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The subleading power of the scattering amplitude for deeply-virtual Compton scattering (DVCS) off the
nucleon contains leading-twist and twist-3 generalized parton distributions (GPDs). We point out that in
DVCS, at twist-3 accuracy, one cannot address any individual twist-3 GPD. This complication appears on top
of the deconvolution issues familiar from the twist-2 DVCS amplitude. Accessible are exclusively linear
combinations involving both vector and axial-vector twist-3 GPDs. This implies, in particular, that the (kinetic)
orbital angular momentum of quarks can hardly be constrained by twist-3 DVCS observables. Moreover, using
the quark-target model, we find that twist-3 GPDs can be discontinuous. The discontinuities however cancel in
the DVCS amplitude, which further supports the hypothesis of factorization at twist-3 accuracy.
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I. INTRODUCTION

It has been known for more than two decades that deeply-
virtual Compton scattering (DVCS) off the nucleon, i.e., the
process y*N — yN, opens up new avenues for exploring the
parton structure of the nucleon [1-4]. It was found that
the scattering amplitude of DVCS can be expressed in terms
of generalized parton distributions (GPDs) [1-6], a novel
type of functions which not only contain all the physics
encoded in ordinary parton distributions and in form factors
but also genuine new information—see Refs. [7-13] for
reviews on GPDs. In particular, through leading-twist
(twist-2) GPDs one can access the angular momentum of
quarks and gluons inside hadrons [2], and explore the three-
dimensional parton structure of hadrons [14—17].

In order to extract twist-2 GPDs from data on DVCS
one must have sufficient control over power corrections to
the leading-twist amplitude. This applies more so if the
(negative) squared four-momentum of the virtual photon is
not very large, as is often the case in past and scheduled
experiments—see for instance Refs. [18-24]. Quite some
effort has therefore been devoted to get a detailed
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understanding of effects in DVCS that appear at twist-3
level and beyond [25-49].

Power corrections to the leading-twist DVCS amplitude
also contain genuine new information about the hadron
structure. In fact, at twist-3 level in DVCS off the nucleon
eight twist-3 GPDs show up [25-27,30,33]. So far four
major motivations for measuring twist-3 GPDs have been
put forward in the literature. First, there is a relation
between one particular twist-3 GPD and the orbital angular
momentum (OAM) of quarks inside a longitudinally
polarized nucleon [26]. In the notation of Ref. [41] one
has (for each quark flavor g)

!
Lﬁin:—/ dxxGi(x,E=0,1=0), (1)
-1

where the twist-3 GPD G, depends on the (average)
longitudinal quark momentum x, as well as the longitudinal
() and total (f) momentum transfer to the nucleon. Note
that in Eq. (1) enters the so-called kinetic OAM inn as
defined by Ji in Ref. [2], which is to be distinguished from
the canonical OAM LY, of Jaffe and Manohar [50]. More
information on the spin decomposition of the nucleon can
be found in recent review articles [51-53] and in Ref. [54],
where a physical interpretation of the difference between
Ll and L, was given. According to [55], L, can also
be related to twist-3 off-forward matrix elements that are
defined through quark-gluon-quark operators. But here we
concentrate on L. and the GPD G, which appears in the
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parametrization of the off-forward quark-quark correlator
and was shown to enter the twist-3 amplitude of DVCS. The
relation in (1) can be considered an alternative to Ji’s relation
between Lﬁin and twist-2 GPDs [2]. At the very least it could
be used for cross-checks. Another motivation for exploring
twist-3 GPDs is a relation to the (average) transverse force
acting on a quark in a polarized nucleon [56,57]. Third,
certain spin-orbit correlations in the nucleon can be
expressed through twist-3 GPDs [58-60]. Fourth, in
Refs. [61,62] some relations have been obtained between
twist-3 GPDs and generalized transverse momentum depen-
dent parton distributions [63—-65], which in principle allow
one to constrain the latter functions through the former.

In this work we show that one cannot address any
individual twist-3 GPD via the DVCS process. (Note that
here we focus exclusively on GPDs of quarks. Gluon GPDs,
which enter the DVCS amplitude at higher order in the
strong coupling, can also play an important role for the
DVCS phenomenology, especially at higher energies—see
for instance Ref. [66].) Irrespective of the parametrization of
the GPDs and the (polarization) observable under discus-
sion, in DVCS one can exclusively access linear combina-
tions that involve both vector and axial-vector twist-3 GPDs.
This implies, in particular, that in DVCS one cannot measure
Lzm through the twist-3 GPD G,, which is in contrast to
some hopes/claims expressed in the literature—see for
instance Refs. [26,30,67-69]. One might therefore resort
to other processes, such as double DVCS, where disconti-
nuities in the GPDs do not appear to cause any problem [28].

Irrespective of whether individual twist-3 GPDs can be
measured, it is important to explore QCD factorization of
the DVCS amplitude at twist-3 accuracy. The leading-order
(LO) expression of the DVCS amplitude, a priori, only
provides limited insight in that regard. Nevertheless, the LO
result already shows that factorization is endangered if the
GPDs are discontinuous at x = +¢£. Various studies have
used the Wandzura-Wilczek (WW) approximation [70]
for twist-3 GPDs and the twist-3 DVCS amplitude
[27-33,35,36,38,40-43]. The WW approximation does
actually lead to discontinuous twist-3 GPDs [28-31], as
we make explicit below for all twist-3 GPDs of the nucleon.'
However, the discontinuities cancel between different terms
in the DVCS amplitude [28-31] so that one has factorization
at LO. In Ref. [42], part of the next-to-leading-order (NLO)
amplitude for DVCS off the nucleon was computed in the
WW approximation and found to factorize as well.

One may wonder if discontinuities of twist-3 GPDs are
an artifact of the WW approximation. However, we show
that also in the quark-target model (QTM) twist-3 GPDs are
discontinuous. This result again brings up the question

Tn Refs. [71,72] a discontinuous result for the twist-2 GPD H
of the pion was found in the Nambu—Jona-Lasinio model. This
model calculation is the only one we are aware of leading to a
discontinuous twist-2 GPD.

about factorization of the DVCS amplitude at twist-3
accuracy. But, like in the case of the WW approximation,
the linear combinations of GPDs that enter the DVCS
amplitude are well behaved. This finding supports the
hypothesis of factorization of the twist-3 DVCS amplitude.
On the other hand, it also shows that a phenomenological
study of twist-3 DVCS observables where individual GPDs
are varied independently is not practicable, because of the
delicate cancellation of discontinuities which occurs in the
linear combinations of twist-3 GPDs.

The remainder of the paper is organized as follows:
In Sec. II, we recall the Compton tensor for DVCS at
twist-3 accuracy and derive the linear combinations of
twist-3 GPDs that can be addressed. In Sec. III, we give
a brief discussion about twist-3 GPDs in the WW approxi-
mation, while Sec. IV contains our results for twist-3 GPDs
in the QTM. We summarize the work in Sec. V. Relations
between certain Dirac bilinears and between different para-
metrizations of twist-3 GPDs, as well as more details about
the WW approximation, can be found in the Appendices.

II. DVCS AMPLITUDE OF THE NUCLEON
AT TWIST-3 ACCURACY

We now discuss the amplitude of virtual Compton
scattering off the nucleon,

v'(q) + N(p) = r(d") + N(p'), (2)

where the four-momenta of the particles are indicated,
while spin labels are omitted for brevity. One has
p?> = p'?> = m?, with m denoting the nucleon mass, and
t=(p'— p)>. We are considering a reference frame in
which the average nucleon momentum P =} (p’ + p) and
the momentum of the virtual photon have no transverse
components. This allows one to write [7,42]

P:n*—i—m?n,
L@
qg=-2En —1—4—5/11,
A=p —p=-2n"+Em’n+A,, (3)

with Q> = —¢°. According to (3), the four-momenta P and
q specify two lightlike vectors (n, n*) which satisfy

n-n=0, n*-n* =0, n-n*=1. (4)
This also implies P? = in* = m* — . We define the trans-
verse metric tensor and antisymmetric epsilon tensor
through

g =g —n'n* —n'n*, &Y = e"”“ﬁnan;, (5)

where ¢, is the totally antisymmetric Levi-Civita tensor
(€0123 = +1). By means of ¢|" one can introduce transverse
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four-vectors.” In particular, the four-vector of the transverse
momentum transfer of the nucleon in Eq. (3) is given by

A =d¢A,, with A7 = —A2 . For the variables & and & in
(3) one has

£+0(1/0%)., (6)

&= (1/¢%. &=

72—
where xz = Q%/(2p - q). The exact expressions for the
correction terms in (6) can be found in Refs. [7,42]. We also
note that to twist-3 accuracy one can use

P =n*,
Q2
= _2EP 4+ =
q ¢ +45n,
A=p' —p=-2P+A, (7)

instead of the equations in (3) [30,33].

The scattering amplitude for DVCS follows from the
Compton tensor 7#, which in turn is defined through the
matrix element of the time-ordered product of two electro-
magnetic currents,

T — / dxe 0 (P | T ()2 (O)]lp), (8)

where the index p (v) refers to the virtual (real) photon. This
Compton tensor at twist-3 accuracy has been studied by
several groups using different methods [25-27,29,30,33,36].
In the generalized Bjorken limit Q> — o0, 2p - ¢ — oo, with
xp constant, and |¢| < Q?, the tensor T* of the nucleon,
through O(1/Q) accuracy, takes the form [30,33]°

=2 /_ : de— w L DA;>nﬂFﬁ(x EA)CH(x, &) + (—gvf - UA})is’ianﬂFﬁ(x, £ A)C(x.8)
4zPy" PrAS :
DRI (i ) (Fulo £ AYC (1.0 = g P £, 4)C (1) )

with the matrix elements F* and F*, for a quark flavor ¢, defined as

odl _. A A A A
P d) = [T el (5n)rw(5m-gn)a(=5n o) (10)

- dl
Fo(x, £, A) =
wen)= (8

In Egs. (10) and (11), W(2 n,—4
coefficient functions in (9) are

C*(x.§) =

A
e (p'lg <n

Jrrw(Gn=5n)a(=50) 1) (1)

) indicates a straight Wilson line which ensures gauge invariance of the operators. The LO

! (12)

x—E+ie

+
x+&—

The expression in Eq. (9) agrees with the result in Refs. [27,36].
Up to and including twist-3 effects, the correlators in Egs. (10) and (11) can be decomposed into six vector GPDs and six
axial-vector GPDs, respectively. Using the definition of GPDs from Ref. [41], one has

ht et b + nt
Fﬂ—PﬂP—H+P”FE+A 15 —G + W (H+E+G,)+ ALP+G3+ALP+G4 (13)
" ﬂil ﬂ~ b ¢ W (H + G h
P —PP—H+P P—+E+A 5 —(E +G1)+hl(H+G2)+ALP+Gg+ALP+G4, (14)

*The light-cone plus momentum and minus-momentum of an arbitrary four-vector v are defined according to v+ = \/% (10 + %) =

0 1

Ptn-vand v- —\/-(1; — %) = F=n" - v, respectively.

*In Eq. (9), we have omitted flavor labels for F* and F*, and the overall sum Z e

elementary charge.

, where e, is the quark charge in units of the
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where, as is well known, the GPDs H, E (H, E) fully
specify the leading-twist contribution of the correlator F*
(F*). The (new) vector GPDs G, ..., G, and axial-vector
GPDs G, ..., G4 enter at twist-3 accuracy. In Eqgs. (13) and
(14), we have omitted the arguments of F*, F* and the
GPDs, and we made use of the Dirac bilinears [27]

W =a(p)r'u(p). h* = a(p')y'ysu(p).

o’ A AX
H — 1 n__~=v et = —
e =i 2m ulp) ¢ T m b,
b =u(p")u(p), b =u(p)ysu(p), (15)

and the (transverse) four-vector A, = ie’”A,. [For later
convenience we also introduce #* = u(p')ic* u(p), with
o = L[y*,y"]. Relations between different Dirac bilinears
are summarized in Appendix A.] Alternative definitions of
twist-3 GPDs were introduced in Refs. [36,40] and in
Ref. [64]. In Appendix B we give relations between the
different sets of twist-3 GPDs.

Twist-3 GPDs enter in the third term of the rhs in Eq. (9)
only. This term is suppressed for transversely polarized
virtual photons [28-30]. The DVCS amplitude at twist-3
accuracy therefore contains twist-3 GPDs for longitudinally
polarized virtual photons only, while for transverse photon
|

/ L dx[FY C(x, &) — et S C(x,©)]
-1

polarization the amplitude is entirely determined by twist-2
GPDs. With the longitudinal polarization vector [33]

1 2
& = 7 <2§P” + %nﬂ), (16)

one readily finds

2 1 -
e, TH = 5‘5 /_ (P C (1) = et P C (5,9

26 [1 N 1
=22 | dx|(FY —iet FO) ———
Q/_1 x|:(J_ l€]q L)x_gg_’_ig
U La 1
P D . (1)

where we have neglected a power-suppressed term. [In the
next section we will make use of the last line in (17).] Since
our main interest is in the contribution of twist-3 GPDs to
the DVCS amplitude we focus in the following on the
expression in Eq. (17). Using the parametrizations in
Egs. (13) and (14), and the relations in (Al) and (A3)
one can write the integral in (17) as

! b o A
— L[t Giet 4 B4 G0 e (4 B4 GCt - 2l (B4 G - i+ o))
h* m . . -
+A1P+(G3C+—mz(E+G1)C_—G4c—)
A R S [P U
JFAHD—+ G,C +8§m2(E+G1)C +2—§(H+GZ)C —-G;C ). (18)

Equation (18) shows explicitly that, at twist-3 accuracy, twist-
3 GPDs enter through four independent structures only. This
result is obviously independent of the polarization of the
particles in the DVCS process. In particular, one always has
linear combinations of both vector and axial-vector twist-3
GPDs. Using different parametrizations of the GPDs will
therefore not alter the situation. While this general finding is
implied by previous work [26,27,30,36], to the best of our
knowledge it has never been made explicit through an
equation of the type (18) that no individual twist-3 GPD
can be measured directly through the DVCS process.

It is well known that the leading-twist Compton tensor
also contains both vector and axial-vector (twist-2) GPDs.
In that case, however, the GPDs can be disentangled
because the two types of GPDs are associated with two
independent tensors—¢/|” for the vector GPDs, and ¢/” for
the axial-vector GPDs.

|

Our finding affects all the motivations for studying
twist-3 GPDs mentioned in the Introduction. In particular,
in DVCS at twist-3 accuracy there is no direct access to the
kinetic OAM L[, through the GPD G,. Specifically, in
order to isolate G, one would need input not only for
twist-2 GPDs but, according to Eq. (18), also for the twist-3
GPDs G, and G,. This further complicates attempts to
obtain information on G, from DVCS data. In fact, as we
argue below, since twist-3 GPDs can be discontinuous at
x = x££, the situation is even more difficult.

III. WANDZURA-WILCZEK APPROXIMATION

A series of papers has studied the twist-3 DVCS ampli-
tude in the WW approximation [27-33,35,36,38,40-43]. In
that approximation, twist-3 GPDs are decomposed into the
so-called WW term, which is entirely given by twist-2
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GPDs, and a contribution containing information about
3-parton (quark-gluon-quark) correlations in the nucleon.
Most of the equations for the WW approximation are
summarized in Appendix C, where we also list for the first
time the WW term for all twist-3 vector and axial-vector
GPDs of the nucleon.

In the WW approximation, the twist-3 GPDs contain
integrals that involve the WW kernels W_ in (C6)—see
Egs. (C7)—~(C14). These integrals generate discontinuities of
the GPD correlators at x = +=¢, as was discussed for a spin-0
target in Refs. [28,29,31] and for a spin—%—target in Ref. [30].
To illustrate this point we consider the convolution

fu (x.8) = / AW (x. . £) £ (1. £)
{ x>§)/ du
o<t [Ca f(uf}
1o - [l

u+¢&
—9(x<—§)/_):d j;(”jr?

(19)

with a generic function f(u,&). Based on (19) one readily
derives

tim(fy, (6 +5.6) = fu (6= 5.)

1 v f(ud)
_2PV/_1duu_§, (20)

(lsim[fwi(—f-ﬁ- 8,8) = fw,(=¢—8,8)]

S
2PV/_1d o (21)

Since the principal-value (PV) integrals on the rhs of (20)
and (21) are generally nonzero, the quantities fy, (x,&) are
discontinuous at both x = +4¢ and x = —¢£. Using the
explicit expressions in Eqs. (C7)—-(C14), we therefore find
that in the WW approximation all twist-3 vector and axial-
vector GPDs of the nucleon have a discontinuity at x = +¢&
and at x = —¢£.

The discontinuities of twist-3 GPDs endanger factori-
zation of the DVCS amplitude in the WW approximation
because integrals of the type

/ dxfy (x.E)C*(x. 8). (22)

which appear in Eq. (18), are obviously not defined [28].
However, using the expressions in Egs. (C1) and (C2), plus
the general results for the discontinuities in (20) and (21),
one finds that the linear combination (F'| — i F%) is
continuous at x = +¢&, while (F| + i¢/| ,F'¢) is continuous
at x = —¢ [30]. By means of the last line in Eq. (17) one
then immediately verifies that the twist-3 DVCS amplitude
of the nucleon is actually well defined in the WW
approximation [30].

The cancellation of discontinuities can of course also be
discussed for the result in Eq. (18), by using the WW term
of the GPDs in Egs. (C7)-(C14). For instance, in the first
term on the rhs of Eq. (18) the two twist-3 GPDs G, and G,
show up. Based on the results in (C7) and (C11) one finds*

/ Ldx(GYVCH 4+ (E+ GYV)C) = % / dx[E(x, £)C* (x, &) + EE(x, £)C(x. &)

1 1 1 )
+E/_1 dx/_l dulW, (x,u, &)CT(x, &) = W_(x, u, E)C™(x, &)| D, ¢[E(u, £)]

1 [1 1 N ~ . L -
~ / [ / U, O (x,8) = W (0. )C (5, ) DuglEE (. ). (23)

Because of the linear combination of twist-3 GPDs, in Eq. (23) one has two combinations of Wilson coefficients with the

WW kernels only,

/ dx/ du[W o (x,u,&)CT(x, &) —

W (x,u, &)C(x,&)|f(u, &)

_ / | g / (W (5. 8) = W_ (5,0, D).

x—E+ie
I 1
+ / R / dulW , (x, 1, &) + W_(x, . &) (u. &), (24)

*For the discussion of the WW approximation we have omitted the ¢-dependence of the GPDs.
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The integrations upon x in (24) are well defined since, due
to Egs. (20) and (21), the integrand of the first term on the
rhs is continuous at x = +¢£, and the one of the second term
is continuous at x = —¢&. The exact same discussion applies
to the other three terms on the rhs of Eq. (18), as can be seen
from the expressions in Eqs. (C15)—(C17). The fact that in
the WW approximation Eq. (18) is well defined can be
considered a consistency check of that equation and of the
results in (C7)—(C14).

We emphasize that each twist-3 GPD in the four linear
combinations that appear on the rhs of Eq. (18) is needed in
order to arrive at a finite result in the WW approximation.
One therefore cannot pick out an individual twist-3 GPD
and study its impact on observables or fit it to data, and at
the same time use the WW approximation for the remaining
twist-3 GPDs. In such a case one would be left with an ill-
defined framework. This discussion holds for any of the
twist-3 vector and axial-vector GPDs.

One might wonder whether discontinuous twist-3 GPDs
are an artifact of the WW approximation. However, in the
next section we will show that also in the QTM twist-3
GPDs are discontinuous, which suggests that such dis-
continuities are a general feature of these functions.
Speculations along those lines can be found in the literature
already—see for instance [9,28].

IV. TWIST-3 GPDS IN THE
QUARK-TARGET MODEL

Twist-2 GPDs [73—77] and certain twist-3 GPDs [73,74]
have been calculated previously in the QTM. Most of these
studies have only considered the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) region x > £. Here we
investigate for the first time if (twist-3) GPDs in the QTM
are continuous at x = +¢£.

We use the light-cone gauge A™ = 0 and work to lowest
nontrivial order in perturbation theory. We do not consider
virtual graphs as they contribute for x = 1 only. For the
transverse part of the correlator in Eq. (10) one finds

Fi =—i

C S LN
P9 ps / dk-d?k, ~L . (25)
(27[) oo D

with the numerator and denominator given by
” 4
Ny ==u(p )y K+5+m 7L

< (k-5 + m) Pulp)Doy(P—K).  (26)

o[ () s

X [(P = k)? + ie], (27)

N|l>

and the gluon polarization sum

ktn* + k*n*
k-n
In Eq. (25), g denotes the strong coupling constant (with
= %), and Cp = ‘3—‘. To obtain the axial-vector correlator
in Eq. (11) one has to replace y| by | y5 in (26). We denote
the corresponding numerator by N’i.

In this model calculation one encounters two types of k~
integrals:

= [T -M_l/‘” -
{I,I}_/_oodk o=

y (LK)
-k -k k) P

D" (k) = —g" + (28)

with the k independent factor

C=-8(x+&)(x— &)1 —x)(P), (30)

and

A (%L——) +m? —ie

ki = — , 31
T T g ey
A (R +52 e mi—i
=& (ki +5)°+m i€ (32)
2 2(x—EPT
e K-

From Egs. (31)—(33) it is obvious that the position of the
poles of the denominator in (29) depends on the value of x.
We distinguish three regions for x, and evaluate the
integrals in (29) by using contour integration. For the
integral / one readily obtains

_ 2mi 1
II—TW, forx>§,
— _ _ 2@
I= 12——7m, for —E<x<é&  (34)
I; =0, for x < —¢.

According to (34) the functional form of / is different
for the three regions. However, [ is continuous at x = +£.
To verify this statement for x = 4+ one can consider the
difference I; — I,, which is given by

27i 1

I -1, =— .
P C (k- k) (ks —k3)

(35)

Because of the two factors of k5 in the denominator in (35)
that difference is proportional to (x — &) and therefore
vanishes for x = +¢&. Likewise, I, in (34) is proportional
to (x 4 &) due to the two factors of k7 in the denominator,
and it therefore vanishes at x = —£. We also mention that
the result / = 0 for x < —& was expected since, at order
O(g?), there cannot be an antiquark distribution for a quark
target.
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We now shift our attention to the integral /¥ in Eq. (29)
for which one finds

If = %(k ) for x > ¢,

k - kT

I"=q I %(kl‘ kz)(k - for —e<x<g¢  (36)
T4 for x < =¢.

It turns out that I* is discontinuous at x = +¢£. In order to
illustrate this point and to get a simple expression for the
discontinuities we write

Ik_[k_@ k;
112 = - = =
C (ki —ky)(ky —k3)
27i k3 1 }
=—|== —— — +— (37)
C [(kl —k)(k —k3) kT —k;
2ri k3 1
Ik:——[ — _} (38)
: C [(ky k) (kT —k3) kT — K,

The first term in the square brackets on the rhs of (37)
vanishes for x = +¢&, and the first term in the square
brackets of (38) vanishes for x = —& However, the
expression C(k7 —k5) is finite at x = £¢, leading to a

|

discontinuous result for /¥ at these two kinematical points.
Therefore, GPDs in the QTM are generally discontinuous if
they contain the integral I*. It turns out that twist-2 GPDs in
this model do contain I*, but this integral is accompanied
by the factor (x> —¢£?), and therefore no discontinuity
occurs. On the other hand, we show that most of the
twist-3 vector and axial-vector GPDs are discontinuous. We
note in passing that in the QTM numerator terms propor-
tional to k= can also lead to delta-function singularities at
x = 0 for forward twist-3 parton distributions [78,79].

In the following we exclusively consider the £~ depen-
dent terms in the numerators N’, and M. To find such
terms for the various twist-3 GPDs, we rewrite the relevant
contributions by using the Dirac bilinears in Egs. (13) and
(14) as basis vectors. We skip the details of the calculation
and merely mention that we have used

/-

which results from the fact that the integral on the lhs of
(39) must be proportional to A . Calculating the two
numerators provides

d*k, kji
D

= 41 -2 —2(1-2 LA (1—x =28 A | 4 4
L - (R (Es Rt
_ . 2Ptk - k oA, ht kL AL nt

N = - [4x(1—52)h’i—|—2(§(1—x)—(1—2) AL )A’ip—+ 1 —x+2¢ L A’iPJr 4o, (41)

where the dots in (40) and (41) indicate contributions
without £~ dependence. (Higher powers of k= do not
occur.) Comparing the expressions in (40) and (41) with the
parametrizations in (13) and (14), respectively, one finds k~
dependence for all twist-3 GPDs except G, and G,. The
above discussion about the integral I* therefore implies
discontinuous twist-3 GPDs in the QTM. This suggests that
the discontinuities of twist-3 GPDs discussed in the
previous section should not be considered an artifact of
the WW approximation but rather a general feature of these
functions. That G, and G, in the QTM at lowest order are
continuous may be caused by the simplicity of the model.

We now investigate if the results in the QTM are
compatible with factorization for the amplitude in
Eq. (18). The first linear combination of twist-3 GPDs
in that equation is obviously continuous in the QTM. Given
that in the model calculation twist-2 GPDs and G, are

continuous, for the second linear combination of GPDs in
Eq. (18) one just needs to consider

1.
Az = G2C+ _EGZC_

52

1—x

CFQ
~' )’

Pt / dk- Jzkl8P+k‘

(42)

The k~ dependence in A, vanishes since (EC*T —xC™) = 0.
Therefore the integration upon x in Eq. (18) is well defined
for the linear combination A,. For the third linear combi-
nation of GPDs in (18) one has
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~ .CFg2 / 2P+k ]_C’J_'&J_ kJ_ AJ_ 1
A3 =G3CT - G4,C =i—=P* dk=d?k 2(1-2 ———Ct 1- 2 C|—=+--
3 3 4 1(27[)4 i Lo ( x) A2 + x+2¢ <) D—l—
1 1
= — A5 . 43
x—§+ieA3’+5+x+§—ieA3’§ (43)
The x integration of A; can be performed provided that the function Aj; ; in (43) is continuous at x = +¢ and Aj; _; is
continuous at x = —&. After carrying out the k™ integral one obtains for the discontinuity of Az .. at x = +¢&:
. .Crg* oo k -A
hm[.A3Y+§(x = f"’ 5) - A3‘+§(X = f— 5)] =1 Fg4 2(P+)2/ dsz_ 1 + 2 L2 (111{ - I]2<)|x:+§
5—0 (2717) —0 AJ_
Cr* 1 1 [o o Al 42k -A
__ G 7/ 2F, ST AL (44)
(27)° 4&(1 = &) A7 J- (k, +%)2 + m?
To derive the result in Eq. (44) we have used
27i 1 7
(IIIC_IIZC)LV:JH;:?]C—_]{— = 2 - & 5 5 ) (45)
P2 he=re 481 = (P) (kL + ) + m7]

and that the integral upon the transverse momentum
vanishes as can be shown by using the integration variable
1 L= =k 1 +4 5. With an analogous discussion one finds that
Aj; _¢ is continuous at x = —£. A very similar analysis
shows that also the last linear combination of GPDs in
Eq. (18) can be integrated upon x. The results in the QTM
are therefore compatible with factorization for DVCS at
twist-3 accuracy, despite the discontinuous GPDs. This
finding further supports the hypothesis of factorization of
the twist-3 DVCS amplitude. In that regard our study is
complementary to the NLO calculation of DVCS in the
WW approximation [42].

V. SUMMARY AND DISCUSSION

At twist-3 accuracy, the amplitude for DVCS off the
nucleon contains twist-2 as well as twist-3 GPDs.
Knowledge about twist-3 GPDs is therefore important
for a reliable estimate of power corrections to the lead-
ing-twist DVCS amplitude. Moreover, for a number of
reasons, twist-3 GPDs are interesting in their own right
[26,55-58,60-62]. However, we have pointed out that in
DVCS one cannot measure any individual twist-3 GPD.
This implies, in particular, that the kinetic OAM L/ of
quarks cannot be studied directly in DVCS via the twist-3
GPD G,. Accessible are only linear combinations involv-
ing both vector and axial-vector twist-3 GPDs. We have
made explicit these linear combinations.

It has been known for quite some time that in the WW
approximation twist-3 GPDs can exhibit discontinuities at
x = £ [28]. We have derived the WW approximation of
the eight twist-3 vector and axial-vector GPDs of the

[

nucleon. All of them are discontinuous at both x = +¢&
and x = —£. But the discontinuities cancel in the linear
combinations of GPDs that enter the DVCS amplitude so
that factorization is preserved.

We have also computed the twist-3 GPDs in the QTM
at lowest order in perturbation theory, and we have
found discontinuities for most of these GPDs. This result
illustrates that these discontinuities are not artifacts of
the WW approximation as the QTM (implicitly) includes
both quark-gluon-quark correlations as well as quark
mass terms, suggesting that discontinuities may be a
more general feature of twist-3 GPDs. In the QTM, like
for the WW approximation, the discontinuities cancel in
the DVCS amplitude, which further supports the hypoth-
esis of factorization at twist-3 accuracy.

In the case of twist-2 GPDs it is known that QCD
evolution does eliminate potential discontinuities (see,
e.g., Ref. [72] for an explicit numerical demonstration).
Evolution equations for twist-3 GPDs do presently not
exist. On the other hand, the splitting of a quark into a
quark plus gluon is part of the QCD evolution, and our
explicit perturbative calculation in the QTM has dem-
onstrated that the splitting itself gives rise to disconti-
nuities for individual twist-3 GPDs. This suggests that
discontinuities are generated by evolution rather than
washed out, and, most likely, one can derive well-
behaved evolution equations only for suitable linear
combinations of twist-3 GPDs. This interesting topic
of course requires further investigation. Moreover, we
point out that also in the WW approximation the
discontinuities exist at any scale because that approxi-
mation applies for any scale.
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Since only linear combinations of twist-3 GPDs can be
accessed in DVCS, one may be tempted to estimate certain
twist-3 GPDs in models and then fit other twist-3 GPDs
of interest to DVCS data. However, such an approach is
questionable if not impossible: If a model for twist-3 GPDs
does not exhibit discontinuities it apparently misses an
important feature of these functions. On the other hand, if a
model leads to discontinuous twist-3 GPDs, individual
GPDs cannot be treated as arbitrary functions to be fitted
to data.

Our work suggests directions for further research. For
instance, one should try to explore the physics contained in
the linear combinations of twist-3 GPDs that can be
addressed in DVCS. Moreover, it is important to search
for other processes through which twist-3 GPDs can be
studied—in order to address different (linear combinations
of) GPDs and/or to identify processes for which disconti-
nuities of GPDs at x = £ do not spoil factorization. It has
been pointed out earlier that, in general, discontinuous
GPDs do not cause a problem for double DVCS (lepto-
production of a dilepton pair) [28]. However, the count rate
for double DVCS is low [80]. But the interesting physics
contained in twist-3 GPDs warrants further studies whose
final goal is the measurement of these functions.
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APPENDIX A: RELATIONS BETWEEN
DIRAC BILINEARS

Here we list several relations between Dirac bilinears,
which are all based on the Dirac equation—see also, e.g.,
Refs. [9,27,81]. The relations that we have used in this
work are

. a 1 M 1 AH ilJr
i, J_:Ehl_z_é;AJ_F’ (A1)
a H 1 iﬁ_
ie he = ERt + S 5 (A2)
o A% ntoot ht
A’ub:—AMb hll A _AH , A3
+2§ + o aem M p (A3)
- AY ., Em? Rt h*
A* b:—Mb+2 1, +_A¢p++mALP+’ (A4)
PH
W =—b+ e, (AS)
m
p+ ht ht
tH—__ 1—=EOR! + EAH A A
. 2§m{ 21—, ent h oy LPJ, (A6)
. . P+ 5 ]71+ h+
i :%[ 2(1-8)i, +§ALP++ALP+] (A7)

APPENDIX B: COMPARING DIFFERENT
CONVENTIONS FOR TWIST-3 GPDs

We compare here the notation for twist-3 GPDs from
Ref. [41], which we have used in the main body of this
paper, with the notation of Refs. [36,40] and of Ref. [64].
In Refs. [36,40] the correlators F* and F* in Eqgs. (10) and
(11) are parametrized according to’

+ ~

h
E3 + A —H + A4 —E3

h

F#=P'—H j E A¥ H3 AH Bl
I + Pt + Lop+ + l2P+ Lopt Lopt (BI)
h* et I ht 3 u et 3 " h* 3 H et 3

Fr=pPr—H P” —E+ A —H} +A —E A —H3 + A —EB. B2
I + tALpT + Lopt + Lopr =T ALpT (B2)

In order to relate the twist-3 GPDs in (B1) and (B2) to the ones in Egs. (13) and (14) we use ™ = A*E/(Zm) [see (15)], the
relation (AS5) for u = +, as well as Egs. (A3) and (A4). One finds

°In Ref. [9] the same GPD notation is used, but with the momentum transfer defined as A’ = p — p’ = —A.
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3 gt 3 4Em?

+:G1+A—2(H+E+G2)+2G37 EL =-G, - A2 (H+E+ G,),
1 1

3 =3 4m?

H = Ai(H+E+G2)+ZG4, E_——A—i(H+E+Gz),

. 4ém? ~ . 4m? .
P=—p (H+G) +26;, Bi=-gE+G) -z (H+G),
s to~ . N s 4m? . .

1 1
The inversion of the set of equations in (B3) reads
- A2
G, = —E3 + ¢E3, G,=—-(H+E)-—5E,
4m
1 mn? . 1/~ .
G3:§<H3++E3+—WE3>, G4:§<H3_+4—sz3_),
~ - - ~ _ o AZ
G, =-E-¢E + B3, G,=-H-—<LE,
1 § ++ 2 4m2
~ 1/~ fm ~ 1 t

In Ref. [64] both chiral-even and chiral-odd twist-3 GPDs have been defined, where the chiral-even ones are given by

+ et

h 1 pPr Pt
F* —P"P—H—i—P”P E+—[t+”H2T+2—(A” ht — A+h")E2T+ 3 N bHo —— EZT], (BS)
Tu U il+ I] W é+ +a g’ 1 a1+ +,a / P+ a Loy P+ a
F :P FH+P lgliap+ t H2T+%(Aj_h —A hL)E2T+WAJ_bH2T_;hJ_E2T N (B6)

with #¥ defined in the paragraph after (15). Using Egs. (A2), (A4), (A6), and (A7), one finds

HZT = 2564, E2T = 2(G3 - §G4)’

~ 1 -
Hyr = -Gy, Eyr = —(H + E+ G,) +2(6G;5 — Gy),

P _ L . .
Hyyp = m(E‘f‘ G\) + (H + G,) — 2£G5, Eyy = —(E+G)) — (H+ G,) +2(6G5 — Gy),

- 1 . - - - -

Hyp = E(E +Gy), Eyr = 2(G3 = &Gy). (B7)

The inversion of the set of equations in (B7) reads

- 1 -
G, =2H,y, G,=—-(H+E)- g (1 = E)Hyp + EEyr — Eor,

1 1
Gs E(Hzr + Ear). Gy agHar
. . AL
G, = —-E +2H);, G, =-H+ (1 -&)H), — EE)y — . —= HYyp + EESy,

/ g ! 1 a 1 ! ! ﬁ12 ry/

G __(H2T+E ) H2T+2E2T’ G4:_§(H2T+E2T)_WH2T' (BS)
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APPENDIX C: TWIST-3 GPDs IN THE WW APPROXIMATION

Here we present to WW term for the twist-3 vector and axial-vector GPDs of a spln— target. Making use of the Dirac
bilinears in (15), the WW parts of the correlators in Egs. (10) and (11), which are given by twist-2 GPDs, take the form [30]

Flyw(x, & A)—lN‘iE(x 5)—iA”ﬁ(H—|—E)( f)—i—/lduG”(u EMNW, (x,u, &)
WWASR S 22 ™ om0 26 - . > R
+ie’ia/lduG"(u,f,A)W_(x,u,f), (C1)
-1
I3+ A—A”EE IA/‘W ldG” AW e ldG“ AW
e £08) = & B0, 8) = M D)+ [ i & AW () e, [ G, AW (. 8),
(C2)
with
GH(u, 6, A) = WL (H + E)(u,8) + 2 8% 2D, E(,8) - = 8% 1D, [0 + E) 1, 2) (c3)
- Etom 28 LP+ ué e
Gr(u.e.8) = (8 + Lot L, e e) Lt M, o) (c4)
s 6 =) 5 2 u.f ’ 25 J_P+ “f
and the differential operator
L0
Du,f +§(97§ (CS)

The so-called WW kernels W (x, u, &) in Egs. (C1) and (C2) are defined as [30]

1

[O(x > &)0(u > x) —0(x < &)O(u < x)] :I:m

O(x > =£)0(u > x) —0(x < =£)0(u < x)].

(Co)

W:I:(x u, 5) 2( 1_ 5)

By means of Eqgs. (A1) and (A3) one can rewrite the expression in (C1) in terms of the Dirac bilinears used in the GPD
decomposition of Eq. (13). This provides the WW approximation for the twist-3 vector GPDs:

WW —lx 11u X, U u —llu X, U E(u
GY¥(x.6) = 3 E( ,5>+§/_1d W (x. 0, 6Dy e[, €)] f/_l" W_(ou &, B &), (CT)
GV (x.8) = —(H + E) (1.8) + / LW (o, ) (H + E)(u.8) + +a / duW._ <x,u,5><5H<u &)+ 2L p, B (u, 5)1)
(C8)

2

GIW(x,8) = — o (H+ B)(x.&) = s | duW,(x, 1, &)D, c[(H + E) (. £)] +

28 26 ) : 2en? duW (x,u, &)D, ¢[EE(u. 8],

(C9)

GIV(x.8) = = g [ AW (50.8) (Dl 0]+ 41 Dol ) (c10)

Likewise, by using Eqs. (A2) and (A4) one can rewrite the expression in (C2) in terms of the Dirac bilinears that appear in
the GPD decomposition of Eq. (14). This provides the WW approximation for the twist-3 axial-vector GPDs:
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s 1 /1 N 1 [1
GY¥ (&) = [ duW (e Dl 0) = 5 [ W (0 £, lE. ) (1)

1 - 1 2

vaw(x, &) = —H(x, &) —1—/_1 duW (x,u,&E)H(u, &) +%/_1 duW_(x,u, &) <§2(H—|—E)(u,§) +—Du,§[E(u,§)]>,
(C12)
7’77,2

GIN(x.8) = =g A8 =5 [ W, (Dl 0]+ 5 [ W (5) (4 E)06) + 25,1800 ]
(C13)
GIV(x.8) = = 55 [ 5.0, ( Dyl 0. ] + Do lE(w ) (c14)

4 s 2‘5 s Uy u,& ’ 4m2 ut ’ :

To the best of our knowledge, we have obtained for the first time a complete list of the WW terms for all twist-3 vector and
axial-vector GPDs of the nucleon. Based on the discussion in Sec. III and the results in (C7)—(C14) one finds that all eight
twist-3 GPDs are discontinuous at both x = +& and x = —¢.

The expressions in Eqs. (C7)-(C14) allow one to find the WW approximation for the four linear combinations of GPDs
that appear on the rhs of Eq. (18). In Sec. III, we have discussed the result for the first such linear combination. For the other
three cases one has

2
s (E+ e = L+ G;VW>C—>

——Ai 1x~x ~(x 1x lu X, u T(x, &) — X, U ~(x u
i [ B OC )+ [ dx [ dul (5o O (5. 8) = W, ) DI(H + E).)
2

1 /1 1 . ~ . i . A2 .
g e - 1 08) = W €00 8+ DB c1s)

1
/ dx<(H +E+GY¥YW)Ct -
-1

/ L (G§VWC+ - zm_n; (B4 GVV)C - G}VWc—>
- _i dx[(H—i—E)(x &)C*(x,¢) +§—E(x &)c (x,é)]
/ dx/ du[W o (x,u,&)C*(x,&) = W_(x,u,&)C~(x,&)|D, ¢[(H + E)(u, £)]

+3p / [l (x. €)C (5. 8) = W (1. O . )y el ). (c16)

1 t N - 1
dx| GWWVCt E+G"WYC~ +—
/_1 x( i O g (B G T

_zig / ldx[ﬁ(x, (&) + E(x £)C (x. é)]

(H+GYV)C™ - vawc—>
t

~g [ [ W 0 (5,8) = W0 O (5. ] Pl )]+ 4 5 DudeBlw |- €17

Like for Eq. (23), the WW kernels W, enter in the linear combinations in (C15)—(C17) exclusively via the well-behaved
integrals in (24).
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