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Abstract— Breast cancer is one of the deadliest cancers that
cause women death globally. Ultrasound imaging is one of the
commonly used diagnostic tools for detection and classification of
breast abnormalities. In the past decades, computer-aided
diagnosis (CAD) systems have been developed to improve the
accuracy of diagnosis made by radiologists. In particular,
automatic breast ultrasound (BUS) image segmentation is a
critical step for cancer diagnosis using CAD. However, accurate
tumor segmentation is still a challenge as a result of various
ultrasound artifacts. This paper developed a novel segmentation
framework based on deep learning architecture u-net, for breast
ultrasound imaging. U-net is a convolutional neural network
architecture designed for biology image segmentation with limited
training data. It was originally proposed for neuronal structure
segmentation in microscopy images. In our work, we modified and
improved the method for BUS image segmentation. On a database
of 221 BUS images, we first applied pre-processing techniques
including contrast enhancement and speckle reduction to improve
the image quality. Then the u-net model was trained and tested
through two-fold cross-validation. In order to increase the size of
training set, data augmentation strategies including rotation and
elastic deformation were applied. Finally, a post-processing step
that removed noisy region(s) from the segmentation result
finalized the whole method. The area error metrics, dice
coefficient, and similarity rate were calculated to evaluate the
performance on the testing sets. We compared our method with
another two fully automatic segmentation methods on the same
dataset. Our method outperformed the other two significantly
with the dice coefficient = 0.825 and similarity rate = 0.698.
Experiment results showed that the modified u-net method is more
robust and accurate in breast tumor segmentation for ultrasound
images.
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I. INTRODUCTION

Breast cancer is the most registered cancer among women,
and it is known to be one of the deadliest cancers that cause the
highest number of deaths globally [1]. It is still unclear to
scientists what is exactly the cause of breast cancer. Early
detection of the symptoms and signs is the primary way to
reduce deaths resulting from breast cancer. Breast ultrasound
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(BUS) imaging coupled with the computer-aided diagnosis
(CAD) system has turned out to be one of the most efficient and
effective methodologies for the detection of cancer because of
its painless, cost-effective, non-invasive, and non-radioactive
nature [2].

Computer-aided diagnosis (CAD) systems for B-mode
breast ultrasound have the ability to overcome intra- and inter-
variability that is associated with the diagnosis of breast cancer,
and clinical tests have indicated that they are at a position to
improve diagnosis accuracy of breast cancer [3, 4]. Automatic
BUS segmentation, which outlines the tumor region from the
rest of the tissue regions on a BUS image, is a critical step for a
CAD system. It has the ability to transform the conventional
subjective tumor evaluation into accurate and reproducible
tumor region measurements that are operator independent. As a
result of clinical demands, as well as its challenging nature,
automated BUS image segmentation research has been a center
of attention within the past two decades. The existing
approaches can be classified into fully automated or semi-
automated methods based on whether user interactions are
required. In semi-automatic approaches, the radiologist needs to
specify the region of interest (ROI), which may include the
lesion, an initial boundary, or a seed point in the lesion [11, 22].
On the other hand, fully automatic segmentation methods do not
require the intervention of users, and they normally model the
breast oncology and ultrasound knowledge as the preceding
constraints [20, 21]. However, the automation is usually
obtained with the sacrifice of accuracy and robustness of the
methods. Achieving fully automatic segmentation with
satisfactory accuracy is still a challenging and demanding task.

Deep learning (DL) methods, which are well known for their
capability to extract high level features, have effectively
addressed some of the critical problems in audio and vision
fields [5, 6, 7]. DL methods have the ability to directly learn
from the raw input, extract complex higher level attributes layer
by layer, and finally lead to excellent performance of
classification and segmentation. In the recent past, the interest in
the application of DL approaches for medical image processing
has been on the rise [8]. U-net [9] is a DL method that has a
specially  designed  U-shaped convolutional network
architecture. U-net was originally proposed for neuronal
structure segmentation in microscopy images, and it won the
ISBI challenge because of the precise and fast segmentation
result. Since u-net is good at handling situations with small



training datasets, its excellent performance on microscopy
images inspired us to apply it for BUS image segmentation. For
the past two decades, many of the BUS studies have achieved
excellent performances by utilizing their own private datasets
and different quantitative metrics, which makes effective and
objective comparisons among the approaches difficult.

In this paper, we developed a fully automatic segmentation
framework for breast tumors using u-net as its core. To the best
of our knowledge, this is the first time that u-net has been
utilized to solve a BUS image segmentation issue. It should be
noted that this method totally overrides the need to specify the
region of interest (ROI), initial boundary, or a seed point in the
lesion. U-net directly learned from the input images and
corresponding image segmentation ground truths. At the same
time, there is no requirement to tune any parameter for a dataset
as the method can be self-adjusted when applied on a difference
dataset.

The rest of the paper is organized as follows. A discussion
of each step of this work is presented in section II, including pre-
processing, the detailed structure of u-net, training/testing, and
post-processing. The experimental setup procedure is reviewed
in section III. Section IV reports and analyzes the experiment
results and conclusion is drawn in section V.

II. METHOD

A. Speckle Reduction

Speckle is defined as a multiplicative noise that is locally
correlated, which plagues imaging quality and affects medical
image analysis. Speckle reduction methods are used to eliminate
the speckle noise without tampering with the features of the
image. In this work, we employed the commonly used Speckle
Reducing Anisotropic Diffusion (SRAD) method [10], which is
tailored for ultrasonic and radar imaging applications.

B. Contrast Enhancement

In this work, histogram equalization has been used to
increase contrast. Fig. 1 provides an example of applying
histogram equalization to an image in the database. After
histogram equalization, the contrast between the tumor and
surrounding tissues became stronger, and the intensity values
were distributed more evenly throughout the whole intensity
range [0, 255].

C. Deep Convolutional Networks

Convolutional neural network (CNN) [14], is defined as
deep learning architecture that requires minimal preprocessing
and directly extracts features from image pixels. The latest
research in computer vision as well as pattern recognition has
indicated that the CNNs have the capability to solve exigent
tasks including object detection, segmentation, and
classification, exhibiting state-of-the art performances, CNNs
have been outstanding in various visual recognition
undertakings including [12, 13]. CNNs are made up of
subsampling and convolutional layers and have the ability to
identify patterns that cannot be presented by hand-crafted
features. Once a CNN is provided with enough labeled data, it is
able to produce an excellent hierarchical representation of the
raw input images. However, when CNNs are applied to solve
medical image problems, the shortage of enough labeled
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Fig. 1 (a)-(b) Original image from dataset and its corresponding histogram. (c)-
(d) Resultant image after contrast enhancement and its corresponding
histogram.

medical images is always an impediment for training a good
model.

D. U-net

U-net [9] is a convolutional network architecture designed
for precise and fast segmentation of images. The u-net’s
architecture consists of an expansive path on the right side and
a contracting path on the left side as illustrated in [9] (see Fig.
2). The contracting path on the left follows a typical convolution
network architecture. It is made up of two 3x3 convolution
layers. Each layer is reinforced by a 2x2 max pooling operation
that has stride 2 which is used for down-sampling. As well, each
layer is followed by a rectified linear unit (ReLU). The
expansive path on the right is made up of the following
components. (1) An up-sampling of the feature maps. (2) 2x2
convolution layers which reduce the number of feature channels
into half that is considered as a concatenation part. The feature
map of the concatenation part is correspondingly cropped from
the contracting path. (3) Two 3x3 convolution layers. (4) Each
layer is reinforced by a ReLU function.
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Fig. 2 U-net architecture [9].



In the final layer, mapping of the 64-dimensional feature vectors
to the pre-defined number of classes is done using a IxI
convolution layer. The network has 31,030,593 parameters
which need to be trained, and it is made up of 23 convolutional
layers.

The contraction phase increases the contextual information
that defines an object’s nature, and also reduces the spatial
dimension. On the other hand, the expansion phase is attributed
to the recovery of object details and dimensions. Further,
concatenating feature maps from the contraction phase aid the
expansion feature to recover the information about the location
of the respective object. Also, they help to acquire the general
information that combines the context and the localization. Such
information is essential for the generation of an accurate
segmentation map. U-net is considered as an end-to-end pipeline
that is able to preserve the full context of the input images. U-
net is able to process the entire image and produce the
segmentation map at the same time in the forward pass.

E. Post-processing

A post-processing step was used to remove noisy region(s)
from the u-net output. We noticed that for some cases u-net
detected not only the tumor region, but also some false positive
regions, such as the shadows (see Fig. 3). However, those false
positive regions were all smaller than the true tumor region, so
we could easily remove them by keeping only the largest region
in an output image. This is based on the assumption that each
image contains one tumor, which is true for our dataset. Fig. 5
illustrates an example of the post-processing step that removes
noisy region(s).

III. EXPERIMENTAL SETUP

A. Dataset

The dataset contains 221 BUS images. The images were
collected by the doctors from the Second Affiliated Hospital of
Harbin Medical University in China using a VIVID 7 (GE,
Horten, Norway) with a linear probe of 5-14 MHz. Each image
has a corresponding binary mask as the ground truth of the
segmentation, which was generated from the manual delineation
of the tumor by an experienced radiologist.

() (d)

Fig.3. (a) Raw Image. (b) Ground truth mask. (c) Output from u-net. (d) Result
after post-processing.

B. Data Augmentation

Deep neural networks often require a large amount of
training data in order to achieve satisfactory performance. When
it comes to medical imaging related tasks, the number of
available medical images is always limited; therefore, data
augmentation becomes a commonly used method to increase the
size of medical image dataset. Different augmentation strategies
were utilized in previous work, such as rotation, random crop,
contrast change, etc. In this work, we utilized the rotation by 90
degree each time and elastic deformation. Be noted that
augmentation was only done for the training dataset and the
testing dataset was not touched.

The elastic deformation was performed by defining a
normalized random displacement in the image space [23]. In the
scope of unsupervised feature learning, Dosovitskiy et al. [15]
depicted the essence of data augmentation when it comes to
learning invariance. Elastic deformations enable the network to
learn the invariance of the boundary between foreground and
background, under different deformations situations. This
strategy is useful for generating more close-to-real biomedical
images for segmentation task because natural deformation is
viewed as the most frequent variation in tissue, and realistic
deformations can be easily and efficiently simulated. In this
work, OpenCV library [16] was used to carry out image
deformation. Geometrical transformations associated with 2D
images are carried out by the getAffineTransform function
contained in the OpenCV library. It does not tamper with the
content of the image, but deforms the pixel grid and maps it into
the destined image. The parameter that controls the extent of
deformation was set between 0.08~1.0 to obtain different
deformation effect. In a bid to avoid sampling artifacts, the
mapping process began from the destination to the source and
not vice versa. For each original image in the training set, three
more deformed images were generated. Fig. 4 shows an example
of image deformation.

Besides elastic deformation, rotation was also used to
increase the size of the dataset. It is possible to preserve the
dimensions of the image once rotated at right angles when the
training images have a square shape. Each of the images are
rotated at an angle of 90 degrees in the clockwise direction with
respect to the initial one, which resulted in three new images
additional to the original image. Fig. 5 depicts an example of
image rotation.

C. Implementation

For convenience of image rotation and efficiency of network
training, images and their corresponding masks were resized to
128 x 128 pixels. The dataset was then divided randomly into
two groups, namely A and B, with each of the groups containing
50% of total images. Two-fold cross-validation was done by
using group A as a training, and group B as a testing set for the
first model; then the second model used group B for training and
group A for testing. The average performance of the two models
on the testing sets was reported and every sample was used as
testing data once.

Keras [17] coupled with TensorFlow backend [18] in Python
3.5 was used to implement the u-net. A personal computer
outfitted with a NVIDIA GoForse940MX graphics processing
unit (GPU) was used to conduct all the experiments. The Adam
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Fig. 5. (a) Original image and its mask. (b)—(d) Results after applying rotation and their corresponding masks.

Optimizer method was used to train the networks using the Dice
Coefficient (DICE) as measure for accuracy of the segmentation
procedure, whereas the minus DICE was used as a loss function
which was back propagated through the CNN. The batch size
was set to eight. Each of two the models were trained for 300
epochs, and the learning rate was initially set to 10>,

IV. EXPERIMENT RESULTS

A. Evaluation Metrics

The most commonly used metric in validating medical
image segmentation tasks is the dice coefficient (DICE) [19],
which is also regarded as the overlap index. DICE is computed
by directly comparing the ground truth and the automatic
segmentation results, through the measure of spatial overlap rate
between two binary images. The values range between 0 and 1,
with 0 representing no overlap and 1 representing a perfect
match. Equation (1) provides the Dice formula.

2% | Ay N Aa |
DICE =—— (1)
|Am| + |4aql

Besides DICE, we also computed area error metrics to
evaluate segmentation accuracy from other perspectives. The
true positive (TP) ratio, false positive (FP) ratio, false negative
(FN) ratio, as well as the similarity (SI) can be calculated as
following:

| A N Aa |
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The Am refers to the pixel set of the lesion region outlined
manually by the radiologist, whereas A, refers to the lesion
region automatically generated by the u-net model. Fig. 6 is an

illustration of the area that corresponds to TP, FP, as well as FN.
SI is an overall measure of the similarity between the two
contours.

B. General Performance

In this study, we developed an u-net based fully automatic
method for breast tumor segmentation. Different models were
trained with different data augmentation strategies. Table I
summarized the average performance of five models. The first
model did not use any data augmentation strategy but the plain
training set. The second model applied image rotation which
increased the size of the training set four times more than the
original set. The third model applied elastic deformation on the
original set, generating four times more images, whereas in the
fourth model, eight times more images were generated by
deformation. The best performance was achieved by the fifth
model where deformation was applied eight times then rotation
was applied four times on the deformed images, thus amplifying
the training set 32 times larger than the original set. Fig. 7
depicts three segmentation examples of the fifth model.

After 300 epochs, DICE of the fifth model reached 0.994 in
the training set and 0.8252 in the testing set. Training and testing
curves of DICE coefficient over epochs are provided in Fig. 8.
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Fig. 6. Areas corresponding to TP, FP and FN regions.
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Fig. 7. (a) Raw Images. (b) Images after pre-processing. (c) Ground truth masks. (d) Output from u-net. (e) Overlap between the automatic segmentation and

the ground truth annotation.

TABLE L THE PERFORMANCE OF FIVE U-NET MODELS WITH DIFFERENT
AUGMENTATION STRATEGIES
Model * | TP (%) FP (%) FN (%) SI (%) | DICE (%)

1 69.57 25.10 30.43 60 75

2 78.45 30.02 21.55 65.85 79.67
3 75.46 19.97 24.54 64.08 78.54
4 77.28 27.43 22.72 65.62 79.86
5 78.66 18.59 21.34 69.76 82.52

% Model 1 used no augmentation; model 2 used rotation; model 3 used deformation 4 times; model 4
used deformation 8 times; model 5 used 8 times deformation + rotation.

C. Comparison with Other BUS Segmentation Methods

Graph-based method is one of the BUS image segmentation
approaches that are commonly used. The graph-based
approaches have gained popularity due to their efficiency in the
energy-optimization and its flexibility. The graph cuts and the
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Fig. 8. Learning curves with DICE over epochs.

conditional mode (MRF-MAP-ICM) are the two main
frameworks in the graph-based methods. Xian et al. postulated
a fully automated framework for BUS image segmentation
whereby the graph cuts modeled the information derived from
both the space domain and frequency domain [20]. The
terminology, ‘likelihood energy’, modeled the position and pose
of a tumor, as well as the distribution of the intensity.

Learning-based methods are another major type of image
segmentation methods. Both the unsupervised and supervised
learning methods have been utilized to resolve BUS image
segmentation problems. The unsupervised methods are fast,
simple, and mostly used to generate candidate image regions as
pre-processing. Supervised methods are excellent at the
integration of features at various levels. Shan et al. [21] proposed
a learning-based method which was an extension to the fuzzy c-
means (FCM) clustering. The proposed neutrosophic 1-means
(NLM) clustering addressed the weak boundary predicament of
the BUS image segmentation by taking into consideration the
indeterminacy of membership.

We compared our method with the above two methods
which are also fully automatic. The source code of both methods
was obtained from the authors and the methods were evaluated
on the same dataset. Table Il summarized the performance of the
two methods, as well as the performance of our fifth model.
During our evaluation, all the parameters were adopted directly
from the original papers.

As Table II shows, our method outperforms the other two
methods in all the evaluation metrics significantly. The average
DICE reached 82.52% and average similarity reached 69.76%.
The method in [20] achieved better performance than that of the
method in [21] in general, but both of these two methods had
many failure cases on our dataset. We define a failure case as a
case when no reasonable contour of the tumor is detected. For
example: the detected tumor grows to the entire image, or the



TABLE II. PERFORMANCE COMPARISON WITH ANOTHER TWO METHODS

Method TP (%) | FP (%) | FN (%) | SI (%) |DICE (%)
Xian et al. [20] 60.06 52.54 39.94 49.79 61.54
Shan et al. [21] 71.62 197.60 28.38 45.25 57.19

Our proposed 78.66 18.59 21.34 69.76 82.52
method

detected contour includes a large area of non-tumor region, such
as shadows. We noticed the performance of the two methods
was much lower than that was reported in the original papers.
This could be caused by using a different dataset; our dataset is
larger and contains more difficult cases. Another reason could
be that these two methods are highly dependent on parameter
tuning, while we did not do any tuning but used their original
parameters obtained on their own datasets. Through the
comparison, u-net has shown its strong ability in detecting and
segmenting true lesion boundaries in breast ultrasound images,
as well as its superiority on self-learning and adjusting without
any manual parameter tuning requirement.

V. CONCLUSION

This study has developed a u-net based segmentation
framework for breast tumors using ultrasound images. With pre-
processing, data augmentation, u-net training, and post-
processing steps, an end-to-end fully automatic tumor
segmentation pipeline was developed. Using two-fold cross-
validation on a BUS dataset of 221 images, the method achieved
82.52% in term of average DICE. The method was compared
with two state-of-the-art BUS segmentation approaches which
were fully automatic too. Our method outperformed both of
these two methods significantly on the same dataset with 221
images. The experiment results demonstrated that u-net
architecture can be successfully applied to breast ultrasound
image segmentation problems with robust and improved
performance.

One of our future works is to investigate the current failure
cases with an attempt to customize the method to fix these cases.
These failure cases were counted into the current evaluation but
solving them will further improve the performance of the
method. Additionally, we plan to evaluate the performance of
our method to new dataset. Another direction is to apply the u-
net based framework to other medical imaging problems, such
as segmentation for 3D MRI or CT.
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