
Internet measurements on EdgeNet
Kevin Vermeulen

Sorbonne Université
Burim Ljuma

Sorbonne Université
Olivier Fourmaux
Sorbonne Université

Timur Friedman
Sorbonne Université

Rick McGeer
US Ignite

Abstract—We describe the deployment of an Internet measure-
ment experiment to three testbeds that offer Linux containers
hosted at widely distributed vantage points: the well-established
PlanetLab Central and PlanetLab Europe platforms, and the new
EdgeNet platform. The experiment results were published in the
proceedings of ACM IMC 2018. We compare the capabilities of
each testbed and their effect on the ease of deployment of the
experiment. Because the software for this experiment has several
library dependencies and requires a recent compiler, it was easiest
to deploy on EdgeNet, which is based on Docker and Kubernetes.
This extended abstract is accompanied by a demonstration of the
reproducible deployment of a measurement tool on EdgeNet.

Index Terms—internet measurements, testbeds

I. INTRODUCTION

We describe the deployment of an Internet measurement
experiment to three testbeds that offer Linux containers hosted
at widely distributed vantage points: the well-established Pla-
netLab Central (PLC) [3], [9] and PlanetLab Europe (PLE) [4],
[10] platforms, and the new EdgeNet [1], [7], [8] platform;
we operate the latter two, in collaboration with other partners.
The experiment consisted in testing the new Multilevel MDA-
Lite Paris Traceroute (MMLPT) tool and the results were
published in the proceedings of ACM IMC 2018 [12]. We
compare the capabilities of each testbed and their effect on
the ease of deployment of the experiment. This extended
abstract is accompanied by a demonstration of the reproducible
deployment of a measurement tool on EdgeNet available at
https://gitlab.planet-lab.eu/cartography.

II. EXPERIMENT OVERVIEW

A. Context

Traceroute is a tool that can be run from a host in the
Internet in order to gather a sequence of Internet Protocol (IP)
addresses corresponding to the routers that are traversed by
packets as they follow a path towards a specified destination.
Created by Van Jacobson in 1988 [11], variants of the tool
have been proposed and adopted by the networking research
community, including Paris Traceroute [6], which enables trac-
ing of the multi-path routes that are enabled by load balancing
routers. Multilevel MDA-Lite Paris Traceroute (MMLPT) [12]
is a recent improvement that aims to reduce the original’s
probing overhead while also revealing aliases, or IP addresses
belonging to the same router. We have contributed to both of
these tools, and, in our recent evaluation of the latter, we aimed
to use vantage points provided by PLC, PLE, and EdgeNet.

TABLE I
TESTBED COMPARISON

PLC PLE EdgeNet

Container Technology Linux-VServer (2002–2014)
LXC (2014–present)

Docker
proprietary

Image Management None Docker

Host machine bare metal*

(*VM at one PLE site)
bare metal

or VM

Image OSes Fedora 8,
CentOS 6.4 Fedora 23, 24,

and 25
any available
Docker image

Default compiler gcc 4.1,
gcc 4.4

gcc 5.3, 6.3,
and 6.4

depends on
the Docker

image
Build within container on each node

on server
of one’s choice

Orchestration manual or via an orchestrator
from the research community Kubernetes

B. Technical requirements

In the interest of rapid development, we wrote MMLPT in
Python 3, making use of several libraries. To craft, send, and
sniff packets, MMLPT uses the scapy library [5]. In order to
keep track of the multi-path routes that it discovers, it uses
the graph-tool [2] library. This consists of a Python wrapper
around a C++ library that invokes the metaprogramming
module of the well known C++ Boost library. To be able to
compile graph-tool, one must have a compiler that supports
C++14. These characteristics of the experiment—its use of
several software libraries and its requirement for a recent
compiler—are an obstacle to ease of deployment on distributed
platforms. Both the Debian and Ubuntu Linux distributions
provide a precompiled graph-tool package, which can ease
deployment when one of those environments is available.

III. TESTBEDS

PLC, the original PlanetLab, created in 2002, with sites
mainly in North America and Asia; PLE, which came online in
2008, and is predominantly present in Europe; and EdgeNet,
created in 2018, with a combination of North American and
European sites, are each slicable thanks to a host container
technology that supports lightweight Linux containers. The
initial PlanetLab container technology was Linux-VServer, and
then PLC and PLE jointly made the switch to LXC. There
is no image management system for PLC and PLE, whereas
EdgeNet uses Docker. Table I summarizes these technical
characteristics. There are fewer sites with active nodes today
than at PlanetLab’s peak in 2011, as researchers tend to
maintain their nodes while they are conducting work that

requires the platform, but no longer have the resources to look
after them afterwards. Even reduced in size, the ability that
the platform offers of being able to deploy software on nodes
around the world remains valuable, as the regular sign-ups of
new institutions to PLE testifies. Since Docker can easily be
installed in a VM, we look to EdgeNet as a technology that
will be easier to set up and maintain than the dedicated servers
that PlanetLab requires. With the exception of one PLE site
that made a special effort to install nodes in VMs, all of the
PlanetLab hosts are bare metal.

IV. COMPARATIVE TESTBED EXPERIENCES

A. Build

As mentioned, our MMLPT tool depends upon the
graph-tool library. The first step in building the tool is to
compile the library. We did this successfully on PLE and
EdgeNet, but not on PLC due to the older image OSes on that
platform, which do not support C++14. We tried installing a
newer version of gcc on PLC nodes, but gave up because the
new gcc wouldn’t compile on the old gcc; presuming it was
possible, we would have had to upgrade gcc in stages.

Compiling graph-tool was resource intensive, both in
terms of CPU and RAM, due to the graph-tool library’s
extensive use of template metaprogramming. On our test
server, with an Intel Xeon X5660 2.80GHz, 6 core CPU, and
48 GB RAM, it took a mean, over ten trials, of 3 hours to get
MMLPT installed with all of its dependencies. This presents
a challenge to existing PlanetLab systems, as LXC does not
accept externally generated images in the way that Docker
does. We tried, but failed, to package a binary of MMLPT for
Fedora that we could ship to PLE nodes. The remaining option
was to compile MMLPT on each PLE node. As resources in
a container on a shared machine tend to be scarcer than those
on a dedicated server, compilation tended to take longer than
on our test server. Worse, compilation did not always succeed
on these remote nodes. Of the 40 PLE nodes available during
our study, we succeeded in installing MMLPT with all of its
dependencies on 25 of them.

Because EdgeNet uses Docker for container image man-
agement, there is no need to build on a remote server to a
narrowly specific OS supported by that server. It is possible
to install a wide range of Linux OSes on an EdgeNet node.
This allowed us to avoid fastidious compilation by choosing an
OS for which a graph-tool package already exists. Between
Debian and Ubuntu, we chose Ubuntu 18.04, and it took just
a few minutes to build an image on our test server.

B. Deploy

As we built MMLPT directly on each PLE node that sup-
ported this, there was no additional deployment step necessary.
On EdgeNet, one must push the Docker image to a Docker
repository, then send a YAML file containing a pointer to
this image to the head node of the Kubernetes instance that
provides EdgeNet orchestration. The head node then deploys
the image to one’s chosen nodes. It took a few minutes for
our Docker image to be deployed to EdgeNet’s 29 nodes.

C. Run

With MMLPT installed and ready to be used on PLE and
EdgeNet, we needed to pilot our measurements. For PLE, we
used a Python program with the Paramiko library to access
each node and execute remote commands. We then collected
the results via the scp module of Paramiko on our server, for
analysis. On EdgeNet, we again used a Python program, but
instead of accessing the nodes via ssh, we used the ssh-like
access provided by Kubernetes itself. Then, we collected the
data from the EdgeNet nodes via the scp-like command line
interface of Kubernetes.

V. CONCLUSION

This extended abstract describes how we have run Internet
measurements on PlanetLab and EdgeNet. It illustrates some
difficulties we encountered with older operating systems and
remote compilation. Our work provides a proof of concept
that motivates us, in our role as testbed operator, to migrate
PlanetLab Europe (PLE) to the EdgeNet software. Based on
modern Docker and Kubernetes technologies, we believe that
EdgeNet will facilitate the work of researchers who turn
to PLE to run experiments on distributed nodes. Because
EdgeNet nodes can be installed on VMs and not just bare
metal machines, we believe that this will allow PLE to grow
and better maintain its installed base of nodes over time.

ACKNOWLEDGMENTS

A research grant from the French Ministry of Defense has
made this work possible. K. Vermeulen, B. Ljuma, O. Four-
maux, and T. Friedman are associated with Sorbonne Univer-
sité, CNRS, LIP6, F-75005 Paris, France. K. Vermeulen and
T. Friedman are associated with the LINCS, F-75013 Paris,
France.

REFERENCES

[1] EdgeNet. http://edge-net.org.
[2] graph-tool. https://graph-tool.skewed.de.
[3] PlanetLab. https://www.planet-lab.org.
[4] PlanetLab Europe. https://www.planet-lab.eu.
[5] Scapy. https://scapy.net.
[6] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-

apy, C. Magnien, and R. Teixeira. Avoiding traceroute anomalies with
Paris Traceroute. In Proc. ACM IMC, 2006.

[7] M. Berman, T. Friedman, A. Gosain, K. Keahey, R. McGeer, I. Mo-
erman, A. Nakao, L. Nussbaum, K. Rauschenbach, V. Syrotiuk, et al.
Report of the third global experimentation for future internet (GEFI
2018) workshop. arXiv preprint arXiv:1901.02929, 2019.

[8] J. Cappos, M. Hemmings, R. McGeer, A. Rafetseder, and G. Ricart.
EdgeNet: A global cloud that spreads by local action. In Proc.
IEEE/ACM Symposium on Edge Computing (SEC), 2018.

[9] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman. PlanetLab: an overlay testbed for broad-coverage
services. ACM SIGCOMM Computer Communication Review, 33(3):3–
12, 2003.

[10] S. Fdida, T. Friedman, and T. Parmentelat. OneLab: An open federated
facility for experimentally driven future internet research. In New
Network Architectures, pages 141–152. Springer, 2010.

[11] V. Jacobson. 4BSD routing diagnostic tool available for ftp. Email
8812201313.AA03127@helios.ee.lbl.gov to the IETF and end2end-
interest e-mail lists, 1988.

[12] K. Vermeulen, S. D. Strowes, O. Fourmaux, and T. Friedman. Multilevel
MDA-Lite Paris Traceroute. In Proc. ACM IMC, 2018.

VI. DEMO

Our demo shows how to run Internet measurements on
EdgeNet, using the example of the Multilevel MDA-Lite Paris
Traceroute (MMLPT) tool described in this extended abstract.
The entire sequence, from sign-up to data collection, takes
about 10 minutes. It requires an Internet connection. We will
encourage people to come with their own laptops and sign up
for EdgeNet, leaving with a fully working example experiment
to serve as a template for their future work. Those who do
not bring a laptop will be able to watch as we deploy the
experiment on our own computer.

A. Sign-up

First of all, we sign up a new user of the EdgeNet
platform by accessing the URL: https://sundewcluster.
appspot.com. Then, once the account has been validated,
we download the configuration file using this URL: https:
//sundewcluster.appspot.com/download_config.

B. Write and push the Docker image

Fig. 1. Our Docker file containing instructions to install Multilevel MDA-Lite
Paris Traceroute.

Our Docker file, shown in Fig. 1, contains the Docker
instructions to build an image containing MMLPT and all its
dependencies. Once the Docker file is correct and tested, we
push the image to the Docker repositories via the command
Docker push <username>/<image_name>.

C. Deploy the Docker image

Once we have the configuration file and the image pushed
to the Docker repository, two options are possible for upload-
ing our image to the cluster: the Kubernetes command line
interface, and the interactive dashboard.

1) Command Line Interface: The configuration file must
be placed at the $HOME/.kube/config location. This is
where Kubernetes looks for the configuration file by de-
fault. Then we create a YAML file. Our example YAML
file is shown in Fig. 2. The apiVersion field is given by
the EdgeNet tutorial. The kind field specifies the type of
deployment that you want on the EdgeNet pods, typically
the number of nodes on which the Docker image will be
deployed, and the number of instances of the image per
node. The spec:hostNetwork field specifies that we want to
be able to open some ports of our container. As we want
to run some multilevel multipath traceroutes, we will open
network sockets to be able to receive the ICMP packets.

Fig. 2. Example of YAML file pointing to our Docker image.

Therefore, this parameter is set to true. Then we spec-
ify the name of our deployment in spec:containers:name
and the corresponding Docker image that we previously
pushed to the Docker repository. Here, we have cho-
sen the name multilevel-mda-lite-paris-traceroute
and the image is our username followed by the name
of our deployment. To make the container run forever,
we add the two fields spec:containers:command and
spec:containers:args. Without these two fields, the con-
tainer is just instantiated and executed, and it returns.

D. Run measurements and collect data

Now that MMLPT is installed on the EdgeNet infrastruc-
ture, we will launch some traceroutes from the EdgeNet nodes
towards some destinations and gather the results on our local
machine. This system is orchestrated by our Python script,
that uses the Kubernetes command line interface. First, we
need to obtain the list of the hashes used to map our container
to each EdgeNet physical node. For this to be done, we use
the command: kubectl get pods. Then, after having ex-
tracted the mapping, for each container we launch the kubectl
exec command: kubectl exec -ti <hash> --bash -c
"python multilevel_paris_traceroute.py <options>".
Finally, via kubectl cp hash:<path/to/the/output/>
<path/to/our/data/directory> we collect the generated
data onto our machine. We can reuse a kubectl exec
command to clean up the environment when needed.

