component of the acceleration, so we

need an appropriate interpretation of the acceleration a. From the microscopic perspective,

if not for the stochastic impulses, 〈b〉 should satisfy the classical equation of motion itself.

Hence, we expect the stochastic dynamics to be described in terms of ensemble averages for

which the impulses average to zero.

Nelson found the appropriate dynamical equation for b(X, T ) that leads to the Madelung

equations [44], which are a hydrodynamic representation of the Schrödinger equation [28, 29].

To that end, he defined average forward and backward stochastic derivatives as:

D+f(X, T ) ≡ lim
δT↓0

E
[
f [X(T + δT ), T + δT ]− f(X(T ), T )

δT

]
, (3.21)

D−f(X, T ) ≡ lim
δT↓0

E
[
f(X(T ), T )− f [X(T − δT ), T − δT ]

δT

]
. (3.22)

The limit δT ↓ 0 is taken in the model of the system as a continuous stochastic process, but

because of the discreteness of the critical times we always have in mind δT � ∆T , where

∆T is the typical difference between neighboring critical times. Using Eq. (3.11), and the

16



analogy for differentials backwards in time, we have,

D+f(X, T ) =
∂f

∂T
+ b · ∇f +

D

2
∇2f, (3.23)

D−f(X, T ) =
∂f

∂T
+ b∗ · ∇f −

D

2
∇2f. (3.24)

The appropriate time-reversal-invariant dynamical condition for the stochastic system

coupled to a conservative force F = −∇V (X), assumed to vary only over distances much

larger than δT , is the Nelson-Newton equation [28, 29]:

m

2
(D−D+X +D+D−X) =

m

2
(D−b +D+b∗) = −∇V (X). (3.25)

The dynamical equation Eq. (3.25), together with the forward and backward Fokker-Planck

equations Eq. (3.9) and Eq. (3.17), determine self-consistently the drift velocities b(X, T )

and b∗(X, T ), and the probability density ρ(X, T ) given an initial probability density.

Eq. (3.25) indicates the appropriate definition for acceleration in stochastic mechanics:

a = 1/2 (D−D+X +D+D−X). There are other possibilities a priori for the definition of an

acceleration in this setting, such as 1/2(D+D+X +D−D−X), but those expressions are not

as local as the chosen definition, and in any case they generally lead to a nonlinear variation

of the Schrödinger equation [45] or else a parabolic differential equation for the probability

density without wavelike solutions [40]. Further motivation for Nelson’s choice have been

provided from several different perspectives, including a variational approach resembling an

action principle for the stochastic process [46].

What Nelson showed is that ρ(X, T ) in the system defined by Eqs. (3.8), (3.16) and (3.25)

is described by the Madelung equations, which are equivalent to Eq. (3.19) together with

one additional equation and the assumption that v is a gradient,

v ≡ 2D/~∇S. (3.26)

The additional Madelung equation resembles the Hamilton-Jacobi equation with an extra

term:

∂S

∂t
+

1

2m
(∇S)2 + V (X)− ~2

2m

∇2√ρ
√
ρ

= 0. (3.27)
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The last term in Eq. (3.27) is known as the quantum potential. With the definition ψ ≡
√
ρ eiS/~, the Madelung equations were originally formulated as a hydrodynamic description

of the real and imaginary parts of the Schrödinger equation,

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (X)ψ. (3.28)

The Born rule, ρ = |ψ|2 is satisfied by construction in stochastic mechanics, and is not

an additional assumption. Different states of the system correspond to different forms of

b(X, T ) and b∗(X, T ). In each state, every particle of an ensemble has a unique nondeter-

ministic trajectory that satisfies the stochastic differential equation Eq. (3.8). The mapping

onto the Schrödinger equation relates ~ to the diffusion constant of the stochastic process,

leading to D = ~/2m. It may seem odd that D depends on the particle mass in this way,

but we note that in the field theory generalization the analogy to the mass here is m = 1

for canonically normalized fields [30].

With one caveat (see below for Wallstrom’s objection) any solution to the Schrödinger

equation corresponds to a stochastic system with specified drift velocities b(X, T ) and

b∗(X, T ), and any drift velocities consistent with Eq. (3.25) give a solution to the Schrödinger

equation. Simulations have verified in certain simple examples that the Schrödinger proba-

bilities agree with both ensemble probabilities and with probabilities of individual particle

configurations studied over time (in both configuration space and phase space) [47].

We pause for the remainder of this section to discuss the status of stochastic mechanics

as an alternative to standard quantum theory. There is some resemblance of stochastic

mechanics to the de Broglie-Bohm pilot wave picture of quantum mechanics [48–52], in that

particles have definite trajectories guided in some way by a wavefunction that satisfies the

Schrödinger equation. However, in the Bohmian picture particles that begin in an identical

configuration would evolve identically, whereas the same is not true for the stochastic motion

of particles in stochastic mechanics. Quantum phenomena such as the uncertainty principle,

tunneling and interference, are manifested in stochastic mechanics despite the secondary role

played by the wavefunction, and such phenomena have been demonstrated by simulations

[29, 40].

The Nelson-Newton equation Eq. (3.25) is appropriate in the nonrelativistic limit, which

we have presented for simplicity and because nonrelativistic stochastic mechanics is better
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established than its relativistic counterpart. Relativistic treatments of stochastic mechanics

and stochastic field theory have been presented [30, 53–59], but the subject is not mature.

Our principal interest is not particle mechanics but field theory, which benefits in this regard

from its more democratic treatment of space and time. We summarize some important

results in stochastic field theory for our purposes in the next section.

Construction of stochastic systems with spin, and discussions of entanglement and Bell’s

inequality violation, appear in several places, for example Refs. [40, 60–62]. The main

point here is that the stochastic system is a hidden variable theory that is nonlocal because

the drift velocities depend on all components of the system, and the rules of stochastic

mechanics are constructed so as to give rise to the predictions of standard quantum theory.

The inherent nonlocality may be distasteful, as it was to Nelson [63], but the nonlocality

of the description appears to be as hidden experimentally in the stochastic framework as

it is in ordinary quantum theory. In any case, quantum ontology theorems such as Bell’s

inequality appear to force some form of nonlocality on any realist framework of quantum

theory, distasteful though that might be.

The most popular objection to stochastic mechanics is in regards to the multivalued na-

ture of the phase of the wavefunction in states with nonvanishing angular momentum [64].

Wallstrom pointed out that it is natural at first to assume that S defined by Eq. (3.26) is

a single-valued function on spacetime, but in that case not all solutions to the Schrödinger

equation are described by a corresponding stochastic system; in particular, states with or-

bital angular momentum would be excluded. On the other hand, if S can be multivalued,

then the restriction that S be allowed to change only by integral multiples of 2π~ around

closed loops so that the wavefunction remains single-valued seems ad hoc and poorly moti-

vated [64]. However, it was pointed out by Fritsche and Haugk that the restriction to only

those multivalued phases allowed in the standard quantum theory is demanded by unitarity

(conservation of probability) if we assume that solutions for ψ can be superposed [61]. In

other words, only those multivalued phases allowed by quantum theory are consistent in

the stochastic framework if we assume the superposition principle, which seems a natural

assumption once the Madelung equations have been made linear by combining them into

the Schrödinger equation. The author’s opinion is that Wallstrom’s criticism is therefore

without merit. There is not a consensus opinion on this issue [39, 40, 65, 66].

One additional comment deserves to be made regarding Wallstrom’s criticism in the

19



specific context of the framework presented in this work. Multivalued phases of the wave-

function are possible when the wavefunction has nodal manifolds. In such situations there

are points at which the phase of the wavefunction is not well defined, so the drift velocities

risk obtaining singularities which would naturally be considered unphysical and wanting of

some sort of regularization. Nelson made the point that stochastic trajectories are repelled

by the nodal surfaces, so associated singular behavior does not lead to singular dynamics

[29]. However, if one is nevertheless concerned about such singularities, then it is worth

noting that in the stochastic framework of this paper, the continuous stochastic system is

only an approximation; at ultra-short distances smaller than the spacing between critical

points, physics is classical and particles appear free. Hence, it is reasonable to expect that

singularities at nodal surfaces would be resolved due to the granularity of the stochastic

impulses. The transition between the continuous stochastic mechanics and the granular

stochasticity of the present framework deserves further study.

The most serious remaining concern before one can adopt stochastic mechanics as an

alternative to quantum theory is a lack of understanding of the effect of a measuring appa-

ratus on the state of the system as described by b(X, T ) and b∗(X, T ). One way or another,

as the stochastic system is altered by measurement a collapse of the wavefunction of sorts

takes place. The drift velocities contain epistemic information regarding the lack of knowl-

edge of the particle trajectory. The pressing question is how it is that the interaction with

the measuring apparatus alters the drift velocities in precisely the manner to correspond

to a wavefunction collapse. A better understanding of the effects of measurement in the

stochastic setting would necessarily improve our understanding of this framework, including

issues related to entanglement and nonlocality. It is also possible that further consideration

of the issue of measurement will lead to testable distinctions between stochastic mechanics

and standard quantum theory, or may even require dismissal of the stochastic framework

altogether.

IV. STOCHASTIC FIELD THEORY AND EMERGENT GRAVITY

Relativistic quantum field theory subsumes quantum mechanics as a more fundamental

description of nature. The rules of quantum field theory give rise to a vastly more exotic va-

riety of phenomena than quantum mechanics, including nonconservation of particle number
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and confinement of certain charges. It is therefore critical to the program put forward here

that a stochastic formulation of quantum field theory be available. Some substantial work

in this direction was presented by Guerra and Ruggiero [30], Nelson [67, 68] and others.

Guerra and Ruggiero took advantage of the representation of the free relativistic scalar

field as a collection of nonrelativistic simple harmonic oscillators to define the stochastic

field theory by the rules of stochastic mechanics. A state in the system is defined by a

forward and backward Langevin equation for each momentum mode of the relativistic field.

There is a remarkable relationship between the ground state of the relativistic quantum field

and the Euclidean Markov field [30], which may ultimately prove useful for computations

in the stochastic theory. In scalar theories with perturbative interactions one can develop a

perturbation theory about the ground state of the free field [56]. As long as a field theory

can be described in terms of interactions between modes, each of which is described quantum

mechanically, then there can be expected to exist an extension of stochastic mechanics to

the field theory, as in Guerra and Ruggiero’s analysis of the free scalar field. However, to the

author’s knowledge a rigorous demonstration of the equivalence of generic nonperturbative

quantum field theories, and a stochastic version of the same theories, is not available.

Consider a free real scalar field φ(x), with action

S =

∫
ddx

1

2

(
∂µφ ∂νφ η

µν −m2φ2
)
. (4.1)

Decomposing φ(x, t) in momentum modes φk(t) with φ−k = φ∗k, we have

φ(x, t) =

∫
dd−1k

(2π)d−1
φk(t)eik·x, (4.2)

and

S =

∫
dt

∫
dd−1k

(2π)d−1
1

2

(
|φ̇k|2 − (k2 +m2)|φk|2

)
, (4.3)

which describes an independent harmonic oscillator for each k, with effective mass m = 1

and frequency ωk =
√
k2 +m2. Guerra and Ruggiero’s stochastic description of the free

field theory is then defined by Nelson’s stochastic mechanics for each momentum mode.

For example, the stochastic process for the ground state is constructed as follows. The

Schrödinger-representation wavefunction formally satisfies the Schrödinger equation, with ~
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now set to ~ = 1,

i
∂

∂t
Ψ[φ(x), t] =

1

2

∫
dd−1x

(
− δ2

δφ(x)2
+ (∇φ)2 +m2φ2

)
Ψ[φ(x), t]. (4.4)

With decomposition in momentum modes, the ground state for each mode is described by

the simple harmonic oscillator ground state wavefunction

ψk(φk, t) =
(ωk

π

)1/4
e−ωk|φk|2/2 e−iωkt/2. (4.5)

From Eq. (3.26) we define,

vk = 2
∂Sk

∂φ∗k
= 0, (4.6)

where we have identified Sk = −ωkt/2; and as in Eq. (3.20) we define,

uk = 2
∂ ln |ψk|
∂φ∗k

= −ωkφk. (4.7)

The factors of 2 in uk and vk are due to the decomposition of the real scalar field in terms

of complex momentum modes, so that φ∗k appears in the wavefunction Ψ[φ(x), t] twice, from

the wavefunctions of the two modes ψk and ψ−k. Then, with bk = vk +uk and b∗k = vk−uk,

we have the result that the ground state of the harmonic oscillator is described by the

mean-reverting Ornstein-Uhlenbeck process in both the forward and backward direction,

with

dφk = −ωkφk dt+ dξk. (4.8)

Formally, we can write this in terms of φ(x) as,

dφ(x; t) = −
√
−∇2 +m2 φ(x; t) dt+ dξ(x; t). (4.9)

The Brownian process dξ(x; t) contributes to the change in φ(x) over time dt. The special

role of time t here is appropriate for the Schrödinger representation, and does not imply a

violation of Lorentz invariance.

With the ground-state process for the free field at hand, it is possible to develop a pertur-

bation theory about the free theory [56]. Although the stochastic description of more general

quantum field theories requires additional clarification, the field-theory generalization of the
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treatment of impulses at critical points is straightforward. Consider the diffeomorphism-

invariant scalar field theory with action [23],

S =

∫
ddx

(
d
2
− 1

V (φa)

) d
2
−1
√√√√∣∣∣∣∣det

(
d−1∑

M,N=0

∂µXM∂νXNηMN −
N∑
a=1

∂µφa∂νφa

)∣∣∣∣∣, (4.10)

where ηMN has elements equal to those of the Minkowski metric with mostly negative sig-

nature.

The theory defined by Eq. (4.10) was studied in Refs. [23–27] from the perspective of

emergent gravity. In d spacetime dimensions, d fields XM are identified with clock and ruler

fields. The critical points are points where det
(
∂XM/∂xµ

)
= 0. The existence of critical

points, and the values of the clock and ruler fields at those points, are invariant under

nonsingular coordinate transformations. We assume a random profile of the clock and ruler

fields, so that the underlying spacetime is topologically as in Fig. 2. More complicated

spacetime foams with handles could be considered, but are beyond the scope of the present

discussion. There is no meaning to the geometry of the clock and ruler field configurations

a priori, as the theory is invariant under coordinate transformations without reference to

a spacetime metric over the coordinates xµ. A notion of spacetime geometry emerges only

after quantization, at which point the operator

gµν =
d/2− 1

V (φa)

(
−

d−1∑
I,J=0

∂µX
M∂νX

MηMN +
N∑
a=1

∂µφ
a ∂νφ

a

)
(4.11)

assumes the role of the spacetime metric in the effective gravitational theory at long distances

[23].

The equations of motion can be written formally in terms of gµν , its inverse gµν and its

determinant g ≡ det gµν ,

∂µ

(√
|g|gµν ∂νφa

)
= −

√
|g| ∂V
∂φa

, (4.12)

∂µ

(√
|g|gµν ∂νXM

)
= 0. (4.13)

Eq. (4.12) is the equation of motion for a scalar field in a curved background with metric

gµν , but gµν here is the composite operator defined in Eq. (4.11). There are solutions
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FIG. 2: Clock (or ruler) field as function of coordinates. The values of the clock and ruler fields

at the critical points are invariant under diffeomorphisms. The shape of the hills and valleys is

coordinate dependent.

of the form φ[XM(x)] for any clock and ruler field profiles XM(x). Eq. (4.13) can be

considered a harmonic gauge condition relative to the clock and rulers XM . In the absence

of critical points the fields XM could be transformed to the Monge gauge XM ∝ δMµx
µ by a

diffeomorphism, in which case Eq. (4.13) would be equivalent to the usual harmonic gauge

condition,

∂M

(√
|g|gMN

)
= 0. (4.14)

If there are critical points where det(∂XM/∂xµ) = 0, then hypersurfaces of constant

XM(x) (for each M) need not be pathwise connected. Solutions to the equations of motion

of the form φ(x) = φ[XM(x)] remain consistent as long as the appropriate square root branch

choices are made on each disconnected region of constant XM . There is therefore no global

problem of spacetime in the classical setting. Adding stochasticity to the fields, we no longer

have φ(x) = φ[XM(x)] precisely; there can be effective jumps in the field configuration from

one disconnected region of fixed XM to another. All of this is analogous to the discussion

of the relativistic particle in Sections II and III.

We assume that the stochastic impulses to the physical fields take place only at the

critical points, which is not fundamentally necessary but simplifies the discussion. Then, at

each critical point we identify a critical direction with respect to which we associate effective

jumps of the physical fields, in analogy with the Langevin-like equation Eq. (3.6). This can

be visualized in terms of the space of critical points supplemented with an element of the
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FIG. 3: Critical points in the space of clock and ruler fields. At each critical point there is a

corresponding critical direction, denoted by an arrow, in which the physical fields effectively jump

due to the stochastic impulse in that direction.

tangent space Rd that indicates the direction of impulses for the remaining fields, as in Fig. 3.

The d × d matrix ∂XM/∂xµ is singular at each critical point, and the left zero-eigenvector

VM , with VM ∂XM/∂xµ = 0, defines the corresponding critical direction. Therefore,

Πa
crit ≡ V M ∂φa[X]

∂XM
(4.15)

is assumed to change stochastically following some probability distribution at the corre-

sponding critical point. The distribution of impulses gives rise to a Langevin description of

this system in the spirit of Guerra and Ruggiero’s formulation of the stochastic quantum

field. Just as we were able to define an effective forward-in-time trajectory with stochastic

jumps in the stochastic mechanics developed in the previous section, we define an effective

description in which XM may be put into Monge gauge, XM = c δMµ x
µ for some conve-

niently chosen constant c, effectively excising the critical points from the smooth spacetime

of the emergent quantum theory. The effective jumps in the field are incorporated into the

Langevin description. We assume that fields can be decomposed in momentum modes, each

of which is described quantum mechanically as in Guerra and Ruggiero’s stochastic free

theory. At least in a perturbative setting the stochastic system appears to be well defined

[56].

The equivalence of the stochastic theory defined in this way and ordinary quantum field

theory deserves examination by way of simulations. However, if we grant equivalence of

the stochastic theory at long distances with the related quantum field theory, the stochastic

construction includes a regulator scale related to the distribution of critical points. Between

critical points, physics is classical in this framework. With a covariant regulator in hand, we

then have the additional result that quantum gravity should arise as an emergent interaction
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at long distances [17].

With dimensional regularization as a proxy for a physical covariant regulator, scattering

amplitudes in these models have been calculated in an expansion about a flat background

defined by Eq. (4.11) with φa = 0 and XM = c δMµ x
µ, as in Refs. [23, 25]. An expansion of

the action about the flat background includes both the Lorentz-invariant scalar field action

with potential V (φ), and to next order a quartic interactions that depend on the energy-

momentum tensor of the physical fields. The scattering amplitudes of the physical fields

feature a long-range gravitational interaction coupled to the matter energy-momentum ten-

sor with a coupling suppressed by a scale explicitly related to the field theory regulator. At

leading order in the gravitational coupling two-into-two scattering was shown to agree with

general relativity. Certain gravitational self-interactions were also shown to agree with the

predictions of general relativity. Here we call such models induced emergent gravity models

to distinguish them from other varieties of emergent gravity scenarios such as those based on

the AdS/CFT correspondence [69], entropic gravity [70] and ideas suggesting entanglement

as an origin of spacetime [71–73]; and also to distinguish these models from Sakharov’s

original discussions of induced gravity in which gravitation was semiclassical rather than

quantum [17].

It is important to note that the present construction is background independent, despite

its analysis by a perturbative expansion about Minkowski space. No spacetime metric ex-

plicitly appears in Eq. (4.10), and the existence (or not) of a Lorentz-invariant state about

which gravitation can be studied perturbatively is a consequence of the dynamics of the the-

ory. Two things are crucial for gravity to emerge in precisely this way: the stochastic theory

must be diffeomorphism invariant with a diffeomorphism-invariant regulator; and the states

with critical points of the clock and ruler fields are excised from the functional integrals in

the quantum field theory because of the manner in which the distribution of critical points

is related to quantization in the first place.

Finally, we consider the stochastic theory beginning with classical action Eq. (4.10) in

terms of the constructive procedure for stochastic emergent quantum gravity outlined in the

introduction.
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1. We begin with the theory of N real scalar fields with potential V (φa), with action,

S0 =

∫
ddx

(
1

2

N∑
a=1

∂µφ
a∂νφ

aηµν − V (φa)

)
. (4.16)

We add to the theory d massless scalar clock and ruler fields XM , so that the action

becomes,

S1 =

∫
ddx

(
−1

2

d−1∑
M,N=0

∂µX
M∂νX

NηMN η
µν +

1

2

N∑
a=1

∂µφ
a∂νφ

aηµν − V (φa)

)
. (4.17)

The clock field X0(x) has the wrong-sign kinetic term, but the field will be gauged

away.

2. To couple the theory to an auxiliary spacetime with metric gµν , we simply replace ηµν

in S1 with gµν , giving us

S2 =

∫
ddx
√
| det gµν |

(
−1

2

d−1∑
M,N=0

∂µX
M∂νX

NηMN g
µν +

1

2

N∑
a=1

∂µφ
a∂νφ

agµν − V (φa)

)
.

(4.18)

In a more general theory we would introduce the vielbein emµ and couple the fields

covariantly to the vielbein.

3. The constraint Tµν [gαβ, X
M , φa] = 0 has Eq. (4.11) as solution for gµν . In a more

general theory, the vielbein is determined by the constraint of vanishing Tµν up to

local Lorentz transformations. However, the constraint cannot generally be solved in

closed form. In the present toy model, substitution of Eq. (4.11) into Eq. (4.18) gives

the Nambu-Goto-like action Eq. (4.10).

4. Assume a random profile for the clock and ruler fields, with typical spacing between

critical points comparable to the Planck scale. Construction of the stochastic quan-

tum theory proceeds as in the earlier discussion of this section. Stochastic impulses

for bosonic fields are imparted at the critical points of the clock and ruler fields as

described.

For fermionic fields the interpretation of the impulses is more subtle, but we can for-

mally write a Langevin equation for fermionic fields, where the stochastic differentials
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and drifts are interpreted as Grassmann variables [19]. A functional-integral represen-

tation of the Schrödinger wavefunction generalizing the Feynman-Kac formula may be

available. To the author’s knowledge a procedure like this for fermions has not been

carried out in detail.

Our conjecture is that quite generally the stochastic theory constructed from a classical

field theory as outlined above is equivalent to standard quantum field theory with emergent

gravity at distances much longer than the typical separation between critical points of the

clock and ruler fields. In practice, calculations can be done with any covariant regulator. In

the emergent quantum field theory, the clock and ruler fields can be fixed to Monge gauge

XM ∝ xµδMµ .

V. DISCUSSION

We have provided evidence that stochastic evolution of otherwise classical relativistic

fields can at the same time be responsible for quantization and for gravitational interactions

described by general relativity at long distances. Key to the construction is the incorporation

of scalar fields that play the role of clock and rulers relative to which the dynamics is

defined. Global Lorentz transformations act on the scalar clock and ruler fields, while

diffeomorphisms act as a reparametrization of all the fields in the theory. With the clock

and ruler fields included in the action following the prescription described in the text, the

low-energy, weak-field effective description includes the Lorentz-invariant theory that begins

the construction. We assume that there is a nonzero scale associated with the typical

distance between stochastic impulses, so physics at ultra-short distances is classical, and

spacetime is continuous. The unusual feature of spacetime in this framework is that at the

scale where the stochasticity is evident, hypersurfaces of fixed clock time or ruler position

need not be pathwise connected. We have explained that such behavior fits naturally into

the framework of Nelson-Guerra-Ruggiero’s stochastic quantum field theory.

There are many loose ends to tie before stochastic emergent quantum gravity could be

considered a complete description of nature. Among these is the need for an understanding of

the effects of measurement on the state of the system as described by drift velocities. While

the rules of standard quantum theory including wavefunction collapse and entanglement may

be incorporated by construction, as a prequantum description it seems possible to address
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the measurement problem concretely in the stochastic framework. The presumption that

the discrete stochastic process maintains the Lorentz-invariant effective description of the

vacuum demands further investigation. The stochastic description of Grassmann fields also

requires further study in order to determine whether the outlined stochastic construction

in fact reproduces ordinary quantum field theory with fermions as conjectured. There is

also the question of whether the presumed stochastic impulses are irreducible or are due

to interactions with some sort of background. A proposal of the latter type is stochastic

electrodynamics, and is discussed at length in Ref. [40].

A quantum theory of gravity should be expected to resolve the modern puzzles of gravi-

tational physics. The prevailing wisdom today is that holographic aspects of gravity should

guide our thinking about quantum gravity [69, 74, 75], but such aspects would appear to

be secondary in the stochastic construction. What is the face of holographic aspects of

quantum gravity in the stochastic framework? Do black-hole horizons violate the equiva-

lence principle by creating a firewall [76]? What becomes of black-hole and cosmological

singularities? Why does our universe appear to have such an unnaturally small cosmological

constant responsible for the accelerated expansion of the universe?

Black-hole geometries are nonperturbative in the present approach, and the resolutions

to puzzles regarding black hole states in this framework are presently unclear. However, one

can hope that simulations of the stochastic field theory will provide answers to questions

related to black holes and holography. Simulations that would probe emergent gravitational

effects would need to be sensitive to long-range interactions that decouple in the continuous

stochastic limit. However, one thing that we can say already is that in the framework

presented here diffeomorphism invariance is necessary as a fundamental principle in order

for the clock and ruler fields to play the role that they do, and quantum theory is modified

at short distances. Hence, one might guess that the resolution to the firewall puzzle will lie

in the modification of quantum theory and not in a violation of the equivalence principle.

In Monge gauge the field-space metric of the clock and ruler fields becomes a background

spacetime metric [24], so it might also be fruitful to probe aspects of holography by replacing

the flat field-space metric of our construction with a black-hole or Anti-de Sitter metric.

Despite the global Lorentz invariance that acts on the clock and ruler fields in the action

Eq. (4.10), the Lorentz symmetry does not ensure stability of Lorentz-invariant states. The

cosmological constant has to be tuned in order for the Lorentz-invariant vacuum to be
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perturbatively stable in induced emergent gravity models [17, 23, 26]. As in any theory of

gravity that has not been well studied, we may hope that the theory somehow hides any

large cosmological constant by effects that are not apparent at lowest order in perturbation

theory. For now the tuning of the cosmological constant appears to be required in order to

match observational data.

VI. CONCLUSIONS

It is possible that quantum field theory breaks down as a description of nature at dis-

tances and times shorter than some fundamental scale. In that case, it is natural to expect

the more primitive physical framework to regularize ultraviolet divergences in the quantum

field theory that emerges as a description of physics at longer distances. Assuming diffeo-

morphism invariance in the fundamental description, gravitation will generally arise as an

emergent interaction, with gravitational coupling related to the fundamental short-distance

scale at which the quantum field theory emerges. If the stochastic version of the story told

here survives scrutiny as an origin for quantization and gravitation, then quite remarkably

both the existence of atoms and the motion of planets would be consequences of random

fluctuations associated with the folding of fundamental rulers and the jittery nature of clocks.
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