
2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) 

978-1-7281-1198-8/19/$31.00 ©2019 IEEE 

DOI 10.1109/MIPR.2019.00106 

Towards Vulnerability Analysis of Voice-Driven 

Interfaces and Countermeasures for Replay Attacks 
 

Khalid Mahmood Malik  

School of Engineering and Computer 

Science  

Oakland University 

Rochester, MI, 48309, USA 

mahmood@oakland.edu 

Hafiz Malik 

College of Engineering and Computer 

Science, University of Michigan- 

Dearborn 

Dearborn, MI, 48128, USA 

hafiz@umich.edu 

Roland Baumann  

School of Engineering and Computer 

Science  

Oakland University 

Rochester, MI, 48309, USA 

 rbaumann@oakland.edu 

 

Abstract—Fake audio detection is expected to become an 

important research area in the field of smart speakers such 

as Google Home, Amazon Echo and chatbots developed for 

these platforms. This paper presents replay attack 

vulnerability of voice-driven interfaces and proposes a 

countermeasure to detect replay attack on these platforms. 

This paper introduces a novel framework to model replay 

attack distortion, and then use a non-learning-based method 

for replay attack detection on smart speakers. The reply 

attack distortion is modeled as a higher-order nonlinearity in 

the replay attack audio. Higher-order spectral analysis 

(HOSA) is used to capture characteristics distortions in the 

replay audio. The replay attack recordings are successfully 

injected into the Google Home device via Amazon Alexa 

using the drop-in conferencing feature. Effectiveness of the 

proposed HOSA-based scheme is evaluated using original 

recorded speech as well as corresponding played back 

recording to the Google Home via the Amazon Alexa using 

the drop-in conferencing feature. 
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I. INTRODUCTION 

The growing trend of personalization, increasing number of 

smart homes, the desire for easy control of home IoT devices 

and rising consumer preference for luxurious entertainment 

systems are driving factors for the tremendous growth of 

smart speakers. Alone in 2017, approximately 40 million 

adults in the United States have adopted voice activated 

smart speakers. With a compound annual growth rate of 

35%, global smart speaker market is projected to rise during 

forecast period 2017-2024 [1].   

Gartner estimated that by 2020, 75% of US households are 

expected to have voice-driven interfaces, e.g., Alexa, 

Cortana, Google Assistant, Siri, and, so on [2], and  

worldwide spending on these platforms and devices is 

expected to be more than $3.5 billion by 2021 [3].  

Currently, based on intelligent virtual assistant used in smart 

speakers, market leaders include Alexa, Cortana, Google 

Assistant, and Siri. Various home and office voice-driven 

applications rely on software development platforms 

provided by Alexa skills and Google Action. It is estimated 

that currently chatbots are handling around 30% of customer-

service requests, and by 2020 chatbots are expected to handle 

85% of customer-service interactions [4]. In addition, 

through voice, intelligent virtual assistants and smart 

speakers are being used to remotely control different Internet 

of things (IoT) gadgets such as controlling thermostats and 

doorlocks. Therefore, it becomes imperative to secure the 

voice-drive interfaces and associated applications and access 

control systems (speaker recognition systems) are vulnerable 

to replay audio (RA) attacks, impersonation, speech 

synthesis and voice conversion. Smart speakers enable 

attacker to remotely attack voice-driven interfaces and 

applications. Among these four attacks, audio replay is the 

easiest to exploit [6], whereby the pre-recorded speech of the 

target speaker is played back to for automatic speaker 

verification (ASV) task. The ASV, a key component of 

voice-based authentication and access control systems, is a 

process of the authenticating users by doing analysis on their 

speech utterances. The ASV has received significant 

attention in the last two decades due to its convenience, low 

cost, and remote operability with simple devices like mobile 

phones. The role of ASV is expected to increase further due 

to proliferation of voice-driven interfaces and virtual 

personal assistant-enabled wireless speakers.  

Many technologies are used for ASV such as frequency 

eestimation, hidden Markov models, Gaussian mixture 

models, vector quantization, decision trees, and neural 

networks [5]. The ASVspoof 2017 Challenge [18] was 

focused on the exploiting shortcomings of existing state-of-

the-art to detect replay attacks under diverse conditions. 

Efforts have been made to investigate replay attacks on ASV 

systems [12–17]. For instance, Patil et al. in [12] study the 

spectral changes due to the transmission and channel 

characteristic of replay devices for replay detection. Another 

attempt was made to capture the channel information 

embedded in the low signal to noise ratio region, a single 

frequency filtering feature with high spectro-temporal 

resolution was proposed in [13]. Most of the presented works 

in ASVspoof 2017 challenge used a combination of different 

features and classifiers to improve performance of replay 

detection system. The combined feature vector includes 

constant Q cepstral coefficients, mel-frequency cepstral 

coefficients, linear frequency cepstral coefficients, 

rectangular filter cepstral coefficients, perceptual linear 

predictive and deep features as front-ends [14, 15]. 

Magnitude-based features are widely used in replay attack 

detection, [14, 15], and frequency modulation (FM) features 

have been used in speech recognition and speaker 

recognition [16, 17]. 



It has been demonstrated that replay attack introduces 

distortions in the spoofed speech [9,10]. Most existing state 

of the art methods mainly rely on machine learning based 

approaches. These approaches process the input speech 

signal for feature extraction that are used to train a classifier 

to learn the underlying distortion model. For example, [19] 

authors proposed light convolutional neural network (LCNN) 

classifier to extract high-level features from the log power 

spectrum, together with a Gaussian Mixture Model (GMM). 

GMM, support vector machine (SVM) and i-vector Gaussian 

probabilistic linear discriminant analysis were employed as 

back-end classifiers [20]. However, little work has been done 

on replay attack detection using higher-order spectral 

analysis (HOSA) features to capture traces of replay attack 

distortion and detection. Additionally, no work has been 

reported to study possibility of replay attacks and their 

countermeasures in smart speakers’ environment. 

This main contributions of this paper are: 

1. This paper demonstrates that ASV feature of voice-

driven interfaces, e.g., Google Home is vulnerable to 

replay attacks and thus all the skills and actions built on 

these platform, including many having critical financial 

data, could be exploited easily even by relatively less 

tech savvy impersonators.   

2. According to best of our knowledge, there does not exist 

any attempt for the vulnerability analysis and 

exploitation of audio replay attack on Google home and 

Amazon Alexa. 

3. We have modeled replay attack as a higher-order 

linearity beyond 6th-order (see Figure 2).  

4. A countermeasure based on HOSA framework is 

proposed to detect reply attack.  

II. VULNERABILITY ANALYSIS OF REPLAY ATTACKS IN 

SMART SPEAKERS 

This section describes vulnerability analysis and 

exploitation of audio replay to understand what is the 

performance of Automatic Speaker Verification (ASV) 

system used in the Amazon Echo and Google Home smart 

speakers We conducted several experiments to determine 

the capabilities of the ASV in these devices. 

A. Experiment 1 – Vulnerability Analysis of Replay Attacks 

in Amazon Echo 

We have tested the ASV capabilities of the Amazon Echo by 

placing an order for small items such as candy, as non-owner 

of the device. Amazon Echo ASV was unable to assess who 

was placing the order. Similarly, we found that any person 

could use the Amazon Echo to turn on and off IoT connected 

lights in the home. 

Despite the fact that all of the functions of the Amazon Echo 

are available to any user we did replay a recording of the 

device owner asking “Alexa, Who am I?”. The Amazon 

Echo replied with the device owners name. This further 

proved that what limited voice recognition the device has, it 

is not capable of distinguishing recorded audio from a real 

voice. 

B. Experiment 2 – Vulnerability Analysis of Replay Attacks 

in Google Home 

The Google Home device does use voice recognition to offer 

secure purchases and access control. However, our 

experiment revealed that the speaker verification is limited to 

authenticating the wake word, usually “OK Google”. Once 

the wake word has been used to activate the device no further 

voice verification is performed on subsequent commands. 

This makes it possible for anyone that has a recording of the 

owner using the wake word to then have full access to the 

device.  

To verify that only the initial wake word “OK Google” is 

checked, we took a recording of the account owner saying 

the wake word and then added in a completely different 

voice requesting to purchase something. At no point in time 

did the device question why a different voice was given to 

the device. 

In another test, we took a recording of the male account 

owner saying, “OK Google” and then followed it up with a 

recording of a female voice saying, “Who am I?” the Google 

Home device responded with the male account owners name. 

It shows that Google Home performs voice verification only 

on the wake word.  

C. Experiment 3 – Introduction of multiple replays using 

Drop in conference feature of Amazon Echo. 

Experiments 1 and 2 demonstrates that the speaker 

verification capabilities of the current generation of smart 

speaker devices are limited. While on the surface it appears 

that since smart speakers are located within the users home 

the damage to be done is limited to some mischief by people 

near the device. We considered if the capabilities of smart 

speakers could be exploited to unlock an IoT connected door 

system or change the settings on an IoT connected 

thermostat. To better understand the severity of audio replay 

attacks, consider a home that uses a Google Home device to 

control a door lock. All that would be required to unlock the 

doors of that home would be a replay of the owner using the 

wake word. This could be a genuine copy or a synthesized 

voice. Once the wake word is played and accepted, any voice 

could request the doors to be unlocked.  

For this experiment we hid an Amazon Echo device behind a 

TV. We then used the Drop In Audio conferencing feature of 

the Amazon Alexa to replay voice recordings to the Google 

Home Speaker. We were able to replay a recording of “OK, 

Google, Turn on Office Lamp” via the audio conferenced 

Amazon Alexa from another home. The Google Home 

device did turn on and off the lights as requested in the 

replays.  

One can envisage that while the Drop-In feature of the 

Amazon Echo made it very easy to perform this type of 

attack, it would be relatively easy to use other equipment to 

replay the attack into a person's home. For example, one can 

use a RaspberyPI equipped with an MP3 board to replay the 

required sounds to get the smart speaker to unlock the doors. 

For the Internet connectivity required to perpetuate this type 

of attack this could be done by knowing the home owners 

WiFi key or using a Cellular WiFi hotspot device. 

 



 

 

III. REPLAY ATTACK MODELING 

It has been demonstrated that replay attack introduces 

distortions in the spoofed speech [9,10]. Most of existing 

state of the art mainly rely on machine learning based 

methods. These approaches process the input speech signal 

for feature extraction that are used to train a classifier to 

learn the underlying distortion model. In this paper, we 

present a framework to model replay attack distortion, and 

then use a non-learning-based method for replay attack 

detection on smart speakers. As shown in Figure 2, the 

microphone and speaker are modeled as non-linear devices. 

The Mic-Speaker-Mic (MSM) processing chain of the replay 

attack, therefore, is expected to introduce nonlinearity in the 

resulting replay attack signal generated using proposed 

Alexa drop-in attack.  

 

IV. REPLAY ATTACK DETECTION FRAMEWORK FOR 

SMART SPEAKERS 

 

We propose to use higher-order spectral analysis 

(HOSA)-based features to capture traces of replay attack 

distortion and thus detect them. Details of the proposed 

approach is provided in the following subsections.  

A. HOSA-based detection:  

The microphone/specific distortions such as harmonic–, 

intermodulation (IM)–, and difference-frequency (DF)–

distortions. The presence of harmonic components at the 

output of a nonlinear system with pure tone input is called 

as harmonic distortion. System nonlinearity can cause IM 

distortion in the output when a complex signal (e.g., speech) 

is applied at the input of a nonlinear system. It causes the 

output signal to be sums and differences of the input signals 

fundamental frequencies and their harmonics, that 

is, ,  , ,  etc. Given a nonlinear 

system is excited with sum of sinusoids with same 

magnitudes then system nonlinearity can cause difference-

frequency distortion at the output, e.g.,  , , 

, etc. 

It has been shown in [9] that microphone response can be 

approximated using following discrete time-invariant 

Hammerstein series model, 

 
The microphone (resp. speaker) nonlinearity introduces 

higher-order correlations at its output. The MSM processing 

chain, therefore, can be modeled using a higher-order 

nonlinear system. To capture it HOSA is used. Specifically, 

higher-order cumulants (resp. bicoherence) [8] is used to 

capture higher-order correlations. The bicoherence, , 

of a signal y[n] is a normalized version of 2-dimensional 

Fourier transform of the third-order cumulants, that is, 

 

 
Here,  denotes third-order cumulant of y[n], 

and is defined as, 

 
Here, E{.} denotes expectation. Sometimes, it is more 

convenient to use the normalized value of the bispectrum 

which is also known as bicoherence. This bicoherence is 

given by the following equation [8], 

 
It is important to highlight impact of nonlinearity on 

bicoherence spectrum. Consider a pair of sinusoids with 

frequencies and ; the IM distortion will result in a new 

signal at   whose magnitude is correlated to 

and , which will result in a high magnitude value in the 

bicoherence magnitude. Moreover, if the input sinusoids 

 
Figure 1: A scenario of Drop-in conferencing features of Echo device to generate replay attack on Google Home’s ASV system 

 

 

 
Figure 2: Replay attack modeling 



have phases,  and , then the phase of the nonlinearity 

induced intermodulation components  are . It 

is easy to see that the bicoherence has a zero phase and a 

bias towards  /2 may also occur due to harmonic auto-

correlations. In general, the average bicoherence magnitude 

would increase as the amount of quadratic phase-coupling 

(QPC) grows. It can be concluded that a replay attack is 

expected to: (i) increase in the magnitude of bicoherence for 

certain harmonics, and (ii) the phase of bicoherence bias 

towards 0 and/or  /2 at IM distortion frequencies. 

To capture traces of a replay attack, intermodulation 

distortion, QPC, Gaussianity test statistics, and linearity 

statistics can be used. For this paper, QPC, Gaussianity test 

statistics, and linearity statistics are used. The motivation 

behind focusing on intermodulation distortion is that it is 

more dominant in the cloned signal. To verify this claim, we 

estimated the bicoherence from both the speech and the 

corresponding cloned recordings. Shown in the left panel of 

Fig. 3 is the bicoherence magnitude plot of an audio 

recording and in the right panel is the bicoherence 

magnitude plot of the cloned recording. 

 
 

Figure 3: Shown in the top-left panel is the bicoherence magnitude plot for direct recording and top-right panel is the corresponding RA 

recoding. In the left-bottom panel is the phase bicoherence phase plot for the direct and RA recordings. 

 

It can be observed from Fig. 3 that there is significant 

intermodulation distortion spread in the both bicoherence 

magnitude and phase spectra replay-audio recordings.  

B.  Gaussianity test statistics and linearity test statistics-

based detection: 

Gaussianity and linearity statistics tests can also be used 

to confirm non-Gaussianity and nonlinearity in a given 

stationary time series. It is reasonable to assume that bona-

fide and relay attack speech signals are stationarity 

sequences. Moreover, bone-fide speech signal is also 

modeled as a non-Gaussian random sequence. The MSM 

processing chain of replay attack is expected to introduce 

nonlinearity in the resulting sequence. Let x(n) is non-

Gaussian speech sequence and y(n) is linear non-Gaussian 

sequence of replay attack. How do we know that x[n] is 

non-Gaussian and y[n] is non-Gaussina and nonlinear? To 

achieve this goal, Hinich’s non-skewness (also known as 

Gaussianity) and linearity tests [11] is used.  

These tests relay on the fact that if the 3rd-order cumulants 

of a stationary process are zero, then its bicoherence is zero, 

and non-zero bicoherence implies that process is non-

Gaussian. Moreover, if that the process is linear and non-

Gaussian, then the bicoherence is a nonzero constant. 

Following binary hypothesis testing can be used for non- 

Gaussianity and nonlinearity detection:   

H1 : the bispectrum of y(n) is nonzero and not constant; 

H0 : the bispectrum of y(n) is nonzero and constant. 

V. EXPERIMENTAL RESULTS  

For data collection, we used the Drop In Audio conferencing 

feature of the Amazon Alexa to replay voice recordings to 

the Google Home Speaker. We replayed a recording of 

“OK, Google, Turn on Office Lamp” via the audio-

conferenced Amazon Alexa from another home. In second 

settings, we turned on and off the lights using Google Home 

remotely using Drop-in features of Alexa, as described in 

Figure 01. A total of 12 original recordings were replayed 



twice a) once at 1st point of replay to obtain set of twelve 1st 

order replay audios; b) The 1st order replay audios were 

replayed again at 2nd point to get another set of 2nd order 

replay cloned audios (See Fig.1). Next, we performed 

following three experiments. 

 

Experiment 1: The goal of this experiment is to 

investigate impact of replay attack on bichorence magnitude 

and phase spectra. To this end, both the direct speech and 

RA recordings are segmented into frames of duration with a 

50% overlapping factor. Bicoherence is estimated from each 

audio segment using the direct (fft-based) approach [8]. The 

bicoherence is estimated with the following parameter 

settings: 1) 1024-point segment length, 2) 1024-point FFT 

length, 3) 50% overlap, and 4) Rao-Gabr optimal window 

for frequency domain smoothing. Shown in Fig. 4 are the 

bispectrum magnitude and phase plots estimated from direct 

speech and corresponding RA recordings for third 

successful attack.  

It can be observed from Fig. 4 that RA causes higher-order 

nonlinearity which is evident both in the magnitude and 

phase spectra. Similar, observations are made for other two 

other attacks.    

Experiment 2: The goal of this experiment is to 

investigate impact of replay attack on Gaussianity test 

statistics and linearity test statistics. To this end, test 

statistics is calculated from both bona-fide and replay 

speech signals. To achieve this goal, Hinch’s Gaussianity 

and linearity test statistics is calculated using glstat function 

available in the HOSA Matlab Toolbox [21], which can be 

used to estimate both Gaussianity test statistics and linearity 

test statistics. Frame-level Gaussianity test statistics and 

linearity test statistics are estimated from direct and RA 

attack recordings. It is observed that for all three RA 

recordings every non-silence frame failed Gaussianity and 

linearity test; whereas, all three direct recordings only less 

than 35% non-silence frames failed Gaussianity and 

linearity test. These findings confirm that RA introduce 

nonlinearity which can be used from RA detection. 

 

 

 

 
Figure 4: Shown in the top-left panel is the bicoherence magnitude plot for direct recording and top-right panel is the corresponding RA 

recoding for. In the left-bottom panel is the phase bicoherence phase plot for the direct and RA recordings. 

 

Experiment 3: The goal of this experiment is the 

investigate impact of 2nd–order replay attack. It is expected 

that of 2nd–order would even introduce higher level of 

nonlinearity and stronger QPC. To validate this claim, a 2nd-

order RA was recorded for all three attacks. Parametric QPC 

detection is applied on three direct speech, three 1st order 

RA, and three 2nd-order RA recordings. Shown in Fig 5 are 

the scatter graphs of frame-level QPC frequency locations 

estimated from all nine recordings.   

It can be observed from Fig. 5 that RA causes shift of QPC 

peaks. This observation is consistent for all 1st – and 2nd –

order replay attacks. Shift in QPC can be used for RA 

detection. 

VI. CONCLUSION 

This paper has demonstrated that the automatic speaker 

verification system used by Google home and Amazon Echo 

gadgets is vulnerable to replay attacks and thus all the skills 

and actions built on these platform, including many having 

critical financial data, could be exploited easily even by 

relatively less tech savvy impersonators. We performed 

vulnerability analysis and detection of replay attack using a) 

Drop-in features of Alexa by exploiting the replay attack at 



the Google Home, b) Alexa default services as well as skills 

developed using Alexa skills kit, c) Google home voice 

authentication. 
 Evaluation of proposed framework shows that HOSA-based 

features could be used to thwart replay attacks on Google 

Home and Amazon Alexa platform. More specifically, we 

demonstrated that RA causes higher-order nonlinearity 

which is evident both in the magnitude and phase spectra. 

Our results confirm our hypothesis that non-linearity 

introduced in RA can be used for its reliable detection 

 

 

 

 

 
Figure 5: Scatter graph of frame-level QPC locations estimated 

from direct speech, 1st–order RA, and 2nd–order RA recordings. 
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