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Generalized triangle groups, expanders,
and a problem of Agol and Wise
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Abstract. Answering a question asked by Agol and Wise, we show that a desired stronger
form of Wise’s malnormal special quotient theorem does not hold. The counterexamples are
generalizations of triangle groups, built using the Ramanujan graphs constructed by Lubotzky—
Phillips—Sarnak.
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1. Introduction

Consider the following notorious question in geometric group theory (see for example
[9, 5.3.B], [5, Question 1.15]).

Question 1.1. Is every hyperbolic group residually finite?

“Dehn filling” is a powerful technique for constructing hyperbolic groups. A
group pair (G, P) is a group G together with a finite collection & of subgroups
of G. The subgroups & are referred to as peripheral groups of the pair. A Dehn
filling of a group pair is a quotient

G(Ny,...,Nn) := G/{U;iN;)

where, for each i, the subgroup N; is normal in P;. If each N; is finite index in P;,
the filling is said to be peripherally finite or PF. We say that a property I1 holds for
all sufficiently long Dehn fillings of (G, &) if there is a finite subset B € G ~ 1 so
that, whenever N; N B = @ for all i, the corresponding Dehn filling G(Ny, ..., Ny)
has IT. If all sufficiently long Dehn fillings either satisfy IT or are not PF, we say I1
holds for all sufficiently long PF Dehn fillings. The archetypal Dehn filling theorem is
a far-reaching generalization of Thurston’s famous Hyperbolic Dehn Filling theorem
to the group-theoretic context. In the context of PF fillings of hyperbolic groups,
it has the following consequence (see Definition 2.6 for the definition of almost
malnormal).
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Theorem 1.2 ([15], cf. [8]). Let G be hyperbolic, and let P = {P1,..., Py} be
an almost malnormal collection of quasiconvex subgroups. All sufficiently long PF
Dehn fillings

G(Ni,...,Np) := G/<<U,‘Ni >>

are infinite and hyperbolic.

Even if one starts with a residually finite hyperbolic group (even a free group) G,
there is no reason to believe that the resulting Dehn fillings G(Ny, ..., N,) should
be residually finite. (Compare [11, Theorem 8.1], in which it is shown that an infinite
hyperbolic proper quotient G of a linear group I" need not be linear; this applies, for
instance, if G is a Dehn filling of I'.) Theorem 1.2 therefore seems like a promising
candidate for constructing non-residually-finite hyperbolic groups.

These considerations made the work of Wise and his coauthors on virtually
special groups all the more surprising. A nonpositively curved cube complex X is
special if there is a locally isometric immersion to the Salvetti complex associated to
some right-angled Artin group. A group is special if it is the fundamental group of a
compact special cube complex. A group is virtually special if it has a special subgroup
of finite index. Virtually special groups have numerous attractive properties. For
example, they are virtually subgroups of right-angled Artin groups, which are linear.
It follows that virtually special groups are linear, and therefore residually finite. In
addition, an infinite virtually special group has a subgroup of finite index with infinite
abelianization.

One of the most important theorems about virtually special groups is Wise’s
Malnormal Special Quotient Theorem, which can be thought of as a Dehn filling
result. In order to state it, we need one additional piece of terminology about Dehn
fillings of a group pair (G, &).

We say that a property IT holds for a positive fraction of all Dehn fillings if, for
each i, there is a subgroup Pi < P; of finite index so that, whenever N; < P,- for
all i, the corresponding Dehn filling G(Ny, ..., N,) has I1. The Malnormal Special
Quotient theorem can now be stated as follows [18] (cf. [1]).

Theorem 1.3 (Wise’s Malnormal Special Quotient Theorem). Let G be hyperbolic
and virtually special, and let P = {P1, ..., Py} be an almost malnormal collection
of quasiconvex subgroups. A positive fraction of all PF Dehn fillings

G(Ny,...,Ny) = G/«UIN,»

are hyperbolic and virtually special.

Thus, remarkably, in the context of virtually special groups, Dehn fillings can
be performed that preserve residual finiteness. This was one of the most important
ingredients in Agol’s celebrated proof of the Virtual Haken conjecture [2].

Nevertheless, the Malnormal Special Quotient Theorem does not completely rule
out the possibility of constructing a non-residually finite hyperbolic group using Dehn
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filling, since it only applies to a positive fraction of all possible Dehn fillings. As
a result of Theorem 1.2, all sufficiently long PF Dehn fillings of a virtually special
group are infinite and hyperbolic, but only a positive fraction of them are guaranteed
to be virtually special (and hence residually finite). One is therefore led to wonder
whether the Malnormal Special Quotient Theorem can be given such a form. This led
Ian Agol [3, Problem 14] and Daniel Wise [19, Problem 13.16] to ask the following
question in their 2014 ICM talks.

Question 1.4. Let G be hyperbolic and virtually special, and let P = {P1,..., Py}
be an almost malnormal collection of quasiconvex subgroups. Are all sufficiently
long PF Dehn fillings

G(Ny,....Ny) := G/(UiN;)

virtually special?

The purpose of the current note is to show that this question has a negative answer
in some simple situations, meaning that the Malnormal Special Quotient Theorem is
in some sense as strong as it can be.

Our examples will be k—fold triangle groups (discussed at length in Sections 2
and 3). We briefly give the definition now. Let k > 2, and let G be a free product
of three copies of Z/k.! The collection # = {Pi,, P13, P23} consists of three
two-fold free products of copies of Z/ k obtained each by omitting one of the copies.
Fix a surjection G — Z/k taking each free factor isomorphically to the target, and
let G¢ be the kernel. The collection Py = {P12,0, P13,0, P23,0} is the collection of
intersections of elements of & with Go. Each P;jo can be identified with a free
group Fy_; on k — 1 generators and with a subgroup of index k in Z/k « Z / k.

In Section 2, we define, for normal subgroups of finite index in P;; o notions
of rotundness (large girth for some associated graph), and expansiveness (good
expansion for the associated graph). See Definition 2.10 for the precise definitions.
For the group Gy just described, we prove:

Theorem 1.5. If, foreachi € {1, 2,3}, the subgroup Njjo < Pijo = Fix_y is rotund
and expansive, then Go(N12,0, N13,0, N23,0) is hyperbolic and has property (T).

In fact (see Theorem 2.11) rotundness alone suffices for hyperbolicity; that some
lower bound on girth suffices can also be seen from Theorem 1.2.

In Section 4, we use the Ramanujan graphs constructed in [12] to show the
following proposition (note that the group P;j ¢ is free of rank k — 1).

Proposition 1.6. There exists k > 18 and, for each 1 < i < j < 3, a sequence
{KijnineN of normal, rotund, expansive subgroups of P;; o so that

() Kijn = {1}
neN
1By Z/ k we mean the cyclic group of order k.
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Note that each group P;; o in the statement of the Proposition is free of rank k — 1,
and that the resulting graphs are k—valent. The possible k include p + 1 for any
prime p > 17 so that p = 1 (mod 4).

Corollary 1.7. The answer to Question 1.4 is “no”.

Proof. Fix a k as in Proposition 1.6. The pair (G, $p) we have just described
satisfies:

(1) Gy is free, hence hyperbolic.
(2) The elements of # are quasiconvex.
(3) %y is a malnormal collection.

Suppose the answer were “yes”. Then for some j, the quotient Go(K12,;,K13,;,K23,5)
is an infinite virtually special group; in particular it has a finite index subgroup with
infinite abelianization [4]. This contradicts property (T). O

It is interesting to point out that the solution to this group theoretic problem relies
essentially on number theory, via the construction in [12].

Question 1.8. Are the examples from Corollary 1.7 virtually torsion-free? Residually
finite? Linear?

1.1. Conventions. We use the notation A < B to indicate that A is finite index in B,
and A <1 B to indicate that 4 is a finite index normal subgroup of B. If G is a group
and S C G, we use the notation (.S)) to denote the normal closure of S in G.
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2. k-fold triangle groups

In this section, we describe a generalization of the classical triangle groups which
we will use to prove the main result of the paper (Corollary 1.7). To motivate, let us
recall first the classical (hyperbolic) triangle groups.

Let/ > m > r > 2 be integers, so that % + % + % < 1. Then there exists an
essentially unique hyperbolic triangle with angles % % and . The group generated
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by reflections in the sides of this triangle is a cocompact lattice in SO(2, 1), with
group presentation given by the Poincaré polyhedron theorem:

Al,m,r) = (x1,%2,x3 | x} = x2 = x3 = (x1x2)" = (x2x3)™ = (x1x3)" = 1)

(2.1)
The group of orientation-preserving elements in A(/,m,r) has index 2, and the
following presentation:

Ao(l,m,r) = (a1,az,a3 | a' = a' = ay = ayazaz = 1) (2.2)

Both A(l,m,r) and Ag(l,m, r) are often called triangle groups. Sometimes Ay is
called an ordinary triangle group or a von Dyck group.

Let us propose a generalization of the triangle groups, generated by elements of
order k instead of involutions. We first fix parent groups G and G, which generalize
the orbifold fundamental groups of a mirrored ideal triangle and a pair of pants,
respectively. We also specify some peripheral subgroups.

Definition 2.1 (The parent groups). Fix k > 2. Let G be the free product of three
copies of Z/ k,

G = (x1.x2.x3 | x¥ = x5 = xK).
Fori < j,let P;j = (x;,x;) < G. Let Gg be the kernel of the map G — Z/k
taking x; to 1 for eachi. Fori < J let Pijo = P;j N Go. Then Gy is free of rank
2k — 2, and each P;; o is a free factor of rank k — 1.

Definition 2.2 (Ordinary triangle groups). Let L < P10, M < P39, and
R <1 Pp3p. Let Ko be the normal closure of L U M U R in Gg, and define the
(ordinary) k—fold triangle group:

Go(L, M, R) = Go/Ko.

We will often omit the word “ordinary”. Notice that the 2—fold triangle groups
are the classical triangle groups, where we take L = ((x1x2)"), M = ((x1x3)™),
and R = ((x2x3)").

Likewise, for L, M, R normal subgroups in the P;; < G, we can define analogues
of the triangle groups A(/,m,r).

Definition 2.3 (Extended triangle groups). Suppose that L <1 Py», M <1 P13, and
R < Pp3. Let K be the normal closure of L U M U R in G. Then we define the
extended k—fold triangle group:

G(L,M,R) = G/K.

We next note that, if the subgroup L, M, R are normal subgroups of both the P;;
and the P;j o, then the ordinary triangle groups and extended triangle groups are
related as one expects.
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Lemma 2.4. Suppose that L < P13 and L < P13, that M <0 P13 and M < P13,
and that R <1 Py3 and R < Py3. Then the normal closure of L U M U R in Gy
is equal to K.

Proof. Clearly Ko = (L UM U R)g, < K ={L UM U R). But we can write
Ko = KL,()KM,()KR’(), and K = KLKMKR, where KL,() = <<L>>GO, KL = <<L>>G,
and so on. Thus it suffices to show, for example, that K; o = K, that the normal
closures of L in G and Gy coincide. Since (x;1) maps onto G/ Gy, it is enough to
show that xl_lKL,oxl = Ky . Consider a generator z = x"lyx of K1 0, where
y € L and x € Gy. Then xl_lxxl € Gy, since Gy <1 G and xl_lyxl € L, since
L < P15 = {x1,x2) < G. Thus xl_lle € K1 0. Since z was arbitrary, we have
shown that Ky, ¢ is normal in G, and so equal to K, as desired. O]

Corollary 2.5. If the ordinary and extended triangle groups are both defined, then
Go(L, M, R) is a subgroup of index k in G(L, M, R).

2.1. Malnormality.

Definition 2.6. Let H be a group, and @ a collection of subgroups of H. Then @
is malnormal if whenever h € H, Q, Q' € @, and Q N hQ’g~! is nontrivial, then

Q=Q andh € Q.
The collection is almost malnormal if wheneverh€e H, Q, Q' € @,and Q NhQ'h™!
is infinite, then Q = Q" and h € Q.

We make the following observation, whose (easy) proof is left to the reader.

Lemma 2.7. With the notation of Definition 2.1, the collection P = {P1,, P13, P»3}
is almost malnormal in G, and Py = {P12,0, P13,0, P23,0} is malnormal in Gy.

Both G and G are virtually free, and thus virtually special locally quasiconvex. In
particular, the pairs (G, #) and (Gg, Po) both satisfy the hypotheses of Theorem 1.3
and Question 1.4.

2.2. Geometric conditions on graphs and triangle groups.

Definition 2.8. Let I" be a graph. The girth of T is the length of the shortest circuit
inT.

Definition 2.9. If I" is a connected k—regular graph, we define the Laplacian in terms
of the adjacency matrix A4:

1
§=1—-—A.
k

With this normalization, the spectrum of § always contains 0 and lies in the inter-
val [0, 2]. We define A1(T") to be the smallest positive eigenvalue of §.
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For each pair i < j, the group P;; acts on the regular k—valent tree T} with
quotient equal to a single edge. For definiteness we fix a planar embedding of this
tree, and an oriented edge eg. Let x; act on this tree by rotating around i (eg) and
let x; act by rotating around ¢ (eg). In this way we make T} into a Bass—Serre tree
for the P;;, considered as a free product. Any finite index subgroup N of P;; acts
on T with a finite quotient graph N\Tk .

Definition 2.10. Let N <1 Pjj o < P;j = (Z/k)* (Z/k). We say that N is rotund
if girth( v\ 7k ) > 6. We say that N is expansive if A{( Ny \Tk) > 1.

These characterizations of subgroups as rotund or expansive depend on the

particular action of P;; ¢ on T given. Here is a more precise version of Theorem 1.5.

Theorem 2.11. Let Go, Pij o, L, M, R be as in Definition 2.2.
(1) If L, M, R are rotund, then Go(L, M, R) is hyperbolic.
2) If L, M, R are rotund and expansive, then Go(L, M, R) has property (T).

Theorem 2.11 will be proved in Section 3. In Section 4 we will produce many
examples of rotund expansive L, M, R, proving Proposition 1.6.

3. Triangular complexes of groups

In this section, we give the geometric framework necessary to understand why the
groups discussed in the last section answer Question 1.4. In particular, we will prove
Theorem 2.11.

The virtually free group G can usefully be thought of as a complex of groups in
two ways, both shown in Figure 1.

P12

Z/k Z/k

Z)k

Py3 L[k P3
Figure 1. G as a graph of finite cyclic groups, and as a triangle of groups.
On the left, we see G as the fundamental group of a graph (a tripod) of finite

groups §. On the right, we see G as a triangle of groups D, with cyclic edge groups,
and vertex groups equal to the peripheral groups. Both complexes of groups are
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developable in the sense of [6, III.€]. This means in the second case that there is
an action of G on a simply connected complex (the development) with quotient D,
and the complex-of-groups data can be recovered from the action. Likewise § is the
quotient of a Bass—Serre tree T by the natural action of G. Here is a way to recover
the development in this case: Each P;; € & has a minimal invariant subtree Tp,,

in D. The development D of D, is homeomorphic to a complex which is obtained
from T by coning off each translate of any Tp ;. The link of a vertex in D can be
identified with the Bass—Serre tree of Z/ k x Z/ k (see Lemma 4.2 below).

Likewise, the free group Gy is the fundamental group of a graph &, and a complex
of groups Do, both shown in Figure 2. Here the vertex groups of £y are the elements
of $y. The development of the complex of groups is also £. The link of a vertex
of Dy is a graph with two vertices joined by k edges.

P

P13 Pa3

Figure 2. G is the fundamental group of the graph on the left, and also the fundamental group
of the complex of groups with underlying complex Y on the right. The case k = 3 is shown.

Now fix a k—fold triangle group Go(L, M, R) as in Definition 2.2. We obtain
a complex of groups structure Do(L, M, R) for Go(L, M, R) in terms of the one
for Gg, by replacing the vertex groups (elements of Jy) with their finite quotients
P120/L, P13,0/M, and Pp30/R.

Bridson and Haefliger give a criterion which implies that a given complex of
groups is developable.

Theorem 3.1 ([6, Theorem II1.€.4.17]). If a complex of groups is non-positively
curved it is developable. Moreover, if the local developments are CAT(—1) then the
development is CAT(—1).

To say that a complex of groups is non-positively curved is precisely to say that
the local developments are non-positively curved. This condition depends on how
we metrize the cells of the complex. In our case, we can metrize the triangles as
hyperbolic triangles with some constant angle 6. The local development at a vertex
marked by a group P;j;o/N where N < P;j o < Z/k * Z/ k is the hyperbolic cone
on the graph N\Tk , where this graph has been metrized so each edge has length 6.
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If 6 - girth( N\Tk) > 27, this local development is locally CAT(—1). In particular
it will satisfy the nonpositive curvature hypothesis in Theorem 3.1.

Proposition 3.2. Suppose that L, M, and R are rotund.
(1) Do(L, M, R) is developable, and the development is contractible;
(2) Go(L, M, R) is hyperbolic; and

(3) The link of any vertex of the development of Do(L, M, R) is isomorphic to N\Tk
where N € {L, M, R}.

Proof. The local development of Do (L, M, R) at a vertex is as described in item (3).
Thus if Do(L, M, R) is in fact developable, item (3) will follow.

Let n > 7 be the minimum girth of the graphs N\Tk where N € {L, M, R}.
Metrizing the triangles of Do(L, M, R) by equilateral hyperbolic triangles with
angle 27/n, we can verify the conditions of Theorem 3.1 as discussed above,
and see that Dy(L, M, R) is developable, establishing the first part of item (1).
The development X is moreover locally (and hence globally) CAT(—1) and thus
contractible. Moreover the group Go(L, M, R) acts properly cocompactly on X.
Thus Go(L, M, R) is hyperbolic, establishing item (2). O

To deduce property (T) when the normal subgroups are expansive, we need the
following criterion.

Theorem 3.3 ([7, Corollary 1]). Let I' ~ Z properly and cocompactly, where Z is
a contractible simplicial 2—complex so that for every vertex v of Z, the link Z, of v
is connected and satisfies A (Z,) > % Then T" has Property (T).

Proposition 3.4. If L, M, and R are rotund and expansive, then Go(L, M, R) has
property (T).

Proof. Since L, M, and R are rotund, the group Go(L, M, R) acts properly and
cocompactly on the development Do (L, M, R), which is a contractible complex with
each link isomorphic to N\Tk for N € {L, M, R}. Since L, M, R are expansive, we
have A1 (link(v)) > % for each vertex v. We can thus apply Theorem 3.3 to conclude
that Go(L, M, R) has property (T). O

Propositions 3.2 and 3.4 together imply Theorem 2.11.

4. Finding good expanders

In this section we prove Proposition 1.6, about the existence of the expanders we
need. The proposition is phrased in terms of a subgroup N, normal and finite
index in Pp <« P =~ Z/k % Z/k, where Py is defined to be the kernel of the map
Z/k % 7]k — 7k taking each generator to 1 € Z/k. In applying the results of
this section we identify Py with one of the P;; ¢ described before. For Ty equal to the



10 A. Lubotzky, J. F. Manning and H. Wilton CMH

Bass—Serre tree associated to the free splitting of P, we are interested in the girth and
first eigenvalue of the graphs N\Tk . We proceed by identifying Py with a certain
arithmetic subgroup of PGL,(Q ). (We should emphasize that none of the results of
the next two subsections are really new, but we want to include enough of the ideas
from [12, 13] so that the reader gets the flavor of what is going on.)

4.1. The setup. If T is a tree, we let Aut™ (T") < Aut(7") be the subgroup of index
at most two consisting of those ¢ which move a point (hence every point) an even
distance. Note that Aut™(7') acts on 7 without inversions, and F\T is bipartite
for any ' < Aut™ (7). The first lemma is an easy corollary of the fact that T is
contractible.

Lemma 4.1. Let T be a locally finite tree and D, A two discrete torsion-free
subgroups of Aut™ (T) so that the graphs D\T and A\T are isomorphic. Then D
and A are conjugate in Aut(T).

The second lemma is also standard.

Lemmad.2. Letk € Z", andlet P = 7/ k x 7/ k, and let T be the Bass—Serre tree
for the free splitting of P. (In other words vertices are in one-to-one correspondence
with left cosets of the free factors, and if Ay is the first and A, the second free factor,
each gA1 is connected to gA, by an edge.) Let Py be the kernel of the map P — 7./ k
which is the identity on each free factor.

(1) T is a k—regular tree.

2) pO\T consists of 2 vertices connected by k edges.

Let p be a prime and 7 be the regular (p + 1)-valent tree, and let Q, be
the field of p—adic numbers. Then PGL,(Q ) acts on the Bruhat-Tits tree 741, as
explained in [16].

Our goal now is to find an arithmetic subgroup A of

PSL,>(Qp) < PGL2(Qp) < Aut(Tp+1),

so that the quotient A\Tp+1 i Po\T , the graph from Lemma 4.2, withk = p+ 1.
Lemma 4.1 implies that A is conjugate to Po in Aut(7p41).

We will take suitable congruence subgroups A(i) of A; the isomorphism taking A
to Py will take these congruence subgroups to the groups L, M, R specified in
Theorem 2.11. The fact that the graphs A(i)\T are Ramanujan will come from
[13, Section 7.3, Theorem 7.3.12], using the solution of Deligne to the Ramanujan—
Peterson conjecture. We will see that in fact, one can choose the subgroups A(i) to
be nested with (); A(i) = {1}, so that the girth of A(i)\T goes to infinity.
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4.2. Constructing A. Fix p prime, with p = 1 (mod 4) and p > 17.
Recall the classical four square theorem of Jacobi [10, Theorem 386]:

Theorem 4.3 (Jacobi). Letn € Z™, and define

rqe(n) = #{(XQ,Xl,XZ,Xg,) e 74 | ijz = n}.

Then

ra(n) =8y d.
d|n,4+d
In particular since p is prime, r4(p) = 8(p + 1). We are assuming p = 1
(mod 4), so for any four integers whose squares sum to p, exactly three are even.
Thus if we take

S = {(XO,XI,Xz,X3) € Z* | xo > 0 odd, ijz = p}, 4.1)

then#S = p + L.

Next we claim (again using p = 1 (mod 4)) that there exists ¢ € Z, € Q,
so that €2 = —1. Indeed it is well-known that such an € exists in Z/ p, and by the
Hensel Lemma it can be lifted to Z . For every @ € S, associate the matrix

~ X0+ €x1 X+ €xs
o =
—X2 +€X3 Xg—€X]

) € My(Q,). 4.2)

Note that det(@) = p; we abuse notation by also thinking of & as an element of
PGL,(Qp). Let I" be the subgroup generated by S = {& | « € S}.

Lemma 4.4. T is a discrete cocompact subgroup of PGL2(Qp).

This is actually a special case of Theorem 7.3.12 of [13]. Let us explain this
special case in some detail.
Let H be the Hamiltonian quaternion algebra; for a commutative ring R, we have

H(R) ={ao+aii +azj +aszk | a; € R},

the associative R—algebra generated by symbols i, j, k, satisfying the relations
i2=j2=k?>=—-landij = k = —ji. Let H*(R) be the group of invertible
elements in H(R).

Since Z[%] is discrete in R x Q, there are discrete embeddings

H(Z[%]) — H[R) x HQp)
and
H* (Z[%])/center < (H*(R)/center) x (H*(Qp)/center).
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Now H*(R)/center = RP? is compact, while H(Q,) =~ M»(Q)) (i.e., H splits
over Q,, hence H*(Q)/center = PGL>(Q); the map

. . a €da a €ea
ao+a1l+a2]+a3k|—>( otedar ax+ 3)

—ap +€as ag—e€ax

gives the explicit isomorphism). Since H*(R)/center is compact, the projection of
Iy=H* (Z[%])/center to H*(Qp)/center = PGL,(Q ) gives adiscrete subgroup!

(This despite the fact that Z[%] projected to Q, is dense.)

Now, our I' is inside the projection, since every o € S is invertible as an element
of H(Z[%]); indeed |la|| = «-& = p is invertible in Z[1], and ! = ”%"
(In general @ € H(R) is invertible if and only if ||| is invertible in the ring R.)
One can easily see from (4.1) and (4.2) that I' € I['y(2), the mod 2 congruence
subgroup of I'g. This all explains why I" is discrete. But it is also cocompact; in
fact ' = I'y(2), and every & € S takes the root of the tree (which is the equivalence
class of the lattice Zf, C f,; see [16] for this model of the Bruhat-Tits tree) to a
sublattice of index p (since det(x) = p) and there are exactly p + 1 such sublattices
— representing the p 4 1 neighbors of the root vertex. From this one deduces that I
acts transitively on the vertices of the tree T4 1. In fact I' acts simply transitively,
and is therefore a free group on PTH generators. (Note o = @ ! where & is the
quaternionic conjugate, and so the image of S is a symmetric subset of PGL,(Q).)
Thus T+ can be identified with the Cayley graph Cay(I’, S ). In particular F\Tp+1

is a bouquet of k /2 circles, and hence compact.

Now let A = T' N Aut™ (Tp+1); this is an index-2 subgroup of I' which preserves
the 2—coloring of the tree. Because I' = I'y(2) is free of rank pTH, the rank of A is,
by the Nielsen—Schreier Theorem,

1
2P ) +1=p=k-1.
2
and there are two orbits of vertices. In particular, there is an isomorphism W from A to
Py =ker(Z/k «Z/k — Z/k) and an equivariant isomorphism from the tree 711
to the Bass—Serre tree of Z/k * Z/ k. In particular, we can find rotund or expansive
subgroups of Py by specifying them in A, which we now do.

Let g # p be a prime or prime power, so that (f) = —1,i.e., p is not a quadratic
residue mod ¢g. As explained in [13, 7.3.12], in this case ['¢(2¢) (the mod 2¢q
congruence subgroup) preserves the coloring of the tree, so it lies inside A.

Moreover, by [13,7.3.12], the quotients T";(2 q)\T have the following properties:
(1) They are k—regular Ramanujan graphs, i.e., kl(ro(zq)\T) >1-— 2—”,;_1
(2) The girth of T, (zq)\T is at least ‘—; log,(q)-

So for fixed p and ¢ — oo we are finished. (Take for example p = 17, g = 3! and
| — oo for a nested family.)
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Remark 4.5. The graphs T, (zq)\T , for g a prime congruent to 1 mod 4, are really
the same as the Ramanujan graphs presented in Lubotzky—Phillips—Sarnak [12]. But
one can make use of many other examples, e.g., for k = p® + 1, those constructed
by Morgenstern [14].

4.3. Other constructions. Another source of examples is provided by a result
communicated to us by Varju [17].

Theorem 4.6 (Varju). There is an absolute constant ¢ > 0 such that the following
holds. Let k > 3. Let p be a sufficiently large prime so that k > 3 is a divisor of
(p+1)/2, and let L = PSL,(p). Then there are subgroups Hy, Hy = 7 /k of L
so that the following inequalities hold. Let K be the kernel of a homomorphism from
Pij = 7Z/k xZ]k to L that takes the first factor to Hy and the second factor to H»,
andlet T = K\Tk.

(1) girth T > c 228 l0  and

2) A >1—(k—=1)"¢.

By taking k large enough that 1 — (k—1)7¢ > %, and letting p tend to infinity, we
obtain examples which are extended k—fold triangle groups. Applying Theorem 2.11,
these give many more examples to show the answer to Question 1.4 is “no”. In Varju’s
theorem, the subgroups H; and H, are obtained as random unipotent conjugates of
a fixed cyclic subgroup.

Remark 4.7. Another construction of negatively curved triangle complexes with
prescribed links is provided by [7, Theorem 2]. It is possible that these can also
be thought of as Dehn fillings of virtually free groups, in which case these would
provide another route to answering Question 1.4.
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