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ABSTRACT. If T is an irreducible non-uniform higher-rank characteristic zero arithmetic
lattice (for example SL,(Z), n > 3) and A is a finitely generated group that is elemen-
tarily equivalent to I', then A is isomorphic to T'.

1. INTRODUCTION

In this article, we state and prove a new rigidity result for irreducible non-uniform
higher-rank arithmetic lattices. This class includes the groups SL,(Z) for n > 3 and
SL.(Z[1/p]) for n,p > 2.

We recall the definitions. A lattice in a locally compact, second countable group G
is a discrete subgroup I' C G such that there is a fundamental domain with finite Haar
measure for the translation action of I' on G. A lattice is called uniform if G /T is compact,
and non-uniform otherwise. We say that I' is irreducible if, for every non-compact normal
subgroup K < G, the closure of the image of I in G/K is open.

In this paper, by a semisimple group we mean a locally compact group G of the form
H::1 G;(F;), where F; are local fields of characteristic zero and G; are connected simple
algebraic groups defined over F; and G;(F;) is non-compact for every 1 < i < r. We
say that a semisimple group G has higher-rank if > ranky G; > 2 and has low-rank
otherwise. A group which is an irreducible lattice in a semisimple group of higher-rank
is called a higher-rank lattice. By Mostow’s strong rigidity (see Theorem A on page 9 in
[Mos]), a group cannot be an irreducible lattice in both a semisimple higher-rank group
and a semisimple low-rank group, so being an irreducible lattice in a higher-rank group
is a property of I'. For example, SL,,(Z) is an irreducible non-uniform lattice in SL,(R),
n > 2; it is a higher-rank lattice if n > 3, while SL,,(Z[1/p]) is an irreducible non-uniform
higher-rank lattice in SL,,(R) x SL,(Q,) for any n,p > 2.

Irreducible higher-rank lattices are very much related to arithmetic groups. We re-
call the construction of the latter. Let k& be a number field with ring of integers
O, let S be a finite set of places of k, containing all the archimedean ones, and let
Os :={z k| (Mv¢gS)v(xr)> 0} be the ring of S-integers. Let G be a connected group
scheme over Og, and let Gy, be the corresponding algebraic group over k. Assume that Gy,
is absolutely simple and simply connected. Any group which is abstractly commensurable

to such G(Og) is called an arithmetic group. Borel and Harish-Chandra [BHC] proved
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that the image (under the diagonal embedding) of G(Og) in [], .4 G(K,) is an irreducible
lattice and so every arithmetic group is commensurable to an irreducible lattice in some
semisimple group. Conversely, Margulis’ Arithmeticity Theorem implies that any irre-
ducible higher-rank lattice is commensurable to an arithmetic group. Note that even in
the case G = [],cq G(K,), the arithmetic group need not be G(Og) but can have the
form H(Or) for a different algebraic group H and set of primes 7.

Irreducible higher-rank lattices have many remarkable properties. For example, Mar-
gulis’s Superrigidity Theorem roughly says that I' (as abstract group) determines G and
the embedding I' < G up to automorphisms of G (see Definition 4.1 for the accurate
statement). Another amazing rigidity result for these groups is the following (for a quick
formulation, we assume that I" is non-uniform): If A is any finitely generated group which
is quasi-isometric to I' (i.e., the Cayley graph of A is quasi-isometric to that of I'), then,
up to finite index and finite normal subgroups, I' and A are isomorphic, see [Far| and the
reference therein.

The main goal of this paper is to show a new rigidity phenomenon for higher rank
arithmetic groups. For the formulation, we need the following definitions:

Definition 1.1. Two groups are said to be elementarily equivalent if every first order
sentence in the language of groups that holds in one also holds in the other.

Elementary equivalence is a fairly weak equivalence relation: every infinite group has
an equivalent group of any infinite cardinality. From a group-theoretic perspective, it is
reasonable to restrict the discussion to finitely generated groups. Luckily, characteristic
zero arithmetic groups are always finitely generated (in fact, finitely presented).

Definition 1.2. We say that a finitely generated group ' is first order rigid (or quasi-
aziomatizable or QA for short) if every finitely generated group that is elementarily equiv-
alent to I" is isomorphic to I.

Remark 1.3. The term quasi-aziomatizable was defined for the first time in [Nie03| and
have been used in various papers in model theory (see §7 below). We prefer the term first
order rigid to put Theorem 1.4 below in line with the various rigidity result for lattices in
Lie groups described above.

Finitely generated abelian groups are first order rigid. Nilpotent groups need not be
first order rigid, but the elementary equivalence class of any finitely generated nilpotent
group contains only finitely many finitely generated groups (see Remark 6.2). In general,
elementary equivalence classes can be infinite. The celebrated work of Sela [Sel02] (see
also [KM]) shows that all non-abelian free groups are elementarily equivalent, and are
also equivalent to the fundamental groups of compact surfaces of genera at least two
(free groups and fundamental groups of surfaces are all arithmetic groups, but not of
higher-rank).

Our main result says that the situation for higher-rank arithmetic groups is very dif-
ferent. Recall that two groups are said to be abstractly commensurable if they contain
isomorphic finite index subgroups.
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Theorem 1.4. Any group which is abstractly commensurable to an irreducible non-
uniform higher-rank lattice is first order rigid.

Remark 1.5. First order rigidity is, in general, not preserved under abstract commensu-
rability, see §6.

Remark 1.6. (1) Theorem 1.4 stands in a sharp contrast to lattices in low-rank groups:

(a) By [Sel09], all torsion-free lattices in SLa(R) are elementarily equivalent.
(b) By [Sel09, Theorem 7.6], if I is torsion-free uniform lattice in a rank-one group,
then T" is elementarily equivalent to I' x F,, for all n > 1.

2) By [Sel09, Proposition 7.1], two non-isomorphic uniform torsion-free lattices in rank-
one groups other than SLs(R) are never elementarily equivalent. We do not know what
happens for non-uniform lattices.

Remark 1.7. As observed by the referee, the results extend to groups that are commen-
surable to products of irreducible non-uniform higher-rank arithmetic groups.

The paper is organized as follows: Section 2 contains some preliminaries, including
the crucial definitions of a prime group and the Brenner property. In the same section,
we also show that SL,(Z) is prime and has an element satisfying the Brenner property.
In Section 3, we prove that a prime group with a finite center that has an element
with the Brenner property is first-order rigid. This finishes the proof of rigidity for
SL,(Z). 1In Section 4 we show that superrigid arithmetic groups are prime and in
Section 5 we show that irreducible higher-rank non-uniform lattices have elements
with the Brenner property, finishing the proof of Theorem 1.4. In Section 6 we
show that first-order rigidity is, in general, not preserved under commensurability. Fi-
nally, in Section 7 we discuss some related model theoretic and group theoretic properties.

This article is dedicated to the memory Daniel G. Mostow who is the founding fa-
ther of modern rigidity. Dan was a role model and inspiration for us, professionally and
personally.
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Arzhantseva, Andre Nies, Andrei Rapinchuk and Tyakal Nanjundiah Venkataramana
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2. PRELIMINARIES

The following is a theorem of Malcev.
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Proposition 2.1 ([Mal]). If A is a group that is elementarily equivalent to a linear group,
then A is linear. If, in addition, A is finitely generated, then A is residually finite.

Definition 2.2. A homomorphism f : ' — A is called an elementary embedding if, for
every first order formula ¢(Z) with n free variables and every d € I'™, the statement ¢(a)

holds in T if and only if ¢(f(@)) holds in A.

Definition 2.3. We say that a group I" is prime if, for every group A that is elementary
equivalent to I, there is an elementary embedding I' < A.

The following is proved by Oger and Sabbagh:

Theorem 2.4 ([OS]). Let I' be a finitely generated group. The following are equivalent:
(1) T is prime.

(2) There is a generating tuple g eI and a formula gb( T) such that, for any n-tuple

h €™, the statement o(h ) holds in T if and only if h is in the Aut(T") orbit of g.

Example 2.5. SL,(Z), n > 3, is prime: We use the following consequence of superrigid-
ity: Any endomorphism of SL,(Z) is either trivial or an automorphism.

Fiz a finite presentation (g1,...,9a | T1,...,75) of SL,(Z), and let ¢(x1,...,x,) be the
formula

O(7) = (@1 # ) A \rs(@) =

Ifh e (SL.(Z))" and gb(i_i) holds, then the map g; — h; extends to a non-trivial endomor-
phism of I, so it must be an automorphism, so h is a generating tuple.

Notation 2.6. For a set S CI' andn > 1, let [S]" ={g1-- gn | gi € SU{1}}.

Definition 2.7. We say that an element b € I' has the Brenner Property if there exists
a constant D > 1 for which the following statement hold:

For every h € T, if |[h" U (h"HT)P| > D then [k" U (h"HTP N Z(Cr(b)) # {1}.

Remark 2.8. Let h € '\ Z(T') and denote S = h* U(h™")'. We claim that if |[S]°| < D
for some D > 1 then [S]P is the normal subgroup of T generated by h, and in particular

[S]P = [S]¢ for every C > D. Indeed, since |S| > 1, there is a natural number k < D
such that [S]¥ = [S]F¥*L. By induction, [S]* = [S] for every ¢ > k and hence [S]P = [S]*
is a group.

Note that the claim implies that if h € T is not contained in any finite normal subgroup
then |[S]P| > D for every D > 1.

Let e; ; € SL,,(Z) be the elementary matrix with 1s on the diagonal and entry (i, j) and
zero elsewhere.

Lemma 2.9 ([Bre]). Let n > 3. Then ey, has the Brenner Property in SL,(Z).
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Proof. Denote I' = SL,,(Z). Since the center of G is finite it is enough to show that there
is a constant C' such that for every h € T'\ Z(T), [h" U (A"Y)F]° N Z(Cr(e1,)) # {1}.

Let h € T\ Z(I') and define S := h'U(h~1)T. For every k > 1, [S]* is a symmetric normal
subset. Thus, if t € [S]* and ¢ € T then t" U (7)) C [S]* and [t,q] := tqt~1q~! € [S]?.
For a matrix ¢ € SL,,(Q) let V; :== {v € Q" |tv =v}. As SL,(Z) = (e;; | 1 <i # j <n),
there exists 1 < r # s < n such that 1 # h* := [e,,, h] € [S]?. Since dim(V, ) =
dim(Vy,,-1,-1) = n — 1, we get n — 2 < dim(Vj-) < n — 1. By the structure theorem of
finitely generated abelian groups, there exist 0 # A € M,_5(Z) and B € SLs(Z) such
that h is conjugate in SL,(Z) to

*k -[n— A
h :( 02 B)G[S]Q.

By considering the cases B = £, and B # +1, separately, it is easy to see that there
exist 0 # A", A" € M, _5(Z) and B’ € SLy(Z) such that

e [ 5) (B )] () e

If A differs from the identity matrix only in the last column then A*** is conjugate to
ey, for some k # 0. Otherwise, h*** := [h**, e,_1,] € [S]® is a non-identity matrix which
differs from the identity matrix only in the last column. 0

3. PRIMENESS AND BRENNER PROPERTY IMPLY FIRST ORDER RIGIDITY

Recall that the FC-center of a group G is the collection of all finite conjugacy classes.
The FC-center of G is a characteristic subgroup which is denoted by FC(G).

Proposition 3.1. Let I" be a finitely generated group with finite FC-center. Suppose that
A is a finitely generated group, © : I' — A is an elementary embedding, and b € T'. Then
(1) i(FC(T')) = FC(A). In particular, any non-trivial finite normal subgroup of A is
contained in i(T").
(2) i(Z(Cr())) = Z(Cali())) N i(T).
(3) If A is finitely presented or I' is linear then, for everyt € A~ {1}, there is Ay <A
such that A = Ayxi() and t & Ay In particular, Z(Cy(i(b))) is the direct sum
of Z(C(i(1)) N A, and i(Z(Cr(0))).

Proof. Identify I' with its image in A. Let g be a generating n-tuple of I'. We first show
(1). Let FC(I') = {a1,...,am}. Let ¥(x) be the formula saying that the conjugacy class
of z has at most m elements. Since ¥(a;) holds in I', it holds in A, so FC(I') C FC(A).
To show the converse, for every natural number k, let @i (z1,...,2,) be the formula
saying that, for any z different from x4, ..., z,,, the conjugacy class of x has more than k
elements. Since ¢(ay,...,an) holds in I, it holds in A, showing FC(I') D FC(A).

For every word w(Z¥), let v, (¥, y) be the first order formula saying that w(Z) is in the
center of the centralizer of y. If v,,(g,b) holds in I', then it holds in A. This implies (2).
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Finally we prove (3). In order to prove the first part of (3) it is enough to find an
epimorphism ¢; : A — I whose restriction to I' is the identity map and such that ¢, (t) # 1
(since, in this case, A = ker(¢;)xI'). Let (y1,...,Ym | 71,...) be a presentation for A, and
let h = (hi,...,hn) be a generating m-tuple of A corresponding to this presentation. If
A is finitely presented then there are only finitely many relations ry,...,rs and for every
m matrices [y, ..., l, € GLy(F) which satisfy these relations, the map h; — [; extends to
a homomorphism from A to I' . If ' is linear, Hilbert’s basis theorem implies that there
exists a number s such that any m matrices [y, ..., [, € GL4(F) satisfying the relations
ri,...,Ts also satisfy the rest of the relations r;, and, in particular, the map h; — [;

-

extends to a homomorphism. Let wq(%),...,w,(Z) be words such that g; = w;(h) for

—

every 1 < i < n, and let u(Z) be a word such that ¢t = u(h). Let n(y1,. ., Ym, T1,- .., Tn)
be the first order formula which is the conjunction of

(1) ¢ satisfies r1,...,7s.
(2) Algign w;(Y) = ;.
(3) u(y) # 1.

The tuple h is a testament that the formula (37)n(7, §) holds in A. Hence, this formula

also holds in T. Let ¥ € I'™ be such that 77(12, g) holds. By the first part of 1, the map
h; — k; extends to a homomorphism ¢; : A — I". By the second part of the definition of
n, ©i(g;) = @t(wi(i_i)) = wz(lZ) = g; for every 1 <i < mn, so the restriction of ¢; to I' is the
identity map. By the third part of the definition of 1, ¢, (t) = @, (u(h)) = u(k) # 1. The
second part of (3) follows from the first part and (2).

U

Remark 3.2. In this paper, the requirement that t ¢ A, in part (3) of Proposition 3.1
does not play any role. This requirement becomes important when dealing with the positive
characteristic case and it is included here for future reference.

Theorem 3.3. Let I" be a finitely generated group. Assume that

(1) T is linear.

(2) FC(T) is finite.

(3) T is prime.

(4) b has the Brenner property in I' and the Prufer rank of Z(Cr(b)) is finite (this
means that there is a natural number k such that every finitely generated subgroup
of Z(Cr(b)) is generated by k elements.)

Then T is first order rigid.

Proof. Let A be a finitely generated group that is elementarily equivalent to I'. Since I"
is prime, there is an elementary embedding ¢ : I' — A. As before, we identify I" with
i(T"). By Proposition 3.1(3) (with any non-trivial ¢), there is a subgroup A < A such that
A = AxI'. We will show that A = 1.
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If there is a non-trivial element in A, the Brenner property of b, Remark 2.8, part (1)
of Proposition 3.1 and the normality of A imply that there is a non-trivial element in
AN Z(Cx(b)). Hence, it is enough to prove that A N Z(Cy (b)) = {1}.

For an abelian group ®, denote the set of m-powers in ® by P,,(®), and note that this is
a subgroup. Since every finitely generated subgroup of Z(Cr(b)) is generated by at most
k elements, the group Z(Cr(b))/ P, (Z(Cr(b))) is finite. Let d,,, be its size. There is a first
order formula v, () that says that the quotient of the center of the centralizer of x by the
collection of m-th powers of the center of the centralizer of = has size d,,,. Since v,,(b) holds
in T', it also holds in A. Hence, |Z(Cx(b))/Pn(Z(Ca(b)))| = |Z(Cr(b))/ P, (Z(Cr(b)))|.
Proposition 3.1(3) implies that, for every m, Z(Cx(b)) N A = P,,(Z(Cx(b)) N A). Hence,
Z(Ca(b)) N A is divisible. By Proposition 2.1, A is linear. Since A is finitely generated, it
is residually finite. It follows that Z(Cy (b)) N A is a divisible and residually finite group,
a contradiction. OJ

Combining Theorem 3.3, Lemma 2.9, Example 2.5, and noting that Z(Csy,,(z)(e1,n)) is
the cyclic group generated by ey ,,, we get

Corollary 3.4. Ifn > 3, SL,(Z) is first order rigid.

4. SUPERRIGID LATTICES ARE PRIME

In this section, we prove that superrigid lattices are prime. Recall our notation that
G, H, ... denote algebraic groups and G, H, ... denote locally compact groups.

Definition 4.1. A subgroup I" of a locally compact group G is called superrigid if, for any
simple adjoint algebraic group H defined over a local field L, any homomorphism from I’
to H(L), whose image is unbounded and Zariski dense, extends to a homomorphism from

G to H(L).
There are many examples of superrigid subgroups:

Example 4.2.
(1) By Theorem (2) in page 2 of [Mar|, irreducible lattices in higher-rank semisimple
groups are superrigid.
(2) By [Cor| and [GS], lattices in Sp(n,1) and in F4(_20) are superrigid.
(3) In [BL] there were given examples of groups which are superrigid but not lattices.

Recall that a semisimple group is a locally compact group G = [[;_, G;(F;), where F;
are local fields of characteristic zero and G; are connected simple algebraic groups defined
over F; and G;(F;) is non-compact for every 1 < ¢ < r. The purpose of this section is to
prove the following:

Theorem 4.3. Let ® be a group which is abstractly commensurable to an irreducible
lattice in higher-rank (characeterstic zero) semisimple group. Then ® is prime.

Some preparation is needed for the proof of Theorem 4.3 which is given below.
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Definition 4.4. Let f : G — H be a homomorphism between two locally compact groups.
We say that f is locally measure preserving if there is a neighborhood 1 € U C G such
that fly : U — f(U) is a measure preserving homeomorphism.

Note that, if f : G — H is locally measure preserving and the restriction of f to Q2 C G
is one-to-one, then f|q is measure preserving.

Example 4.5. If G, H are semisimple algebraic groups defined over a local field K and
f: G — H is a central isogeny (i.e., [ is surjective and ker(f) is a finite subgroup of the
center of G) with invertible derivative, then, up to normalization of the Haar measures by
constants, the map f : G(K) — H(K) is locally measure preserving.

Suppose that f : G — H is locally measure preserving and onto, and let A C G be a
discrete subgroup such that A D Ker(f). If Q2 C G is a fundamental domain for A in G,
then f(2) is a fundamental domain for f(A) and flg : Q@ — f(Q) is one-to-one. It follows
that the covolume of A in G is equal to the covolume of f(A) in H.

We will use a theorem of Borel and Tits. In the following statement, if G is an algebraic
group over a field F', we denote by G the subgroup of G(F’) generated by the subgroups
U(F'), where U ranges over the unipotent radicals of parabolic subgroups of G. If g :
F — F'is a homomorphism of fields, we denote the base change of G by 3 by ?G.

Theorem 4.6 ([BT73], Theorem A). Let F,F' be fields. Let G and G’ be absolutely
simple connected algebraic groups over F and F' respectively. Assume that G’ is adjoint
and G* is Zariski dense in G. Let f : G(F) — G'(F") be a homomorphism with Zariski-
dense image. Then there is a field homomorphism B : F — F', an F'-isogeny with
invertible derivative ¢ : PG — G', and a homomorphism v : G(F) — Z(G'(F")) such that

f(g) = v(9)(B(9)).

Remark 4.7. By the solution to the Knesser—Tits conjecture, if F' is either a local or a
global field and G 1is F-isotropic, then G is Zariski dense in G. This implies also that
Z(G(F)) = Z(G). We will only apply the theorem under the assumption that F' and F’
are either local or global, so the condition on GT is always satisfied and Z(G'(F')) =
Z(G") =1.

Theorem 4.8. Let G be a connected absolutely simple group over a number field k, let
S be a finite set of valuations, containing all archimedean ones. Assume that every finite
index subgroup of G(Og) is superrigid in [[,cq G(ky). Let ' be a finite index subgroup of
G(Og) and let p: T' — G(Og) be a homomorphism with infinite image. Then
(1) ker(p) is finite.
(2) If p is injective, then [G(Og) : I'| = [G(Os) : p(I')]. In particular, if p(I') C T,
then p is an automorphism.

Proof. Note first that it suffices to prove (1) and (2) for some finite index subgroup of T,
so we can replace I' with a finite index subgroup whenever it is needed.
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Since Z(G(Og)) is finite, by passing to a finite index subgroup of I' we may as-
sume that I' N Z(G(Og)) = 1. We can also assume that, for any v € S, I is
unbounded in the valuation v (otherwise, after passing to a finite index subgroup,
I' C G(Os-4v}))- Denote G = [],cq G(ky), and let 6 : G(k) — G be the diagonal
embedding.

Let H = mz be the Zariski closure of the image of I" and let H° be the connected
component of identity. Since the image of p is infinite, H° is not trivial. Replace T’
with T'N HY (and still call it T'). There is v € S and a non-trivial adjoint k-factor
q: H® — K such that ¢(p(T")) is unbounded in the valuation v.

Proof: Assume the contrary. Let ¢ : H° — K be an adjoint factor defined
over k, and choose a k-embedding K — GL,,. Since q is defined over k, the group
q o p(I") is commensurable to a subgroup of K (k) N GL,(Os), so it is discrete in
[I,cs K (ky). Being pre-compact, g o p(I') is finite. Since g o p(I') is also Zariski
dense in the connected group K, it follows that K is trivial. Since this holds for
every adjoint factor K, HY is solvable. Thus, H° has an infinite abelianization, so
I' has a finite index subgroup with an infinite abelianization, a contradiction to
superrigidity.

G =H = H"and K = G*. Le., p(T) is Zariski dense.

Proof: Since q o p(A) is Zariski dense in K and unbounded in K(k,), Super-
rigidity implies that ¢ o p extends to a map f, : G — K(k,), so, in particular,
there is w € S and a non-trivial map f,, : G(k,) — K(k,). By Borel-Tits, there
is a field homomorphism 8 = 3,, : k, — k, and a non-trivial algebraic homo-
morphism ¢ : /G — K such that f,, is the composition of 8 : G(k,) — G(k,)
and ¢. Since #G is simple, dim K > dim G = dim G > dim H° > dim K, so H°
is open in G. Since G is connected, we get that G = H® = H and K = G,
ker(p) is finite.

Proof: In the last step we showed that f,, ., (G(k,)) is Zariski dense in K. Since
K has trivial center, the image under f, of any other factor of G is trivial. It
follows that f, is the composition of the projection G — G(k,,) and f,,. Hence,
p is the composition of the embedding I' — G(k,,) and f,,,. By Borel-Tits, f,,
is a composition of a field homomorphism, which is necessarily injective, and a
non-trivial central isogeny, so the kernel of f, , is finite.

Let f, : G — G%(k,) be the map constructed in Step 3. Then f,(6(G(k))) C
G (k).

Proof: Denote the algebraic closure of k,, by k,. Let g € G(k), and assume that
f,(6(9) € G ky) ~ G k) C G¥(ky) ~ G*(k). Then there is a field automor-
phism o € Gal(k,/k) such that o(f,(5(g))) # f,(6(g)). Denote the conjugation
by an element h by ¢;. Since g € G(k), there is a finite index subgroup A C I' such
that ¢,(A) C I'. Tt follows that ¢y, (s(g)) (fo(6(A))) C fo(0(1)) = qo p(T') C G*(k).
We get that, for each h € f,(0(A)), c,59)(R) = Co(fu(s(9))(h), meaning that
a(fu(6(9)) (fo(6(g))~" # 1 commutes with f,(5(A)). Since f,(6(A)) has finite
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index in f,(6(I)), it is Zariski dense. Since G has trivial center, we get a con-
tradiction.

Let f = f, 008 : G(k) — G%(k). By Borel-Tits, there is a field endomorphism
a: k — k and a central isogeny 1 : “G' — G such that f = v o . Since the
characteristic of k is zero, a is an automorphism. The automorphism « defines a
bijection on the set of valuations of k by (a(w))(z) = w(a'(x)). We claim that
a(S)=S.

Proof: Note that by our assumption w € S iff G(Og) is unbounded in G(k,).
Let w € S. By our assumptions, G(Og) is unbounded in the w valuation, so
a(G(Og)) is unbounded in the a(w) valuation. Since 1 is a central isogeny, this
implies that ¥ (a(G(Os))) is unbounded in the a(w) valuation. Since ¥ (a(G(Og)))
is commensurable to ¢(p(T')) and ¢(p(T)) N G*(Og) has finite index in g(p(I)), it
follows that G%(Og) is unbounded in the a(w) valuation, so a(w) € S.

Step 7 Let q : G — G be the quotient by the center from before. Let

Step 8

q:G =[] Gkw) = [ G“(kw) = [] G(ku)/Z(G(kw)) = G/Z(G)

weS weS weS

be the map induced by g. Then the composition I' % G(Og) RNV G/Z(G)
extends to a locally measure preserving map h : G — G/Z(G) (i.e., hod = qodop),
whose kernel is Z(QG).

Proof: For every w € S, the map f : G(k) — G%(k) is uniformly continuous if
we put the w-topology on G(k) and the a(w)-topology on G*(k), so it extends to a
continuous map hy, : G(ky) = G*(ka(w)). Let h: G = [[,cs G*(kw) = G/Z(G)
be the product map. Each h,, is a composition of an isomorphism and a central
isogeny, so it is locally measure preserving. It is easy to see that h extends qodop.
We have [G(Og) : T'] = [G(Og) : p(T)].

Proof: By Step 7, q(d(p(I"))) = h(6(I")). We have

covolg (@) (h(8(T))) = covolaz(c)(h(3(T) Z(G)) = covola(6(I) Z(G)) =
= covola(3(D) - [3(I) Z(G) : ()] = covola(8(T) - |Z(G)].

where the first equality is because the kernel of h is Z(G), the second is because
h is locally measure preserving, the third is clear, and the forth is because Z(G)N
d(I) € §(Z(T")) = 1. The same proof shows that

covolag,z(a)(a(d(p(I")))) = covola (d(p(I")) - [2(G)],

which implies the claim.

This complete the proof Theorem 4.8. 0

Corollary 4.9. Let ® be a group which is abstractly commensurable to an irreducible
non-uniform higher-rank lattice. Let p : ® — ® be an endomorphism with an infinite

1mage.

(1)

Then:
ker p is finite.
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(2) If p is injective then p is an automorphism.

Proof. Margulis’ Arithmeticity Theorem implies that there exist connected absolutely
simple group G defined over a number field k, a finite set of valuations S which contains
all archimedean ones such that G(K,) is unbounded for every v € S, and a finite index
subgroup I' of G(Og) such that I' is isomorphic to a finite index subgroup of ®. Margulis’
superrigidity theorem implies that all finite index subgroups of G(Og) are superrigid in
[I,cs G(ky). We identify I' with its image in ®. There exists a finite index subgroup I'y
of I" such that p(I'y) <T.

Since I'; has a finite index in ® then p(I'y) is infinite. Part (1) of Theorem 4.8 implies
that ker p N I'; is finite. Since I'y has a finite index in @, ker p is also finite.

Assume that p is injective. Part (2) of Theorem 4.8 implies that

[G(Og) - T[T : T4 ] = [G(Os) : T1] = [G(Os) = p(I')] = [G(Os) : TN = p(T)].

Thus, [[': Ty =[:p(I)] and [@: ] =[@: T : Ty = [@: ][ : p(I'y)] = [® : p(T'y)].
Since p is injective, [p(®) : p(I'1)] = [@ : '] = [@ : p(I'1)] and p is surjective. O

Lemma 4.10. Let ® be a group which is abstractly commensurable to an trreducible non-
uniform higher-rank lattice. Then

(1) FC(®) is finite.

(2) ® is finitely presented.

(3) There exists a constant N such that every finite subgroup of ® has a normal abelian
subgroup of index at most N.

(4) ® contains a non-abelian free subgroup.

Proof. ® has a finite index subgroup I" which is a lattice in a group of the form [[ G;(F;).
By passing to a finite index subgroup, we may assume that G; are connected. It follows
that the projection of I" to each G; is Zariski dense. Since conjugacy classes in G;(F;) are
either central or infinite, (1) follows.

For part (2), recall that lattices in semisimple groups (of characteristic zero) are finitely
presented and that finite presentability is preserved under abstract commensurability.
Part (3) is just Jordan’s theorem about finite linear group of characteristic zero. Part (4)
follows from Tit’s alternative [Tit]. O

We can now prove Theorem 4.3.

Proof of Theorem 4.3. By Theorem 2.4, we need to show that there is a generating set
g1, ---,gn and a formula ¢(xy, ..., x,) such that, for any tuple (hq,...,h,) € ®", if (b(ﬁ)
holds, then there is an automorphism of ® sending g; to h; for every 1 <i < n.

We are going to use freely the facts mentioned in Lemma 4.10. Find a generating tuple
J1,---gpand let rq, ..., r, be the corresponding defining relations. Let wy, ..., w;, be words
such that {w1(§), ..., wy(g)} is the set of non-trivial elements in the maximal finite normal
subgroup of ®. Let N be the constant defined in part (4) of Lemma 4.10. Since ® contains
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a non-abelian free subgroup, there are words uy, us such that [u ()N, ua(g)™] # 1. Let
¢(x1,...,2,) be the formula

([ (@)Y, ua()Y] £ 1) A (/\ (7) = 1) A (/\ wil(@) # 1>) .
j=1 i<b

Assume that hy,..., h, € ® and ¢(h) holds. There exists an endomorphism p : I' — T’
which sends g; to h; for every 1 < i < n. Since [ul(ﬁ)N,UQ(ﬁ)N] = 1, the images of the
form p(u;(§)) = u;(h) are not contained in any finite subgroup of I'. Hence, the image of
p is infinite.

Part (1) of Corollary 4.9 implies that ker(p) is finite, and hence contained in {1} U
{wi(g),...,wp(g)}. By the definition of ¢, we get that p is one-to-one. Part (2) of
Corollary 4.9 implies that p is an automorphism, confirming the required condition. [

Remark 4.11. The converse of Theorem 4.3, namely, that a prime lattice is superrigid,
is false: by [Sel09], torsion-free cocompact lattices in SO(n, 1), n > 3 are prime. It is well
known that these lattices are not necessarily (and probably never) superrigid.

Remark 4.12. Prime groups need not be first-order rigid. For example, any cocompact
lattice in Sp(n, 1) satisfies the assumptions of Theorem 4.8 (and hence prime) but is not
first order rigid by Theorem 7.6 of [Sel09].

Remark 4.13. The crucial property needed in the proof of Theorem 4.3 above is the
property stated in Corollary 4.9: Every injective endomorphism of I is an automorphism
(T is said to be co-hopfian). This property does not hold for positive characteristic higher
rank lattices. For example, if F' be a finite a field and n > 3 then SL,(F[t]) is supperrigid
but it has many proper subgroups that are isomorphic to itself, e.g., SL,(F[t™]) for every
m > 2. Nevertheless, we can prove that SL,(F[t]) and all its finite index subgroups are
prime and first order rigid.

Remark 4.14. We thank the referee for the following remark. Suppose that I' is finitely
generated, linear, just-infinite, and co-hopfian, and suppose that A is universally equivalent
to I'. An argument similar to the proof of Theorem 4.3 shows that there is a monomor-
phism i : I' = A. An argument similar to the proof of Proposition 3.1 shows that there is
a morphism j : A — I such that j o i is injective. It follows that A =T x N, for some
group N.

In particular, if I'y and Ty are non-isomorphic finitely generated, just-infinite, co-
hopfian, and linear groups, then their universal theories are different.

5. BRENNER PROPERTY FOR HIGHER-RANK GROUPS

Theorem 5.1. Let k be a global field and let S be a finite set of valuations, containing all
archimedean ones. Let G be a simple algebraic group over k which is k-isotropic and has
S-rank at least 2. Let P be a maximal proper k-parabolic subgroup, and let ' be a finite
index subgroup of G(Og). There is a constant C' such that, for any non-central v € T,
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the set [yF' U (y"HT]C contains a finite index subgroup of U NT where U is the unipotent
radical of P.

Proof. The claim essentially appears in the proof of Theorem 2.1 of [Rag]. We sketch
the argument. Fix a maximal k-split torus S contained in P. There is a simple k-root
« and an ordering of the simple k-roots such that P is the parabolic corresponding to «
and the positive roots. By [BT65, §5], there is w € Ng(S)(k) that switches the positive
and negative roots. The image of w in the Weyl group is of order 2. This means that
w? € Cu(S), so P = P (because Ci(S) C P). In particular, PN P¥ is w-invariant. Let
o = —w(a) (so « is positive), let P’ be the (maximal) parabolic corresponding to o/,
and let U’ be its unipotent radical. By [BT65, Theorem 5.15], the map (u,b) > wwb is
a k-isomorphism between U’ x P and an open dense set in G. By definition, ¢! is also
defined over k, so uwb € G(k) implies that v € U'(k) and b € P(k).

We first claim that there is a constant C; such that [yFU(y~1)T]" is Zariski dense. Note
that [yI' U (y71)!']? contains a Zariski-dense subset of ¢ (y71)¢ and the later contains the
identity. The conjugacy class 7 is irreducible and has positive dimension, and, hence, so
is [y - (71", for all n > 1. Note also that n +— dim[y“ - (y71)%]" is non-decreasing. If
dim[y“ - (v~ %" = dim[y¥ - (y71)¥]" L, it follows that the Zariski closures of [y9 - (y~1)¢]"
and [y“ - (y71)¢]"*! coincide. Therefore, the Zariski closure of [y - (y~1)%]" is a normal
subgroup of G, so it must be G.

Let uw € U' and b € P such that uwb € [yF' U (771! and suppose that z € TN PN PY
satisfies [x,u] € T'. We consider the effect of conjugating by z and by [z, u] := zuzr—'u™!
on the Bruhat decomposition of uwb:

(zuz™w(z br™") = rur  rwbr ™ = r(uwb)r ™t € [y U ()T
and
(zurw(buzu 'z = [z, u] (uwb)[z,u] ™ € HF U (y"HT
Taking the quotient,
b Nz buzu T € [y U (yHTE
as [yI' U (y71)I]% is closed to conjugation by elements of T,
1) b bt € 7T U (7 )T

Note that U’ is generated by rational positive roots so it is contained in P and in particular
u € P. Since PN PY is w-invariant, our assumptions on z imply that every term in
equation (1) is in P. Thus, the element in (1) is also contained in P. Let

A={(u,b,x) eU' x Px (PNP") Juwb e, [z,ul e,z e}
and let f: U’ x P x (PN P"Y) — P be the function
flu,b,z) = b (271 buzu?.

We just showed that f(A) C [4F U (y")!]?*“". Let M be the connected component of
the Zariski closure of (P N P¥)(Og). We claim that A is Zariski dense in U’ x P x M.
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Indeed, the collection of (u, b) satisfying uwb € T" is Zariski dense in U’ x P, so it is enough
to show that, for every v € U’(k), the collection of z’s satisfying [z,u] € I' contains a
finite index subgroup of M (Og). After passing to a finite index subgroup, we can assume
that I' is normal in G(Og). Consider the polynomial function = +— [z,u]. It has k-
rational coefficients and maps 1 to 1. It follows that there is an ideal a of Og such that,
if z € G(Og)(a), then [z,u] € G(Og). Consider the map ¢ : M(Og)(a) NT — G(Og)/T
defined by c(z) = [x,u|l. Since [y, u] = ryuy 'z~ ™! = z[y, ulz ™[z, u], it follows that
c is a homomorphism. Every element x in ker(c) (which has finite index in M (Og)(a)NT
and hence in M (Og)) satisfies [z, u] € I', which is what we wanted to prove.

It follows that, in the notation above, f(A) is Zariski dense in f(U’ x P x M). Hence,
the Zariski closure of [y©' U (y71)F]?*“* N P contains f(U’ x P x M). Denoting the Levi
subgroup of P by L, [Rag, Lemma 2.8] says that the group generated by f(U’ x P x M)

contains the identity component of the Zariski-closure L(OS)Z of L(Og).

Let U’ i = 1,..., N be the ascending central series of U. Each U'/U""! is a vector
space on which P acts by conjugation. If v € (U*NT)/(UT NT) and 2z € f(A), then
(Ad(z) — v = [v,2] € T U (v )], We will use the following simple lemma:

Lemma 5.2. Let k be a global field, O its ring of integers, and S a finite set of valuations.
For hy, ..., hy € GL,(Og) generating a subgroup H, the following are equivalent:

(1) span{(h = 1)k" | h e A"} = k",

(2) span{(h — 1)k" | h € H} = k".

(3) There is no H-invariant linear functional on k™.

(4) span{(h; — DE™ |1 <1 <t} =k™

(5) (hy —1)O% + -+ (hy — 1)O% has a finite indez in O%.

By [Rag, Claim 2.11], (L(OS)Z)O acting on U’ /U™ satisfies condition (1). Since the

Zariski closure of (f(A)) contains (L(OS)Z)O7 the action of (f(A)) also satisfies this con-
dition. It follows that there are finitely many elements hq,...,h, € f(A) that satisfy the
claim of the lemma. In particular, [hy, (U'NT)/(UTNT)] +. ..+ [k, (UNT) /(U NT)]
has finite index in (U'NT) /(U™ NT). By induction, it follows that [y U (y~ ) PN NU
has finite index in U(Og) (and, hence, in U(Og) NT"). O

Corollary 5.3. Let ® be a group which is abstractly commensurable to an irreducible
non-uniform higher-rank lattice. There exits g € ® which has the Brenner Property .

Proof. Margulis’ Arithmeticity Theorem implies that ® has a finite index subgroup I'
which satisfies the assumptions of Theorem 5.1. We claim that any element g € ' U of
infinite order has the Brenner Property where U is as in the statement of Theorem 5.1.
Indeed, let D = 2ABC where A := [® : '], B = |Z(I')| and C is the constant defined
in Theorem 5.1. Let h € ® and assume that |[A® Uh~'*]P?| > D. Remark 2.8 implies
that |[A® U A~2%]4B| > AB so [h® U h~'*]*4B contains a non-central element of I'. The
definition of C implies that [hY U (h~1)]?4B¢ contains a finite index subgroup of {(g).
Since g has an infinite order, [hT U (h=1)T]2ABC N (g) # {1}. O
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Lemma 5.4. Let ® be a group which is abstractly commensurable to an irreducible higher-
rank lattice. There exists a constant D such that any finitely generated abelian subgroup
of ® is generated by at most D elements.

Proof. Selberg’s lemma implies that any finitely generated linear group of characteristic
zero has a torsion free finite index subgroup. Thus, ¢ has a torsion free finite index
subgroup which is an irreducible higher-rank lattice. It is known [Ser| that such lattices
have a finite cohomological dimension. Let C' be the cohomological dimension of I'.
Every finitely generated subgroup of I' has cohomological dimension at most C. The
cohomological dimension of Z" is n so the rank of every finitely generated abelian subgroup
of I' is at most C. Thus, the minimal number of generators of any abelian subgroup of ®
is at most [®@ : I'|C. O

We can now prove Theorem 1.4:

Proof of Theorem 1.4. Theorem 4.3, Lemma 4.10, Corollary 5.3 and Lemma 5.4 show that
® satisfies the conditions of Theorem 3.3. Hence @ is first-order rigid. U

6. FIRST-ORDER RIGIDITY IS NOT COMMENSURABILITY INVARIANT

The goal of this section is to show that first order rigidity is not preserved by finite
index subgroups nor by finite extensions. The key ingredient is the following theorem of
Oger:

Theorem 6.1 ([Oge9l, Oge96]). Let G and H be finitely generated finite-by-nilpotent
groups. Then G and H are elementarily equivalent if and only if G X Z and H X Z are
isomorphic.

Remark 6.2. The following theorems imply that elementary equivalence classes of finitely
generated nilpotent groups are finite:

(1) Baumslag [Bau] proved that if A, B,C and D are finitely generated group such that
AX BZC x D and B and D have the same finite quotients then A and C have
the same finite quotients.

(2) Pickel [Pic] proved that if G is a nilpotent group then the collection of isomorphism
classes of nilpotent groups with the same finite quotients as G is finite.

We start by giving an example of a first order rigid group which has a finite exten-
sion that is not first order rigid. The example follows Baumslag’s construction [Bau] of
non-isomorphic finitely generated groups with the same finite quotients. Every finitely
generated abelian group is first order rigid. In particular, the infinite cyclic group Z is
first order rigid. For every coprime n,m € N*, let C,, be the cyclic group of order n and
let pp, : Z — Aut(C,) be the homomorphism defined by p,,(1) := «a,, where «,, is the
automorphism of C;, which sends each element to its m-th power. Define Gg := CosX s Z
and Gy := Uy X, Z. Note that Z is isomorphic to a finite index subgroup of Gj, so it is
enough to prove that G¢ is not first order rigid.
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Proposition 6.3. Gg is not first order rigid.

Proof. For every i € {6,11}, the set T(G,;) of torsion elements of G; is a subgroup of
G; which is isomorphic to Cys. If ¢ € G and g T(G;) generates G;/ T(G;) ~ C then
the conjugation action of g on T(G;) induces either ag or ag if i = 6 and @y or asg
if + = 11. In particular, Gg and G;; are not isomorphic. On the other hand the map
Y Gip X Z — Gg x Z defined by ¥(((r, s),t)) = ((r,2s + 5t), s + 2t) is an isomorphism.
Theorem 6.1 implies that Gg is not first order rigid. U

Our next goal it to show that G has a finite extension which is first order rigid.

Lemma 6.4. Let M be a finite group such that all the automorphisms of M are inner
and define Hy == M x Z. Then H; is first order rigid.

Proof. Since H; is finite-by-nilpotent every group which is elementarily equivalent to
H; is finite-by-nilpotent. Thus, Theorem 6.1 implies that it is enough to show that if
H, X Z = Hy X 7Z then Hy = H,. Choose an isomorphism ¢ : Hy X Z — Hy X 7Z. Note
that M and thus ¢(M) are the torsion subgroups of H; x Z and Hy x Z. In particular,
t(M) < Hy. Thus,

ZxZ=(H /M) xZ=(H xZ)/M = (Hy x Z)/o(M) = (Hy/e(M)) x Z.

The structure theorem of finitely generated abelian groups implies that Z = H;/M =
Hy/u(M). Thus, Hy = M xsZ for some homomorphism 0 : Z — Aut(M). Since all the
automorphisms of M are inner, Hy = M x Z = H;. O

Proposition 6.5. Gg embeds as a finite index subgroup of a first order rigid group.

Proof. Embed Co5x Aut(Css) in the symmetric group S, for some n > 7 and recall that
all the automorphism of S, are inner for n # 6. Every automorphism of Cys is the
restriction of an inner automorphism of Casx Aut(Cos), in particular, every automorphism
of Uy is the restriction of an inner automorphism of S,. Define H := §,x,Z where
v Z — Aut(S,) is a homomorphism for which (1) € Aut(S,) is an automorphism
which preserves Cys and acts on it as ag. Then, GGg can be identified as a finite index
subgroup of H. Since all the automorphisms of S,, are inner, H = §,, X Z. Lemma 6.4
implies that H is first order rigid. (]

7. DISCUSSION AND FURTHER QUESTIONS

There are other model theoretic notions that are related to quasi axiomatizability. In
[Nie03], Nies gave the following definition:

Definition 7.1. A finitely generated group T is called quasi-finitely axiomatizable (or
QFA for short) if there exists a first order sentence ¢ such that every finitely generated
group which satisfies ¢ is isomorphic to I

It is clear that a QFA group is also QA. On the other hand, finitely generated infinite
abelian groups are QA but not QFA. Nies [Nie03] proved that the free step-2 nilpotent
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group of rank 2 is QFA. Oger and Sabbagh [OS] proved that a finitely generated nilpotent
group I' is QFA if and only if it is prime if and only if Z(I') C A(I") where A(T") is the
isolator of the commutator subgroup of T',

A(T') :={g | In > 0 such that ¢" € [[',T]}.

Lasserre [Las13] gave a similar characterization of QFA for polycyclic groups. Khelif [Khe]
proved that a finitely generated group which is bi-interpretable with the ring Z is prime
and QFA. Lasserre [Lasl4]| used this to prove that the Thompson groups T and F are
QFA. It is interesting to understand the connections between the properties QA, QFA
and prime. Nies [Nie07] showed that there are 2% finitely generated prime groups. Since
there are only countably many QFA groups, not every finitely generated prime group is
QFA. An explicit example of a finitely generated prime group which is not even QA was
given by Houcine [Hou| (see also Remark 4.12 above). To the best of our knowledge, it
is unknown whether there exist prime groups which are QA but not QFA. In a sequel
to this article we will show that many non-uniform higher-rank arithmetic groups are in
fact QFA and we believe that all of them are. We will also show that many uniform
higher-rank arithmetic groups are first order rigid. At the moment, We do not have a
single example of a uniform higher-rank arithmetic group for which we know whether it
is QFA or not.

Question 7.2. Does there exist a uniform higher-rank arithmetic group which is QFA?

A positive answer to Question 7.2 will give the first example (to the best of our knowl-
edge) of a QFA group which does not have a non-abelian solvable subgroup.

All the higher-rank arithmetic groups for which we know to prove first order rigidity
have the congruence subgroup property. In fact, the proof of first order rigidity relies
on arguments which are used in the proof of the congruence subgroup property. For
example, the fact that non-uniform higher-rank arithmetic groups have elements with the
Brenner property follows from Raghunathan’s proof of the congruence subgroup property.
However, it should be emphasized that Raghunathan’s proof yields more than what is
actually needed in order to prove the congruence subgroup property. With the notations
of Theorem 5.1, in order to prove first order rigidity we need the existence of the constant
C, while if one only wants to prove the congruence subgroup property, it is enough to
show that the normal subgroup generated by every non-central element v € I" contains a
finite index subgroup of U NI". We are wondering if one can use the congruence subgroup
property directly in order to prove first order rigidity.

Question 7.3. Let I" be an arithmetic group which has the congruence subgroup property.
Does T' must be first order rigid?

Note that the congruence subgroup property implies superrigidity (see [Rag]).

It is known that all lattices in Sp(n, 1)(R) are superrigid and arithmetic. It follows from
Sela’s results that the uniform ones are never first order rigid (see remark 4.12 above), and
it is a wide open question whether these lattices have the congruence subgroup property
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(Serre conjectured that rank-1 arithmetic groups cannot have the congruence subgroup
property). A positive answer to Question 7.3 will show that these uniform lattices do not
have the congruence subgroup property and will give an indication that Serre’s conjecture
is true. It is worth mentioning that if these groups do have the congruence subgroup
property, then an argument of the second author ([Lub, 4.2]) shows that the quotient of
such a group with respect to the normal subgroup generated by a random element is a
hyperbolic group which is not residually finite. It is a major open question whether such
hyperbolic groups exist.

While we do not know if superrigidiy together with the congruence subgroup property
imply first order rigidity, we do know that superrigidiy together with bounded generation
imply first order rigidity (the proof will appear in a sequel to this paper). It is known
that many non-uniform higher-rank arithmetic groups are boundedly generated (see [Tav],
[ER], and [MRS] for the state of the art), but it is a wide open problem whether uniform
higher-rank arithmetic groups are boundedly generated. To the best of our knowledge,
there is not even a single example of a uniform higher-rank arithmetic where the answer
to this question is known. As all uniform higher-rank arithmetic groups are supperrigid
and many of them are indeed first order rigid, this leads to the following question:

Question 7.4. Are all uniform higher-rank arithmetic groups first order rigid?

This question is especially interesting in the cases where the congruence subgroup prop-
erty is not known.
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