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We estimate the target-normal single-spin asymmetry at near forward angles in elastic electron-nucleon
scattering. In the leading-order approximation, this asymmetry is proportional to the imaginary part of the
two-photon exchange (TPE) amplitude, which can be expressed as an integral over the doubly virtual
Compton scattering (VVCS) tensor. We develop a model that parametrizes the VVCS tensor for the case of
near forward scattering angles. Our parametrization ensures a proper normalization of the imaginary part
of the TPE amplitude on the well-known forward limit expression, which is given in terms of nucleon
structure functions measurable in inelastic electron-nucleon scattering experiments. We discuss appli-
cability limits of our theory and provide target-normal single-spin asymmetry predictions for both elastic
electron-proton and electron-neutron scattering.
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I. INTRODUCTION

Elastic lepton scattering off of a nucleon (l�N → l�N)
provides a great deal of information on the structure of the
hadron. High precision and increasing accuracy of modern
lepton scattering measurements push theoretical calcula-
tions beyond the leading order Born approximation. As a
result, since the beginning of this century, many efforts have
been devoted to improving our understanding of higher
order contributions to elastic lepton-nucleon scattering,
and two-photon exchange (TPE) corrections in particular.
Hereafter, we just briefly discuss theoretical and experi-
mental progress in understanding of the two-photon physics,
whereas detailed reviews can be found in Refs. [1–3].

Most of recent attempts to reexamine older treatments of
radiative corrections in unpolarized electron-proton scatter-
ing have been triggered by the so-called “proton form factor
puzzle.” This puzzle constitutes the discrepancy between
the proton electric-to-magnetic form factor ratio Gp

E=G
p
M

measured in unpolarized and polarized [4,5] electron-proton
scattering at momentum transfers Q2 ≳ 1 GeV2. As it is
suggested in Refs. [6–8], the discrepancy can largely
be mitigated if one accounts for hard TPE processes1

in unpolarized measurements. However, corresponding

theoretical computations are dependent on the structure
of the proton and have kinematical limitations. For instance,
the hadronic (direct loop) calculations [6,11] feature an
undesired divergence in the high energy limit, whereas the
partonic estimations [12,13] are limited to the kinematical
region where Q2 ≳ 1 GeV2. For the present, there exists
no complete calculation of hard TPE that is valid at all
kinematics.
Another problem that have furthered interest in the

physics of TPE was the so-called “proton radius puzzle”
[14,15]. This puzzle encapsulates the difference between
the radius of the proton as measured with electron scatter-
ing and atomic hydrogen spectroscopy, and that measured
in muonic hydrogen spectroscopy. Regardless of the
technique implemented, one needs to have a good under-
standing of TPE mechanisms in order to precisely deter-
mine the radius; for the detailed discussion on the
extraction of the corresponding quantity from unpolarized
electron-proton scattering and atomic spectroscopy, see
Refs. [16–18] and Refs. [19,20], respectively.
Not only did the two puzzles stimulate theoretical

progress they also have given rise to multiple precision
measurements of TPE. For example, recent VEPP-3,
OLYMPUS, and CLAS experiments [21–23] studied the
real (dispersive) part2 of the TPE amplitude, while theywere
looking for direct evidence of hard TPE. As it is well known,
the corresponding contribution can be directly extracted
from the ratio R ¼ dσðlþpÞ=dσðl−pÞ of unpolarized scat-
tering cross sections. The experiments [21–23] employed
e�p scattering for their analysis of TPE and covered a wide
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1The separation of a photon’s phase space into the “soft” and
“hard” regions is ambiguous. The most common conventions are
those of Tsai [9] and Maximon and Tjon [10].

2Note that, depending on an experimental design of a certain
elastic lepton-proton scattering experiment, one may access only
a real or an imaginary part of the TPE amplitude.

PHYSICAL REVIEW D 98, 056007 (2018)

2470-0010=2018=98(5)=056007(15) 056007-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.056007&domain=pdf&date_stamp=2018-09-12
https://doi.org/10.1103/PhysRevD.98.056007
https://doi.org/10.1103/PhysRevD.98.056007
https://doi.org/10.1103/PhysRevD.98.056007
https://doi.org/10.1103/PhysRevD.98.056007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


kinematical range of Q2 (0.165 < Q2 < 2.038 GeV2). In
addition to these measurements, the forthcoming MUSE
experiment [24], which is designed to be sensitive to the
proton’s radius, is going to study TPE in the low-Q2 region
(0.0016 < Q2 < 0.082 GeV2). The relevance of this meas-
urementwill be assured by the respective experimental setup
that enables a first simultaneous determination of TPE from
unpolarized e�p and μ�p scattering. Moreover, the kin-
ematics of MUSE will provide means for precision studies
of lepton mass effects in elastic lepton-proton scattering. As
a result, the experiment has the potential to demonstrate
whether the muon-proton and electron-proton interactions
are different, and will check whether any differences are
coming from novel physics or hard TPE; corresponding
theoretical analysis that enables a proper extraction of hard
TPE from elastic scattering of massive leptons off a proton
target can be found in Ref. [25].
Unlike the dispersive part of the TPE amplitude, the

corresponding imaginary (absorptive) part3 manifests itself
in polarized scattering measurements. More specifically, it
can be directly accessed through the analysis of a single-
spin asymmetry (SSA) observable in elastic lepton-nucleon
scattering, when either the beam or target is polarized in the
direction normal to the lepton scattering plane. A respective
theoretical investigation was performed several decades
ago by De Rujula et al. in Ref. [26]. In that paper the
authors explain why the transverse SSA must be zero in the
Born approximation by considering electron scattering on a
polarized proton target. Moreover, they have shown that the
leading-order contribution to such an asymmetry is gen-
erated by the absorptive part of the TPE amplitude, which,
in its turn, has drawn a significant theoretical interest in
recent years. This interest is assured by the rapid develop-
ment of dispersive methods in calculations of TPE [27–30].
Alternatively to the hadronic or partonic approaches, which
suggest a direct calculation of the real part of the TPE
contribution, the dispersive technique prescribes the evalu-
ation of the imaginary contribution in the first place.
A respective calculation should be performed by utilizing
the unitarity property of the scattering matrix. As a result,
one gets an exclusive opportunity to employ the on-shell
form factor parametrization in their calculations of TPE.
Once the imaginary part is computed, the corresponding
real part can be reconstructed by making use of dispersive
relations. As a consequence, the dispersive treatment allows
for a meaningful reduction of theoretical uncertainties in
calculations of the real part of the TPE contribution. It is
also worth mentioning here that implications of TPE are
important for a precision extraction of the proton’s weak

charge from parity-violating electron-proton scattering
[31–34].
Experimental capabilities to measure nonzero transverse

SSAs were achieved relatively recently–about 15 years ago.
Here we should note that a target-normal SSA (AN

y ) in
elastic e�N scattering is usually expected to be of order
α ≈ 1=137 (more details can be found in Sec. V), whereas a
beam-normal asymmetry (BN

y ) is expected to be about a
thousand times smaller due to its additional proportionality
to the beam’s mass-to-energy ratio. Despite being relatively
small, the beam-normal asymmetry was the first transverse
SSA observed experimentally [35]. Subsequent measure-
ments [36–39] also studied Bp

y , but in different kinematical
settings. Moreover, the HAPPEX experiment at Jefferson

Lab [40] not only accessed Bp
y , but also B

4He
y ; B

12C
y , and

B
208Pb
y . As for the target-normal SSA, there is only one

nonzero measurement of Ay reported to date [41], which
was obtained from quasielastic electron scattering on a

polarized 3He nucleus. In addition to providing A
3He
y , the

authors of Ref. [41] extract a nonzero neutron-normal SSA
by using the effective neutron polarization approximation.
The results of their measurement indicate that the neutron-
normal SSA at GeV beam energies and Q2 ≤ 1 GeV2 is
dominated by the inelastic TPE loop contribution (when the
intermediate hadronic state is not given by the neutron).
As noted previously, early theoretical calculations of

SSAs were performed for the case of the transversely
polarized proton target [26,42]. The authors of Ref. [43]
improved on those near forward angle calculations
of Ap

y by accounting for the proton structure effects.
Additionally, the formalism to describe AN

y at large
momentum transfers (Q2 ≳ 1 GeV2) was developed in
Ref. [12]. Similarly, the approach to address BN

y at
large momentum transfers was provided in Ref. [44].
Moreover, the analytical behavior of BN

y in scattering at
near forward angles was studied in Ref. [45], and beyond
forward angles in Ref. [46]. The Regge region behavior
and analizing power of By were considered in
Refs. [47,48], respectively. Pasquini and Vanderhaeghen
analyzed the full angular behavior of AN

y and BN
y by

making use of a phenomenological model that employs
γ⋆N → πN electroproduction amplitudes [49].
To our best knowledge, the only models that include the

inelastic TPE loop contribution and have been used to
predict the neutron-normal SSA are those of Refs. [12,49].
The generalized parton distributions (GPDs) calculation of
the former reference agrees well with the experimental
datapoint of Ref. [41], which was taken at electron beam
energy ε1 ¼ 3.605 GeV and Q2 ¼ 0.967 GeV2. However,
this approach cannot be used to describe other datapoints
of Ref. [41], which were taken at lower Q2. The electro-
production amplitudes calculation of Ref. [49], in its turn, is
constrained by the invariant mass of the intermediate

3Note that the imaginary part of the TPE amplitude is
contained solely in the two-photon box diagram, whereas the
respective real part is represented by the two-photon box and
crossed-box diagrams.
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hadronic stateW≲2GeV (corresponds to ε1 ≲ 1.66 GeV).
The neutron-normal SSA prediction of Ref. [49] is given
only for ε1 ¼ 0.57 GeV. It is the goal of our work to
provide additional model estimations of neutron- and
proton-normal SSAs that can cover kinematical regions
unaccessible by the mentioned models. Broadly speaking,
our theory is aimed to describe near forward scattering
angle asymmetries. To be more specific than just vaguely
mentioning near forward angles as a kinematical constraint
on our approach, we will formulate a quantitative criterium
that can be used to determine applicability limits of our
theory.
The outline of this work is as follows. In Sec. II, we

introduce our notations for the description of elastic
electron-nucleon scattering. In Sec. III, we show that the
respective target-normal SSA is generated (to leading
order) by the imaginary part of the TPE amplitude. In
Sec. IV, we give a brief overview of one- and two-
photon exchange contributions needed for calculations
of nucleon-normal SSAs. In Sec. V, we provide our
parametrization and closed form expressions for calcu-
lations of corresponding asymmetries. The results and
conclusions are presented in Secs. VI and VII,
respectively.

II. ELASTIC ELECTRON-NUCLEON
SCATTERING FORMALISM

In this section we briefly review our notations that we
use to describe the elastic electron-nucleon scattering.
Schematically, this process, which is depicted in Fig. 1,
can be written as

eðk1; SeÞ þ Nðp1; SNÞ → eðk2; S0eÞ þ Nðp2; S0NÞ; ð1Þ

where k1ðk2Þ and p1ðp2Þ denote the four-momenta of the
initial (final) electron of mass m and initial (final) nucleon
of mass M. In addition, Se ðS0eÞ and SN ðS0NÞ describe the
respective initial (final) electron and nucleon spin four-
vectors. In order to provide invariant expressions, the
standard set of Mandelstam variables is used

s ¼ ðk1 þ p1Þ2; t ¼ ðk1 − k2Þ2; u ¼ ðk1 − p2Þ2:
ð2Þ

Often, we shall refer to the absorptive part of the two-
photon exchange amplitude, the definition for which is
provided in Sec. III, and the respective TPE Feynman
diagram for which is shown in Fig. 1(b). As we can see
from this figure, the four-momentum of the intermediate
electron state is denoted as K, so that K2 ¼ m2, and the
total energy-momentum of the intermediate hadronic state
X is denoted as P, so that the invariant mass squaredW2 of
this state is then given by P2 ¼ W2. The four-momenta of
the virtual photons in Fig. 1 are given as

q21 ¼ ðk1 − KÞ2 ¼ ðP − p1Þ2 ≡ −Q2
1;

q22 ¼ ðk2 − KÞ2 ¼ ðP − p2Þ2 ≡ −Q2
2;

t ¼ ðq1 − q2Þ2 ≡ −Q2: ð3Þ

Furthermore, it is convenient to introduce the following
variables:

p̄≡ p1 þ p2

2
; q̄≡ q1 þ q2

2
: ð4Þ

III. TARGET-NORMAL SINGLE-SPIN
ASYMMETRY

In this section, in order to address the scattering process
(1), we refer to the center-of-mass (c.m.) frame, oriented
as it is shown in Fig. 2. In our notations, all c.m. frame
variables always bear an asterisk symbol and correspond to
analogous laboratory frame variables that do not bear this
symbol. The complete list of our c.m. frame conventions
and some useful invariant expressions are given in
Appendix A.
The target-normal single-spin asymmetry observable AN

y

in elastic eN scattering is defined as

AN
y ≡ dσN↑ − dσN↓

dσN↑ þ dσN↓
; ð5Þ

where dσN↑ (dσN↓) denotes the differential cross section for
the unpolarized electron beam and for the polarized target

(a) (b)

FIG. 1. One- and two-photon exchange diagrams for elastic
electron-nucleon scattering.

FIG. 2. The center-of-mass frame used to describe the target-
normal single-spin asymmetry in elastic eN scattering.
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nucleon with spin vector  S�N being oriented parallel (anti-
parallel) to the normal ð  e�yÞ to the electron scattering plane.
The four-vector spin is then given by

SμN ¼ ð0;  S�NÞ;  S�N ≡  k�1 ×  k�2
j  k�1 ×  k�2j

¼  e�y: ð6Þ

In the tensor notation

SμN ¼ 1

Ns
εμνρσp1νk1ρk2σ; ð7Þ

where the normalization constantNs is introduced to satisfy
the condition S2N ¼ −1. For scattering of ultrarelativistic
(m → 0) electrons

Ns ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2½ðM2 − sÞ2 − sQ2�

q
: ð8Þ

Let us now define Tfi ≡ TN↑ð  k�2;  k�1Þ to be the transition
amplitude describing the scattering process shown in Fig. 2,
so that

dσN↑ ∼
1

2

X
S0N;S

0
e;Se

jTfij2: ð9Þ

In addition, we define Tf̃ ĩ to be the amplitude describing
the analogous process, but reversed in time (the nucleon’s
spin vector and particles’ momenta are flipped). As it was
pointed out by de Rujula et al. in Ref. [26]

jTf̃ ĩj2 ≡ jTN↓ð−  k�2;−  k�1Þj2 ¼ jeiπ · TN↓ð  k�2;  k�1Þj2

¼ jTN↓ð  k�2;  k�1Þj2: ð10Þ

Using our definition of dσN↓ and the result of Eq. (10), one
can find that

dσN↓ ∼
1

2

X
S0N;S

0
e;Se

jTf̃ ĩj2: ð11Þ

This means that the asymmetry AN
y can now be written as

AN
y ¼ jTfij2 − jTf̃ ĩj2

jTfij2 þ jTf̃ ĩj2
; ð12Þ

where the summation over respective spin states is assumed
in the numerator and denominator. To study Eq. (12) in
more detail, let us now write down the relation between the
scattering matrix Sfi and the amplitude Tfi

Sfi ¼ 1þ ið2πÞ4δð4Þðk1 þ p1 − k2 − p2ÞTfi: ð13Þ

The unitarity property S†fiSfi ¼ 1 of the scattering matrix
enables us to find that

iðT†
fi − TfiÞ ¼ Abs½Tfi�; ð14Þ

where Abs½Tfi� is the absorptive part of the scattering
amplitude, defined as

Abs½Tfi�≡
X
n

T�
fnTnið2πÞ4δð4Þðk1 þ p1 − pnÞ: ð15Þ

The sum in Eq. (15) goes over all possible on-shell
intermediate states n, and the delta function there assures
conservation of momentum. Using Eq. (14), one may find
that

jAbs½Tfi�j2 ¼ jTf̃ ĩj2 þ jTfij2 − 2Re½TfiTfi�; ð16Þ

2ImðT†
fiAbs½Tfi�Þ ¼ 2Re½TfiTfi� − 2jTf̃ ĩj2; ð17Þ

where, due to time-reversal invariance and parity conser-
vation in the electromagnetic interaction, we replaced jTifj2
by jTf̃ ĩj2. Now, taking into account that

Tfi ¼ ðT1γÞfi þ ðT2γÞfi þ � � � ð18Þ
and summing up Eqs. (16) and (17), one gets a perturbative
expansion of the numerator in Eq. (12). As a result, the
dominant contribution (of order α) to the asymmetry will be
given by the following expression:

AN
y ¼ Im½ðT1γÞ†fi · ðAbs½T2γ�Þfi�

jðT1γÞfij2
; ð19Þ

where we employed the equivalence of ðT1γÞf̃ ĩ and ðT1γÞfi
in the denominator of Eq. (12). As it is mentioned in
Ref. [50], in the one-photon exchange approximation, the
differential cross section of an unpolarized lepton scattering
off of a polarized target is identical to that of analogous
process but with the target being unpolarized. With this in
mind, and dropping out the matrix indices in Eq. (19), one
gets [49]

AN
y ¼

2Im

� P
S0N;S

0
e;Se

T†
1γ · Abs½T2γ�

�
P

S0N;S
0
e;SN;Se

jT̃1γj2
; ð20Þ

where T̃1γ is the one-photon exchange amplitude describ-
ing the unpolarized scattering process, characterized by the
differential cross section dσun, which is given by

dσun ∼
1

4

X
S0N;S

0
e;SN;Se

jT̃fij2: ð21Þ
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At this point, it is worth mentioning that the result of
Eq. (20) holds true if one works in the laboratory (lab)
frame where the initial nucleon is motionless and the initial
electron moves along the z axis. This stems from the fact
that such a lab frame can be obtained from the c.m. frame
by the inverse Lorentz boost in the z direction, thus keeping
the components of the spin four-vector unchanged.

IV. ONE- AND TWO-PHOTON EXCHANGE
CONTRIBUTIONS

The one-photon exchange amplitude, which is shown in
Fig. 1(a) and contributes to the asymmetry in Eq. (20), is
given by

T†
1γ ¼

e2

Q2
ūðk1; SeÞγμuðk2; S0eÞŪðp1; SNÞΓμUðp2; S0NÞ:

ð22Þ

The on-shell nucleon vertex Γμ is defined as

ΓμðQ2Þ ¼ ½F1ðQ2Þ þ F2ðQ2Þ�γμ −
p̄μ

M
F2ðQ2Þ; ð23Þ

where F1 and F2 are the Dirac and Pauli form factors,
which are related to the electricGE and magneticGM Sachs
form factors via

GEðQ2Þ ¼ F1ðQ2Þ − Q2

4M2
F2ðQ2Þ;

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: ð24Þ

In our calculations of proton- and neutron-normal SSAs we
use Kelly’s parametrization [51] to describe the respective
Q2 behavior of the electric and magnetic form factors. For
the proton, the fit parameters were taken from Ref. [51],
whereas neutron’s GE and GM fit parameters were taken
from Refs. [52,53], correspondingly.
As mentioned previously, the denominator in Eq. (20)

represents the one-photon exchange amplitude of the
unpolarized electron-nucleon scattering. The square of this
amplitude, summed over final and averaged over initial
spins, can be written as

1

4

X
S0N;S

0
e;SN;Se

jT̃1γj2 ¼
64π2α2

Q4
Dðs;Q2Þ; ð25Þ

with

Dðs;Q2Þ≡ ððs −M2Þ2 − sQ2Þ
�
F2
1 þ

Q2

4M2
F2
2

�

þQ4

2
ðF1 þ F2Þ2: ð26Þ

The absorptive part of the TPE amplitude is connected
with a discontinuity of the Feynman diagram Fig. 1(b)
via [54]

Abs½T2γ� ¼ −Disc½iT2γ�≡ −Disc½M2γ�: ð27Þ

This discontinuity can be calculated using the Cutkosky
cutting rule prescription, which suggests that one replace
each cut propagator by the corresponding delta function

1

p2
i −m2

i þ iϵ
→ −2πiδðp2

i −m2
i Þ; ð28Þ

where mi is the mass of the particle with the intermediate
momentum pi.
By calculating the discontinuity of Fig. 1(b), one gets the

following c.m. expression for the absorptive part of the TPE
amplitude:

Abs½T2γ� ¼ e4
ZZZ

d3  K�

ð2πÞ32ξ�
Wαβðp2; S0N ;p1; SNÞ

Q2
1Q

2
2

× ūðk2; S0eÞγαð=K þmÞγβuðk1; SeÞ; ð29Þ

where ξ� is the c.m. energy and  K� is the c.m. momentum
of the intermediate electron (respective invariant form
expressions are provided in Appendix A). In addition,
the TPE hadronic tensor Wαβðp2; S0N ;p1; SNÞ is defined as

Wαβðp2; S0N ;p1; SNÞ
≡X

X

hp2; S0N jJ†αð0ÞjXihXjJβð0Þjp1; SNi

· ð2πÞ4δ4ðp1 þ q1 − PÞ: ð30Þ

The sum in Eq. (30) goes over all possible on-shell
intermediate hadronic states X.
To perform a summation over final hadron spin states in

Eq. (20), it is convenient to relate the TPE hadronic tensor
Wαβ to an operator Ŵαβ in spin space, defined as [55]

Wαβðp2; S0N ;p1; SNÞ≡ Ūðp2; S0NÞŴαβðp2; p1ÞUðp1; SNÞ:
ð31Þ

The tensor Ŵαβ corresponds to the absorptive part of the
doubly virtual Compton scattering (VVCS) tensor Tαβ,
so that

Ŵαβ ¼ Abs½Tαβ� ¼ 2Im½Tαβ�: ð32Þ
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The absorptive part of the TPE amplitude can now be
rewritten as

Abs½T2γ� ¼ e4
ZZZ

d3  K�

ð2πÞ32ξ�
Ūðp2; S0NÞŴαβUðp1; SNÞ

Q2
1Q

2
2

× ūðk2; S0eÞγαð=K þmÞγβuðk1; SeÞ: ð33Þ

V. TARGET-NORMAL SINGLE-SPIN
ASYMMETRY CALCULATION

By using the results of Eqs. (20), (22), (25), and (33), one
may get the following expression for the target-normal
SSA:

AN
y ðs;Q2Þ¼ αQ2

8π2Dðs;Q2Þ
ZZZ

d3  K�

2ξ�
ImðLμαβHμαβÞ

Q2
1Q

2
2

; ð34Þ

where the leptonic Lμαβ and hadronic Hμαβ tensors are
defined as

Lμαβ ≡ 1

2

X
Se;S0e

ūðk1; SeÞγμuðk2; S0eÞūðk2; S0eÞγα

× ð=K þmÞγβuðk1; SeÞ

¼ 1

2
Tr½ð=k1 þmÞγμð=k2 þmÞγαð=K þmÞγβ�; ð35Þ

Hμαβ ≡
X
S0N

Ūðp1; SNÞΓμUðp2; S0NÞ

× Ūðp2; S0NÞŴαβUðp1; SNÞ

¼ 1

2
Tr½ð=p1 þMÞð1 − γ5=SNÞΓμð=p2 þMÞŴαβ�: ð36Þ

It is useful to split the leptonic tensor Eq. (35) into the
symmetric (Lμαβ

S ) and antisymmetric (Lμαβ
A ) parts with

respect to indices αβ. For ultrarelativistic electrons these
parts are given by

Lμαβ
S ¼ 2kμ2ðKαkβ1 þ kα1K

βÞ þ 2kμ1ðKαkβ2 þ kα2K
βÞ

þ gαβðQ2Kμ þ q21k
μ
2 þ q22k

μ
1Þ

−Q2ðKαgβμ þ KβgαμÞ; ð37Þ

Lμαβ
A ¼ q21ðkα2gβμ − kβ2g

αμÞ − q22ðkα1gβμ − kβ1g
αμÞ

− 2Kμðkα1kβ2 − kα2k
β
1Þ: ð38Þ

The integral over intermediate electron’s phase space
variables in Eq. (34) can be reexpressed in a Lorentz
invariant way through the following change of integration
variables:

ZZ
dΩK� ¼ 2

Z1
−1

d cos θ�1

Zπ
0

dϕ�
1

¼ 1

ε�ξ�

Z4ε�ξ�
0

dQ2
1

ZQþ

Q−

dQ2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðQþ −Q2
2ÞðQ2

2 −Q−Þ
p ;

Zj  K�
maxj

0

dj  K�j ¼ −
Zs
M2

dW2

2
ffiffiffi
s

p ; ð39Þ

where [48]

Q� ¼ ξ�

ε�
Q2 þQ2

1 −
Q2Q2

1

2ðε�Þ2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffi
Q2Q2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ�

ε�

�
1 −

Q2

4ðε�Þ2
��

1 −
Q2

1

4ε�ξ�

�s
;

j  K�
maxj ¼

s −M2

2
ffiffiffi
s

p : ð40Þ

Here we should also mention that it is convenient to split
the integral over the variable W2 into two pieces

Zs
M2

ð…ÞdW2 ¼
ZðMþmπÞ2

M2

ð…ÞdW2 þ
Zs

ðMþmπÞ2
ð…ÞdW2; ð41Þ

where mπ denotes the mass of a pion. The first integral
on the right-hand side of Eq. (41) describes the contri-
bution that is coming from the so-called elastic inter-
mediate hadronic state [X ¼ nucleon in the blob in
Fig. 1(b)], and we denote the tensor Ŵαβ under this
integral as Ŵel

αβ. The second integral on the right-hand side
of Eq. (41) describes the contribution that is coming
from the so-called inelastic intermediate hadronic state
[X ≠ nucleon in the blob in Fig. 1(b)], and we denote the
tensor Ŵαβ under this integral as Ŵ

in
αβ. Once Ŵ

el
αβ and Ŵin

αβ

are parametrized, the asymmetry Eq. (34) can be calcu-
lated numerically using relations in Eqs. (35)–(41). The
details about our parametrizations for Ŵel

αβ and Ŵin
αβ are

given below.

A. Elastic contribution

By putting the intermediate nucleon on shell and
using our definitions of Wαβ and Ŵαβ, one can explicitly
express Ŵel

αβ through electromagnetic form factors of the
nucleon

Ŵel
αβ ¼ 2πδðW2 −M2ÞΓαðQ2

2Þð=PþMÞΓβðQ2
1Þ; ð42Þ
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where

ΓβðQ2
1Þ ¼ ½F1ðQ2

1Þ þ F2ðQ2
1Þ�γβ −

ðPþ p1Þβ
2M

F2ðQ2
1Þ;

ΓαðQ2
2Þ ¼ ½F1ðQ2

2Þ þ F2ðQ2
2Þ�γα −

ðPþ p2Þα
2M

F2ðQ2
2Þ:
ð43Þ

B. Inelastic contribution

In order to parametrize the inelastic tensor Ŵin
αβ, we will

make use of Eq. (32), which relates Ŵαβ to the imaginary
part of the VVCS tensor Tαβ,

Ŵin
αβ ¼ 2Im½Tαβ�: ð44Þ

It turns out [56] that in the most general case of a scat-
tering on a polarized nucleon target, the VVCS tensor is
given in terms of a sum of N ¼ 18 structures, consisting of
gauge invariant tensors ðτiÞαβ that have no kinematical
singularities and corresponding independent amplitudes Ai
(i ¼ 1;…; N).4 The original basis of 18 tensors was
suggested by Tarrach in Ref. [56]. However, that basis is
“nonminimal,” and its nonminimality implies that there
is a linear dependence between some elements of the basis
in a kinematical region where ðq1 · q2Þ ¼ 0 is possible. To
avoid this constraint, one may refer to a different basis. In
our calculations, we used an alternative basis of Ref. [57],
which has no kinematical singularities whenever it is
employed to model the inelastic TPE hadronic tensor. In
this basis, the VVCS tensor is given by

Tαβ ¼
X
i∈J

ðτiÞαβAiðq21; q22;W2; Q2Þ;

J ¼ f1;…; 21gnf5; 15; 16g: ð45Þ

Exact expressions for ðτiÞαβ are given in Ref. [57], and they
are based on the tensors of Tarrach. Unfortunately, in the
most general case of a scattering at nonforward angles,
the complete functional dependence of the amplitudes
Aiðq21; q22;W2; Q2Þ is unknown. However, some of these
amplitudes, especially those whose behavior in certain
physical limits is well understood, can be modeled realis-
tically. For our calculations of elastic scattering at near
forward angles (Q2 ≪ s) and for Q2 ≲ 1 GeV2 we will
need to employ the so-called forward scattering limit
(Q2 ¼ 0 and q21 ¼ q22). The relevant discussions about
the configuration of Tαβ in various limits can be found,
e.g., in Refs. [58,59]. In the forward limit, the number of

independent amplitudes Ai and respective tensors ðτiÞαβ
has to reduce to N ¼ 4. More specifically, there are two
structures that characterize the spin-dependent part of Tαβ

and there are another two structures that describe the spin-
independent part of Tαβ. The optical theorem allows to
parametrize exactly imaginary parts of all forward ampli-
tudes in terms of structure functions of the nucleon. These
structure functions can be extracted from deep inelastic
scattering (DIS) measurements and are introduced in
Appendix B. The exact expression for the forward
VVCS tensor and the normalization of its imaginary part
on the nucleon structure functions are provided in
Appendix C.
Because of our limited knowledge about the functions Ai

from Eq. (45), certain model assumptions need to be made.
In the kinematical region of our interest (near forward
scattering angles), we can assume that the leading role in
the parametrization of Tαβ is played by a sum of four
structures that do not die off in the forward limit (FL);
we call respective structures ‘near forward’ contributions.
The rest of the structures, which we call “off-forward”
contributions, will be excluded from our model. Our
assumption to consider only near forward contributions
is based on the fact that amplitudes are smooth functions,
meaning that the off-forward contributions can gain sig-
nificance only continuously with the growth of Q2 starting
at Q2 ¼ 0, where they are irrelevant. Given this consid-
eration, in our model for Tαβ we intend to focus on the
identification of linear combinations of four structures that
contribute to the forward-limit parametrization of Tαβ. Two
of these structures are spin dependent and the other two are
spin independent. We can narrow down our searches for
respective structures even further if we now analyze the
behavior of the antisymmetric part of the leptonic tensor
Lμαβ
A . Based on Eq. (38), this part turns out to vanish in FL.

This means that only the symmetric part Lμαβ
S will be

contributing to our model, as we just consider the structures
that survive in the forward limit. Consequently, only the
symmetric part HS

μαβ of the hadronic tensor needs to be
employed in our parametrization,

HS
μαβ¼

1

2
Tr½ð=p1þMÞð1−γ5=SNÞΓμð=p2þMÞŴin;S

αβ �
¼Tr½ð=p1þMÞð1−γ5=SNÞΓμð=p2þMÞImðT̂αβÞ�; ð46Þ

where we denoted the symmetric part of the VVCS tensor
as T̂αβ. As it can be seen from the discussion in
Appendix C, the symmetric part of the forward VVCS
tensor is solely represented by the nucleon unpolarized
structure functions. Consequently, our model will be
focused on a near forward parametrization of Tαβ in terms4A “structure” is a product between Ai and respective ðτiÞαβ.
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of two spin-independent structures that contribute to
forward scattering.5

Summing up the discussion above, from 18 tensors
ðτiÞαβ and functions Aiðq21; q22;W2; Q2Þ mentioned in
Eq. (45), we intend to identify those that can contribute
to forward scattering and construct a sum (or sums) of two
structures that would exactly reproduce Eqs. (C3), (C5) in
the forward limit kinematics. Essentially, from the set of
18 tensors provided by Ref. [57], we need to pin down
those that can be inextricably linked to the forward spin-
independent amplitudes. We found three tensors that
reproduce the first term (its tensor part) of Eq. (C3) and
one tensor that reproduces the second term (its tensor part)
of Eq. (C3) in the forward limit. To be consistent with
Ref. [57], these tensors are labeled as ðτ1Þαβ; ðτ3Þαβ;
ðτ4Þαβ; ðτ19Þαβ and their exact form, using our notations,
is provided in Appendix D. Based on these tensors, we
constructed three parametrizations

T̂ðIÞ
αβ ¼ ðτ1ÞαβA1 þ ðτ19ÞαβA19;

T̂ðIIÞ
αβ ¼ ðτ3ÞαβA3 þ ðτ19ÞαβA19;

T̂ðIIIÞ
αβ ¼ ðτ4ÞαβA4 þ ðτ19ÞαβA19: ð47Þ

In FL, which is characterized by the q1 ¼ q2 ¼ q (or
p1 ¼ p2 ¼ p) and Q2 ¼ 0 condition,6 the parametrizations

T̂ðIÞ
αβ ; T̂

ðIIÞ
αβ ; T̂

ðIIIÞ
αβ in Eq. (47) exactly coincide with the spin-

independent part of the forward VVCS amplitude Eq. (C1)
if the following constraints are imposed on the imaginary
parts of the functions A1, A3, A4, and A19:

Im½A1�jFL ¼ Im½A1ðq2;W2Þ� ¼ πWDIS
1 ðq2;W2Þ

q2
;

Im½A3�jFL ¼ Im½A3ðq2;W2Þ� ¼ −
πWDIS

1 ðq2;W2Þ
q4

;

Im½A4�jFL ¼ Im½A4ðq2;W2Þ� ¼ −
πWDIS

1 ðq2;W2Þ
2q2ðp · qÞ ;

Im½A19�jFL ¼ Im½A19ðq2;W2Þ� ¼ πWDIS
2 ðq2;W2Þ
2q4M2

: ð48Þ

WDIS
1ð2Þ in Eq. (48) represent the nucleon structure functions,

which can be related to corresponding dimensionless
scaling functions FDIS

1ð2Þ measurable in deep inelastic scatter-

ing experiments (see Appendix B for details),

WDIS
1 ðq2

1ð2Þ;W
2Þ ¼

FDIS
1 ðq2

1ð2Þ; xB1ð2Þ Þ
M

;

WDIS
2 ðq2

1ð2Þ;W
2Þ ¼

FDIS
2 ðq2

1ð2Þ; xB1ð2Þ Þ
ν1ð2Þ

;

ν1ð2Þ ¼
ðp1ð2Þ · q1ð2ÞÞ

M
¼

W2 −M2 − q2
1ð2Þ

2M
;

xB1ð2Þ ¼ −
q2
1ð2Þ

2Mν1ð2Þ
: ð49Þ

The constraints of Eq. (48) are not the only requirements
that should be taken into account in our model for the
functions A1, A3, A4, and A19. We also want to preserve the
symmetry of these amplitudes under the exchange of
momenta of virtual photons (q21 ↔ q22) in the TPE loop.
Finally, a realistic Q2 dependence should also be chosen to
describe the behavior of the amplitude near FL. Based on
these requirements, we suggest to parametrize the imagi-
nary parts of near forward amplitudes as

Im½A1ðq21; q22;W2; Q2Þ� ¼ πW1ðq21; q22;W2; Q2Þ
ðq1 · q2Þ

;

Im½A3ðq21; q22;W2; Q2Þ� ¼ −
πW1ðq21; q22;W2; Q2Þ

q21q
2
2

;

Im½A4ðq21; q22;W2; Q2Þ� ¼ −
πW1ðq21; q22;W2; Q2Þ
ðp̄ · q̄Þðq21 þ q22Þ

;

Im½A19ðq21; q22;W2; Q2Þ� ¼ πW2ðq21; q22;W2; Q2Þ
2q21q

2
2M

2
; ð50Þ

where, following the discussion in Ref. [26], the structures
W1 and W2 are modeled as

W1ð2Þ ¼ e−
BQ2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WDIS

1ð2Þðq21;W2ÞWDIS
1ð2Þðq22;W2Þ

q
: ð51Þ

The coefficients by the functions W1ð2Þ in Eq. (50) are
obtained based on the constraints of Eq. (48). The model
parametrization of the structures W1ð2Þ given by Eq. (51)
ensures symmetry considerations with respect to virtual
photon exchanges in the TPE loop. The exponent in
Eq. (51) accounts for the nucleon-size effects and is
introduced to describe the Q2 behavior of the scattering
amplitude near the forward scattering limit. The exper-
imentally determined constant B ¼ 8 GeV−2, which is
obtained from the slope of the Compton scattering ampli-
tude, gives a good description of near forward scattering
up to Q2 ≈ 1 GeV2; for more details on the exponential
behavior of the amplitude near FL, please see Refs. [45,48].
One may wonder why we prefer to employ the geometric

mean over, e.g., the arithmetic mean to model W1ð2Þ in

5Even though we consider only the structures contributing to the
forward limit, our model will still keep their dependence on q1;2
and p1;2. Therefore, the wording “near forward” is chosen.

6Please note thatQ2 is the overall momentum transfer squared,
whereas q2 is the forward limit momentum square of a single
photon in the TPE graph in Fig. 6.
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Eq. (51). Besides the argument of Ref. [26], the choice of
the geometric mean is driven by the analysis of the behavior
of the nonforward Compton amplitude. Based on both the
vector meson dominance model (for low Q2

1ð2Þ) and quark

counting rules and experimental measurements (for high
Q2

1ð2Þ), the nonforward Compton amplitude is supposed to

decrease at the fixed value of the virtuality of one of the
photons but increasing virtuality of the other photon in the
TPE loop. Let us now assume that Q2

1 is fixed and Q2
2 is

increasing. The arithmetic mean model, in this case, would
not follow the desired trend assuming that the term
proportional to Q2

1 dominates over its counterpart propor-
tional to Q2

2. In this scenario, the change in Q2
2 would not,

essentially, lead to the change of the Compton amplitude,
thus providing an overestimation of the integral over Q2

1

and Q2
2 [Eqs. (34) and (39)]. Consequently, we expect the

SSA prediction with the arithmetic mean parametrization of
structure functions to be less accurate than that with the
geometric mean parametrization. As for the forward limit
calculation, both parametrizations would be equivalent.
On a final note we would like to mention that in our

calculations of nucleon-normal SSAs we used Christy’s
[60] parametrizations of FDIS

1 and FDIS
2 , which include the

nucleon resonance region.

VI. RESULTS AND DISCUSSION

The expressions given in Eq. (47), which we call near
forward parametrizations, may now be employed to evalu-
ate contractions of the leptonic and hadronic tensors. These
contractions may be simplified if one takes into account
gauge invariance of electromagnetic interactions, which
implies that

Lμαβqμ ¼ Lμαβq1β ¼ Lμαβq2α ¼ 0;

Hμαβqμ ¼ Hμαβq
β
1 ¼ Hμαβqα2 ¼ 0: ð52Þ

Once the contractions are performed, the near forward
behavior of the asymmetry can be calculated by taking
numerically the integral in Eq. (34). Since all three para-

metrizations T̂ðIÞ
αβ ; T̂

ðIIÞ
αβ , and T̂ðIIIÞ

αβ are normalized to provide
the correct forward limit expression, the respective asym-

metry predictions ANðIÞ
y ; ANðIIÞ

y , and ANðIIIÞ
y appear to be

equivalent and no preference may be given to any of them.
We will employ the differences in predictions, obtained
with parametrizations I, II, and III, to quantitatively set a
limitation on our approach. In order to do so, let us define
the following variables:

FIG. 3. Neutron-normal single-spin asymmetry predictions. Vertical lines represent the η ¼ 0.1 constraint. The datapoints are from
Ref. [41].
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η12 ≡ jANðIÞ
y − ANðIIÞ

y j
minðjANðIÞ

y j; jANðIIÞ
y jÞ

; ð53Þ

η13 ≡ jANðIÞ
y − ANðIIIÞ

y j
minðjANðIÞ

y j; jANðIIIÞ
y jÞ

; ð54Þ

η23 ≡ jANðIIÞ
y − ANðIIIÞ

y j
minðjANðIIÞ

y j; jANðIIIÞ
y jÞ

; ð55Þ

η≡maxðη12; η13; η23Þ: ð56Þ

Based on these definitions, the parameter η is a theoretical
error band of our model calculation.
In Figs. 3 and 4, we display the target-normal SSA

predictions for elastic e−n and e−p scattering, correspond-
ingly. Vertical η ¼ 0.1 lines on our plots indicate regions of
kinematics (on the left side of these lines) for which η is
within 10%. These are the regions of a desired theoretical
uncertainty. Beyond the η ¼ 0.1 line, the uncertainty of the
near forward calculation becomes significant, indicating that
we cannot rely on the usage of near forward contributions
alone any longer. Unfortunately, as we can see from Fig. 3,
the constraint η ≤ 0.1 implies that our results cannot be
directly compared to the results of the experimental meas-
urement of Ref. [41] (we extend our theoretical curves
beyond the η ¼ 0.1 region just for illustrative purposes).

More interestingly, we can also notice that the FL slope of
theoretical curves is of an opposite sign as compared to that
expected from the experiment. The only reasonable explan-
ation for such a “mismatch” between existing experimental
data and theoretical predictions of our model is that the
neutron-normal measurement of Ref. [41] was conducted in
the kinematical region where additional, nonforward ampli-
tudes take over. This also suggests that if someone were to
perform a similar measurement—with an invariant s being
fixed at one of the values employed in Ref. [41] and with an
opportunity to access smaller values ofQ2—they would find
that the asymmetry An

y crosses zero at least once in the
interval 0 < Q2 < 1 GeV2. At sufficiently low Q2, where
the forward amplitudes eventually become dominant, the
behavior of the asymmetrywould be described by ourmodel.
The proton-normal SSA predictions Ap

y , which are
shown in Fig. 4, are calculated analogously, one just needs
to replace neutron form factors and scaling functions by
corresponding proton quantities. Initial beam energies in
Figs. 3 and 4 were chosen to perform a comparison of our
calculations with experimental data of Ref. [41], with
theoretical estimations of Ref. [49], as well as to provide
theory predictions for possible future measurements.
As it can clearly be seen from our results, the FL slopes
of both neutron- and proton-normal asymmetries calculated
according to our approach are of the same sign as those
of Ref. [49]. In addition, in the kinematical region of an
overlap of both calculations, our predictions are of the same

FIG. 4. Proton-normal single-spin asymmetry predictions.
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order of magnitude as those of Ref. [49]. The relative
difference between theoretical curves is expected to be
coming from the fact that the calculation of the letter
reference is based on the γ�N → πN electroabsorption
amplitudes, whereas our approach employs deep inelastic
structure functions, which contain information on the states
beyond the πN production threshold in the TPE loop.
The present calculation differs from that of De Rujula

et al. [26] in several substantive aspects. First, we provide
the near forward parametrization for Tαβ, whereas the
authors of Ref. [26] use the forward parametrization.
Specifically, we do not resort to the q1 ¼ q2 limit in our
model for tensors ðτ1Þαβ; ðτ3Þαβ; ðτ4Þαβ; ðτ19Þαβ. Moreover,
in our parametrization for W1ð2Þ we provide an additional
exponential suppression factor, which is derived from
diffractive (near forward) Compton scattering measure-
ments. Second, we use the most recent [60] parametriza-
tions for FDIS

1 and FDIS
2 , whereas the authors of Ref. [26]

used parametrizations from early 70s. Finally, we intro-
duced a quantitative criterium, η, which establishes an
upper Q2 bound on our model calculations. This bound
prevents us from comparing our results vs those presented
in Table I of Ref. [26], as 7 (out of 9) datapoints given there
fall into a region η ≫ 0.1.
Finally, we would like to point out that the asymmetry

AN
y is a function of two variables: the beam energy ε1 and

the scattering angle θ. Since both variables are frame-
dependent quantities, it is more illustrative to consider the
asymmetry as a function of two invariants: s and Q2, for
example. This means that there can be plotted a distinct Q2

dependence of AN
y for every chosen value of s. For this

reason, we provide four different proton- and neutron-
normal asymmetry predictions, which correspond to four
different values of ε1.

VII. CONCLUSIONS

We have computed the target-normal single-spin asym-
metry at near forward angles in elastic electron-proton
and electron-neutron scattering. Neglecting higher-order
effects, this asymmetry is provided by the interference
between one- and two-photon exchange amplitudes. The
TPE amplitude includes both elastic and inelastic loop
contributions, and the calculation of the latter one requires
model assumptions. We have constructed the respective
inelastic VVCS tensor that can be used in the kinematical
region characterized by the Q2 ≪ s condition. Our para-
metrization takes into account the following considerations:
(a) exact knowledge of tensor structures contributing to the
general nonforward VVCS tensor, (b) exact knowledge
of the relationship between the imaginary part of the
forward scattering amplitude and respective structure
functions measurable in deep inelastic scattering experi-
ments. To describe the Q2 dependence of the asymmetry
near its forward limit (Q2 ¼ 0), we made use of the

experimentally known slope of the Compton scattering
differential cross section. Our unitarity-based calculation
features the following properties: it is properly normalized
to provide a correct forward limit expression for the VVCS
tensor, it is symmetric with respect to exchanges of virtual
photons in the two-photon loop, and it improves on
previous high energy (Q2 ≪ s) parametrizations of the
VVCS tensor by directly accounting for the contributions
coming from longitudinal photon exchanges in the TPE
loop. Moreover, besides simply mentioning Q2 ≪ s as a
kinematical constraint on our approach, we have also
suggested a quantitative criterium that can be used for
the determination of the upper Q2 bound in predictions of
AN
y for any chosen value of the initial beam energy.
We found that in the kinematical range of an overlap of

our calculations and calculations of Ref. [49], the target-
normal asymmetry predictions of both approaches appear
to be in a reasonable agreement with each other. It would
also be interesting to compare our results with the near-
forward approximation model of Ref. [61], provided that it
is applied to predict the target-normal SSA. The compari-
son between experimental data of Ref. [41] and our
predictions, which are based on an extrapolation of near
forward asymmetries from their forward limit expressions,
shows a disagreement between the experiment and our
theory. In contrast, the beam-normal SSA predictions that
are based on a similar theoretical extrapolation procedure
[27,45,48] are in a good agreement with experiments
[37,40]. Therefore, in order to compare experimental
measurements with our theory in kinematics of the JLab
experiment [41], it is required to completely model the
nonforward Compton amplitude in our theoretical estima-
tions. Alternatively, it would be desirable to extend future
experimental measurements of the target-normal SSA to
smaller scattering angles, at which the direct comparison
between the experiment and the current theory is possible.
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APPENDIX A: CENTER-OF-MASS FRAME
NOTATIONS AND RELATIONS

Using the notation introduced in Sec. II, c.m. compo-
nents of respective four-vectors can be defined as
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k1 ¼ ðϵ�1;  k�1Þ; k2 ¼ ðϵ�2;  k�2Þ;
p1 ¼ ðE�

1;−  k
�
1Þ; p2 ¼ ðE�

2;−  k
�
2Þ;

K ¼ ðξ�;  K�Þ; P ¼ ðΣ�;−  K�Þ: ðA1Þ
In the ultrarelativistic approximation (ϵ�1 ≫ m), the

inelastic scattering process

lðk1Þ þ Nðp1Þ → lðKÞ þ XðPÞ ðA2Þ
can be described by the following components of four-
vectors given in the invariant form [63]:

ϵ�1 ¼ j  k�1j ¼
s −M2

2
ffiffiffi
s

p ; E�
1 ¼

sþM2

2
ffiffiffi
s

p ;

ξ� ¼ j  K�j ¼ s −W2

2
ffiffiffi
s

p ; Σ� ¼ sþW2

2
ffiffiffi
s

p : ðA3Þ

The elastic process

lðk1Þ þ Nðp1Þ → lðk2Þ þ Nðp2Þ ðA4Þ
represents a special case (X ¼ N, W2 ¼ M2) of the
inelastic process (A2). As a result, one finds that

ϵ�1 ¼ j  k�1j≡ ϵ� ¼ s −M2

2
ffiffiffi
s

p ;

E�
1 ≡ E� ¼ sþM2

2
ffiffiffi
s

p : ðA5Þ

If one chooses to perform the integration in Eq. (34) in
terms of c.m. frame variables, it is important to establish
certain relations between corresponding integration param-
eters. In order to do so, we note that when the c.m.
coordinate system is oriented as it is shown in Fig. 2, and θ�
represents the respective c.m. scattering angle, we can write
that

k1 ¼ ðϵ�; 0; 0; j  k�jÞ;
k2 ¼ ðϵ�; j  k�j sin θ�; 0; j  k�j cos θ�Þ: ðA6Þ

In addition, we define ϕ1 to be the azimuthal angle of the
intermediate electron state, and θ�1 ≡∠ð  k�1;  K�Þ and θ�2 ≡
∠ð  k�2;  K�Þ to be its polar angles. With these definitions, the
four-momentumof the intermediate electron can bewritten as

K ¼ ðξ�; j  K�j sin θ�1 cosϕ�
1; j  K�j sin θ�1 sinϕ�

1; j  K�j cos θ�1Þ:
ðA7Þ

Moreover, using the identity  K� ·  k�2 ¼ j  K�jj  k�2j cos θ�2, one
may find that

cos θ�2 ¼ cos θ� cos θ�1 þ sin θ� sin θ�1 cosϕ
�
1: ðA8Þ

Themomentum transferQ2 and virtualitiesQ2
1,Q

2
2 defined in

Eq. (3), are then given by

Q2 ¼ 1

2s
ðs −M2Þ2ð1 − cos θ�Þ;

Q2
1 ¼

1

2s
ðs −M2Þðs −W2Þð1 − cos θ�1Þ;

Q2
2 ¼

1

2s
ðs −M2Þðs −W2Þð1 − cos θ�2Þ: ðA9Þ

APPENDIX B: HIGH-ENERGY
ELECTRON-NUCLEON SCATTERING

High-energy electron-nucleon scattering (deep inelastic
scattering) plays a key role in determining the structure of
the nucleon. In the one-photon approximation, the lab
frame double-differential cross section for the deep inelas-
tic electron-nucleon scattering process, depicted in Fig. 5,
can be written as�

dσ1γ
dΩdε2

�
lab

¼ α2

q41

ε2
ε1

1

4πM
lαβWDIS

αβ ; ðB1Þ

where ε1 (ε2) is the lab frame energy of the initial (final)
electron. In addition, if we are considering the scattering of
the unpolarized electron off the polarized nucleon target
and the polarizations of the final particles are not measured,
then the leptonic lαβ and the DIS hadronicWDIS

αβ tensors are
given by

lαβ ≡ 1

2

X
Se;S0e

ūðk1; SeÞγαuðk2; S0eÞūðk2; S0eÞγβuðk1; SeÞ

¼ 1

2
Tr½ð=k1 þmÞγαð=k2 þmÞγβ�

¼ 2½kα1kβ2 þ kα2k
β
1 − ðk1 · k2Þgαβ þm2gαβ�; ðB2Þ

WDIS
αβ ≡X

X

ð2πÞ4δð4Þðp1 þ q1 − PÞ

· hp1; SN jJ†αð0ÞjXihXjJβð0Þjp1; SNi: ðB3Þ
It appears that the DIS hadronic tensor can be split into a
sum of a symmetric and antisymmetric parts [64]

WDIS
αβ ≡WS

αβ þ iWA
αβ: ðB4Þ

The symmetric part is independent of the nucleon’s
spin, whereas polarization effects are described by the

FIG. 5. Deep inelastic scattering process.
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antisymmetric part. With our definitions of the leptonic and
DIS hadronic tensors as in Eqs. (B2) and (B3), respectively,
it is common to use the following parametrization for the
symmetric and anti-symmetric parts of the DIS hadronic
tensor:

1

4πM
WS

αβ≡
�
−gαβþ

q1αq1β
q21

�
WDIS

1 ðq21;ν1Þ

þ 1

M2

�
p1α−

ðp1 ·q1Þ
q21

q1α

��
p1β−

ðp1 ·q1Þ
q21

q1β

�
·WDIS

2 ðq21;ν1Þ; ðB5Þ

1

4πM
WA

αβ≡εαβρσq
ρ
1

�
MSσNG

DIS
1 ðq21;ν1Þ

þν1

�
SσN−

ðSN ·q1Þ
ðp1 ·q1Þ

pσ
1

�
GDIS

2 ðq21;ν1Þ
�
; ðB6Þ

where WDIS
1;2 and GDIS

1;2 are the nucleon unpolarized and
polarized (or spin) structure functions, respectively,
and ν1 ¼ ðp1 · q1Þ=M.
The nucleon unpolarized structure functions, which we

use in our calculations, are related to the absorption cross
sections σT and σL of virtual transverse and longitudinal
photons, respectively, via

WDIS
1 ðq21; ν1Þ ¼

ν1
4π2α

σTðq21; ν1Þ;

WDIS
2 ðq21; ν1Þ ¼

q21ν1ðσTðq21; ν1Þ þ σLðq21; ν1ÞÞ
4π2αðq21 − ν21Þ

: ðB7Þ

Sometimes, it is convenient to relate the above-mentioned
structure functions to corresponding dimensionless scaling
functions FDIS

1;2 by introducing the Bjorken scaling variable
xB instead of variable ν

xB1
≡ −

q21
2Mν1

: ðB8Þ

The scaling functions are defined by

MWDIS
1 ðq21; ν1Þ≡ FDIS

1 ðq21; xB1
Þ;

ν1WDIS
2 ðq21; ν1Þ≡ FDIS

2 ðq21; xB1
Þ: ðB9Þ

APPENDIX C: FORWARD VVCS AMPLITUDE

In the forward kinematics (t ¼ 0), using the notation
shown in Fig. 6, the VVCS amplitude looks like

TαβjFL¼ð−q2gαβþqαqβÞT1ðq2;νÞ

þ 1

M2
ðq2pα−ðp ·qÞqαÞðq2pβ−ðp ·qÞqβÞT2ðq2;νÞ

þ i
M
γαβρqρS1ðq2;νÞ

þ i
2M2

ðq2γαβþqαγβρqρ−qβγαρqρÞS2ðq2;νÞ; ðC1Þ

where we used the following definitions:

γαβρ ≡ ϵαβρσγ
σγ5;

γαβ ≡ ϵαβρσγ
ργσγ5;

ν≡ ðp · qÞ
M

¼ W2 −M2 − q2

2M
: ðC2Þ

Moreover, T1;2 are the so-called spin-independent and S1;2
the spin-dependent invariant amplitudes.
One can notice that the VVCS amplitude consists of

the symmetric and antisymmetric parts, Tαβ ¼ TS
αβ þ iTA

αβ,
where

TS
αβjFL ¼ ð−q2gαβ þ qαqβÞT1ðq2; νÞ

þ 1

M2
ðq2pα − ðp · qÞqαÞðq2pβ

− ðp · qÞqβÞT2ðq2; νÞ; ðC3Þ

TA
αβjFL ¼ 1

M
γαβρqρS1ðq2; νÞ

þ 1

2M2
ðq2γαβ þ qαγβρqρ − qβγαρqρÞS2ðq2; νÞ:

ðC4Þ
The optical theorem relates the imaginary parts of the
forward amplitudes T1;2 to the nucleon unpolarized struc-
ture functions WDIS

1;2

Im½T1ðq2; νÞ� ¼
π

q2
WDIS

1 ðq2; νÞ;

Im½T2ðq2; νÞ� ¼
π

q4
WDIS

2 ðq2; νÞ: ðC5Þ

APPENDIX D: TENSOR STRUCTURES

Here we show the tensor structures:

ðτ1Þαβ ¼ −ðq1 · q2Þgαβ þ q1αq2β; ðD1Þ

FIG. 6. Forward Compton scattering kinematics.
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ðτ3Þαβ ¼ q21q
2
2gαβ þ ðq1 · q2Þq2αq1β −

q21 þ q22
2

ðq1αq1β þ q2αq2βÞ þ
q21 − q22

2
ðq1αq1β − q2αq2βÞ; ðD2Þ

ðτ4Þαβ ¼ ðp̄ · q̄Þðq21 þ q22Þgαβ − ðp̄ · q̄Þðq1αq1β þ q2αq2βÞ −
q21 þ q22

2
ðq1αp̄β þ p̄αq2βÞ þ

q21 − q22
2

ðq1αp̄β − p̄αq2βÞ
þ ðq1 · q2Þðq2αp̄β þ p̄αq1βÞ; ðD3Þ

ðτ19Þαβ ¼ 2ðp̄ · q̄Þ2q2αq1β þ 2q21q
2
2p̄αp̄β − ðp̄ · q̄Þðq21 þ q22Þðq2αp̄β þ p̄αq1βÞ − ðp̄ · q̄Þðq21 − q22Þðq2αp̄β − p̄αq1βÞ: ðD4Þ
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