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Abstract. Answering a question asked by Agol and Wise, we show that a desired stronger

form of Wise’s malnormal special quotient theorem does not hold. The counterexamples are

generalizations of triangle groups, built using the Ramanujan graphs constructed by Lubotzky–

Phillips–Sarnak.
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1. Introduction

Consider the following notorious question in geometric group theory (see for example

[9, 5.3.B], [5, Question 1.15]).

Question 1.1. Is every hyperbolic group residually finite?

“Dehn filling” is a powerful technique for constructing hyperbolic groups. A

group pair .G; P / is a group G together with a finite collection P of subgroups

of G. The subgroups P are referred to as peripheral groups of the pair. A Dehn

filling of a group pair is a quotient

G.N1; : : : ; Nn/ WD G=⟪[iNi⟫

where, for each i , the subgroup Ni is normal in Pi . If each Ni is finite index in Pi ,

the filling is said to be peripherally finite or PF. We say that a property … holds for

all sufficiently long Dehn fillings of .G; P / if there is a finite subset B � G X 1 so

that, wheneverNi \B D ¿ for all i , the corresponding Dehn fillingG.N1; : : : ; Nn/

has…. If all sufficiently long Dehn fillings either satisfy… or are not PF, we say…

holds for all sufficiently long PFDehn fillings. The archetypal Dehn filling theorem is

a far-reaching generalization of Thurston’s famous Hyperbolic Dehn Filling theorem

to the group-theoretic context. In the context of PF fillings of hyperbolic groups,

it has the following consequence (see Definition 2.6 for the definition of almost

malnormal).
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Theorem 1.2 ([15], cf. [8]). Let G be hyperbolic, and let P D fP1; : : : ; Png be

an almost malnormal collection of quasiconvex subgroups. All sufficiently long PF

Dehn fillings

G.N1; : : : ; Nn/ WD G=⟪[iNi⟫

are infinite and hyperbolic.

Even if one starts with a residually finite hyperbolic group (even a free group) G,

there is no reason to believe that the resulting Dehn fillings G.N1; : : : ; Nn/ should

be residually finite. (Compare [11, Theorem 8.1], in which it is shown that an infinite

hyperbolic proper quotient G of a linear group � need not be linear; this applies, for

instance, if G is a Dehn filling of � .) Theorem 1.2 therefore seems like a promising

candidate for constructing non-residually-finite hyperbolic groups.

These considerations made the work of Wise and his coauthors on virtually

special groups all the more surprising. A nonpositively curved cube complex X is

special if there is a locally isometric immersion to the Salvetti complex associated to

some right-angled Artin group. A group is special if it is the fundamental group of a

compact special cube complex. A group is virtually special if it has a special subgroup

of finite index. Virtually special groups have numerous attractive properties. For

example, they are virtually subgroups of right-angled Artin groups, which are linear.

It follows that virtually special groups are linear, and therefore residually finite. In

addition, an infinite virtually special group has a subgroup of finite index with infinite

abelianization.

One of the most important theorems about virtually special groups is Wise’s

Malnormal Special Quotient Theorem, which can be thought of as a Dehn filling

result. In order to state it, we need one additional piece of terminology about Dehn

fillings of a group pair .G; P /.

We say that a property … holds for a positive fraction of all Dehn fillings if, for

each i , there is a subgroup PPi < Pi of finite index so that, whenever Ni < PPi for

all i , the corresponding Dehn filling G.N1; : : : ; Nn/ has…. The Malnormal Special

Quotient theorem can now be stated as follows [18] (cf. [1]).

Theorem 1.3 (Wise’s Malnormal Special Quotient Theorem). Let G be hyperbolic

and virtually special, and let P D fP1; : : : ; Png be an almost malnormal collection

of quasiconvex subgroups. A positive fraction of all PF Dehn fillings

G.N1; : : : ; Nn/ WD G=⟪[iNi⟫

are hyperbolic and virtually special.

Thus, remarkably, in the context of virtually special groups, Dehn fillings can

be performed that preserve residual finiteness. This was one of the most important

ingredients in Agol’s celebrated proof of the Virtual Haken conjecture [2].

Nevertheless, the Malnormal Special Quotient Theorem does not completely rule

out the possibility of constructing a non-residually finite hyperbolic group usingDehn
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filling, since it only applies to a positive fraction of all possible Dehn fillings. As

a result of Theorem 1.2, all sufficiently long PF Dehn fillings of a virtually special

group are infinite and hyperbolic, but only a positive fraction of them are guaranteed

to be virtually special (and hence residually finite). One is therefore led to wonder

whether theMalnormal Special Quotient Theorem can be given such a form. This led

Ian Agol [3, Problem 14] and Daniel Wise [19, Problem 13.16] to ask the following

question in their 2014 ICM talks.

Question 1.4. Let G be hyperbolic and virtually special, and let P D fP1; : : : ; Png

be an almost malnormal collection of quasiconvex subgroups. Are all sufficiently

long PF Dehn fillings

G.N1; : : : ; Nn/ WD G=⟪[iNi⟫

virtually special?

The purpose of the current note is to show that this question has a negative answer

in some simple situations, meaning that the Malnormal Special Quotient Theorem is

in some sense as strong as it can be.

Our examples will be k–fold triangle groups (discussed at length in Sections 2

and 3). We briefly give the definition now. Let k � 2, and let G be a free product

of three copies of Z=k.1 The collection P D fP12; P13; P23g consists of three

two-fold free products of copies of Z=k obtained each by omitting one of the copies.

Fix a surjection G ! Z=k taking each free factor isomorphically to the target, and

let G0 be the kernel. The collection P0 D fP12;0; P13;0; P23;0g is the collection of

intersections of elements of P with G0. Each Pij;0 can be identified with a free

group Fk 1 on k  1 generators and with a subgroup of index k in Z=k � Z=k.

In Section 2, we define, for normal subgroups of finite index in Pij;0 notions

of rotundness (large girth for some associated graph), and expansiveness (good

expansion for the associated graph). See Definition 2.10 for the precise definitions.

For the group G0 just described, we prove:

Theorem 1.5. If, for each i 2 f1; 2; 3g, the subgroupNij;0 PC Pij;0 Š Fk 1 is rotund

and expansive, then G0.N12;0; N13;0; N23;0/ is hyperbolic and has property (T).

In fact (see Theorem 2.11) rotundness alone suffices for hyperbolicity; that some

lower bound on girth suffices can also be seen from Theorem 1.2.

In Section 4, we use the Ramanujan graphs constructed in [12] to show the

following proposition (note that the group Pij;0 is free of rank k  1).

Proposition 1.6. There exists k � 18 and, for each 1 � i < j � 3, a sequence

fKij;ngn2N of normal, rotund, expansive subgroups of Pij;0 so that

\

n2N

Kij;n D f1g:

1By Z=k we mean the cyclic group of order k.
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Note that each groupPij;0 in the statement of the Proposition is free of rank k 1,

and that the resulting graphs are k–valent. The possible k include p C 1 for any

prime p � 17 so that p � 1 .mod 4/.

Corollary 1.7. The answer to Question 1.4 is “no”.

Proof. Fix a k as in Proposition 1.6. The pair .G0; P0/ we have just described

satisfies:

(1) G0 is free, hence hyperbolic.

(2) The elements of P0 are quasiconvex.

(3) P0 is a malnormal collection.

Suppose the answerwere “yes”. Then for some j , the quotientG0.K12;j ;K13;j ;K23;j /

is an infinite virtually special group; in particular it has a finite index subgroup with

infinite abelianization [4]. This contradicts property (T).

It is interesting to point out that the solution to this group theoretic problem relies

essentially on number theory, via the construction in [12].

Question 1.8. Are the examples fromCorollary 1.7 virtually torsion-free? Residually

finite? Linear?

1.1. Conventions. We use the notationA P< B to indicate thatA is finite index inB ,

and A PC B to indicate that A is a finite index normal subgroup of B . If G is a group

and S � G, we use the notation ⟪S⟫ to denote the normal closure of S in G.
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2. k–fold triangle groups

In this section, we describe a generalization of the classical triangle groups which

we will use to prove the main result of the paper (Corollary 1.7). To motivate, let us

recall first the classical (hyperbolic) triangle groups.

Let l � m � r � 2 be integers, so that 1
l
C 1

m
C 1

r
< 1. Then there exists an

essentially unique hyperbolic triangle with angles �
l
, �

m
, and �

r
. The group generated
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by reflections in the sides of this triangle is a cocompact lattice in SO.2; 1/, with

group presentation given by the Poincaré polyhedron theorem:

�.l; m; r/ D hx1; x2; x3 j x2
1 D x2

2 D x2
3 D .x1x2/l D .x2x3/m D .x1x3/r D 1i

(2.1)

The group of orientation-preserving elements in �.l; m; r/ has index 2, and the

following presentation:

�0.l; m; r/ D ha1; a2; a3 j al
1 D am

2 D am
3 D a1a2a3 D 1i (2.2)

Both �.l; m; r/ and �0.l; m; r/ are often called triangle groups. Sometimes �0 is

called an ordinary triangle group or a von Dyck group.

Let us propose a generalization of the triangle groups, generated by elements of

order k instead of involutions. We first fix parent groupsG andG0, which generalize

the orbifold fundamental groups of a mirrored ideal triangle and a pair of pants,

respectively. We also specify some peripheral subgroups.

Definition 2.1 (The parent groups). Fix k � 2. Let G be the free product of three

copies of Z=k,

G D hx1; x2; x3 j xk
1 D xk

2 D xk
3 i:

For i < j , let Pij D hxi ; xj i < G. Let G0 be the kernel of the map G ! Z=k

taking xi to N1 for each i . For i < j let Pij;0 D Pij \ G0. Then G0 is free of rank

2k  2, and each Pij;0 is a free factor of rank k  1.

Definition 2.2 (Ordinary triangle groups). Let L PC P12;0, M PC P13;0, and

R PC P23;0. Let K0 be the normal closure of L [ M [ R in G0, and define the

(ordinary) k–fold triangle group:

G0.L; M; R/ D G0=K0:

We will often omit the word “ordinary”. Notice that the 2–fold triangle groups

are the classical triangle groups, where we take L D h.x1x2/li, M D h.x1x3/mi,

and R D h.x2x3/ri.

Likewise, forL,M ,R normal subgroups in thePij < G, we can define analogues

of the triangle groups �.l; m; r/.

Definition 2.3 (Extended triangle groups). Suppose that L PC P12, M PC P13, and

R PC P23. Let K be the normal closure of L [ M [ R in G. Then we define the

extended k–fold triangle group:

G.L; M; R/ D G=K:

We next note that, if the subgroup L,M , R are normal subgroups of both the Pij

and the Pij;0, then the ordinary triangle groups and extended triangle groups are

related as one expects.
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Lemma 2.4. Suppose that L PC P12 and L < P12;0, thatM PC P13 andM < P13;0,

and that R PC P23 and R < P23;0. Then the normal closure of L [M [ R in G0

is equal to K.

Proof. Clearly K0 D ⟪L [M [R⟫G0
< K D ⟪L [M [R⟫G . But we can write

K0 D KL;0KM;0KR;0, andK D KLKM KR, whereKL;0 D ⟪L⟫G0
,KL D ⟪L⟫G ,

and so on. Thus it suffices to show, for example, that KL;0 D KL, that the normal

closures of L in G and G0 coincide. Since hx1i maps onto G=G0, it is enough to

show that x 1
1 KL;0x1 D KL;0. Consider a generator z D x 1yx of KL;0, where

y 2 L and x 2 G0. Then x 1
1 xx1 2 G0, since G0 C G and x 1

1 yx1 2 L, since

L C P12 D hx1; x2i < G. Thus x 1
1 zx1 2 KL;0. Since z was arbitrary, we have

shown that KL;0 is normal in G, and so equal to KL, as desired.

Corollary 2.5. If the ordinary and extended triangle groups are both defined, then

G0.L; M; R/ is a subgroup of index k in G.L; M; R/.

2.1. Malnormality.

Definition 2.6. Let H be a group, and Q a collection of subgroups of H . Then Q

is malnormal if whenever h 2 H , Q; Q0 2 Q, and Q \ hQ0g 1 is nontrivial, then

Q D Q0 and h 2 Q.

The collection isalmostmalnormal ifwheneverh2H ,Q; Q02Q, andQ\hQ0h 1

is infinite, thenQ D Q0 and h 2 Q.

We make the following observation, whose (easy) proof is left to the reader.

Lemma 2.7. With the notation of Definition 2.1, the collectionP D fP12; P13; P23g

is almost malnormal in G, and P0 D fP12;0; P13;0; P23;0g is malnormal in G0.

BothG andG0 are virtually free, and thus virtually special locally quasiconvex. In

particular, the pairs .G; P / and .G0; P0/ both satisfy the hypotheses of Theorem 1.3

and Question 1.4.

2.2. Geometric conditions on graphs and triangle groups.

Definition 2.8. Let � be a graph. The girth of � is the length of the shortest circuit

in � .

Definition 2.9. If � is a connected k–regular graph, we define the Laplacian in terms

of the adjacency matrix A:

ı D I  
1

k
A:

With this normalization, the spectrum of ı always contains 0 and lies in the inter-

val Œ0; 2�. We define �1.�/ to be the smallest positive eigenvalue of ı.
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For each pair i < j , the group Pij acts on the regular k–valent tree Tk with

quotient equal to a single edge. For definiteness we fix a planar embedding of this

tree, and an oriented edge e0. Let xi act on this tree by rotating around i.e0/ and

let xj act by rotating around t .e0/. In this way we make Tk into a Bass–Serre tree

for the Pij , considered as a free product. Any finite index subgroup N of Pij acts

on Tk with a finite quotient graph N
�

Tk .

Definition 2.10. LetN PC Pij;0 < Pij Š .Z=k/� .Z=k/. We say thatN is rotund

if girth.N
�

Tk / > 6. We say that N is expansive if �1.N
�

Tk / > 1
2
.

These characterizations of subgroups as rotund or expansive depend on the

particular action ofPij;0 on Tk given. Here is a more precise version of Theorem 1.5.

Theorem 2.11. Let G0, Pij;0, L; M; R be as in Definition 2.2.

(1) If L; M; R are rotund, then G0.L; M; R/ is hyperbolic.

(2) If L; M; R are rotund and expansive, then G0.L; M; R/ has property (T).

Theorem 2.11 will be proved in Section 3. In Section 4 we will produce many

examples of rotund expansive L; M; R, proving Proposition 1.6.

3. Triangular complexes of groups

In this section, we give the geometric framework necessary to understand why the

groups discussed in the last section answer Question 1.4. In particular, we will prove

Theorem 2.11.

The virtually free group G can usefully be thought of as a complex of groups in

two ways, both shown in Figure 1.

Z=k Z=k

Z=k

Z=k

Z=kZ=k

P12

P13 P23

Figure 1. G as a graph of finite cyclic groups, and as a triangle of groups.

On the left, we see G as the fundamental group of a graph (a tripod) of finite

groups G . On the right, we seeG as a triangle of groupsD , with cyclic edge groups,

and vertex groups equal to the peripheral groups. Both complexes of groups are
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developable in the sense of [6, III.C]. This means in the second case that there is

an action of G on a simply connected complex (the development) with quotient D ,

and the complex-of-groups data can be recovered from the action. Likewise G is the

quotient of a Bass–Serre tree T by the natural action of G. Here is a way to recover

the development in this case: Each Pij 2 P has a minimal invariant subtree TPij

in zD . The development zD of D , is homeomorphic to a complex which is obtained

from T by coning off each translate of any TPij
. The link of a vertex in zD can be

identified with the Bass–Serre tree of Z=k � Z=k (see Lemma 4.2 below).

Likewise, the free groupG0 is the fundamental group of a graph G0 and a complex

of groupsD0, both shown in Figure 2. Here the vertex groups ofD0 are the elements

of P0. The development of the complex of groups is also zD . The link of a vertex

of D0 is a graph with two vertices joined by k edges.

P12;0

P13;0 P23;0

Figure 2. G0 is the fundamental group of the graph on the left, and also the fundamental group

of the complex of groups with underlying complex Y on the right. The case k D 3 is shown.

Now fix a k–fold triangle group G0.L; M; R/ as in Definition 2.2. We obtain

a complex of groups structure D0.L; M; R/ for G0.L; M; R/ in terms of the one

for G0, by replacing the vertex groups (elements of P0) with their finite quotients

P12;0=L, P13;0=M , and P23;0=R.

Bridson and Haefliger give a criterion which implies that a given complex of

groups is developable.

Theorem 3.1 ([6, Theorem III.C .4.17]). If a complex of groups is non-positively

curved it is developable. Moreover, if the local developments are CAT. 1/ then the

development is CAT. 1/.

To say that a complex of groups is non-positively curved is precisely to say that

the local developments are non-positively curved. This condition depends on how

we metrize the cells of the complex. In our case, we can metrize the triangles as

hyperbolic triangles with some constant angle � . The local development at a vertex

marked by a group Pij;0=N where N C Pij;0 C Z=k � Z=k is the hyperbolic cone

on the graph N
�

Tk , where this graph has been metrized so each edge has length � .
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If � � girth.N
�

Tk / � 2� , this local development is locally CAT. 1/. In particular

it will satisfy the nonpositive curvature hypothesis in Theorem 3.1.

Proposition 3.2. Suppose that L,M , and R are rotund.

(1) D0.L; M; R/ is developable, and the development is contractible;

(2) G0.L; M; R/ is hyperbolic; and

(3) The link of any vertex of the development ofD0.L; M; R/ is isomorphic to N
�

Tk

where N 2 fL; M; Rg.

Proof. The local development ofD0.L; M; R/ at a vertex is as described in item (3).

Thus ifD0.L; M; R/ is in fact developable, item (3) will follow.

Let n � 7 be the minimum girth of the graphs N
�

Tk where N 2 fL; M; Rg.

Metrizing the triangles of D0.L; M; R/ by equilateral hyperbolic triangles with

angle 2�=n, we can verify the conditions of Theorem 3.1 as discussed above,

and see that D0.L; M; R/ is developable, establishing the first part of item (1).

The development X is moreover locally (and hence globally) CAT. 1/ and thus

contractible. Moreover the group G0.L; M; R/ acts properly cocompactly on X .

Thus G0.L; M; R/ is hyperbolic, establishing item (2).

To deduce property (T) when the normal subgroups are expansive, we need the

following criterion.

Theorem 3.3 ([7, Corollary 1]). Let � Õ Z properly and cocompactly, where Z is

a contractible simplicial 2–complex so that for every vertex v of Z, the link Zv of v

is connected and satisfies �1.Zv/ > 1
2
. Then � has Property (T).

Proposition 3.4. If L, M , and R are rotund and expansive, then G0.L; M; R/ has

property (T).

Proof. Since L, M , and R are rotund, the group G0.L; M; R/ acts properly and

cocompactly on the developmentD0.L; M; R/, which is a contractible complex with

each link isomorphic to N
�

Tk forN 2 fL; M; Rg. SinceL; M; R are expansive, we

have �1.link.v// > 1
2
for each vertex v. We can thus apply Theorem 3.3 to conclude

that G0.L; M; R/ has property (T).

Propositions 3.2 and 3.4 together imply Theorem 2.11.

4. Finding good expanders

In this section we prove Proposition 1.6, about the existence of the expanders we

need. The proposition is phrased in terms of a subgroup N , normal and finite

index in P0 C P Š Z=k � Z=k, where P0 is defined to be the kernel of the map

Z=k � Z=k ! Z=k taking each generator to N1 2 Z=k. In applying the results of

this section we identify P0 with one of the Pij;0 described before. For Tk equal to the
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Bass–Serre tree associated to the free splitting of P , we are interested in the girth and

first eigenvalue of the graphs N
�

Tk . We proceed by identifying P0 with a certain

arithmetic subgroup of PGL2.Qp/. (We should emphasize that none of the results of

the next two subsections are really new, but we want to include enough of the ideas

from [12,13] so that the reader gets the flavor of what is going on.)

4.1. The setup. If T is a tree, we let AutC.T / < Aut.T / be the subgroup of index

at most two consisting of those � which move a point (hence every point) an even

distance. Note that AutC.T / acts on T without inversions, and �
�

T is bipartite

for any � < AutC.T /. The first lemma is an easy corollary of the fact that T is

contractible.

Lemma 4.1. Let T be a locally finite tree and D; � two discrete torsion-free

subgroups of AutC.T / so that the graphs D
�

T and �
�

T are isomorphic. ThenD

and � are conjugate in Aut.T /.

The second lemma is also standard.

Lemma 4.2. Let k 2 ZC, and let P D Z=k �Z=k, and let T be the Bass–Serre tree

for the free splitting of P . (In other words vertices are in one-to-one correspondence

with left cosets of the free factors, and if A1 is the first and A2 the second free factor,

each gA1 is connected to gA2 by an edge.) LetP0 be the kernel of the mapP ! Z=k

which is the identity on each free factor.

(1) T is a k–regular tree.

(2) P0

�

T consists of 2 vertices connected by k edges.

Let p be a prime and TpC1 be the regular .p C 1/–valent tree, and let Qp be

the field of p–adic numbers. Then PGL2.Qp/ acts on the Bruhat–Tits tree TpC1, as

explained in [16].

Our goal now is to find an arithmetic subgroup � of

PSL2.Qp/ < PGL2.Qp/ < Aut.TpC1/;

so that the quotient �
�

TpC1 Š P0

�

T , the graph from Lemma 4.2, with k D pC1.

Lemma 4.1 implies that � is conjugate to P0 in Aut.TpC1/.

Wewill take suitable congruence subgroups�.i/ of�; the isomorphism taking�

to P0 will take these congruence subgroups to the groups L; M; R specified in

Theorem 2.11. The fact that the graphs �.i/
�

T are Ramanujan will come from

[13, Section 7.3, Theorem 7.3.12], using the solution of Deligne to the Ramanujan–

Peterson conjecture. We will see that in fact, one can choose the subgroups �.i/ to

be nested with
T

i �.i/ D f1g, so that the girth of �.i/
�

T goes to infinity.
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4.2. Constructing �. Fix p prime, with p � 1 .mod 4/ and p � 17.

Recall the classical four square theorem of Jacobi [10, Theorem 386]:

Theorem 4.3 (Jacobi). Let n 2 ZC, and define

r4.n/ D #
n

.x0; x1; x2; x3/ 2 Z4 j
X

x2
j D n

o

:

Then

r4.n/ D 8
X

d∣n; 4∤d

d:

In particular since p is prime, r4.p/ D 8.p C 1/. We are assuming p � 1

.mod 4/, so for any four integers whose squares sum to p, exactly three are even.

Thus if we take

S D
n

.x0; x1; x2; x3/ 2 Z4 j x0 > 0 odd,
X

x2
j D p

o

; (4.1)

then #S D p C 1.

Next we claim (again using p � 1 .mod 4/) that there exists � 2 Zp � Qp

so that �2 D  1. Indeed it is well-known that such an � exists in Z=p, and by the

Hensel Lemma it can be lifted to Zp . For every ˛ 2 S , associate the matrix

z̨ D

�

x0 C �x1 x2 C �x3

 x2 C �x3 x0  �x1

�

2 M2.Qp/: (4.2)

Note that det.z̨/ D p; we abuse notation by also thinking of z̨ as an element of

PGL2.Qp/. Let � be the subgroup generated by zS D fz̨ j ˛ 2 Sg.

Lemma 4.4. � is a discrete cocompact subgroup of PGL2.Qp/.

This is actually a special case of Theorem 7.3.12 of [13]. Let us explain this

special case in some detail.

LetH be the Hamiltonian quaternion algebra; for a commutative ringR, we have

H.R/ D fa0 C a1i C a2j C a3k j ai 2 Rg;

the associative R–algebra generated by symbols i , j , k, satisfying the relations

i2 D j 2 D k2 D  1 and ij D k D  j i . Let H�.R/ be the group of invertible

elements inH.R/.

Since ZŒ 1
p

� is discrete in R �Qp , there are discrete embeddings

H
 

Z
�

1
p

��

,! H.R/ �H.Qp/

and

H� Z
�

1
p

��

=center ,! .H�.R/=center/ � .H�.Qp/=center/:
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Now H�.R/=center D RP3 is compact, while H.Qp/ Š M2.Qp/ (i.e., H splits

overQp , henceH�.Qp/=center Š P GL2.Qp/; the map

a0 C a1i C a2j C a3k 7!

�

a0 C �a1 a2 C �a3

 a2 C �a3 a0  �a1

�

gives the explicit isomorphism). Since H�.R/=center is compact, the projection of

�0 D H�.ZŒ 1
p

�/=center toH�.Qp/=center D PGL2.Qp/ gives a discrete subgroup!

(This despite the fact that ZŒ 1
p

� projected toQp is dense.)

Now, our � is inside the projection, since every ˛ 2 S is invertible as an element

of H.ZŒ 1
p

�/; indeed k˛k D ˛ � x̨ D p is invertible in ZŒ 1
p

�, and ˛ 1 D x̨
k˛k .

(In general ˛ 2 H.R/ is invertible if and only if k˛k is invertible in the ring R.)

One can easily see from (4.1) and (4.2) that � � �0.2/, the mod 2 congruence

subgroup of �0. This all explains why � is discrete. But it is also cocompact; in

fact � D �0.2/, and every z̨ 2 zS takes the root of the tree (which is the equivalence

class of the lattice Z2
p � Q2

p; see [16] for this model of the Bruhat–Tits tree) to a

sublattice of index p (since det.˛/ D p) and there are exactly pC 1 such sublattices

— representing the pC 1 neighbors of the root vertex. From this one deduces that �

acts transitively on the vertices of the tree TpC1. In fact � acts simply transitively,

and is therefore a free group on pC1
2
generators. (Note zx̨ D z̨ 1 where x̨ is the

quaternionic conjugate, and so the image of S is a symmetric subset of PGL2.Qp/.)

Thus TpC1 can be identified with the Cayley graph Cay.�; zS/. In particular �
�

TpC1

is a bouquet of k=2 circles, and hence compact.

Now let� D � \AutC.TpC1/; this is an index-2 subgroup of � which preserves

the 2–coloring of the tree. Because � D �0.2/ is free of rank pC1
2
, the rank of� is,

by the Nielsen–Schreier Theorem,

2
�p C 1

2
 1

�

C 1 D p D k  1;

and there are two orbits of vertices. In particular, there is an isomorphism‰ from� to

P0 D ker.Z=k �Z=k ! Z=k/ and an equivariant isomorphism from the tree TpC1

to the Bass–Serre tree of Z=k �Z=k. In particular, we can find rotund or expansive

subgroups of P0 by specifying them in �, which we now do.

Let q ¤ p be a prime or prime power, so that .p
q

/ D  1, i.e., p is not a quadratic

residue mod q. As explained in [13, 7.3.12], in this case �0.2q/ (the mod 2q

congruence subgroup) preserves the coloring of the tree, so it lies inside �.

Moreover, by [13, 7.3.12], the quotients �0.2q/
�

T have the following properties:

(1) They are k–regular Ramanujan graphs, i.e., �1.�0.2q/
�

T / � 1  2
p

k 1
k
.

(2) The girth of �0.2q/
�

T is at least 4
3
logp.q/.

So for fixed p and q !1 we are finished. (Take for example p D 17, q D 3l and

l !1 for a nested family.)
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Remark 4.5. The graphs �0.2q/
�

T , for q a prime congruent to 1 mod 4, are really

the same as the Ramanujan graphs presented in Lubotzky–Phillips–Sarnak [12]. But

one can make use of many other examples, e.g., for k D pe C 1, those constructed

by Morgenstern [14].

4.3. Other constructions. Another source of examples is provided by a result

communicated to us by Varjù [17].

Theorem 4.6 (Varjù). There is an absolute constant c > 0 such that the following

holds. Let k � 3. Let p be a sufficiently large prime so that k � 3 is a divisor of

.p C 1/=2, and let L D PSL2.p/. Then there are subgroups H1; H2 Š Z=k of L

so that the following inequalities hold. LetK be the kernel of a homomorphism from

Pij Š Z=k �Z=k to L that takes the first factor toH1 and the second factor toH2,

and let � D K
�

Tk .

(1) girth � � c
log j�j
log.k 1/

, and

(2) �1.�/ > 1  .k  1/ c .

By taking k large enough that 1 .k 1/ c > 1
2
, and letting p tend to infinity, we

obtain examples which are extended k–fold triangle groups. Applying Theorem 2.11,

these givemanymore examples to show the answer to Question 1.4 is “no”. In Varjù’s

theorem, the subgroups H1 and H2 are obtained as random unipotent conjugates of

a fixed cyclic subgroup.

Remark 4.7. Another construction of negatively curved triangle complexes with

prescribed links is provided by [7, Theorem 2]. It is possible that these can also

be thought of as Dehn fillings of virtually free groups, in which case these would

provide another route to answering Question 1.4.
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