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Abstract— Breast cancer is one of the deadliest cancers that 

cause women death globally. Ultrasound imaging is one of the 
commonly used diagnostic tools for detection and classification of 
breast abnormalities. In the past decades, computer-aided 
diagnosis (CAD) systems have been developed to improve the 
accuracy of diagnosis made by radiologists. In particular, 
automatic breast ultrasound (BUS) image segmentation is a 
critical step for cancer diagnosis using CAD. However, accurate 
tumor segmentation is still a challenge as a result of various 
ultrasound artifacts. This paper developed a novel segmentation 
framework based on deep learning architecture u-net, for breast 
ultrasound imaging. U-net is a convolutional neural network 
architecture designed for biology image segmentation with limited 
training data. It was originally proposed for neuronal structure 
segmentation in microscopy images. In our work, we modified and 
improved the method for BUS image segmentation. On a database 
of 221 BUS images, we first applied pre-processing techniques 
including contrast enhancement and speckle reduction to improve 
the image quality. Then the u-net model was trained and tested 
through two-fold cross-validation. In order to increase the size of 
training set, data augmentation strategies including rotation and 
elastic deformation were applied. Finally, a post-processing step 
that removed noisy region(s) from the segmentation result 
finalized the whole method. The area error metrics, dice 
coefficient, and similarity rate were calculated to evaluate the 
performance on the testing sets. We compared our method with 
another two fully automatic segmentation methods on the same 
dataset. Our method outperformed the other two significantly 
with the dice coefficient = 0.825 and similarity rate = 0.698. 
Experiment results showed that the modified u-net method is more 
robust and accurate in breast tumor segmentation for ultrasound 
images.  
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I. INTRODUCTION  

Breast cancer is the most registered cancer among women, 
and it is known to be one of the deadliest cancers that cause the 
highest number of deaths globally [1]. It is still unclear to 
scientists what is exactly the cause of breast cancer. Early 
detection of the symptoms and signs is the primary way to 
reduce deaths resulting from breast cancer. Breast ultrasound  
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(BUS) imaging coupled with the computer-aided diagnosis 
(CAD) system has turned out to be one of the most efficient and 
effective methodologies for the detection of cancer because of 
its painless, cost-effective, non-invasive, and non-radioactive 
nature [2].  

Computer-aided diagnosis (CAD) systems for B-mode 
breast ultrasound have the ability to overcome intra- and inter- 
variability that is associated with the diagnosis of breast cancer, 
and clinical tests have indicated that they are at a position to 
improve diagnosis accuracy of breast cancer [3, 4]. Automatic 
BUS segmentation, which outlines the tumor region from the 
rest of the tissue regions on a BUS image, is a critical step for a 
CAD system. It has the ability to transform the conventional 
subjective tumor evaluation into accurate and reproducible 
tumor region measurements that are operator independent. As a 
result of clinical demands, as well as its challenging nature, 
automated BUS image segmentation research has been a center 
of attention within the past two decades. The existing 
approaches can be classified into fully automated or semi-
automated methods based on whether user interactions are 
required. In semi-automatic approaches, the radiologist needs to 
specify the region of interest (ROI), which may include the 
lesion, an initial boundary, or a seed point in the lesion [11, 22]. 
On the other hand, fully automatic segmentation methods do not 
require the intervention of users, and they normally model the 
breast oncology and ultrasound knowledge as the preceding 
constraints [20, 21]. However, the automation is usually 
obtained with the sacrifice of accuracy and robustness of the 
methods. Achieving fully automatic segmentation with 
satisfactory accuracy is still a challenging and demanding task.  

Deep learning (DL) methods, which are well known for their 
capability to extract high level features, have effectively 
addressed some of the critical problems in audio and vision 
fields [5, 6, 7]. DL methods have the ability to directly learn 
from the raw input, extract complex higher level attributes layer 
by layer, and finally lead to excellent performance of 
classification and segmentation. In the recent past, the interest in 
the application of DL approaches for medical image processing 
has been on the rise [8]. U-net [9] is a DL method that has a 
specially designed U-shaped convolutional network 
architecture. U-net was originally proposed for neuronal 
structure segmentation in microscopy images, and it won the 
ISBI challenge because of the precise and fast segmentation 
result. Since u-net is good at handling situations with small 



training datasets, its excellent performance on microscopy 
images inspired us to apply it for BUS image segmentation. For 
the past two decades, many of the BUS studies have achieved 
excellent performances by utilizing their own private datasets 
and different quantitative metrics, which makes effective and 
objective comparisons among the approaches difficult. 

In this paper, we developed a fully automatic segmentation 
framework for breast tumors using u-net as its core. To the best 
of our knowledge, this is the first time that u-net has been 
utilized to solve a BUS image segmentation issue. It should be 
noted that this method totally overrides the need to specify the 
region of interest (ROI), initial boundary, or a seed point in the  
lesion. U-net directly learned from the input images and 
corresponding image segmentation ground truths. At the same 
time, there is no requirement to tune any parameter for a dataset 
as the method can be self-adjusted when applied on a difference 
dataset. 

The rest of the paper is organized as follows. A discussion 
of each step of this work is presented in section II, including pre-
processing, the detailed structure of u-net, training/testing, and 
post-processing. The experimental setup procedure is reviewed 
in section III. Section IV reports and analyzes the experiment 
results and conclusion is drawn in section V. 

II. METHOD 

A. Speckle Reduction  

Speckle is defined as a multiplicative noise that is locally 
correlated, which plagues imaging quality and affects medical 
image analysis. Speckle reduction methods are used to eliminate 
the speckle noise without tampering with the features of the 
image. In this work, we employed the commonly used Speckle 
Reducing Anisotropic Diffusion (SRAD) method [10], which is 
tailored for ultrasonic and radar imaging applications.  

B. Contrast Enhancement  

In this work, histogram equalization has been used to 
increase contrast. Fig. 1 provides an example of applying 
histogram equalization to an image in the database. After 
histogram equalization, the contrast between the tumor and 
surrounding tissues became stronger, and the intensity values 
were distributed more evenly throughout the whole intensity 
range [0, 255].  

C. Deep Convolutional Networks 

 Convolutional neural network (CNN) [14], is defined as 
deep learning architecture that requires minimal preprocessing 
and directly extracts features from image pixels. The latest 
research in computer vision as well as pattern recognition has 
indicated that the CNNs have the capability to solve exigent 
tasks including object detection, segmentation, and 
classification, exhibiting state-of-the art performances, CNNs 
have been outstanding in various visual recognition 
undertakings including [12, 13]. CNNs are made up of 
subsampling and convolutional layers and have the ability to 
identify patterns that cannot be presented by hand-crafted 
features. Once a CNN is provided with enough labeled data, it is 
able to produce an excellent hierarchical representation of the 
raw input images. However, when CNNs are applied to solve 
medical image problems, the shortage of enough labeled  

Fig. 1  (a)-(b) Original image from dataset and its corresponding histogram. (c)-
(d) Resultant image after contrast enhancement and its corresponding 
histogram. 

medical images is always an impediment for training a good 
model. 

D. U-net 

U-net [9] is a convolutional network architecture designed 
for precise and fast segmentation of images. The u-net’s 
architecture consists of an expansive path on the right side and 
a contracting path on the left side as illustrated in [9] (see Fig. 
2). The contracting path on the left follows a typical convolution 
network architecture. It is made up of two 3x3 convolution 
layers. Each layer is reinforced by a 2x2 max pooling operation 
that has stride 2 which is used for down-sampling. As well, each 
layer is followed by a rectified linear unit (ReLU).  The 
expansive path on the right is made up of the following 
components. (1) An up-sampling of the feature maps. (2) 2x2 
convolution layers which reduce the number of feature channels 
into half that is considered as a concatenation part. The feature 
map of the concatenation part is correspondingly cropped from 
the contracting path. (3) Two 3x3 convolution layers. (4) Each 
layer is reinforced by a ReLU function.  

 
Fig. 2  U-net architecture [9].  



In the final layer, mapping of the 64-dimensional feature vectors 
to the pre-defined number of classes is done using a 1x1 
convolution layer. The network has 31,030,593 parameters 
which need to be trained, and it is made up of 23 convolutional 
layers.  

The contraction phase increases the contextual information 
that defines an object’s nature, and also reduces the spatial 
dimension. On the other hand, the expansion phase is attributed 
to the recovery of object details and dimensions. Further, 
concatenating feature maps from the contraction phase aid the 
expansion feature to recover the information about the location 
of the respective object. Also, they help to acquire the general 
information that combines the context and the localization. Such 
information is essential for the generation of an accurate 
segmentation map. U-net is considered as an end-to-end pipeline 
that is able to preserve the full context of the input images. U-
net is able to process the entire image and produce the 
segmentation map at the same time in the forward pass. 

E. Post-processing 

A post-processing step was used to remove noisy region(s) 
from the u-net output. We noticed that for some cases u-net 
detected not only the tumor region, but also some false positive 
regions, such as the shadows (see Fig. 3). However, those false 
positive regions were all smaller than the true tumor region, so 
we could easily remove them by keeping only the largest region 
in an output image. This is based on the assumption that each 
image contains one tumor, which is true for our dataset. Fig. 5 
illustrates an example of the post-processing step that removes 
noisy region(s). 

III. EXPERIMENTAL SETUP 

A. Dataset  

The dataset contains 221 BUS images. The images were 
collected by the doctors from the Second Affiliated Hospital of 
Harbin Medical University in China using a VIVID 7 (GE, 
Horten, Norway) with a linear probe of 5-14 MHz. Each image 
has a corresponding binary mask as the ground truth of the 
segmentation, which was generated from the manual delineation 
of the tumor by an experienced radiologist.  

                   
Fig.3.   (a) Raw Image. (b) Ground truth mask. (c) Output from u-net. (d) Result 

after post-processing.   

B. Data Augmentation 

Deep neural networks often require a large amount of 
training data in order to achieve satisfactory performance. When 
it comes to medical imaging related tasks, the number of 
available medical images is always limited; therefore, data 
augmentation becomes a commonly used method to increase the 
size of medical image dataset. Different augmentation strategies 
were utilized in previous work, such as rotation, random crop, 
contrast change, etc. In this work, we utilized the rotation by 90 
degree each time and elastic deformation. Be noted that 
augmentation was only done for the training dataset and the 
testing dataset was not touched.  

The elastic deformation was performed by defining a 
normalized random displacement in the image space [23]. In the 
scope of unsupervised feature learning, Dosovitskiy et al. [15] 
depicted the essence of data augmentation when it comes to 
learning invariance. Elastic deformations enable the network to 
learn the invariance of the boundary between foreground and 
background, under different deformations situations. This 
strategy is useful for generating more close-to-real biomedical 
images for segmentation task because natural deformation is 
viewed as the most frequent variation in tissue, and realistic 
deformations can be easily and efficiently simulated. In this 
work, OpenCV library [16] was used to carry out image 
deformation. Geometrical transformations associated with 2D 
images are carried out by the getAffineTransform function 
contained in the OpenCV library. It does not tamper with the 
content of the image, but deforms the pixel grid and maps it into 
the destined image. The parameter that controls the extent of 
deformation was set between 0.08~1.0 to obtain different 
deformation effect. In a bid to avoid sampling artifacts, the 
mapping process began from the destination to the source and 
not vice versa. For each original image in the training set, three 
more deformed images were generated. Fig. 4 shows an example 
of image deformation. 

Besides elastic deformation, rotation was also used to 
increase the size of the dataset. It is possible to preserve the 
dimensions of the image once rotated at right angles when the 
training images have a square shape. Each of the images are 
rotated at an angle of 90 degrees in the clockwise direction with 
respect to the initial one, which resulted in three new images 
additional to the original image. Fig. 5 depicts an example of 
image rotation. 

C. Implementation  

For convenience of image rotation and efficiency of network 
training, images and their corresponding masks were resized to 
128 x 128 pixels. The dataset was then divided randomly into 
two groups, namely A and B, with each of the groups containing 
50% of total images. Two-fold cross-validation was done by 
using group A as a training, and group B as a testing set for the 
first model; then the second model used group B for training and 
group A for testing. The average performance of the two models 
on the testing sets was reported and every sample was used as 
testing data once.   

Keras [17] coupled with TensorFlow backend [18] in Python 
3.5 was used to implement the u-net. A personal computer 
outfitted with a NVIDIA GoForse940MX graphics processing 
unit (GPU) was used to conduct all the experiments. The Adam 



Optimizer method was used to train the networks using the Dice 
Coefficient (DICE) as measure for accuracy of the segmentation 
procedure, whereas the minus DICE was used as a loss function 
which was back propagated through the CNN. The batch size 
was set to eight. Each of two the models were trained for 300 
epochs, and the learning rate was initially set to 10-5. 

IV. EXPERIMENT RESULTS 

A. Evaluation Metrics  

 The most commonly used metric in validating medical 
image segmentation tasks is the dice coefficient (DICE) [19], 
which is also regarded as the overlap index. DICE is computed 
by directly comparing the ground truth and the automatic 
segmentation results, through the measure of spatial overlap rate 
between two binary images. The values range between 0 and 1, 
with 0 representing no overlap and 1 representing a perfect 
match. Equation (1) provides the Dice formula.  

  DICE = 
ଶ∗ | ஺೘ ∩ ஺௔ |

|஺೘| ା |஺ೌ|
                                    

Besides DICE, we also computed area error metrics to 
evaluate segmentation accuracy from other perspectives. The 
true positive (TP) ratio, false positive (FP) ratio, false negative 
(FN) ratio, as well as the similarity (SI) can be calculated as 
following: 

TP area ratio = 
| ஺೘ ∩ ஺௔ |

|஺೘|
(2)                 

 FP area ratio  = 
| ஺೘ ∪ ஺௔ି ೘ |

|஺೘|
                         (3)                 

              FN area ratio =1 - TP area ratio                             (4) 

              SI = 
| ஺೘ ∩ ஺௔ |

|஺೘ ∪ ஺ೌ|
                                                     (5) 

The Am refers to the pixel set of the lesion region outlined 
manually by the radiologist, whereas Aa refers to the lesion 
region automatically generated by the u-net model. Fig. 6 is an 

illustration of the area that corresponds to TP, FP, as well as FN. 
SI is an overall measure of the similarity between the two 
contours. 

B. General Performance  

In this study, we developed an u-net based fully automatic 
method for breast tumor segmentation. Different models were 
trained with different data augmentation strategies. Table I 
summarized the average performance of five models. The first 
model did not use any data augmentation strategy but the plain 
training set. The second model applied image rotation which 
increased the size of the training set four times more than the 
original set. The third model applied elastic deformation on the 
original set, generating four times more images, whereas in the 
fourth model, eight times more images were generated by 
deformation. The best performance was achieved by the fifth 
model where deformation was applied eight times then rotation 
was applied four times on the deformed images, thus amplifying 
the training set 32 times larger than the original set. Fig. 7 
depicts three segmentation examples of the fifth model. 

After 300 epochs, DICE of the fifth model reached 0.994 in 
the training set and 0.8252 in the testing set. Training and testing 
curves of DICE coefficient over epochs are provided in Fig. 8. 

                
Fig. 6.   Areas corresponding to TP, FP and FN regions. 

Fig. 4.   (a) Original image and its mask. (b)–(d) Results after applying elastic deformation and their corresponding masks.   

Fig. 5.   (a) Original image and its mask. (b)–(d) Results after applying rotation and their corresponding masks.   



TABLE I.  THE PERFORMANCE OF FIVE U-NET MODELS WITH DIFFERENT 
AUGMENTATION STRATEGIES 

Model a TP (%) FP (%) FN (%) SI (%) DICE (%) 

1 69.57 25.10 30.43 60 75 

2 78.45 30.02 21.55 65.85 79.67 

3 75.46 19.97 24.54 64.08 78.54 

4 77.28 27.43 22.72 65.62 79.86 

5 78.66 18.59 21.34 69.76 82.52 

a. Model 1 used no augmentation; model 2 used rotation; model 3 used deformation 4 times; model 4 

used deformation 8 times; model 5 used 8 times deformation + rotation. 

C. Comparison with Other BUS Segmentation Methods 

Graph-based method is one of the BUS image segmentation 
approaches that are commonly used. The graph-based 
approaches have gained popularity due to their efficiency in the 
energy-optimization and its flexibility. The graph cuts and the 
Markov random field – Maximum a posteriori – Iterated 

 
Fig. 8.   Learning curves with DICE over epochs.  

conditional mode (MRF-MAP-ICM) are the two main 
frameworks in the graph-based methods. Xian et al. postulated 
a fully automated framework for BUS image segmentation 
whereby the graph cuts modeled the information derived from 
both the space domain and frequency domain [20]. The 
terminology, ‘likelihood energy’, modeled the position and pose 
of a tumor, as well as the distribution of the intensity.  

Learning-based methods are another major type of image 
segmentation methods. Both the unsupervised and supervised 
learning methods have been utilized to resolve BUS image 
segmentation problems. The unsupervised methods are fast, 
simple, and mostly used to generate candidate image regions as 
pre-processing. Supervised methods are excellent at the 
integration of features at various levels. Shan et al. [21] proposed 
a learning-based method which was an extension to the fuzzy c-
means (FCM) clustering. The proposed neutrosophic l-means 
(NLM) clustering addressed the weak boundary predicament of 
the BUS image segmentation by taking into consideration the 
indeterminacy of membership. 

We compared our method with the above two methods 
which are also fully automatic. The source code of both methods 
was obtained from the authors and the methods were evaluated 
on the same dataset. Table II summarized the performance of the 
two methods, as well as the performance of our fifth model. 
During our evaluation, all the parameters were adopted directly 
from the original papers.  

As Table II shows, our method outperforms the other two 
methods in all the evaluation metrics significantly. The average 
DICE reached 82.52% and average similarity reached 69.76%. 
The method in [20] achieved better performance than that of the 
method in [21] in general, but both of these two methods had 
many failure cases on our dataset. We define a failure case as a 
case when no reasonable contour of the tumor is detected. For 
example: the detected tumor grows to the entire image, or the  

Fig. 7.   (a) Raw Images. (b) Images after pre-processing. (c) Ground truth masks. (d) Output from u-net. (e) Overlap between the automatic segmentation and 
the ground truth annotation.   



TABLE II.  PERFORMANCE COMPARISON WITH ANOTHER TWO METHODS  

Method TP (%) FP (%) FN (%) SI (%) DICE (%) 

Xian et al. [20] 60.06 52.54 39.94 49.79 61.54 

Shan et al. [21] 71.62 197.60 28.38 45.25 57.19 

Our proposed 
method 

78.66 18.59 21.34 69.76 82.52 

detected contour includes a large area of non-tumor region, such 
as shadows. We noticed the performance of the two methods 
was much lower than that was reported in the original papers. 
This could be caused by using a different dataset; our dataset is 
larger and contains more difficult cases. Another reason could 
be that these two methods are highly dependent on parameter 
tuning, while we did not do any tuning but used their original 
parameters obtained on their own datasets. Through the 
comparison, u-net has shown its strong ability in detecting and 
segmenting true lesion boundaries in breast ultrasound images, 
as well as its superiority on self-learning and adjusting without 
any manual parameter tuning requirement. 

V. CONCLUSION  

This study has developed a u-net based segmentation 
framework for breast tumors using ultrasound images. With pre-
processing, data augmentation, u-net training, and post-
processing steps, an end-to-end fully automatic tumor 
segmentation pipeline was developed. Using two-fold cross-
validation on a BUS dataset of 221 images, the method achieved 
82.52% in term of average DICE. The method was compared 
with two state-of-the-art BUS segmentation approaches which 
were fully automatic too. Our method outperformed both of 
these two methods significantly on the same dataset with 221 
images. The experiment results demonstrated that u-net 
architecture can be successfully applied to breast ultrasound 
image segmentation problems with robust and improved 
performance.  

One of our future works is to investigate the current failure 
cases with an attempt to customize the method to fix these cases. 
These failure cases were counted into the current evaluation but 
solving them will further improve the performance of the 
method. Additionally, we plan to evaluate the performance of 
our method to new dataset. Another direction is to apply the u-
net based framework to other medical imaging problems, such 
as segmentation for 3D MRI or CT.  
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