
Edge-Net: A Lightweight Scalable Edge Cloud
Justin Cappos

Tandon School of Engineering
NYU

Email: jcappos@nyu.edu

Matthew Hemmings
Email: discount.yoyos@gmail.com

Rick McGeer
US Ignite and

University of Victoria
Email: rick.mcgeer@us-ignite.org

Albert Rafetseder
NYU Tandon and

University of Vienna
Email:albert.rafetseder@univie.ac.at

Glenn Ricart
US Ignite

Email: glenn.ricart@us-ignite.org

Abstract—This paper describes Edge-Net, a lightweight cloud
infrastructure for the edge. We aim to bring as much of
the flexibility of open cloud computing as possible to a very
lightweight, easily-deployed, software-only edge infrastructure.

Edge-Net has been informed by the advances of cloud com-
puting and the successes of such distributed systems as Plan-
etLab, GENI, G-Lab, SAVI, and V-Node: a large number of
small points-of-presence, designed for the deployment of highly
distributed experiments and applications. Edge-Net differs from
its predecessors in two significant areas: first, it is a software-only
infrastructure, where each worker node is designed to run part-
or full-time on existing hardware at the local site; and, second, it
uses modern, industry-standard software both as the node agent
and the control framework. The first innovation permits rapid
and unlimited scaling: whereas GENI and PlanetLab required the
installation and maintenance of dedicated hardware at each site,
Edge-Net requires only a software download, and a node can be
added to the Edge-Net infrastructure in 15 minutes. The second
offers performance, maintenance, and training benefits; rather
than maintaining bespoke kernels and control frameworks, and
developing training materials on using the latter, we are able to
ride the wave of open-source and industry development, and the
plethora of industry and community tutorial materials developed
for industry standard control frameworks. The result is a global
Kubernetes cluster, where pods of Docker containers form the
service instances at each point of presence.

Index Terms—distributed systems, edge cloud

I. INTRODUCTION

Distributed edge clouds have been the most successful
research infrastructures in history. Their impact on the field
can be measured by publication count. In the first five years of
its existence, 2003-2008, a total of 68 papers at the six leading
networking and distributed systems conferences (SIGCOMM,
INFOCOMM, NSDI, OSDI, SIGMetrics, and SOSP) cited
PlanetLab [22] as their experimental/operational infrastructure.
Of these, 38 were at NSDI, of a total of perhaps 125 NSDI
papers published over those years. During this period, when it
was at its operational peak, it was the premiere networking and
distributed systems experimental and observation platform. In
fact, every submission to SOSP 2003 cited experiments on
PlanetLab.

To date, no general-purpose distributed systems platform
has matched the breadth and scope of PlanetLab. PlanetLab’s

website still shows 1353 nodes operating at 717 sites, and its
MeasurementLab project with Google and the New America
foundation remains one of the premier Internet observation
platforms.

PlanetLab is dependent on bespoke software that has been
made obsolete by recent developments in Cloud technology.
PlanetLab uses a 35,000 line custom Linux kernel mod on
its nodes, which must be maintained by the PlanetLab staff.
The functionality of this kernel mod has now been completely
replicated by standard improvements to the Linux kernel, and
adds little value to PlanetLab.

The use of a custom kernel mod means that PlanetLab’s
node OS now trails current Linux distributions, because the
kernel mod must be ported to each new Linux release.
PlanetLab’s nodes now run a dated Fedora Core release. The
tools and software base available to PlanetLab experimenters
through public repositories are thus limited; what should
be an installation becomes a from-source porting effort for
many modern pieces of software, meaning that deploying
experiments has now become a non-trivial exercise.

PlanetLab’s successor in spirit, GENI [18], offers greater
capabilities than PlanetLab – in particular, the ability to
create customized layer-2 networks across the wide area –
but is similarly heavyweight and dependent upon GENI-only
software. A GENI rack requires two weeks of installation and
acceptance tests and it has been estimated that it requires at
least 10% of an FTE for on-site maintenance. These factors
limit the growth of the GENI infrastructure, since becoming
a GENI site requires a substantial commitment from the host
institution.

The deep capabilities of GENI come with their own cost;
network programmability means that each experimenter who
wishes to use GENI’s network capabilities must program,
or at least configure, a private layer-2 network between his
experiment’s sites [23], [25]. For a researcher wishing to
explore advanced network programmability or protocols, this
capability is an unmatched resource; for a distributed-systems
researcher content to build systems on top of conventional
layer-3 networks, it is unnecessary. For this reason, many
GENI experiments now run on top of the routable “control



connection” rather than the private layer-2 data plane [9].
This is not a fundamental weakness of GENI: rather, it is
evidence that many researchers are using GENI for PlanetLab-
like experiments.

A summary of the testbeds for networking and distributed
systems researchers, and their strengths and weaknesses, ap-
pears in Table I.

As can be seen from the table, Edge-Net offers the ease of
use, scalability, and easy installation of Seattle [8] combined
with the multi-purpose capabilities of PlanetLab.

Edge-Net occupies an important niche in the ecosystem
of testbeds which is currently underserved: the niche of
very wide-area, lightweight, multi-purpose distributed-systems
testbeds.

II. DEVELOPMENT AND DESIGN CONSIDERATIONS

Edge-Net began as an embedded infrastructure on GENI,
the GENI Experiment Engine [3]–[5]. The power of GENI
came with a cost – acquiring and configuring resources was a
time-consuming and cumbersome task. For applications which
required only PlanetLab-like resources, this was an unneces-
sary complication. The GEE offered single-click instantiation
of a PlanetLab-like slice.

PlanetIgnite [6] was the next generation of the GENI
Experiment Engine. The observation that inspired PlanetIgnite
was that GENI was really only an authentication mechanism
and source of Virtual Machines; but the GEE ran on a standard
Ubuntu VM, which could run essentially anywhere. PlanetIg-
nite offered a downloadable image with automated registration,
so a new site could joint PlanetIgnite in 15 minutes.

PlanetIgnite’s central weakness was that it offered a single
container to each service at a site; modern services are
composed of container swarms, and it was desirable that the
next generation infrastructure offer this. Further, PlanetIgnite
used its own orchestration and management tools, which both
represented a support burden and was unfamiliar to users.
Edge-Net will remove these weaknesses.

Edge-Net is a bottom-up edge cloud designed to run on
existing infrastructure (local Clouds, servers, personal com-
puters, embedded systems), controlled by industry-standard
advanced Cloud software. The design goal for Edge-Net is that
any local virtual machine with Internet connectivity should be
able to join the Edge-Net worldwide infrastructure in under
five minutes, and any developer should be able to deploy his
application across Edge-Net using standard, familiar Cloud
technologies within five minutes.

Key elements of Edge-Net’s technology are familiarity and
simplicity. Edge-Net’s worker nodes must be able to run on
a wide variety of computing equipment without manual inter-
vention or customization. This implies that the worker node
must be as simple and make as few demands as possible on the
underlying hardware. Further, the developer must be able to
deploy his software across the Edge-Net infrastructure using
familiar tools and technology, and of course the software must
be able to be executed automatically with on-site resources and
without developer intervention or customization.

One good choice for a Edge-Net worker node is an Ubuntu
16.04 VM running a Kubernetes Worker Node. This is an
extremely well-tested cloud host environment from Google,
runs any Docker container, and is the industry standard for
Cloud deployments.

So Edge-Net is just a worldwide, multi-user Kubernetes
cluster where nodes can join (or leave) at any time, simply
by installing the Edge-Net software onto a standard VM on
their site. Developers can use standard Kubernetes tools to
deploy their service across Edge-Net, and are presented with
the familiar elements of the Kubernetes UI – the Kubernetes
dashboard and kubectl.

III. THE NEED FOR UBIQUITY

Edge-Net is a bottom-up cloud. Edge-Net nodes are VMs
which run on general-purpose computing nodes; these may be
local Clouds, servers, or even personal or embedded computers
running the appropriate software. Edge-Net is bottom up
because edge Clouds must be orders of magnitude more
ubiquitous than existing commercial Clouds. This is due to
a theorem from physics and plane geometry. Getting a Cloud
node within k milliseconds of a point on a plane requires
that the Cloud node must be within k/c meters of the point
where c is the speed of light. Thus, if a service is to be offered
everywhere, there must be a Cloud node within k milliseconds
of any point on the plane, and that requires covering the plane
with circles of radius (k/c). The area of a circle is proportional
to the square of its radius, so this amounts to covering the
plane with circles of area (k/c)2. Since the area of the plane
is unchanged, reducing k by a factor of x requires increasing
the number of circles (and thus the number of nodes) by a
factor of x2. Cutting latency by a factor of 10 means 100
nodes for every Cloud node today. This is an enormous and
slow undertaking if done as a top-down commercial Cloud.

However, there is another model for building infrastructure.
In the late eighties and early nineties, digital libraries were
the hot topic, and they appeared to he a massive undertaking,
with enormous disk farms and city-scale computing. There
was no centralized, massive buildout; rather, a simple piece
of software was made available for download by the National
Center for Supercomputing Applications. Within a decade, the
World Wide Web had spread to millions of sites and a digital
library of massive, worldwide scale – admittedly uncurated
and fragmented – by the local, individual action of millions
of individuals and organizations.

Later systems that use a similar approach to growth include
the renowned SETI@Home [2] distributed computation plat-
form, and Seattle Testbed’s viral deployment strategies that
use existing end-user hardware to host testbed VM instances.

Edge-Net’s vision is to replicate this experience: to build
a world-girdling, always-available, next-to-you-wherever-you-
are Cloud through the actions of millions of individuals and
organizations.

IV. APPLICATIONS AND SERVICES

The Edge-Net system is the platform for a new class
of applications and services: Cloud-in-the-loop systems.



Testbed Signature Strengths Weaknesses Installation Scalability
Time

GENI [18] Programmable Layer-2 Narrow footprint Two weeks Limited
Networking

Seattle [8] Extremely Broad Restricted Programming Minutes Very High
Distribution Environment
Easy to use Layer-3 only

PlanetLab [22] Broad Distribution Layer 3-only Days Moderate
Easy to use

Multi-purpose
Environment

Edge-Net Very Broad Distribution Layer 3-only < 15 Minutes Very High
Easy to use

Standard Environment
TABLE I

STRENGTHS AND WEAKNESSES OF WIDE-AREA TESTBEDS

Lightweight devices (smartphones, sensors, actuators) inter-
act with the real world (things and people) and can do
some lightweight computation, but their computational power
and/or battery power is soon exhausted. Conversely, Cloud
systems are arbitrarily powerful, and so the natural pairing
is lightweight devices with powerful Cloud systems: devices
offload their storage and computing requirements to Cloud
nodes. However, Cloud systems are often too far away in
communication cost and/or latency; Google Cloud has 11
Points of Presence in North America in five regions (a sixth
is planned). Distance is time; device-Cloud latency is on the
order of tens of milliseconds or more. This means that a Cloud
node and a device can have at most a few transactions per
second, severely limiting the classes of applications which
feature intimate device-Cloud interaction.

Reducing the latency between device and Cloud opens up
a broad array of new services, including user-driven data-
intensive visualizations [7], [10], [11] virtual and augmented
reality projected into thin devices, remote surgery, collabo-
rative design, and prediction and analysis for the Internet of
Things including real-time video processing and analytics.

A. Wide-Area Distributed Systems
Applications for Edge-Net include wide-area messaging,

distributed hash tables, distributed key-value stores, distributed
blockchains such as Ethereum and Bitcoin, distributed filesys-
tems such as Syndicate, overlay multicast, overlay routing,
content-centric and named-data networking, among many oth-
ers. Content-Centric [21] and Named Data Networking [28],
when implemented at the overlay level, are essentially naming
schemes and APIs overlaid on content-distribution networks.
There has been a revival of interest in these systems in the past
couple of years, largely due to the recognition that classic cen-
tralized Cloud systems do not have sufficient bandwidth and/or
have too much latency to the edge for many services and
applications. This forms the central motivation for the DARPA
Dispersed Computing program [27]. Wide-area distributed
systems are distinguished from Cloud distributed systems in
that intercomponent latencies are three orders of magnitude
or more higher than in classic Cloud distributed systems, and
intermittent connectivity is a given. These considerations offer
many fruitful directions for research, particularly on latency

considerations for eventually-consistent wide-area systems [1].
Scalability of blockchain-like systems such as BigChainDB
[17], are a particularly fecund research area. Further areas of
investigation are autonomic control of wide-area systems.

B. Wide-Area and Edge Internet Measurement

Wide-area Internet Measurement remains an active field
of research, with ACM Sigmetrics continuing as one of the
leading systems conferences. Internet measurement relies on
layer-3 connectivity to the routable Internet, not special-
purpose layer-2 networking, so Edge-Net is very well suited
for these tasks. Thanks to the standardized software that
powers Edge-Net, its deployments may easily grow into the
edges of consumer networks. This enables studying parts of
the Internet that have been historically difficult to observe.

C. Generalized Gateway for Cyberphysical Systems

This is a variant of the mobile offload problem: in this case,
for Cyber-physical systems (CPS). CPS are typically single-
board computers with low-end processors, for reasons of both
power conservation and cost. Raspberry PIs are particularly
popular. This presents similar problems to those of cellphones:
the systems don’t have enough on-board processing to do the
computation desired, but the Cloud is too far away for near
real-time response. A further problem, present here, is one
of security. In order to access the Cloud, the CPS devices
must have Internet access. Putting the full networking stack
into a CPS device opens up new network vulnerabilities, since
they are designed to be underpowered and cheap, without the
protections against viruses common in richer computing envi-
ronments. The consequences were dramatically demonstrated
by the webcam attack on DynDNS in October 2016 [13].

Edge-Net also runs on less powerful gateway devices and
can thus provide a gateway functionality for CPS. On the one
hand, it controls access from the outside inwards. On the other
hand, it provides additional computational power for smart
local sensing tasks.

D. Distributed Query Processing on Distributed Data Sets

This activity also represents a wide-area distributed system,
but its extremely broad utility extends across the computing,
social, and domain sciences. Distributed forensic processing



of log data is the key motivating problem behind DARPA’s
Dispersed Computing program. Some examples of large, dis-
tributed data sets in the domain sciences are radiotelescope
measurements of pulsars, used to detect gravitational waves,
and the outputs of climatological models examined in the
Climate Model Intercomparison Project (CMIP). The central
computational challenge in all of these data sets is running
what amounts to a large, distributed MapReduce – search for
data points of interest and then return those to a central site
for processing.

E. Localized Systems

This is a shorthand term for systems which are offered
everywhere, but where each local recipient must be served
by a local server. Content Distribution Networks are perhaps
the canonical example, but this has become a broad area
of research with multiple systems offering a rich array of
functionality. Specific examples are the NOWCasting weather
system [14], [15] and the Ignite Distributed Collaborative
Visualization System [7], [10], [11]. The latter is particularly
instructive, since [7], [11] give a detailed analysis of the
requirements for replicated computation in a fat-data thin-
client interactive system.

1) Mobile Offload: Mobile offload is a special case of
localized systems where the clients are mobile devices. The
motivation is similar to the cases sketched for gateways and
query processing above. Note particularly that the goal is
to offload computation to standardized servers over standard
layer-3 networking.

F. Any Linux-based GENI Experiment Which Doesn’t Rely on
the Private Network

Any Linux-based GENI Experiment which currently sends
its traffic on the Control Plane could use Edge-Net in addition
to GENI or instead of it, freeing up GENI resources and
getting a broader geographic footprint as well.

V. USING EDGE-NET

A. About Kubernetes

In the beginning, there was Borg. Borg was Google’s
container management system, which ran just about every
application inside Google, highly efficiently. A full description
was given in [26]. In 2014, Google released an open-source
version of Borg for public use, called Kubernetes, or K8s.
Kubernetes is now widely used in industry for cluster and
cloud management, and there are copious tutorials and play-
grounds available for people to get familiar with Kubernetes
and its use. Indeed, the wide variety of training materials
and answers on StackOverflow and similar sites was a strong
motivation for choosing Kubernetes; there are more training
materials available than there ever were for GENI, SAVI [16],
PlanetLab, or other testbeds like G-Lab [19] and V-Node [20].

The notable feature of K8s is that it is a pure container
infrastructure.

B. K8s Concepts

A K8s deployment is called a service. An instance of a
service is called a pod. A pod is an ensemble of microservices,
each of which is encapsulated in a Docker Container. A
developer registers his pod either with the K8s command-
line controller or with the web-based controller; assignment
of pods to worker nodes can be done manually or via the
K8s scheduler. A Daemon Set is a pod instance that should
be continuously running; full-time services are of this form.
A good example is a persistent, multi-tenant, distributed key-
value store or a persistent monitoring service. A Namespace
is the unit of isolation in K8s. Namespaces are groups of
mutually-visible K8s services and daemon sets. Namespaces
are created by the Kubernetes head node (the equivalent of the
GENI management node), and refer to a collection of services.
Namespaces are accessed by a certificate created by the head
node when the namespace is created.

C. K8s Networking

It is anticipated that during the execution of a K8s Pod,
that the worker node(s) on which the pod is running may fail,
or the Pod may migrate across worker nodes in response to
load, latency, external demand, and so on. As a result, K8s
Pods are not addressed by IP address but by service name;
the K8s proxy takes care of resolving Pod names to addresses.
Edge-Net slices can host services on raw ports; however, port
contention is managed by K8s. It is strongly recommended
that Edge-Net users use the name resolution option rather than
request direct access to external ports.

D. Control of a K8s Service

A K8s Service is controlled by the user from the com-
mand line of his personal computer or a web interface,
which he can run locally through localhost or, in the al-
ternative, can be given by the provider. In both cases
the developer-facing tool (the web proxy or the kubectl
command-line program) is the primary means of control-
ling, placing, running, and stopping Kubernetes pods. Typ-
ically, a pod is declared in a yaml file and created us-
ing a kubectl command, e.g. $ kubectl create -f
docs/user-guide/walkthrough/pod-nginx.yaml
And then run with $ kubectl run with appropriate pa-
rameters.

Once run, Pods can be entered using the exec command,
stopped, started, exposed as a service, etc., using a command
syntax very similar to Docker. One exception is that while
Docker containers are bound to a single machine, Pods are
bound to a cluster. In fact, to a K8s developer using a
native K8s infrastructure, both VMs and physical machines are
more or less irrelevant; assigning Pods to VMs or hardware
(generally hardware; in a pure K8s environment VMs have
little value) is the job of the K8s scheduler.

VI. MAPPING GENI CONCEPTS TO KUBERNETES

A K8s Service corresponds fairly closely to a GENI Slice.
The major difference is one of perspective: a GENI Slice is



defined in terms of the operator’s perspective (it is a bag to
which the developer attaches resources) rather than from the
developers (a Service is an organized collection of execution
instances which together deliver a service to the end-user).
The K8s Pod plays a role roughly equivalent to a GENI
sliver. The rough equivalence is again primarily due to the
operator vs. developer perspective; GENI defines a sliver as
a resource which is attached to a slice; K8s defines a Pod as
a collection of containers which form the unit of instantiable
functionality for a Service. To see the difference, note that
a GENI experimenter who wished to use K8s to deploy and
organize his experiment might make the reasonable choice to
deploy each Pod in a VM; in this case, GENI would see each
Pod as a sliver. However, another reasonable choice, depending
upon the resources consumed by each Pod, is to have multiple
Pods in a VM. This would be the preferred option when the
resources demanded by a Pod are relatively modest: not only is
it much more resource-efficient, a Pod spins up very rapidly, on
the order of seconds; in contrast, spinning up a VM on GENI
takes about 15 minutes. In this case, GENI would continue
to regard the VM as a sliver and the Pods, which form the
actual unit of the service, are transparent to GENI. The unit
of tenancy in K8s is the namespace; this is a collection of Pods
that can be accessed through a single authorization certificate,
and for our purposes can be regarded as isomorphic to a GENI
Project.

There are three major issues confronting any distributed
edge system: sharing worker nodes between multiple users,
resource contention on the nodes, and, since network addresses
are in perenially short supply, multiplexing popular ports on
a single IP address. We address these here.

Central to our design is the Kubernetes Namespace. A
Namespace is the unit of tenancy and trust in Kubernetes,
and is the unit of tenancy and trust in Edge-Net. The Edge-
Net namespace is an augmentation of the underlying K8s
Namespace, and a set of services around it.

A. The Edge-Net Naming Architecture

Like PlanetLab, Edge-Net uses the public Internet for
both user-slice and intra-slice communication. Due to
the chronic scarcity of IPv4 addresses and the continued
unreliability of IPv6 access and services, Edge-Net makes
heavy use of DNS services as a means of both conserving
port space and providing location-independence for localized
services. Thus, architectural design of the namespace
is particularly important. Neither PlanetLab nor GENI
used their respective top-level namespaces for remote
nodes, forcing experimenters to maintain often-changing
configuration files. In contrast, Emulab [12], [24] adopted
an experiment-centric namespace, where nodes were named
<nodename>.<experimentname>.<projectname>
.emulab.net, permitting experimenters to use name-based
addressing in configuration files and scripts. We adopt a
modified Emulab approach.

A K8s/Edge-Net Namespace is equivalent to an Emulab
or GENI Project; names of slices and slivers can be chosen

arbitrarily within a Namespace by the experimenter, just as
they can on Emulab. At present, the Namespace name is
chosen by Edge-Net, and is a mild transformation of the
user’s email address; it is our intent to permit experimenters
to choose a namespace name freely in future.

There are two domains for Edge-Net:
edge-net.io and edge-net.org.
edge-net.org is used for administration:
the portal, documentation and collateral.
edge-net.io is used for sites, slices, and slice services
such as DNS.

A sitename or a slicename will be chosen arbitrar-
ily by the site or slice, respectively. A name is cho-
sen by the object creator at the time of its cre-
ation, subject to availability and a mild test for suit-
ability. Edge-Net administrators will regularly review site
names for appropriateness. Sites will be under the subdo-
main sites.edge-net.io; slices under the subdomain
slices.edge-net.io. Each VM will be numbered within
a site, with vm0.<sitename>.sites.edge-net.io
being an alias for <sitename>.sites.edge-net.io.

Each K8s daemon set or service will choose names
arbitrarily for each sliver within its namespace. Each
sliver will be named <name>.<namespace>.
slices.edge-net.io, where <name> is chosen
arbitrarily within the namespace.

B. DNS Resolution and Resource Contention

The Edge-Net Naming Architecture serves to protect user
slices from contention and to offer a domain of trust and
tenancy. Port multiplexing is achieved through the use of
an nginx reverse proxy on each worker node. Resource
contention is on a per-Pod basis on each node, enforced
by existing K8s tools. We adopt a fair-share system across
namespaces.

VII. USING EDGE-NET

The goal in user experience design in Edge-Net is to offer
as transparent an overlay on Kubernetes as possible; an exper-
imenter should have the impression “it’s just Kubernetes”, and
should be able to rely on the wealth of available Kubernetes
tutorials, documentation, and services. The result is that the
goal of the Edge-Net portal is to send the user to a Kubernetes
dashboard as quickly as possible; the role of the Edge-Net
portal is simply to manage namespaces and issue credentials
to users.

The user flow through the portal is shown in Figure 1. The
yellow boxes are non-portal maintained entities which provide
services to the portal. The user logs in through an Identity
Provider, which delivers the user’s email address as the userid.
If the user has not yet agreed to Edge-Net’s Acceptable
Use Policy, he is directed to a page to use and agree to
the policy. Once he has agreed, Edge-Net’s administrators
approve his account and he is assigned a namespace. He is
then directed to the Namespace Dashboard, where he can
download a configuration file to use with Kubernetes. At this



Fig. 1. User Flow Through the Edge-Net Portal

point he is directed to a standard Kubernetes dashboard, where
he presents the credential and selects his namespace. He can
then use the Kubernetes dashboard or the kubectl command
line tool to work with his namespace; he is not required to use
the Edge-Net portal again. The Edge-Net portal is simply an
entity that generates namespaces and holds configuration files
for namespaces.

This gives the portal/head node architecture given in Figure
2. The Kubernetes Head Node manages the cluster; aside from
reports of which nodes are in the cluster, and their status, this
is transparent to the portal. The user interacts with the portal
to get credential and namespace information, but then works
directly with the Kubernetes dashboard, shown in Figure 3 to
allocate and manage daemon sets and services.

A. Adding a Node to Edge-Net

Adding a node to Edge-Net is quite similar to adding a node
to its predecessor, planet-ignite. At present, there is a
shell script which installs the Edge-Net software on an Ubuntu
14.04 or Ubuntu 16.04 VM; the site administrator downloads
the script and runs it on a convenient VM. The script then
prompts for the site name, downloads the Edge-Net software
stack (a lightly modified version of the standard K8s worker
node) and then transmits a join request to the Kubernetes head
node. The head node tests for routability to the new worker
node, and if the node can be reached it’s added to the cluster
and a DNS name is chosen for it.

VIII. A FEDERATABLE ARCHITECTURE

The Portal/Head Node architecture of Edge-Net offers an
attractive prospect for federating similar systems, with a global
portal whose sole function is to manage configurations for the
various namespaces. Federation has been a ubiquitous feature
of distributed edge systems, for a number of reasons:

1) Edge clouds operate across a number of legal and
administrative domains, and the usage of the systems
are subject to differing constraints in each domain. The

Acceptable Use Policy of a system such as PlanetLab,
PlanetLab Europe, and Edge-Net are largely driven by
legal constraints, and these vary across domains.

2) Some edge clouds have significant resource restrictions,
and thus need to restrict access to a small subset of users.

3) Specific edge clouds access resources which should only
be accessed by selected groups of users; for example, an
IoT deployment

The architecture given here lends itself to such a federation,
where each cluster maintains a separate set of namespaces
and a subdomain name, but the global portal acts to maintain
identity (or relationships with IdPs) and persistent storage for
certificates. This federation is shown in Figure 4, and shows
the advantage of a clean separation of concerns between portal
and head node: the portal manages users and the head node
clusters. This permits cluster administrators to grant access to
users on their own clusters.

IX. STATUS, CONCLUSIONS, AND FUTURE WORK

As of May 17, 2018, Edge-Net is currently deployed across
20 nodes: 16 on the GENI infrastructure and four on Canada’s
SAVI infrastructure. The EdgeNet portal is up and accepting
users. Scalability and node addition tests are currently under-
way.

Many of the principles behind traditional cloud computing
can also be applied to edge computing. Edge-Net does that
while emphasizing ubiquity and low-latency access to the real-
world IoT devices and end users who are spread out over
broad areas. While such systems were served in the past by
dedicated, real-time infrastructure, cloud principles suggest
that elastic, shared infrastructure is often a more cost-effective,
efficient, and higher reliability way to deliver such services.
Edge-Net is intended as a lightweight research infrastructure
which can spread broadly and quickly. A host of distributed
system and locality-based applications and services will find
it meets their needs. Edge-Net may evolve into a reference



Fig. 2. Portal/Head Node Architecture

Fig. 3. Edge-Net Head Node Dashboard



Fig. 4. Edge-Net Federation Architecture

implementation for future ubiquitous clouds-at-the-extreme-
edge infrastructure.

Edge-Net is still in its infancy, with many planned features
still to deploy. Many of these we have mentioned above:
user-chosen namespaces and user administration of his own
namespace, to permit multiple users to share a namespace as
multiple users share Projects on GENI and Emulab; multi-
ple head nodes; monitoring mechanisms such as PlanetFlow
on PlanetLab; and certifications for trusted worker nodes.
In addition, Edge-Net has adopted PlanetLab’s microkernel
approach to distributed systems; we encourage users to offer
foundational services in slices, for the use of other services
and applications running on Edge-Net.

ACKNOWLEDGEMENTS

A worldwide consortium is working with us to deploy and
govern Edge-Net, and we thank our collaborators, particularly
at JGN-X, PlanetLab, GENI, SAVI, and PlanetLab Europe. A
full list will appear in the final camera-ready version of the
paper, if accepted. This research has been sponsored by the
National Science Foundation.

REFERENCES

[1] S. B. Ahsan and I. Gupta. The cat theorem and performance of
transactional distributed systems. In Proc. ACM PODC Workshop on
Distributed Cloud Computing (DCC), 2016.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
Seti@home: an experiment in public-resource computing. Commun.
ACM, 45(11):56–61, 2002.

[3] A. Bavier, J. Chen, J. Mambretti, R. McGeer, S. McGeer, J. Nelson,
P. O’Connell, G. Ricart, S. Tredger, and Y. Coady. The geni experiment
engine. In Teletraffic Congress (ITC), 2014 26th International, pages
1–6. IEEE, 2014.

[4] A. Bavier, J. Chen, J. Mambretti, R. McGeer, S. McGeer, J. Nelson,
P. O’Connell, G. Ricart, S. Tredger, and Y. Coady. The GENI Experi-
ment Engine. In Proceedings of TRIDENTCOM’15, 2015.

[5] A. Bavier and R. McGeer. The geni experiment engine. In The GENI
Book, chapter 11. Springer-Verlag, New York, 2016.

[6] A. Bavier, R. McGeer, and G. Ricart. Planetignite: A self-assembling,
lightweight, infrastructure-as-a-service edge cloud. In International
Teletraffic Congress, 2016.

[7] S. Bhojwani, M. Hemmings, D. Ingalls, R. Krahn, J. Lincke, R. McGeer,
M. Rder, , Y. Coady, and U. Stege. The ignite distributed collaborative
scientific visualization system. In Proceedings of IEEE CloudCom, 2015.

[8] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson. Seattle:
a platform for educational cloud computing. In Proceedings of the 40th
ACM technical symposium on Computer science education, SIGCSE
’09, pages 111–115, New York, NY, USA, 2009. ACM.

[9] R. Clark. Personal Communication.
[10] M. Hemmings, D. Ingalls, R. Krahn, R. McGeer, M. Rder, and

U. Stege. Livetalk: A framework for collaborative browser-based
replicated-computation applications. In Proceedings of the International
Teletraffic Congress, 2016.

[11] M. Hemmings, R. Krahn, D. Lary, R. McGeer, M. Roeder, and G. Ricart.
The ignite distributed collaborative scientific visualization system. In
The GENI Book, chapter 19. Springer-Verlag, New York, 2016.

[12] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau. Large-scale virtualization in the emulab
network testbed. In USENIX Annual Technical Conference, pages 113–
128, 2008.

[13] B. Krebs. Hacked cameras, dvrs powered todays mas-
sive internet outage. https://krebsonsecurity.com/2016/10/
hacked-cameras-dvrs-powered-todays-massive-internet-outage/,
October 2016.

[14] D. K. Krishnappa, D. Irwin, E. Lyons, and M. Zink. Cloudcast: Cloud
computing for short-term mobile weather forecasts. In 2012 IEEE 31st



International Performance Computing and Communications Conference
(IPCCC), pages 61–70. IEEE, 2012.

[15] D. K. Krishnappa, D. Irwin, E. Lyons, and M. Zink. Cloudcast: Cloud
computing for short-term weather forecasts. Computing in Science &
Engineering, 15(4):30–37, 2013.

[16] A. Leon-Garcia and H. Bannazadeh. Savi testbed for applications on
software-defined infrastructure. In The GENI Book, chapter 22. Springer-
Verlag, New York, 2016.

[17] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. Mc-
Conaghy, G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto.
Bigchaindb: A scalable blockchain database, 2016.

[18] R. McGeer, M. Berman, C. Elliott, and R. Ricci, editors. The GENI
Book. Springer International Publishing, 2016.

[19] P. Mueller and S. Fischer. Europe’s mission in next-generation network-
ing with special emphasis on the german-lab project. In The GENI Book,
chapter 21. Springer-Verlag, New York, 2016.

[20] A. Nakao and K. Yamada. Vnode and jgn-x. In The GENI Book,
chapter 23. Springer-Verlag, New York, 2016.

[21] D. Perino and M. Varvello. A reality check for content centric
networking. In Proceedings of the ACM SIGCOMM workshop on
Information-centric networking, pages 44–49. ACM, 2011.

[22] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir. Experiences
building planetlab. In Proceedings of the 7th symposium on Operating
systems design and implementation, pages 351–366. USENIX Associa-
tion, 2006.

[23] T. Rakotoarivelo, G. Jourjon, O. Mehani, M. Ott, and M. Zink. Walk
through the geni experiment cycle. In The GENI Book, chapter 17.
Springer-Verlag, New York, 2016.

[24] R. Ricci. Emulab. In The GENI Book, chapter 2. Springer-Verlag, New
York, 2016.

[25] N. Riga, S. Edwards, and V. Thomas. The experimenter’s view of geni.
In The GENI Book, chapter 15. Springer-Verlag, New York, 2016.

[26] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes. Large-scale cluster management at google with borg. In
Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 18:1–18:17, New York, NY, USA, 2015. ACM.

[27] S. Wagner. Dispersed computing. Technical Report DARPA-BAA-16-
41, DARPA, July 2016.

[28] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K.
Smetters, B. Zhang, G. Tsudik, D. Massey, C. Papadopoulos, et al.
Named data networking (ndn) project. Technical Report NDN-0001,
Parc, 2010.


