



## Effect of hydrothermal conditions on superconductivity and magnetism in $[Li_{1-x}Fe_xOH]FeS$

E. McDonnell, S. Jaszewski, H.-Y. Yang, M. Abramchuk, Fazel Tafti\*

Department of Physics, Boston College, Chestnut Hill, MA 02467, USA



### HIGHLIGHTS

- Hydrothermal synthesis of  $[Li_{1-x}Fe_xOH]FeS$  requires temperatures between 150 to 180 °C
- Synthesis at higher temperatures reduces the iron impurity
- Smaller impurity reduces the scattering rate and increases the superconducting  $T_c$
- These findings explain the variation of  $T_c$  in  $[Li_{1-x}Fe_xOH]FeS$  quantitatively
- $T_c$  of the intercalated  $[Li_{1-x}Fe_xOH]FeS$  does not increase above the  $T_c$  of  $FeS$

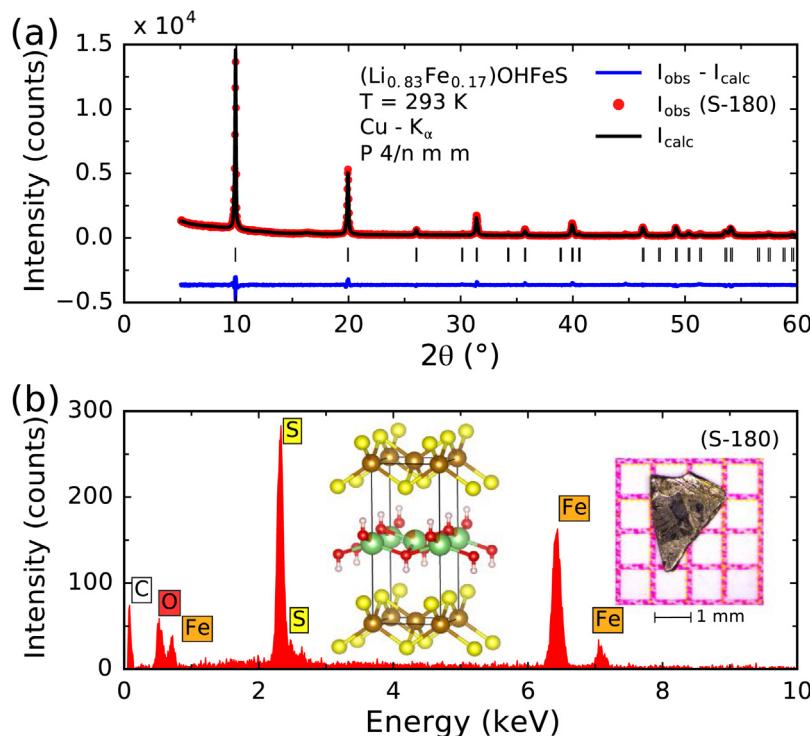
### ARTICLE INFO

**Keywords:**  
intercalation  
Hydrothermal  
Superconductivity  
Magnetism

### ABSTRACT

Recent reports of superconductivity and magnetism in single crystals of  $[Li_{1-x}Fe_xOH]FeS$  show unexplained variations in both superconducting and magnetic properties. We investigate the effect of hydrothermal growth conditions on these properties and find that increasing the growth temperature systematically increases the superconducting transition temperature ( $T_c$ ), sharpens the magnetic transition, and decreases the scattering rate ( $\Gamma$ ). The slow rate of  $T_c$  suppression with increasing  $\Gamma$  indicates a conventional  $s$ -wave superconducting state according to the Abrikosov-Gorkov expression. Samples with higher scattering rate show broader magnetic transitions and a stronger temperature dependence in the magnetic susceptibility. These results identify disorder, due to interstitial iron impurities, as the unique internal parameter responsible for the unexplained variations in  $T_c$  and magnetic ordering. We demonstrate the optimal hydrothermal growth conditions to minimize disorder and maximize  $T_c$  in  $[Li_{1-x}Fe_xOH]FeS$  crystals.

### 1. Introduction


Mackinawite is a naturally occurring mineral of iron and nickel with the formula  $(FeNi)_{1+x}S$  and a tetragonal unit cell in the space group  $P4/nmm$  [1]. Pure  $FeS$  crystallizes in two forms: the stable hexagonal phase (h- $FeS$ ) with a NiAs-type structure, and the metastable tetragonal phase (t- $FeS$ ) with an anti-PbO-type structure [2]. Recently, single crystals of the metastable t- $FeS$  were grown using a hydrothermal method and found to be superconducting below 5 K [3,4]. The search for superconductivity in tetragonal iron sulfide with Mackinawite structure was motivated by the closely related tetragonal iron selenide (t- $FeSe$ ) which is also metastable and superconducting [5]. Whereas the stable hexagonal phase is not superconducting in both  $FeS$  and  $FeSe$ , the metastable tetragonal phase is superconducting.

The crystal structures of both t- $FeS$  and t- $FeSe$  are constructed from layers of edge-sharing iron-chalcogenide tetrahedra separated by a van

der Waals gap of 2.6 and 2.4 Å respectively. Van der Waals materials provide an opportunity for intercalation experiments [6]. For example, the intercalation of t- $FeSe$  with alkali metals (K [7], Rb [8], Cs [9]), alkali hydroxide (LiOH) [10,11], and alkali ethylenediamine ( $A_x(C_2H_8N_2)_y$ ) [12] drastically increases the  $T_c$  from 8 to 30 K. In contrast, an intercalant-independent  $T_c$  is observed in black phosphorous and  $MoS_2$  [13–15]. Despite the structural and chemical similarities between t- $FeS$  and t- $FeSe$ , we report an intercalant-independent  $T_c$  in t- $FeS$ . This contrasts with a prior work that reported an increase of  $T_c$  due to intercalation and a significant variation of superconducting and magnetic properties between different samples of  $[Li_{1-x}Fe_xOH]FeS$  [16]. Here, we demonstrate that the random variations of  $T_c$  in  $[Li_{1-x}Fe_xOH]FeS$  can be quantitatively explained by different disorder levels. This analysis places an upper bound to the  $T_c$  of  $[Li_{1-x}Fe_xOH]FeS$  that does not exceed the  $T_c$  of t- $FeS$ . We demonstrate that hydrothermal conditions determine the disorder level which in turn affects

\* Corresponding author.

E-mail address: [fazel.tafti@bc.edu](mailto:fazel.tafti@bc.edu) (F. Tafti).



**Fig. 1.** (a) Powder x-ray diffraction pattern of the sample S-180 grown at 180 °C in the autoclave. The solid black line shows the Rietveld refinement calculation. The blue line shows the difference between calculated and observed intensities. The quoted value  $x = 0.17$  is determined by the best Rietveld fit. (b) EDX results from S-180 confirm the presence of Fe, O, and S with the ratio Fe:S = 1.31 (8):1 in qualitative agreement with the X-ray results. The crystal structure of  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  is illustrated in the inset and a picture of the crystal is shown on millimeter paper. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

the superconducting and magnetic properties of  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$ . Finally, we use band structure calculations to show that intercalation with LiOH does not dope the t-FeS system which explains the intercalant-independent  $T_c$ .

## 2. Experimental methods

### 2.1. Crystal growth

$[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  single crystals were prepared through a cation-exchange reaction between  $\text{LiOH}(aq)$  and  $\text{K}_{0.8}\text{Fe}_2\text{S}_2(s)$  under hydrothermal conditions [16]. The process consisted of three steps: solid state synthesis of h-FeS, flux growth of  $\text{K}_{0.8}\text{Fe}_2\text{S}_2$ , and hydrothermal growth of  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$ . To synthesize h-FeS, iron powder (Fe, Alfa Aesar, 99.9%) and sulfur pieces (S, Strem Chemicals, 99.999%) with a 1:1 mole ratio and 1.0 g total mass were mixed and placed in a quartz tube inside an argon-filled glovebox ( $\text{O}_2$  and  $\text{H}_2\text{O}$  contents < 0.1 ppm). The tube was then flame sealed under vacuum. The reactants were heated to 500 °C at 1 °C/min, held at 500 °C for 8 h, heated to 850 °C at 1 °C/min, held at 850 °C for 18 h, then cooled to room temperature at 5 °C/min. To grow  $\text{K}_{0.8}\text{Fe}_2\text{S}_2$  crystals, potassium chunks (K, Alfa Aesar, 98%) and h-FeS powder with a 1:2 mole ratio and 1.2 g total mass were combined and placed in a quartz tube inside the glovebox. The tube was then flame sealed under vacuum inside a larger tube to protect against potassium-induced corrosion of quartz. The reactants were heated to 1030 °C at 1.7 °C/min, held at 1030 °C for 3 h, slowly cooled to 650 °C at 0.1 °C/min, and furnace cooled to room temperature. For the hydrothermal growth of  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  crystals, several  $\text{K}_{0.8}\text{Fe}_2\text{S}_2$  crystals with 0.3 g total mass were combined with 72 mmol lithium hydroxide monohydrate ( $\text{LiOH}\cdot\text{H}_2\text{O}$ , Alfa Aesar, 98%), 3 mmol iron powder (Fe, Alfa Aesar, 99.9%), 3 mmol lithium sulfide ( $\text{Li}_2\text{S}$ , Alfa Aesar, 99.9%) or thiourea ( $\text{SC}(\text{NH}_2)_2$ , Sigma Aldrich, 99%) as the sulfur source, and 1 mmol tin granules (Sn, Alfa Aesar, 99.9%). The feedstock was loaded into a 10 ml Teflon-lined Parr autoclave filled with de-ionized water at 90% filling fraction inside a nitrogen-filled glovebox ( $\text{O}_2$  and  $\text{H}_2\text{O}$  contents < 0.1 ppt). In the hot and concentrated basic

environment of the autoclave, the tin granules form  $[\text{Sn}(\text{OH})_6]^{2+}$  while evolving  $\text{H}_2$  gas [17]. This provides a stronger reducing environment that promotes the intercalation of  $\text{K}_{0.8}\text{Fe}_2\text{S}_2$  with LiOH [18]. Four attempts were made with the autoclave heated to 110, 120, 150, and 180 °C and held at constant temperature for 3 days. After each attempt, the final products were washed with de-ionized water, filtered, and dried under vacuum.

### 2.2. Measurements

Powder X-ray Diffraction (PXRD) data were collected in a Bruker D8 ECO instrument in the Bragg-Brentano geometry with a copper X-ray source (Cu-K<sub>α</sub>), a nickel filter to absorb the K<sub>β</sub> radiation, and two 2.5° Soller slits after the source and before the LYNXEYE XE 1D energy dispersive detector. Rietveld refinement on the PXRD pattern was performed using the FullProf suite [19]. Peak shapes were modeled with the Thompson-Cox-Hastings pseudo-Voigt profile convoluted with axial divergence asymmetry. Energy Dispersive X-ray Spectroscopy (EDX) was performed with an EDAX detector installed on a JEOL field emission electron microscope (FESEM). DC Magnetization was measured as a function of field and temperature in a 7 T Quantum Design MPMS3 system. A low background sapphire holder inside a plastic straw was used to mount the crystals with field parallel to the  $c$ -axis. Four probe resistivity measurements and heat capacity measurements were performed in a 9 T Quantum Design Dynacool system.

## 3. Results and discussion

### 3.1. Material characterizations

A previous report on  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  with the nominal  $x = 0.17$  showed unexplained variations in the superconducting transition  $T_c$ , the magnetic transition  $T_N$ , and the residual resistivity  $\rho_0$  of different samples [16]. To understand these variations, we attempted four hydrothermal growth cycles at  $T = 110, 120, 150$ , and 180 °C, with the resulting samples labeled S-110, S-120, S-150, and S-180.  $T_c$  varied

**Table 1**

Crystallographic data for  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  obtained at room temperature using Cu-K $\alpha$  radiation with  $\lambda = 1.5406 \text{ \AA}$ . Unit cell parameters and Rietveld calculation factors are reported. The isotropic Debye-Waller (thermal) factor  $B_{\text{iso}}$  is less than one for Fe and S.

| Unit cell parameters   | Refinement parameters |                                     |       |
|------------------------|-----------------------|-------------------------------------|-------|
| Space Group            | $P4/nmm$              | $B_{\text{iso}}$ ( $\text{\AA}^2$ ) | < 1.0 |
| $a$ ( $\text{\AA}$ )   | 3.70087 (8)           | $R_F$ (%)                           | 11.14 |
| $c$ ( $\text{\AA}$ )   | 8.88824 (6)           | $R_{\text{wp}}$ (%)                 | 22.2  |
| $V$ ( $\text{\AA}^3$ ) | 121.737 (8)           | $R_{\text{exp}}$ (%)                | 16.99 |
| $Z$                    | 2                     | $\chi^2$                            | 1.7   |

from batch to batch and even within the same batch, similar to the previous report [16]. However, we found that increasing the synthesis temperature systematically reduced such sample variations within the same batch and improved  $T_c$ .

Fig. 1(a) shows the PXRD pattern of S-180 indexed in the space group 129 ( $P4/nmm$ ), the same space group as t-FeS or t-FeSe. The crystal size and the PXRD do not show visible differences in the crystallinity of samples grown at different temperatures. As shown in the inset of Fig. 1(b), the crystals are large, layered, and easy to cleave. The tetragonal unit cell of  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  is illustrated in the inset of Fig. 1(b) with layers of edge-sharing  $\text{FeS}_4$  tetrahedra separated by  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]$  molecules. Unit cell parameters and refinement  $R$ -factors are presented in Table 1. Wyckoff positions are listed in Table 2. The ratio  $\text{Fe/S} = 1.17$  from PXRD refinement is consistent with  $\text{Fe/S} = 1.31$  (8) from EDX as shown in Fig. 1(b). Due to the presence of the light elements lithium and oxygen, the EDX analysis is expected to differ slightly from the refinement model. The statistical error is derived from measuring EDX on several samples. We performed EDX measurements on representative samples grown at different temperatures and realized that the  $\text{Fe/S}$  ratio increases from 1.31 (8) to 1.52 (6) and 1.72 (8) in samples grown at 180 °C (S-180), 150 °C (S-150), and 110 °C (S-110) respectively. This shows qualitatively that the iron content ( $x$ ) in  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  increases with decreasing growth temperature so there will be more iron atoms substituting for lithium in the intercalant  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]$ . These iron impurities act as scattering centers for electrons in the normal state and for cooper pairs in the superconducting state.

### 3.2. Superconducting properties

The scattering effect of iron impurities on electrons and cooper pairs is studied by measuring the electrical transport. Fig. 2(a) shows the temperature dependence of resistivity in three representative samples: S-110, S-150, and S-180 grown at 110, 150, and 180 °C. Due to the layered structure of the material, it is difficult to accurately determine the sample dimensions, especially the thickness, which are required to convert electrical resistance to resistivity. Therefore, the resistivity of all samples is normalized to the average value of  $4 \text{ m}\Omega \text{ cm}$  at room temperature. Solid lines on each data set in Fig. 2(a) are fits to the expression  $\rho = AT^2 + BT + \rho_0$ . The residual resistivity ( $\rho_0$ ) systematically decreases with increasing the growth temperature indicating less iron

**Table 2**

Wyckoff sites, atomic coordinates, and site occupancies reported for the crystal structure of  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$ .

| atom | site | $x$ | $y$ | $z$        | occupancy |
|------|------|-----|-----|------------|-----------|
| H1   | 2c   | 1/4 | 1/4 | 0.66000    | 1.0       |
| O1   | 2c   | 1/4 | 1/4 | 0.5700 (5) | 1.0       |
| Li1  | 2b   | 3/4 | 3/4 | 1/2        | 0.833 (3) |
| Fe1  | 2b   | 3/4 | 1/4 | 1/2        | 0.16 (7)  |
| Fe2  | 2a   | 3/4 | 1/4 | 0          | 1.0       |
| S2   | 2c   | 1/4 | 1/4 | 0.1484 (5) | 1.0       |

impurity in S-180 compared to S-150 and S-110. Higher temperatures in the autoclave increase the solubility of the feedstock and promote the intercalation with LiOH and less iron impurity.

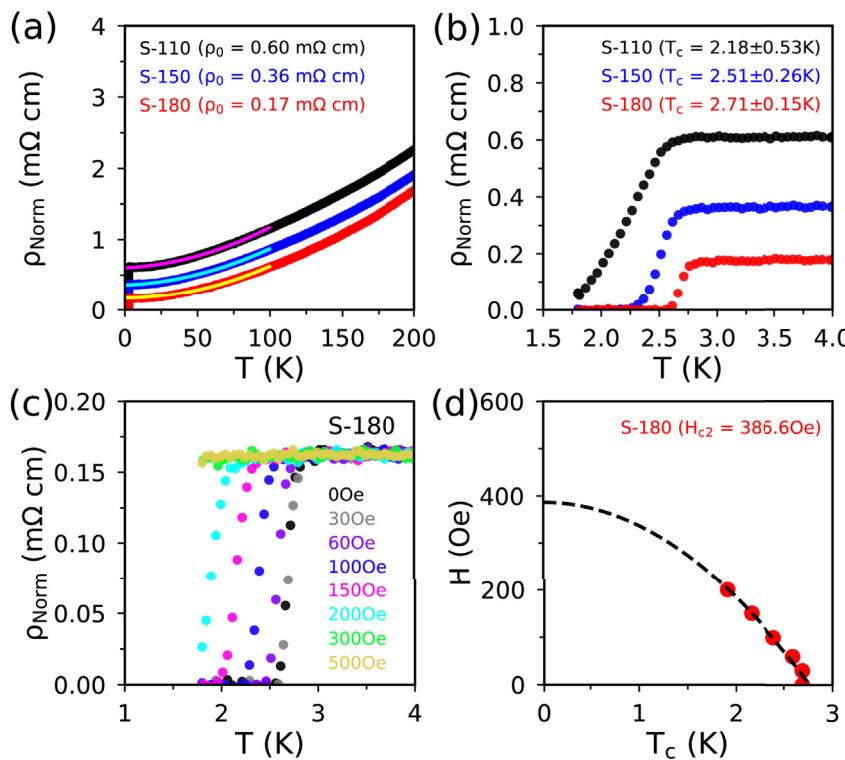
The pair-braking effect of iron impurities is observed in Fig. 2(b) that magnifies the region of superconducting transition and shows that samples with smaller  $\rho_0$  have higher  $T_c$ . Since  $\rho_0$  is determined by the scattering rate  $\Gamma$ , Fig. 2(b) suggests a link between  $\Gamma$  and  $T_c$ . This link will be quantitatively analyzed later.

Fig. 2(c) shows that the superconducting transition shifts to lower temperatures with increasing magnetic field in sample S-180. Similar behavior is observed in other samples. By taking the midpoint of the transition as  $T_c$  at each field, an  $H$ - $T$  phase diagram is produced in Fig. 2(d) with a fit to the Werthamer-Helfand-Hohenberg expression:

$$H_{c2}(T) = H_{c2}(0) \left[ 1 - \frac{1}{2\alpha} \left( \frac{T}{T_c} \right)^2 \right] \quad (1)$$

where  $\alpha$  is a constant between 0.69 (dirty limit) and 0.72 (clean limit) [20]. From this fit, the zero temperature upper critical field  $H_{c2}(0)$  is approximately 400 Oe.  $H_{c2}(0)$  is two orders of magnitude less than the Pauli limit for  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  according to the estimation  $H_p \approx 1.85T_c \approx 4.6 \text{ T}$ . Therefore, the pairing wave function must be singlet – that is either *s*-wave or *d*-wave [21]. These two possibilities can be distinguished by studying the relation between the scattering rate ( $\Gamma$ ) and  $T_c$ .

### 3.3. Abrikosov-Gorkov analysis

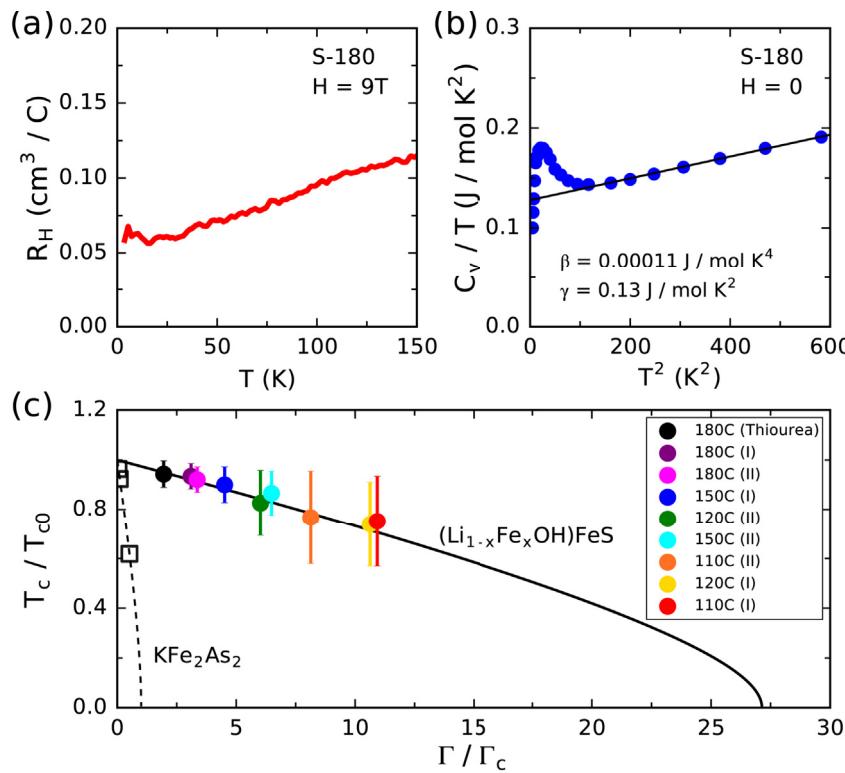

To quantify the link between  $\Gamma$  and  $T_c$ , we characterized 9 samples from batches grown at different temperatures. For each sample,  $T_c$  was determined from the midpoint of the resistive transition and the scattering rate was determined from the relaxation time ( $\Gamma = 1/2\tau$ ). The relaxation time for each sample was calculated using the single band Drude model,  $\rho_0 = m/ne^2\tau$ , where the carrier concentration was obtained from the Hall coefficient ( $R_H = 1/ne$ ). Fig. 3(a) shows a weak temperature dependence in the Hall coefficient with  $R_H = 0.06 \text{ cm}^3/\text{C}$  at  $T = 0$  corresponding to hole-like carriers with a concentration  $n = 1.04 \times 10^{20} \text{ cm}^{-3}$ . From here, the Fermi wave vector can be calculated using the expression  $k_F = (3\pi^2n)^{1/3}$ , which gives  $k_F = 1.46 \times 10^7 \text{ cm}^{-1}$ , assuming a spherical Fermi surface. Fig. 3(b) shows the molar heat capacity for the same sample which can be used to extract the effective mass of carriers. According to the Sommerfeld-Debye model, heat capacity is given by the expression  $C/T = \gamma + \beta T^2$ , where  $\gamma = \frac{\pi^2}{2}N\frac{k_B^2}{E_F}$  and  $\beta = \frac{12\pi^4}{5}rNk_B\Theta_D^{-3}$  [23]. Here  $E_F$  is the Fermi energy,  $N$  is the Avogadro number,  $r$  is the number of atoms per molecule, and  $\Theta_D$  is the Debye temperature. Using  $k_F$  from the Hall effect, we calculate  $\gamma = 0.044 \text{ J/mol K}^2$  which is smaller than the experimental value reported on Fig. 3(b). The ratio between the observed and the calculated  $\gamma$  gives the effective mass of carriers  $m^* = \gamma_{\text{exp}}/\gamma_{\text{cal}} = 0.34m_e$ .

Using the effective mass from heat capacity and the carrier concentration from the Hall effect, we can calculate the scattering rate from the expression  $\Gamma = e\rho_0/2m^*R_H$  for each sample with a specific  $\rho_0$ . The Abrikosov-Gorkov (A-G) formula [24–26] describes the variation of  $T_c$  with  $\Gamma$

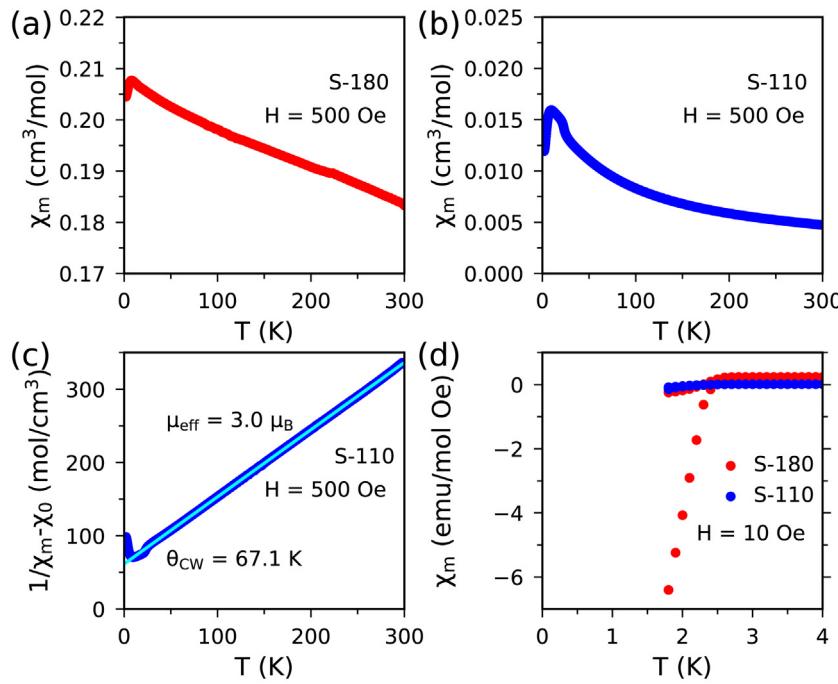
$$\ln\left(\frac{T_{c0}}{T_c}\right) = \Psi\left(\frac{1}{2} + \frac{\hbar\Gamma}{2\pi k_B T_c}\right) - \Psi\left(\frac{1}{2}\right) \quad (2)$$

where  $T_{c0}$  is the superconducting transition for ideally pure material and  $\Psi$  is the digamma function. Fig. 3(c) shows that samples grown at higher temperatures have lower  $\Gamma$  and higher  $T_c$ . This is consistent with a smaller  $x$  in  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  samples grown at higher temperatures as explained in Section 3.1. The excessive iron in the intercalant  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]$  is the source of scattering in  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$ .

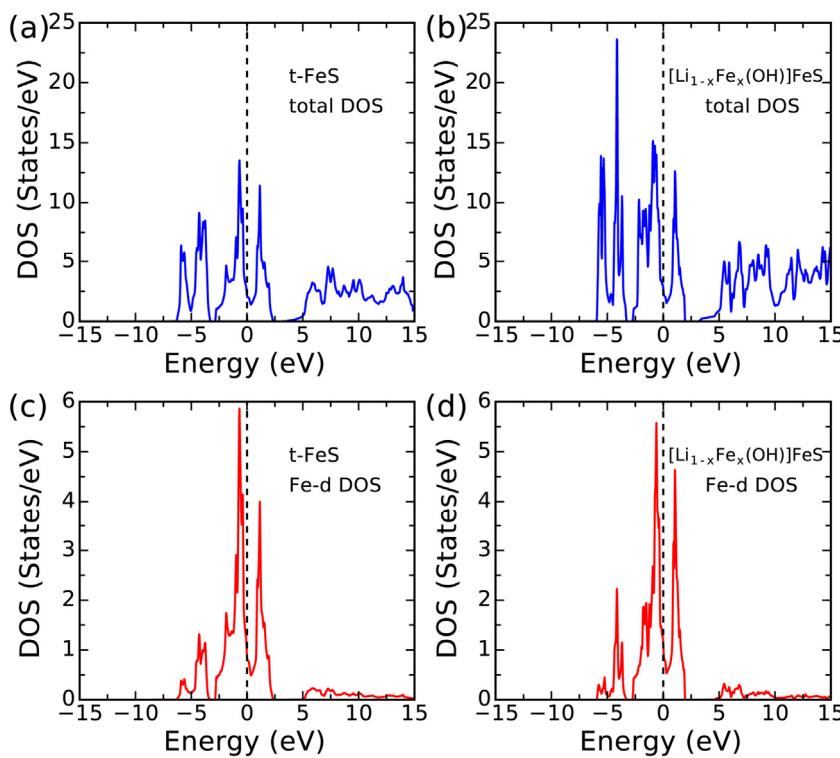
The maximum possible  $T_c$  in  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  from this analysis is  $T_{c0} = 2.9 \text{ K}$ . Our highest quality samples with  $T_c = 2.6 \text{ K}$  are grown




**Fig. 2.** (a) Resistivity of three  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  samples grown at 110, 150, and 180 °C. These samples are labeled S-110 (black data), S-150 (blue), and S-180 (red). Solid lines are fits to the expression  $\rho = AT^2 + BT + \rho_0$ . S-180, the sample grown at 180 °C, has the lowest residual resistivity  $\rho_0$  whereas S-110 has the highest  $\rho_0$ . (b) Resistivity plotted as a function of temperature below 4 K, showing that samples with lower residual resistivity have higher  $T_c$ . (c)  $\rho(T)$  from sample S-180 measured at several different magnetic fields.  $T_c$  decreases with increasing field. We define  $T_c$  as the midpoint of the transition and use the width of the transition as the uncertainty in  $T_c$ . (d)  $T_c$  values at different  $H$  are used to draw the  $H$ - $T_c$  phase diagram of sample S-180 with  $H_{c2} = 386.6$  Oe.


using thiourea as the sulfur source at 180 °C (Fig. 3(c)). We do not observe  $T_c = 6$  K as reported in Ref. [16] for intercalated samples in the presence of thiourea. According to our observations, the critical temperature of  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  does not exceed the  $T_c$  of t-FeS.

The rate of  $T_c$  suppression by  $\Gamma$  can be used as an indirect probe of the pairing symmetry in superconductors. Disorder has a strong pair-breaking effect on superconductors with sign changing order parameters


such as  $d$  or  $s^\pm$  states [24–26]. In these cases,  $T_c$  will be completely suppressed at  $\Gamma \sim \Gamma_c = 2\pi k_B T_{c0}/\hbar$  [27,28]. For example,  $\text{KFe}_2\text{As}_2$  with  $T_{c0} = 3.9$  K has a sign-changing (possibly  $d$ -wave) superconducting order parameter [22]. As a result, superconductivity completely vanishes at  $\Gamma/\Gamma_c \sim 1$  in  $\text{KFe}_2\text{As}_2$ . Fig. 3(c) shows a slower rate of  $T_c$  suppression in  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  compared to  $\text{KFe}_2\text{As}_2$ . Therefore, the pairing symmetry in  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  is most likely a conventional



**Fig. 3.** (a) Hall effect as a function of temperature from 2 to 150 K in a  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  sample grown at 180 °C labeled as S-180. The data are taken at positive and negative 9 T and antisymmetrized to calculate  $R_H$ . (b) Heat capacity plotted as  $C/T$  versus  $T^2$  from 2 to 25 K in the sample S-180. The peak in  $C/T$  corresponds to the magnetic transition at 8 K. From the linear fit  $C/T = \beta + \gamma T^2$ , we derive the effective mass and the Debye temperature as explained in the text. (c) The Abrikosov-Gorkov analysis is performed for  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  by plotting normalized  $T_c$  as a function of normalized scattering rate for nine samples. Hydrothermal growth temperature for each sample is specified in the legend. These data follow the AG expression (Eq. (2)) traced with a solid black line. The same analysis is done for  $\text{KFe}_2\text{As}_2$  where the data are taken from Ref. [22] and the A-G expression is traced with a dashed line.  $T_c$  suppression occurs at  $\Gamma \sim \Gamma_c$  in  $\text{KFe}_2\text{As}_2$  compared to  $\Gamma \gg \Gamma_c$  in  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$ .



**Fig. 4.** (a) Molar susceptibility in the  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  sample S-180 (made at 180°C) shows a weak temperature dependence and a sharp peak at  $T_N = 8$  K. (b) Molar susceptibility in S-110 (made at 110°C) shows a stronger temperature dependence and a broad peak extending from 8 to 22 K. (c) Curie-Weiss analysis for S-110 gives effective moment  $\mu_{\text{eff}} = 3\mu_B$  close to the value expected from  $\text{Fe}^{2+}$  in a tetrahedral coordination. From this analysis, the Curie-Weiss temperature is  $\Theta_{\text{CW}} = 67.1$  K. (d) The superconducting transition in the susceptibility channel corresponds to 80% volume fraction in the clean sample (S-180) and 10% volume fraction in the disordered sample (S-110).



**Fig. 5.** (a) Total density of states in t-FeS. The two peaks below and above  $E_F$  are Van Hove singularities. (b) Total density of states (DOS) in  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$ . A similar DOS is observed before and after intercalation of t-FeS. Therefore, intercalation does not dope the system with extra carriers and does not enhance  $T_c$ . (c) Projected DOS on the d-orbitals of iron in t-FeS. The partial DOS from iron atoms has a dominant effect on superconductivity. (d) Projected DOS on the d-orbitals of iron in  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$ . A similar DOS is observed before and after intercalation confirming a lack of doping effect.

isotropic  $s$ -wave instead of  $s^\pm$  or  $d$ -wave.

#### 3.4. Magnetic properties

Fig. 4(a) compares the temperature dependence of the magnetic susceptibility  $\chi(T)$  in two  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  samples grown at 180 and 110 °C. A sharp transition is observed at  $T_N = 8$  K in the clean sample S-180, whereas a broad transition is observed between 8 and 22 K in the disordered sample S-110. In the clean sample S-180,  $\chi(T)$  shows a weak temperature dependence (Pauli behavior) at  $T > T_N$  characteristic of

itinerant moments. In the disordered sample S-110,  $\chi(T)$  shows a stronger temperature dependence (Curie-Weiss behavior) characteristic of localized moments. The change of behavior from itinerant magnetism and sharp transition in the clean sample to localized magnetism and broad transition in the disordered sample confirms the impact of the scattering rate  $\Gamma$  on the magnetic behavior of  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$ . Fig. 4(c) shows the data in S-110 fitted to the Curie-Weiss (CW) expression,  $\chi - \chi_0 = C/(T - \Theta_{\text{CW}})$ , where  $\chi_0$  is a background and  $\Theta_{\text{CW}}$  is the CW temperature. The effective moment from the CW fit ( $\mu = 3\mu_B$ ) is close to the value expected from  $\text{Fe}^{2+}$  in the tetrahedral coordination

( $2.8\mu_B$ ). Fig. 4(d) compares the superconducting transition between S-110 and S-180. The estimated superconducting volume fraction is 80% in S-180 and 10% in S-110.

### 3.5. Density of states

As mentioned in the introduction, intercalation of t-FeSe with LiOH increases  $T_c$  from 8 to 30 K [10]. However, the intercalation of t-FeS with LiOH does not increase the  $T_c$ . In fact,  $T_c$  decreases with intercalation due to the impurity scattering from extra iron atoms in the intercalant  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]$ . We performed DFT calculations on both t-FeS and  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  to explain the intercalant-independent  $T_c$ . Fig. 5(a) shows two peaks in the total density of state (DOS) corresponding to Van Hove singularities below and above the Fermi energy in t-FeS. Fig. 5(b) shows that neither of these peaks crosses  $E_F$  in the intercalated system  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$ , i.e. intercalation with LiOH does not dope the t-FeS system. Fig. 5(c) and (d) show the same comparison between t-FeS and  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  based on the density of iron d-states instead of total DOS. If the intercalation had a doping effect, one of the peaks would have crossed  $E_F$  as a result of intercalation, and the accumulation of states at  $E_F$  would have considerably increased  $T_c$ . Therefore, the intercalant-independent  $T_c$  in  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  is due to a lack of doping effect.

## 4. Conclusions

We investigated the effect of hydrothermal growth conditions on the superconducting and magnetic properties of  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$ . Hydrothermal growth at higher temperatures systematically produced samples with less iron impurity, smaller scattering rates, and consequently, smaller residual resistivity (Fig. 2). The Abrikosov-Gorkov analysis (Eq. (2)) confirmed impurity scattering as the intrinsic parameter that controls  $T_c$ . From this analysis, the superconducting wave function appears to have a conventional s-wave symmetry. By increasing the scattering rate, the magnetic behavior of  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  drastically changed from sharp magnetic transitions and itinerant moments in clean samples to broad transitions and localized moments in disordered samples. Therefore, the unexplained sample dependent properties [16] of  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  were explained in a unified picture where disorder controls the  $T_c$ , the superconducting volume fraction, and the magnetic behavior of the material. The optimal conditions to grow single crystals of  $[\text{Li}_{1-x}\text{Fe}_x\text{OH}]\text{FeS}$  were at  $T = 180$  °C and with thiourea as the sulfur source.

## Acknowledgments

This work was funded by BC startup budget and the National Science Foundation, award No. DMR-1708929.

## References

- [1] J.W. Anthony, R.A. Bideaux, K.W. Bladh, M.C. Nichols, *Handbook of Mineralogy, Elements, Sulfides and Sulfosalts*, Mineral Data Pub, Tucson, Ariz, 1990.
- [2] E. F. Bertaut, P. Burlet, J. Chappert, Sur l'absence d'ordre magnétique dans la forme quadratique de FeS, *Solid State Commun.*, 3(10) 335–338.
- [3] X. Lai, H. Zhang, Y. Wang, X. Wang, X. Zhang, J. Lin, F. Huang, Observation of superconductivity in tetragonal FeS, *J. Am. Chem. Soc.* 137 (32) (2015) 10148–10151.
- [4] C.K.H. Borg, X. Zhou, C. Eckberg, D.J. Campbell, S.R. Saha, J. Paglione, E.E. Rodriguez, Strong anisotropy in nearly ideal tetrahedral superconducting FeS single crystals, *Phys. Rev. B* 93 (9) (2016) 094522.
- [5] U. Patel, J. Hua, S.H. Yu, S. Avci, Z.L. Xiao, H. Claus, J. Schlueter, V.V. Vlasov, U. Welp, W.K. Kwok, Growth and superconductivity of FeSex crystals, *Appl. Phys. Lett.* 94 (8) (2009) 082508.
- [6] Y. Jung, Y. Zhou, J.J. Cha, Intercalation in two-dimensional transition metal chalcogenides, *Inorg. Chem. Front.* 3 (4) (2016) 452–463.
- [7] J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, X. Chen, Superconductivity in the iron selenide  $\text{K}_x\text{Fe}_2\text{Se}_2$  ( $0 \leq x \leq 1.0$ ), *Phys. Rev. B* 82 (18) (2010) 180520.
- [8] A.F. Wang, J.J. Ying, Y.J. Yan, R.H. Liu, X.G. Luo, Z.Y. Li, X.F. Wang, M. Zhang, G.J. Ye, P. Cheng, Z.J. Xiang, X.H. Chen, Superconductivity at 32 K in single-crystalline  $\text{RbxFe}_{2-y}\text{Se}_2$ , *Phys. Rev. B* 83 (6) (2011) 060512.
- [9] A. Krzton-Maziopa, Z. Shermadini, E. Pomjakushina, V. Pomjakushin, M. Bendele, A. Amato, R. Khasanov, H. Luetkens, K. Conder, Synthesis and crystal growth of  $\text{Cs}_{0.8}(\text{FeSe})_{0.982}$ : a new iron-based superconductor with  $T_c = 27$  K, *J. Phys. Condens. Matter* 23 (5) (2011) 052203.
- [10] X.F. Lu, N.Z. Wang, H. Wu, Y.P. Wu, D. Zhao, X.Z. Zeng, X.G. Luo, T. Wu, W. Bao, G.H. Zhang, F.Q. Huang, Q.Z. Huang, X.H. Chen, Coexistence of superconductivity and antiferromagnetism in  $(\text{Li}_{0.8}\text{Fe}_{0.2})\text{OHFeSe}$ , *Nat. Mater.* 14 (3) (2015) 325–329.
- [11] X. Dong, D. Zhou, H. Yang, J. Yuan, K. Jin, F. Zhou, D. Yuan, L. Wei, J. Li, X. Wang, G. Zhang, Z. Zhao, Phase diagram of  $(\text{Li}_{1-x}\text{Fe}_x)\text{OHFeSe}$ : a bridge between iron selenide and arsenide superconductors, *J. Am. Chem. Soc.* 137 (1) (2015) 66–69.
- [12] T. Noji, T. Hatakeyama, S. Hosono, T. Kawamata, M. Kato, Y. Koike, Synthesis and post-annealing effects of alkaline-metal-ethylenediamine-intercalated superconductors  $\text{A}_x(\text{C}_2\text{H}_8\text{N}_2)_y\text{Fe}_{2-z}\text{Se}_2$  ( $\text{A} = \text{Li}, \text{Na}$ ) with  $T_c = 45$  K, *Physica C: Supercond. Appl.* 504 (2014) 8–11.
- [13] R. Zhang, J. Waters, A.K. Geim, I.V. Grigorieva, Intercalant-independent transition temperature in superconducting black phosphorus, *Nat. Commun.* 8 (2017) 15036.
- [14] Gonzalo Abellán, Christian Neiss, Vicent Lloret, Stefan Wild, C. Chacón-Torres Julio, Katharina Werbach, Filippo Fedi, Hidetsugu Shiozawa, Andreas Görling, Herwig Peterlik, Thomas Pichler, Frank Hauke, Andreas Hirsch, Exploring the formation of black phosphorus intercalation compounds with alkali metals, *Angew. Chem. Int. Ed.* 56 (48) (2017) 15267–15273.
- [15] R. Zhang, I.-L. Tsai, J. Chapman, E. Khestanova, J. Waters, I.V. Grigorieva, Superconductivity in potassium-doped metallic polymorphs of  $\text{MoS}_2$ , *Nano Lett.* 16 (1) (2016) 629–636.
- [16] X. Zhou, C. Eckberg, B. Wilfong, S.-C. Liou, H.K. Vivanco, J. Paglione, E.E. Rodriguez, Superconductivity and magnetism in iron sulfides intercalated by metal hydroxides, *Chem. Sci.* 8 (5) (2017) 3781–3788.
- [17] P.J. Smith (Ed.), *Chemistry of Tin*, second ed., Springer Netherlands, 1998.
- [18] X. Zhou, C.K.H. Borg, J.W. Lynn, S.R. Saha, J. Paglione, E.E. Rodriguez, The preparation and phase diagrams of  $(^7\text{Li}_{1-x}\text{Fe}_x\text{OD})\text{FeSe}$  and  $(\text{Li}_{1-x}\text{Fe}_x\text{OH})\text{FeSe}$  superconductors, *J. Mater. Chem. C* 4 (18) (2016) 3934–3941.
- [19] J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, *Phys. B Condens. Matter* 192 (1) (1993) 55–69.
- [20] N.R. Werthamer, E. Helfand, P.C. Hohenberg, Temperature, Purity, Dependence of the superconducting critical field,  $H_{c2}$ . Iii. Electron spin and spin-orbit effects, *Phys. Rev.* 147 (1) (1966) 295–302.
- [21] M. Tinkham, *Introduction to Superconductivity*: second ed., 2nd Edition, Dover Publications.
- [22] J.-P. Reid, M.A. Tanatar, A. Juneau-Fecteau, R.T. Gordon, S.R. de Cotret, N. Doiron-Leyraud, T. Saito, H. Fukazawa, Y. Kohori, K. Kihou, C.H. Lee, A. Iyo, H. Eisaki, R. Prozorov, L. Taillefer, Universal heat conduction in the iron arsenide superconductor  $\text{KFe}_2\text{As}_2$ : evidence of a d-wave state, *Phys. Rev. Lett.* 109 (8) (2012) 087001.
- [23] N.W. Ashcroft, N.D. Mermin, *Solid State Physics*, first ed., Brooks Cole, New York, 1976.
- [24] P.J. Hirschfeld, P. Wölfle, D. Einzel, Consequences of resonant impurity scattering in anisotropic superconductors: thermal and spin relaxation properties, *Phys. Rev. B* 37 (1) (1988) 83–97.
- [25] R.J. Radtke, K. Levin, H.-B. Schüttler, M.R. Norman, Predictions for impurity-induced  $T_c$  suppression in the high-temperature superconductors, *Phys. Rev. B* 48 (1) (1993) 653–656.
- [26] S. Graser, P.J. Hirschfeld, L.-Y. Zhu, T. Dahm,  $T_c$  suppression and resistivity in cuprates with out of plane defects, *Phys. Rev. B* 76 (5) (2007) 054516.
- [27] Y. Sun, K. Maki, Transport properties of D-wave superconductors with impurities, *Europhys. Lett.* 32 (4) (1995) 355.
- [28] Y. Wang, A. Kreisel, P.J. Hirschfeld, V. Mishra, Using controlled disorder to distinguish  $s \pm$  and  $s++$  gap structure in Fe-based superconductors, *Phys. Rev. B* 87 (9) (2013) 094504.