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Abstract— Network virtualization (NV) allows multiple hetero-
geneous virtual networks (VNs) to coexist and operate over the
same physical network (PN) infrastructures. Some of the benefits
of this advancement include flexibility in VN topologies, hetero-
geneity in VN technologies, and modularity of network opera-
tions. However, there are a few areas, such as resource allocation
and economics, which challenge the implementation of NV. In this
paper, we first introduce some NV parameters that influence
the resource allocation and economics of an NV system. Next,
we formulate an economic model for NV using the prey-predator
food chain model. This model takes into account the dynamics in
an NV system, such as the service, payoff, failure, and competition
rates within each VN and PN. The solution point to this model
represents the resource strategy of the service provider (SP) given
the number of users trying to use its VN, as well as the resource
strategy of the infrastructure provider (InP) given the strategy of
the VN leasing its PN. In addition, we establish economic models
that relate the capacities of the end users, the SP, and the InP.
Finally, we provided simulations that show how the prey-predator
food chain model fits well on an NV system.

Index Terms— Networks, economics, modeling, resource
management.

I. INTRODUCTION

INTERNET has been successful in providing users access
to information and communication through an assortment

of applications. These applications include web browsing,
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voice and data communication, video streaming, among others.
The service providers (SPs) offer these applications through
networks that vary in topology and architecture. The
infrastructure providers (InPs), entities that manage a network
of physical infrastructures, can support these multiple diverse
networks through network virtualization. Network virtual-
ization (NV) allows multiple heterogeneous virtual net-
works (VNs) to share common physical network (PN)
infrastructures. In the case of the Internet, it will enable the
support of multiple independent VNs which in turn offer
various applications.

There are many advantages to implementing NV including
flexibility, diversity, security, and manageability [1]. However,
NV faces some challenges such as the allocation of network
resources and the economic relationship between the SPs and
the InPs. Hence, researchers have developed algorithms and
models that solve NV resource allocation problems. Resource
allocation in NV is performed by the InPs after receiving
resource requests from the SPs [2]. Thus, the main focus of
many works has been the dynamics between the SPs and the
InPs. The lack of a unified framework for NV that involves
all the levels of abstraction of NV (e.g. the end users, the SPs,
and the InPs) has inspired us to develop an economic model
that represents the dynamics within the entire NV system.
The dynamics in an NV system include the failure, payoff,
competition, and service rates at each level of abstraction. This
model depicts not only the economic relationship of the InPs
to the SPs, but also that of the SPs to their users.

In this paper, we present a novel approach to NV resource
allocation and economics. NV is a dynamic system where the
quantity of resource trading between the consumers and the
producers is constantly changing. Moreover, there are multiple
levels of interactions that are hard to be analyzed by the
conventional game theoretical approaches. Thus, we adapt
a prey-predator food chain model to integrate the dynamics
and multiple level nature in an NV system to its economic
model. The prey-predator food chain model mathematically
describes the interactions among different agents in an envi-
ronment. These interactions are exhibited by the transfer of
energy from one agent to another. Consider an ecosystem
with different species living together where a species is the
food source of only one other species, and this species is
the food source of only one other species and so on (i.e.,
a food chain). The interactions among many agents of the same
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species (i.e., competition) and the interactions between two
agents of different species (i.e., consumption) can be modeled
mathematically. In NV, the end users (EUs), the SPs, and the
InPs are the agents, while the service payment (e.g. money)
represents the transfer of energy within the system. Therefore,
the model represents the economics in an NV system. The
main contributions of this paper are as follows:

• We propose a unified mathematical framework based
on the prey-predator food chain model that represents
the economics in an NV system. We also provide an
analysis of this model, as well as its properties and
equilibrium point. This equilibrium point stands as the
resource strategies at each level of the NV system given
the economic dynamics of the system.

• We provide economic models that emulate the relation-
ship between the total amount of demand for the network
resources and the total amount of resources that needs to
be supplied based on the dynamics in the NV system.

• We provide simulations that show the changes in the
behavior of the NV system when the dynamics within
the system have changed. We also provide simulations
that illustrate the relationship of the demand and supply
of network resources, between the EUs and the SPs, and
between the SPs and the InPs.

This paper is organized as follows. Section II discusses
some related research on resource allocation in NV. Section III
provides a brief discussion of NV architecture and system
parameters. Section IV presents the development of the system
model and the definition of the problem. In Section V,
we provide an analysis of the NV system model, as well
as its properties. Then, in Section VI, we provide numeri-
cal simulations which manifest the properties and behavior
of the NV system. Finally, we conclude the paper
in Section VII.

II. RELATED WORKS

To the best of our knowledge, the prey-predator food chain
model has not been used to model the resource allocation and
economics in an NV system. However, several related research
papers have inspired us to develop a new mathematical frame-
work for NV. Some of these works utilized game theory,
contract theory, and queuing theory. These frameworks have
not only been applied to traditional NV but also to wireless
NV and to network function virtualization (NFV).

Zhou et al. [3] proposed a non-cooperative game theo-
retic approach to bandwidth allocation. They developed an
algorithm that iteratively solved for the Nash equilibrium
of the game, and in turn, found the solution to the band-
width allocation problem. Meanwhile, Seddiki and Frikha [4]
proposed a two-stage non-cooperative game for bandwidth
allocation. In the first stage, the bandwidth negotiation game,
the SPs request bandwidth from multiple InPs. In the second
stage, the bandwidth provisioning game, the SPs sharing the
same physical link of an InP compete for bandwidth. Game
theory was also used to improve the utilization of resources.
Xie et al. [5] proposed a two-stage Stackelberg game-based
mechanism that allows the InP to determine a reselling rate

that maximizes its revenue and enables the SP to calculate the
amount of bandwidth that minimizes its expenses.

Virtualization in wireless networks, or wireless NV, allows
multiple wireless networks operated by different SPs to
dynamically share a common physical infrastructure operated
by mobile network operators (MNO) [6]. Game theory was
also applied to wireless NV, where the MNOs are responsible
for dynamic wireless resource management, while the SPs aim
at providing proper bandwidth allocation to their users. In [7],
the interactions between the SPs and the NO were modeled
as a stochastic game, since the demand of the users of the
SPs varies with time. However, since the resulting stochastic
game has strong dependency among SPs and on future actions,
the authors utilized the Vickrey-Clarke-Groves (VCG) auction
mechanism and conjectural pricing to transform the game
into a series of independent games. Other papers that used
game theory to formulate and solve an NV resource allocation
problem include [8]–[10] and [11].

In NFV, software implementations of network functions are
decoupled from the hardware [12]. Hence, multiple virtual
network functions (VNFs) can be multiplexed in common
physical servers. Yoon and Kamal [13] used mixed queuing
model to allocate the resources of the servers to VNFs.
Each user of the network requires different combinations of
VNFs, or service chains. Thus, each VNF was modeled as a
queue, and the model was designed to minimize the waiting
time of service chains. Since VNFs are normally “chained”
to each other, and thus may be utilized in succession by its
users, effective placement and scheduling of these VNF chains
in physical servers have been proposed in [14] to achieve
high network resource utilization and low network response
latency. The authors proposed a priority-driven weighted algo-
rithm to maximize the average resource utilization, and a
novel heuristic algorithm to minimize the average response
latency. When the central offices (COs), where physical servers
are housed, are geo-distributed, assigning VNFs to servers
can be challenging. Consequently, to provide load balancing
and cost efficiency, Fei et al. [15] proposed a framework
that selects a set of COs that minimizes the communica-
tion cost within the set and then uses a shadow-routing
approach that jointly optimizes VNF-CO and VNF-server
assignment.

Many other approaches have been used to model the allo-
cation of resources in NV. Nguyen et al. [16] proposed a
parallel and distributed algorithm based on alternating direc-
tion method of multipliers (ADMM) for bandwidth allocation
and routing problem that minimizes the traffic that the SP
encounters. Information asymmetry in wireless NV, a situation
where the NO has no access to private information about the
SPs, was investigated by Nguyen et al. [17]. They proposed
a solution to the resource allocation problem using contract
theory, where the NO offers each SP a contract that allows
each to maximize its own payoff. In [18], when the SPs could
not report their traffic, a traffic predictor was integrated into
the bandwidth allocation algorithm so that the InPs can supply
accurate amount of resources to the SPs. Other approaches to
resource allocation in NV include matching theory [19], [20],
machine learning [21], [22], and fuzzy logic [23].
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Fig. 1. Network virtualization architecture.

III. NETWORK VIRTUALIZATION

A. System Architecture

The NV architecture is shown in Fig. 1. It has three layers
of abstraction: the InPs, the SPs, and the EUs levels. An InP
provides and manages a physical network (PN) infrastructure
consisting of physical resources (PRs) such as physical nodes
and physical links. An SP operates and manages a virtual
network (VN) which is composed of virtual resources (VRs)
such as virtual nodes and virtual links. In order to build
and expand its VN, an SP needs to lease PRs from InPs.
Through NV, one or more SPs can lease the same PRs at
the same time. In other words, multiple VRs may reside at
a single PR. Also, an SP may only lease a subset of the PN
according to its VN needs. The EUs can communicate with
the network or to each other, as well as use web applications,
through the services provided by an SP.

B. System Parameters

Before defining the system parameters used in the system
model, let us first state that the focus of the system model pre-
sented in the next section is the distribution of bandwidth in an
NV system. Thus, the primary network resource of interest in
this manuscript is bandwidth, and we use the terms “network
resource” and “bandwidth” interchangeably, unless otherwise
stated. Other network resources such as CPU and memory
are assumed to have satisfied their respective constraints, and
therefore are not affecting the distribution of bandwidth in the
system. As a consequence of these assumptions, the following
system parameters are related to the amount of bandwidth
demand by or supply from a particular entity (i.e., EUs, SPs,
and InPs) in an NV system. This relation is explained further
in this section.

Now, we introduce important frequencies or rates r(l) at
each level l of the NV system where the main players at each
level l ∈ {1, 2, 3}, respectively, are:

• the EUs in metropolitan areas (MAs);
• the SPs, each managing a VN; and
• the InPs, each operating a PN.
Consider a metropolitan area, where an SP is overlaying its

VN and an InP has already established its PN. Suppose the
EUs in the area, who want to connect to and use the VN,
submit their requests, or user requests (URs), to the SP. For
simplicity, assume that a single EU can only submit one UR

at a time. If we let χ be the number of EUs trying to access
the VN at time τ , then it is also the number of URs generated
simultaneously in the area. Since we assume that bandwidth
is the network resource of interest, then χ also refers to the
number of unit EU bandwidth requests generated in the area.
For example, if χ = 10 and a unit EU bandwidth is 10 Mbps,
then there are 10 users requesting for 10 Mbps of bandwidth
each. We can also refer to χ as the resource (i.e., bandwidth)
demand at the EU level. The arrival rate r(1)0 of these URs is
the theoretical maximum increase rate of the number of URs
χ generated in the network coverage area per EU,

r
(1)
0 =

1
χ

dχ

dτ
, (1)

where τ denotes time. Assuming the number of URs
approaches a maximum limit, κ(1), we can use the logistic
model equation [24] where (1) becomes

r(1) =
1
χ
dχ
dτ

1 − χ
κ(1)

, (2)

where κ(1) is the maximum number of EUs in the area. The
term χ

κ1
signifies the percentage of EUs trying to connect

to and use the VN. The solution to (1) is called the logistic
function as

χ(τ) =
κ(1)

1 + (κ(1)

χ0
− 1)e−r(1)τ

, (3)

where χ0 is the initial value of χ(τ) at τ = τ0, κ(1) > 0 is
the limiting value of χ(τ), and r(1) > 0 for a logistic growth
model.

In order to accommodate the additional VN users and lease
a PR, the SP has to submit a VR request (VRR) for a PR
to the InP. If we let ψ be the number of VRRs generated
simultaneously in the area at time τ , then ψ also refers to
the number of unit VR bandwidth requests generated in the
area. For example, if ψ = 5 and a unit VR bandwidth is
100 Mbps, then there are 5 requests for a VR of 100 Mbps
each. Moreover, we can refer to ψ as the resource demand at
the SP level. Also, let κ(2) as the total number of VRRs that
can be generated in the area. Assume that the SP can submit
only one VRR per VR at a time. Therefore, κ(2) also refers to
the maximum number of VRs an SP can manage. Not all of
these VRRs can successfully turn into a VR. Hence, we define
the failure rate r(2) of VRRs as the theoretical maximum VRR
failures per unit time per VR. Mathematically, it is written as

r(2) = − 1
ψ

dψ

dτ
. (4)

For the InP, if we let ω be the number of active or opera-
tional PRs at time τ , then ω also refers to the number of unit
PR bandwidth requests. For instance, if ω = 2 and a unit PR
bandwidth is 1 Gbps, then there are 2 operational PR each with
capacity of 1 Gbps. Also, let κ(3) be the total number of PRs
owned by the InP. Some of these active PRs may be suddenly
unavailable for lease. Thus, the unavailability rate r(3) of PRs
is the number of PRs z unavailable per unit time per PR. It can
be shown mathematically as

r(3) = − 1
ω

dω

dτ
. (5)
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TABLE I

NETWORK VIRTUALIZATION PARAMETERS

Each UR, VRR, and PR corresponds to a request for a unit
resource quantity at its respective level. That is, χ, ψ, and
ω represent an amount of network resource (i.e., bandwidth).
Thus, χ and ψ refer to the resource demand at the EUs and
SP, respectively. On the other hand, ω represents the resource
supply at the InP.

There are other important parameters in NV. The network
service availability s(l) is the network user acceptance or ser-
vice rate per VR (or PR); it measures how many users at
level l ∈ {1, 2} are being served by the network. The network
payoff rate p(l) is regarded as the network-user-to-network-
income conversion rate per network user; it quantifies the gain
of network at level l ∈ {2, 3} from rendering services. The
parameters s(l) and p(l) are related: for the SP,

p(2) =
s(1)

n
, (6)

where n is the maximum allowable number of EUs per VR;
for the InP,

p(3) =
s(2)

m
, (7)

where m is the maximum allowable number of VRs that can
coexist per PR. Lastly, the network congestion (or competition)
rate q is defined as the VR (or PR) competition rate per
VR (or PR); accordingly, it is a measure of how much the
network traffic degrades the network resources.

If we divide the service rate s by the unit cost of service
cs, we get the per unit cost service rate S. Likewise, dividing
the payoff rate p by the unit income quantity cp yields the
per unit income payoff rate P . Also, getting the ratio of the
congestion rate q to the unit penalty from congestion cq gives
the per unit penalty congestion rate Q. Mathematically, these
quantities are expressed as:

S =
s

cs
, P =

p

cp
, and Q =

q

cq
. (8)

Table I summarizes the parameters discussed in this section.

IV. SYSTEM MODEL AND PROBLEM FORMULATION

The main goal of this paper is to introduce a unified
framework for the resource allocation and economics problem

in NV. In an NV system that consists of many users, SPs,
and InPs, two problems exist. One of the problems is how
much resources an SP must own and allocate to the EUs
given the dynamics that exist in the NV system such as
the amount of connection requests it receives from the EUs,
the intensity of competition it experiences from other SPs, and
the amount of resources it can request to and can be granted
by an InP. Similarly, an InP faces the same problem of how
much resources it must operate and allocate to the SPs that
are trying to lease resources from it depending on factors such
as the number of requests it receives from the SPs, and the
intensity of competition it experiences from other InPs. In this
paper, these two NV system problems are modeled together
in order to provide a framework that covers the three levels
of the NV system. The resulting system model, based on the
prey-predator food chain model, takes as input the NV system
parameters that characterize the dynamics in the system. Then,
the resource strategies of the SPs and InPs are computed where
a resource strategy refers to the bandwidth capacity that an
SP or InP should own in order to support its users.

Three mathematical models, one for each configuration of
a three-level NV system, are introduced and developed in this
section. The first model is for a simple NV system that has
one SP and one InP. The second model is for an NV system
with two SPs and one InP. Then, a generalized model for NV
systems with N-SPs and M-InPs is introduced. Each model has
finite number of EUs. The EUs that are granted with network
connection communicate with their respective SP through to
its VN. Hence, an SP forms a star topology with its EUs. Since
an SP requests only for virtual nodes that are needed to support
the EUs, then we assume that its VN capacity is equal to the
sum of the capacities of the virtual nodes. Meanwhile, the SPs
that are granted with lease of physical resources communicate
with their respective InP through its PN. Thus, an InP forms
a star topology with the SPs that are leasing its PN. Since an
InP operated and manages only physical nodes that are needed
to support its client SPs, then we assume that its PN capacity
is equal to the sum of the physical node capacities. In each
model, the utilities of the SPs and InPs are first modeled
as the net amount of cash per unit time they receive from
their respective consumers. Since we choose to focus on the
distribution of network resources (i.e., bandwidth) within the
NV system, the cash flows are converted to the amount of
bandwidth the consumers are demanding from their respective
producers. These models can be implemented by a trusted
central authority that supervises and regulates the NV system
in the coverage area.

The purpose of each model is to calculate the equilibrium
point of the NV system which signifies the resource strategy
of each entity in the NV system and to simulate the economics
of the NV system. The results of each simulation demonstrate
how the resource strategy at each level and the relationship
between demand and supply change with the network para-
meters. The concept and analysis of equilibrium is discussed
in the next section.

This section is organized as follows. First, models for a one-
SP, one-InP NV system and a two-SP, one-InP NV system
are formulated. Then, the extension of this formulation to
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an N -SP, M -InP NV system is developed in the following
subsection. Finally, the key results are summarized in the last
subsection.

A. One-SP, One-InP Network Virtualization System

Consider an NV system in a metropolitan area with multiple
EUs, one SP, and one InP. Let χ be the number of EUs trying
to access the VN of the SP by submitting URs to the SP.
Assuming an EU submits only one UR at a time, the total
number of URs submitted to the SP is also χ. Moreover, χ is
also related to the demand at the EU level. Meanwhile, suppose
ψ is the number of VRRs the SP submits to the InP. Hence,
ψ also means the total number of VRRs needed by the SP to
realize its VN and support the demand of the EUs. Lastly, let
ω be the number of active PRs in the InP.

To formulate the mathematical model for the NV system,
we will follow the flow of payment from the EUs to the
SP, and from the SP to the InP. Let c(l) be the unit cost of
resources at each level l ∈ {1, 2, 3} of the NV system. Assign
constants c(1) as the cost per EU bandwidth, c(2) as the cost
per VR bandwidth, and c(3) as the net cost incurred by the
InP per PR. Each EU with a successful VN connection pays
the SP; hence, the SP earns an amount proportional to the
number of successful URs. Meanwhile, the SP has to pay the
InP an amount proportional to the number of VRs in its VN.
The InP incurs a cost proportional to the number of active
PRs in its PN. We can say that the EUs, the SP, and the InP
interact through these transactions. Based on the transactions
just described, we can formulate the rate of change of the net
income at each level.

Suppose X = c(1)χ is the potential “revenue” at the EU
level coming from all the URs, Y = c(2)ψ is the potential
revenue of the SP coming from all the VRRs, and Z = c(3)ω
is the potential revenue of the InP for leasing and operating
its PN. Also, consider the quantities

K(1) = c(1)κ(1), S(l) =
s(l)

c(l+1)

∣
∣
∣
∣
l∈{1,2}

,

P (l) =
p(l)

c(l−1)

∣
∣
∣
∣
l∈{2,3}

,

and

Q(l) =
q(l)

c(l)

∣
∣
∣
∣
l∈{2,3}

, (9)

where s, p, q, S, P , and Q are the network parameters defined
in the previous section, with indices l ∈ {1, 2, 3} indicating
the EUs, the SP, and the InP levels, respectively. Referring
to interaction between the EUs and the SP described in the
previous paragraph, the revenue rate at EU level 1

X
dX
dτ is

reduced by the service cost charged by the SP, S(1)Y . Thus,
(2) becomes an equation for net income stated as

1
X

dX

dτ
= r(1)

(

1 − X

K(1)

)

− S(1)Y. (10)

Similarly, the net income rate 1
Y
dY
dτ of the SP is the

sum of the failed VRR rate, −r(2), the payoff from the
EUs, +P (2)X , the cost of congestion among the VRRs in

the VN, −Q(2)Y , and the cost of service availability of the
InP, −S(2)Z . Therefore, the net income rate equation (4) for
the SP becomes

1
Y

dY

dτ
= −r(2) + P (2)X −Q(2)Y − S(2)Z. (11)

Lastly, the net income rate 1
Z
dZ
dτ of the InP becomes the

sum of the unavailable PR rate, −r(3), the payoff from
the SP, +P (3)Y , and the cost of congestion among active
PRs, −Q(3)Z . Consequently, the net income equation in (5)
for the InP is now

1
Z

dZ

dτ
= −r(3) + P (3)Y −Q(3)Z. (12)

Dividing both sides of (10), (11), and (12) by their respec-
tive unit costs c(1), c(2), and c(3), and applying the substitu-
tions in (9) yield the following system of nonlinear differential
equations:

dχ

dτ
= χ

(

r(1)
(

1 − χ

κ(1)

)

− s(1)ψ
)′
,

dψ

dτ
= ψ(−r(2) + p(2)χ− q(2)ψ − s(2)ω),

dω

dτ
= ω(−r(3) + p(3)ψ − q(3)ω), (13)

where s(1) and s(2) are the SP and InP service availability
rates, p(2) = s(1)

n and p(3) = s(2)

m are the SP and InP payoff
rates, and q(2) and q(3) are the SP and InP congestion rates,
respectively.

To make the analysis easier, reduce the number of parame-
ters of system in (13) by introducing the following substitu-
tions: x = χ

κ(1) , y = ψ
κ(2) , z = ω

κ(3) , and t = r(1)τ . Thus,
x, y, z and t represent the following quantities:

• x is the EU capacity demand;
• y is the VN capacity supply/demand;
• z is the PN capacity supply; and
• t is the dimensionless time.

The substitutions yield the following system of dimension-
less equations representing the one-SP, one-InP NV system
model:

dx

dt
= x(1 − x− w1y) = xf(x, y, z),

dy

dt
= y(−w2 + w3x− w4y − w5z) = yg(x, y, z),

dz

dt
= z(−w6 + w7y − w8z) = zh(x, y, z). (14)

For convenience, we assume that the SPs and InPs approve
and grant only the connection requests they receive, and
operate and manage only the nodes that are active. Thus, their
VNs and PNs capacities, y and z, respectively, are the same
as the total virtual/physical node capacities. That is, a network
capacity is equal the sum of its node capacities.

The parameters of (14) are listed in Table II. Since it has
been established in Section III that p(2) = s(1)

n for the SP and

that p(3) = s(2)

m for the InP, then parameters w3 and w7 can
also be expressed as

w3 =
w1

η(2)
and w7 =

w5

η(3)
, (15)
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TABLE II

ONE-SP, ONE-INP NV DIMENSIONLESS PARAMETERS

where

η(2) =
κ(2)

κ(1)/n
and η(3) =

κ(3)

κ(2)/m
(16)

are the network coverage ratios of the SP and the InP,
respectively. These two quantities represent the ratio of the
maximum network resource supply to the maximum network
resource demand.

The association between the demand x and supply y can be
derived using the chain rule, dv

du = dv
dt · dtdu . Hence, it follows

that,

dy

dx
=
y(−w2 + w3x− w4y − w5z)

x(1 − x− w1y)
. (17)

Likewise, the relationship between demand y and supply z
can be written as

dz

dy
=

z(−w6 + w7y − w8z)
y(−w2 + w3x− w4y − w5z)

. (18)

For the one-SP, one-InP system in (14), the resource strategy
is the positive equilibrium point denoted by E(x∗, y∗, z∗).
Meanwhile, the demand-supply relationships can be found
by solving for y = f(x) and z = g(y). f(x) indicates the
behavior of the VN capacity supply with respect to the EU
capacity demand x; whereas, the function g(y) specifies the
reaction of the PN capacity supply in terms of the VN capacity
demand. Since (17) and (18) are both first-order nonlinear
differential equations (NDE), a numerical method is used to
graph f(x) and g(y).

B. Two-SP, One-InP Network Virtualization System

Based on the formulation presented in the previous subsec-
tion, the system model for an NV system serviced by two
SPs (N = 2) and one InP (M = 1) is expressed by the

following system of equations:

dχ

dτ
= χ

(

r(1)
(

1 − χ

κ(1)

)

− s
(1)
1 ψ1 − s

(1)
2 ψ2

)

,

dψ1

dτ
= ψ1(−r(2)1 + p

(2)
1 χ− q

(2)
11 ψ1 − q

(2)
21 ψ2 − s(2)ω),

dψ2

dτ
= ψ2(−r(2)2 + p

(2)
2 χ− q

(2)
12 ψ1 − q

(2)
22 ψ2 − s(2)ω),

dω

dτ
= ω(−r(3) + p(3)(ψ1 + ψ2) − q(3)ω). (19)

where s(1)j , j ∈ {1, 2} is the SPj-to-EU service availability

rate, s(2) is the InP-to-SP service availability rate, p(2)
j =

s
(1)
j

mj

is the EU-to-SPj payoff rate, p(3) = s(2)

n is the SP-to-InP
payoff rate, q(2)jj is the SPj congestion rate, q(2)Jj , j �= J is the
SPJ -to-SPj competition rate, and q(3) is the InP congestion
rate.

For analysis convenience, the dimensionless form of (19)
for a two-SP, one-InP NV system is given by

dx

dt
= x(1 − x− w1y1 − w2y2) = xf(x, y1, y2, z),

dy1
dt

= y1(−w3 + w4x− w5y1 − w6y2 − w7z)

= y1g1(x, y1, y2, z),
dy2
dt

= y2(−w8 + w9x− w10y1 − w11y2 − w7z)

= y2g2(x, y1, y2, z),
dz

dt
= z(−w12 + w13y1 + w14y2 − w15z) = zh(x, y, z),

(20)

where

• x is the EU capacity demand;
• yj , j ∈ {1, 2} is the VNj capacity supply/demand;
• z is the PN capacity supply; and
• t is the dimensionless time.

In this manuscript, we assume that the SPs and InPs accept
and allow only the connection requests they receive, and
operate and manage only the nodes that are active. Thus, their
VNs and PNs capacities, yj and z, respectively, are the same
as the total virtual/physical node capacities. That is, a network
capacity is equal the sum of its node capacities.

The parameters of (20) are listed in Table III. Since it has

been established in Section III that p(2)
j =

s
(1)
j

mj
for SPj and

that p(3) = s(2)

n for the sole InP, we can express

w4 =
w1

η
(2)
1

, w9 =
w2

η
(2)
2

, w13 =
w7

η
(3)
1

, and w14 =
w7

η
(3)
2

,

(21)

where the quantities

η
(2)
j =

κ
(2)
j

κ(1)/nj
and η(3)

j =
κ(3)

κ
(2)
j /m

(22)

are the SP and InP network coverage ratios, respectively.
The relationship between the demand x and its supplies y1

and y2, as well as the demands y1 and y2 and their supply z,
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TABLE III

TWO-SP, ONE-INP NV DIMENSIONLESS PARAMETERS

are implicitly defined by the following equations:

dy1
dx

=
y1(−w3 + w4x− w5y1 − w6y2 − w7z)

x(1 − x− w1y1 − w2y2)
, (23)

dy2
dx

=
y2(−w8 + w9x− w10y1 − w11y2 − w7z)

x(1 − x− w1y1 − w2y2)
, (24)

dz

dy1
=

z(−w12 + w13y1 + w14y2 − w15z)
y1(−w3 + w4x− w5y1 − w6y2 − w7z)

, (25)

dz

dy2
=

z(−w12 + w13y1 + w14y2 − w15z)
y2(−w8 + w9x− w10y1 − w11y2 − w7z)

. (26)

C. N -SP, M -InP Network Virtualization System

In this subsection, we generalize the system model to an
N -SP, M -InP NV system. Consider an NV system in a
metropolitan area with multiple EUs, N SPs, and M InPs. Let
χj be the number of EUs in the area that submits URs to SPj ,
j ∈ {1, 2, . . . , N}. Assuming an EU submits only one UR at
a time, the total number of URs in the area is χ =

∑N
j=1 χj .

Meanwhile, suppose ψjk is the number of VRRs in SPj to
any InPk, k ∈ {1, 2, . . . ,M}. Thus, the total number of VRRs
needed by SPj to realize its VN is ψj =

∑M
k=1 ψjk. Lastly,

let ωk be the number of active PRs in InPk. As in the previous

subsection, we will follow the flow of payment from the EUs
to the SPs, and from the SPs to the InP.

Suppose X =
∑N

j=1 c
(1)
j χj is the potential “revenue” at

the area from all the URs to any SPj , Yj =
∑M
k=1 c

(2)
k ψjk

is the potential revenue of SPj from all the VRRs to any
InPk, and Zk = c

(3)
k ωk is the potential revenue of the InPk

for leasing and operating its PN. The revenue at the area is
reduced by the service cost charged by every SPj to the EUs,
S

(1)
11 Y1 +S

(1)
12 Y2 + . . .+S

(1)
1NYN , where the first subscript “1”

refers to the metropolitan area (i.e., i = 1) where the NV
system is. Consequently, the net “income” rate 1

X
dX
dτ in (2)

can now be stated as

1
X

dX

dτ
= r(1)

(

1 − X

K(1)

)

−
N∑

j=1

S
(1)
1j Yj . (27)

Meanwhile, the net income rate 1
Yj

dYj

dτ of SPj is now the

sum of the failed VRR rate, r(2)j , the payoff from the EUs

at the service area, P (2)
j X , the cost of congestion within

SPj , QjjYj , the cost of competition from every other SPJ ,
J ∈ {1, 2, . . . , N}\j, Q(2)

j1 Y1+Q
(2)
j2 Y2+. . .+Q(2)

jNYN , and the

cost service availability from every InPk, S(2)
j1 Z1 + S

(2)
j2 Z2 +

. . .+S
(2)
jMZM . Therefore, the net income rate equation (4) for

SPj becomes

1
Yj

dYj
dτ

= −r(2)j + P
(2)
j X −

N∑

J=1

Q
(2)
jJ YJ −

M∑

k=1

S
(2)
jk Zk. (28)

Lastly, the net income rate 1
Zk

dZk

dτ of InPk becomes the sum

of the unavailable PR rate, r(3)k , the payoff from every SPj ,
P

(3)
k1 Y1+P (3)

k2 Y2+ . . .+P (3)
kNYN , the cost of congestion within

InPk, QkkZk, and the cost of competition from every other
InPK , K ∈ {1, 2, . . . ,M}\k,Q(3)

k1 Z1+Q
(3)
k2 Z2+. . .+Q

(3)
jJ ZN .

Hence, (5) for InPk is now

1
Zk

dZk
dτ

= −r(3)k +
N∑

j=1

P
(3)
kj Yj −

M∑

K=1

Q
(3)
kKZK . (29)

Using the average VR bandwidth cost, c(2) =(
∑M

k c
(2)
k

)

/M , we can approximate Yj ≈ c(2)ψj .

Substituting K(1) = c(1)κ(1), P
(l)
{j,kj} = p

(l)
{j,kj}/c

(l−1),

Q
(l)
{jJ,kK} = q

(l)
{jJ,kK}/c

(l), and S
(l)
{1j,jk} = s

(l)
{1j,jk}/c

(l+1) to
(27), (28), and (29) yields the following system of equations:

dχ

dτ
= χ

⎛

⎝r(1)
(

1 − χ

κ(1)

)

−
N∑

j=1

s
(1)
1j ψj

⎞

⎠,

dψj
dτ

= ψj

(

−r(2)j + p
(2)
j χ−

N∑

J=1

q
(2)
jJ ψJ −

M∑

k=1

s
(2)
jk ωk

)

,

dωk
dτ

= ωk

⎛

⎝−r(3)k +
N∑

j=1

p
(3)
kj ψj −

M∑

K=1

q
(3)
kKωK

⎞

⎠. (30)

The parameters in an N -SP, M -InP NV system
in (30) are listed in Table IV. The dimensionless form
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TABLE IV

N-SP, M-INP NV SYSTEM PARAMETERS

TABLE V

N-SP, M-INP NV SYSTEM DIMENSIONLESS PARAMETERS

of (30) is

dx

dt
= x

⎛

⎝1 − x−
N∑

j=1

ws1jyj

⎞

⎠,

dyj
dt

= yj

(

−wrj + wpjx−
N∑

J=1

wqjJ yJ −
M∑

k=1

wsjk
zk

)

,

dzk
dt

= zk

⎛

⎝−wrk
+

N∑

j=1

wpkj
yj −

M∑

K=1

wqkK
zK

⎞

⎠, (31)

where the corresponding parameters are defined in Table V.

D. Network Economics

The relationship between a capacity demand and a capacity
supply in an NV system can be found by combining their
time rate equations through chain rule and solving the result-
ing differential equation numerically. Specifically, if we are

interested in the relationship between the capacity demand x
at the EU level and the capacity supply yj of SPj , then we find
dyj

dx and solve it numerically. Similarly, if we are interested in
how the capacity supply zk of InPk behaves with respect to
the capacity demand yj of SPj , then we determine dzk

dyj
and

solve it using a numerical method. In this paper, the numerical
method used to solve the resulting differential equation is the
4th-order Runge-Kutta method [33].

V. PROPERTIES AND ANALYSES

The following section provides the properties of NV systems
modeled as a prey-predator food chain system. In addition,
this section presents the derivation of the solution point of
an NV system. In a prey-predator food chain system, this
solution point, also known as the equilibrium point, refers
to the state at which the number of agents at each level
of the chain does not change [25]. Equivalently, in NV,
this equilibrium point refers to the resource strategy (i.e.,
amount of resources) at each level of the NV system based
on the system dynamics, such as service, payoff, failure,
and congestion/competition rates. In other words, if we can
quantify the dynamics of the NV system, we can com-
pute the resource strategy of each entity in an NV system
based on these dynamics using the prey-predator food chain
model.

This section also introduces the conditions at which the
equilibrium point is stable. A stable equilibrium point means
that the state of the system goes back to its equilibrium after a
small perturbation in the number of agents. In NV, this means
that the resource strategy remains the same even after the
introduction of a small change in the number of bandwidth
requests from the EUs the SPs or allocation from the InPs.
For more comprehensive analysis on the prey-predator food
chain model, the reader may refer to [26]–[28].

This section is organized as follows. First, the properties
and analysis of a one-SP, one-InP NV system is presented.
Then, we analyze and extend these properties to a two-SP,
one-InP NV system. Next, we present pointers on analyzing an
N -SP, M -InP NV system. Finally, a summary of this section
is provided.

A. One-SP, One-InP Network Virtualization System

This subsection is devoted to the properties and analysis
of the one-SP, one-InP NV system in (14). These properties
support the use of the prey-predator food chain model to
represent an NV system. The network parameters w1 through
w8 described and derived in the previous section dictate the
behavior and properties of a virtualized network. Moreover,
an analysis to compute the solution point to the system in (14)
is also discussed. Theoretically, this solution (i.e., the positive
equilibrium point) signifies the values of x, y, and z for which
the system is stable indefinitely with respect to time given
that the system parameters remain the same. Thus, in NV, this
solution refers to the resource strategy at each level given the
economic dynamics of the NV system.

The prey-predator food chain model exhibits properties that
an NV system also possess. The following lemma states the
effect of SP service availability to the entire system.
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Lemma 1: If w1 = 0, and consequently, w3 = 0, then
limt→∞ x(t) = 1 and limt→∞ y(t) = limt→∞ z(t) = 0.

Proof: If we substitute w1 = w3 = 0 to (14), its
first equation becomes dx

dt = x(1 − x). The solution of
this differential equation is x(t) = x0

x0+(1−x0)e−t , where
x0 = x(t = 0). Evaluating its limit yields limt→∞ x(t) = 1.
Doing the same to the second and third equations of (14)
brings limt→∞ y(t) = limt→∞ z(t) = 0.

That is, if the SP is unavailable, the EU demand still reaches
maximum while the VN supply/demand, and consequently,
the PN supply eventually becomes zero.

Likewise, we arrive at the following statement regarding the
availability of the InP.

Proposition 1: If w5 = 0, and hence, w7 = 0, then
it follows that limt→∞ x(t) = w1 w2+w4

w1 w3+w4
= x̄ > 0,

limt→∞ y(t) = −w2+w3x̄
w4

= ȳ > 0, and limt→∞ z(t) = 0.
The following lemma states that if the payoff of the SP

is high enough, it can continue to demand from the InP, and
hence, can continue to support the EUs.

Lemma 2: If w3 >
w2+w5 z

x , then y > 0.
Proof: The solution to the second equation of (14)

is y(t) = b1 y0
b2 y0+(b1−b2 y0)e−b1 t , where y0 = y(t = 0),

b1 = −w2 + w3 x − w5 z and b2 = w4. Conse-
quently, limt→∞ y(t) = b1

b2
> 0, where it follows that

w3 >
w2+w5 z

x .
A similar statement can be expressed for the InP as well.
Proposition 2: If w7 >

w6
y , then z > 0.

The analysis of the system in (14) starts with finding
its equilibrium point. The following statement expresses the
definition of an equilibrium point.

Definition 1: The equilibrium points of a system
U(t) =

[
x(t) y(t) z(t)

]�
are the solutions to dU

dt = 0.
Consequently, the system defined by (14) has four equilib-

rium points:

• E0(0, 0, 0) indicates the absence of all the system levels,
• E1(1, 0, 0) shows that the EU will still reach its maximum

capacity even in the absence of VN and PN networks,
• E2(x̄, ȳ, 0) denotes the absence of the PN, and
• E3(x∗, y∗, z∗) specifies the strategies of the SP and the

InP given the capacity demand at the EUs.

The first three equilibrium points are irrelevant to our study
of a fully functional NV environment. Therefore, we will only
focus on the positive equilibrium point E3(x∗, y∗, z∗) or sim-
ply E(x∗, y∗, z∗). The existence of this point is defined as
follows.

Definition 2: The positive equilibrium point E(x∗, y∗, z∗)
exists if there is a positive solution {(x∗, y∗, z∗)|x∗ > 0,
y∗ > 0, z∗ > 0} to the following equalities:

dx

dt
=
dy

dt
=
dz

dt
= 0. (32)

Solving (32) simultaneously gives the respective resource
strategy of the SP and the InP:

y∗ =
1 − x∗

w1
, (33)

z∗ =
−w6 + w7y

∗

w8
. (34)

Since x∗, y∗, and z∗ > 0, it follows that

1 − w1y
∗ > 0, w3w8 + w5w6 > w2w8, and w7y

∗ > w6.

(35)

In order for the system in (14) to be stable near or at
its equilibrium point E(x∗, y∗, z∗), it must satisfy certain
conditions. According to [29], a locally asymptotically stable
system is defined as follows:

Definition 3: A system U(t) =
[
x(t) y(t) z(t)

]�
is locally

asymptotically stable near or at an equilibrium point UE if
there is a constant K > 0 such that ‖U(0) − UE‖ � K .
Thus, U(t) → UE as t→ ∞.

To determine the behavior of the system near or at its
equilibrium points, its Jacobian matrix must be computed first.
For a system of the form

dx

dt
= xf(x, y, z),

dy

dt
= yg(x, y, z),

dz

dt
= zh(x, y, z),

(36)

the Jacobian matrix is defined by

J(x∗, y∗, z∗) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x
∂f

∂x
+ f x

∂f

∂y
x
∂f

∂z

y
∂g

∂x
y
∂g

∂y
+ g y

∂g

∂z

z
∂h

∂x
z
∂h

∂y
z
∂h

∂z
+ h

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (37)

The characteristic polynomial of J(x∗, y∗, z∗) is

pJ(λ) = λ3 +A2λ
2 +A1λ+A0 (38)

where A0 = −J11J22J33 + J11J23J32 + J12J21J33,
A1 = J11J22 + J11J33 + J22J33 − J23J32 − J12J21,
A2 = −(J11 + J22 + J33).

The Routh-Hurwitz stability criterion [30], [31] provides
the necessary and sufficient condition for the stability of
linear time-invariant (LTI) systems. According to this criterion,
a third-order system characterized by its third-order character-
istic polynomial (38) is locally asymptotically stable near or its
equilibrium point if A2 > 0, A0 > 0, and A2A1 > A0.

Lemma 3: If J11 < 0, J22 < 0, and J33 < 0, then the
system in (14) is locally asymptotically stable near or at the
equilibrium point E(x∗, y∗, z∗). That is, J11 = 1 − 2x∗ −
w1 y

∗ < 0, J22 = −w2 + w3 x
∗ − 2w4 y

∗ − w5 z
∗ < 0, and

J33 = −w6 + w7 y
∗ − 2w8 z

∗ < 0.
Proof: All the terms of A0 are greater than zero if and

only if J11, J22, and J33 are all less than zero. Similarly,
A2 > 0 if and only if all of its terms are greater than zero.
Consequently, the condition A2A1 > A0 is also satisfied.

B. Two-SP, One-InP Network Virtualization System

The properties of the system in (14) can be extended for
the system in (20). From Lemma 1 about the SP availability,
if w1 = w2 = 0, and consequently, w4 = w9 = 0, then
limt→∞ x(t) = 1 and limt→∞ y1(t) = limt→∞ y2(t) =
limt→∞ z(t) = 0. Regarding the InP availability, if w7 = 0,
and consequently, w13 = w14 = 0, then, limt→∞ x(t) =
x̄ > 0, limt→∞ y1(t) = ȳ1 > 0, limt→∞ y2(t) = ȳ2 > 0, and
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limt→∞ z(t) = 0. Extending Lemma 2 to (20), the respective
payoff of each SP must be high enough to continue supporting
the URs of the EUs. That is,

w4 >
w3 + w6y2 + w7z

x
and w9 >

w8 + w10y1 + w7z

x
.

(39)

The positive equilibrium point E(x∗, y∗1 , y
∗
2 , z

∗) of (20) is
found by letting

dx

dt
=
dy1
dt

=
dy2
dt

=
dz

dt
= 0. (40)

Hence, E(x∗, y∗1 , y
∗
2 , z

∗) is the solution to the following sys-
tem of equations:

1 − x− w1y1 − w2y2 = 0,
−w3 + w4x− w5y1 − w6y2 − w7z = 0,

−w8 + w9x− w10y1 − w11y2 − w7z = 0,
−w12 + w13y1 + w14y2 − w15z = 0. (41)

Solving (41) for x∗, y∗1 , y∗2 , and z∗ and setting
x∗, y∗1 , y

∗
2 , and z∗ > 0 provide the following conditions

to be satisfied for the existence of the positive equilibrium
point E(x∗, y∗1 , y

∗
2 , z

∗):

w1y
∗
1 + w2y

∗
2 < 1,

×
(

w2w9 + w11 +
w7w14

w15

)(

−w3 + w4 +
w7w12

w15

)

>

(

w2w4 + w6 +
w7w14

w15

)(

−w8 + w9 +
w7w12

w15

)

,

×
(

w1w4 + w5 +
w7w13

w15

)(

−w8 + w9 +
w7w12

w15

)

>

(

w1w9 + w10 +
w7w13

w15

)(

−w3 + w4 +
w7w12

w15

)

,

×w13y
∗
1 + w14y

∗
2 > w12. (42)

The behavior of the system in (20) near or at
E(x∗, y∗1 , y∗2 , z∗) can be analyzed by computing its Jacobian
matrix J at E(x∗, y∗1 , y

∗
2 , z

∗).
The characteristic polynomial of J(x∗, y∗1 , y

∗
2 , z

∗) is

pJ(λ) = λ4 +A3λ
3 +A2λ

2 +A1λ+A0 (43)

where the leading coefficients are found by solving for the
determinant

pJ(λ) = det(J − λI). (44)

For a fourth-degree polynomial pJ(λ), the conditions for
stability are A3 > 0, A2 > 0, A3 A2 > A1 > 0, and
(A3 A2 A1 −A2

1)/A2
3 > A0 > 0 [32].

Lemma 4: If J11 < 0, J22 < 0, J33 < 0, and J44 < 0, then
the system in (20) is locally asymptotically stable near or at the
equilibrium point E(x∗, y∗1 , y∗2 , z∗). That is, J11 = 1− 2x∗ −
w1 y

∗
1 −w2 y

∗
2 < 0, J22 = −w3 +w4 x

∗− 2w5 y
∗
1 −w6 y

∗
2 −

w7 z
∗ < 0, J33 = −w8 +w9 x

∗ −w10y
∗
1 − 2w11y

∗
2 −w7 z

∗,
and J44 = −w12 + w13y

∗
1 + w14y

∗
2 − 2w15z

∗ < 0.
Proof: Based on (41), J11, J22, J33, and J44 < 0 when

x∗, y∗1 , y∗2 , and z∗ > 0.

C. N-SP, M-InP Network Virtualization System

Referring to the previous subsection, the properties and
analysis of (14) and (20) can be generalized to a more general
case of a N -SP, M -InP NV system. For instance, for an NV
system over one metropolitan area, the positive equilibrium
point E∗(x∗, y∗1 , . . . , y

∗
N , z

∗
1 , . . . , z

∗
M ) of (31) is the solution

to the following system of equations:

dx

dt
=
dy1
dt

= . . . =
dyN
dt

=
dz1
dt

= . . . =
dzM
dt

= 0. (45)

Combining (31) and (45), the system has only one positive
equilibrium point where x, yj , zk > 0 since the resulting
N +M + 1 simultaneous equations

1 − x−
N∑

j=1

ws1jyj = 0,

−wrj + wpjx−
N∑

J=1

wqjJ yJ −
M∑

k=1

wsjk
zk = 0,

−wrk
+

N∑

j=1

wpkj
yj −

M∑

K=1

wqkK
zK = 0, (46)

are all linear in variables x, yj , and zk.
The stability analysis of the NV system involves computing

for its (N + M + 1) × (N + M + 1) Jacobian matrix at
E∗(x∗, y∗1 , . . . , y

∗
N , z

∗
1 , . . . , z

∗
M ), as well as conforming with

the Routh-Hurwitz stability criteria for a (N +M +1)-degree
characteristic polynomial.

D. Network Resource Strategies

This section has focused on solving for the equilibrium
point or resource strategies in an NV system. From the first
equation of (46), the strategy of SPj is

y∗j =
1

ws1j

(

1 − x∗ −
N∑

J=1
J �=j

ws1J y
∗
J

)

. (47)

Meanwhile, the strategy of InPk can be derived from the third
equation of (46),

z∗k =
1

wqkk

(

− wrk
+

N∑

j=1

wpkj
y∗j −

M∑

K=1
K �=k

wqkK
z∗K

)

. (48)

Eqs. (47) and (48) signify the optimal strategies of the
SPs and the InPs given the dynamics of the NV system.
These are helpful in analyzing how the network parameters
affect the network resource strategies of the SPs and the
InPs.

VI. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations that
demonstrate the prey-predator food chain model as a math-
ematically framework for NV. For simplicity, we assume that
the VN/PN network capacities are the same as the total
virtual/physical node capacities. That is, a network capacity
is equal the sum of its node capacities.
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Fig. 2. Network economics of a one-SP, one-InP NV system.

TABLE VI

PARAMETER VALUES FOR ONE-SP, ONE-INP NV SYSTEM

A. One-SP, One-InP Network Virtualization System

In this subsection, we investigate the economics of a simple
one-SP, one-InP NV system. Assume the following setup.
Suppose that the number of URs (or EUs) in the serviced
area is limited to 1000. The sole SP can expand its VN up to
a maximum of 50 virtual nodes and allow 25 EUs per VR.
In addition, the sole InP can scale its PN up to 50 physical
nodes and allow 4 VRs to share a single PR. Let each virtual
and physical node have a capacity of 25 and 100 Mbps,
respectively. In each simulation, we provide values for w1

through w8 > 0 that satisfy Lemma 3 and (35). Table VI lists
the values used in this subsection, unless otherwise stated.

1) Network Resource Strategies: The following simulations
shows the effect of NV parameters to the resource strategy
E(x∗, y∗, z∗) by solving the system defined by (14) using (32).

First, we see the influence of the VN service availability w1

to the SP resource strategy y∗. Hence, we set four different
values to w1: 0.10, 0.50, 1.00, and 2.00. From (15) and
(16), increasing w1, while keeping other parameters the same,
indicates that the SP has either increased n or expanded
k(2). The computed value for w7 is 0.125. The results of the
simulations are listed in Table VII. When w1 is increased from
0.10 to 2.00, while keeping other parameters constant, espe-
cially the VN payoff w3 = w1

η2
, the SP adapts by decreasing its

VN capacity demand strategy y∗ from 0.70, or equivalently,
0.70 · 50 VR · 25 Mbps

VR = 875 Mbps to 0.31 or 388 Mbps. The
reason is that the SP has no incentive to increase its demand
strategy from the InP when its payoff from the EU is not
improving. Likewise, the InP reduces its supply strategy z∗ in
response to the lower VN demand.

Next, we investigate the effect of the PN payoff factor w7

to the InP resource strategy z∗. Thus, we allow w7 to have

TABLE VII

EFFECT OF w1 AND w7 ON E(x∗, y∗, z∗)

the following values: 0.10, 0.15, 0.20, and 0.25. From (15)
and (16), the InP has to either reduce m or scale down k(3) to
increase w7 while keeping the other parameters constant. The
computed value w3 is 0.40. The results are listed in Table VII.
We assume that the SP can only lease one portion of a
PR. It follows that, there are 20 Mbps

PR . When w7 = 0.10,
z approaches z∗ = 0.45 · 50 PR · 25 Mbps

PR = 563 Mbps;
however, when w7 = 0.25, z∗ = 0.61 or 763 Mbps. That
is, when the payoff w7 increases, especially with PN service
availability w5 = w5

η3
constant, the InP can afford to supply

a higher additional capacity z∗ to the SP. On the other hand,
the resource strategy y∗ of the SP is to reduce its demand from
the InP because as w7 becomes higher, n or k3 is reduced.
Consequently, the high payoff that the InP acquires will come
from the larger share of resources, and hence cost, the SP has
to pay in return.

2) Network Economics: The relationship between the EU
capacity demand and the VN capacity supply is explored
through solving (17) by implementing a numerical method
called the 4th-order Runge-Kutta method [33].

First, we discover the effect of the VN payoff factor w3

to the VN capacity supply. Consider four different values for
w3: 0.05, 0.50, 1.00, and 2.00. Also, set z = 0.50 and w1 =
5.00. The results of this case is illustrated in Fig. 2a. As w3

increases from 0.05 to 2.00 at 50% EU activity (i.e., x = 0.50),
the available VN supply decreases from y = 0.87 to 0.62.
This happens since an increase in w3 means that η(2) has
been decreased, which is caused by a small n or k(2). Hence,
when a VR can accommodate lesser EUs or when the SP can
only manage a smaller VN, the SP adapts by decreasing its
VN demand from the InP, and thus, its VN supply to the EUs.

Now, we find out the influence of the PN service availability
w5 to the VN capacity supply. Assume w1 = 10.00, which is
quite high just to accentuate the difference in the four curves
to be plotted, y0 = 0.30, and z = 0.50. Allow w5 to have
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Fig. 3. Network economics of a two-SP, one-InP NV system.

TABLE VIII

PARAMETER VALUES FOR TWO-SP, ONE-INP NV SYSTEM

these values: 0.10, 0.50, 1.00, and 2.0. Fig. 2b shows the
results of the simulation. We can conclude that higher w5

allows the SP to increase its VN demand from the InP, and
hence, its VN supply to the EU, and accommodate more EUs.
For example, at x = 0.50, the VN capacity supply goes from
y = 0.32 to 0.82 when w5 varies from 0.10 to 2.00.

Lastly, we consider the connection between the VN capacity
demand and the PN capacity supply through solving (18) using
the Runge-Kutta method [33]. To investigate the consequence
of the PN payoff factor to its own capacity, vary w7 to
these values: 0.05, 0.50, 1.00, and 2.00. Then, set x = 0.50,
w3 = 0.05, and w5 = 2.00. The result is plotted in the Fig. 2c.
At y = 0.50, the PN supply decreases from 0.62 to 0.13 as
w7 is increased from 0.05 to 2.00. It can be deduced from the
definition of w7 that it increases when m or k(3) is reduced.
Thus, when w7 is high, the PN decreases its supply because
n is low.

B. Two-SP, One-InP Network Virtualization System

In this subsection, we focus on the effect of the existence
of an additional SP in the economics of an NV system. In the
following simulations, we use the values in Table VIII, unless
otherwise stated. Entries labeled with ∗ are computed values
using (21), while those with + are varied. These values are
chosen to satisfy Lemma 4 and (42).

1) Network Resource Strategies: The network strategy for a
two-SP, one InP NV system of (20) is found by solving (41).
Table IX shows the effect of the SP2 service availability w2

to the network strategies. The values for w2 are 0.20, 0.25,
0.30, and 0.40, while the corresponding computed values for
w9 are 0.25, 0.31, 0.38, and 0.50. As w2 is increased from
0.20 to 0.40, the strategy of SP2 increases from 0.15 to 0.91

TABLE IX

EFFECT OF w2 AND w9 ON E(x∗, y∗
1 , y∗

2 , z∗)

(i.e., from 150 to 910 Mbps) due to higher demand from EUs.
However, the strategy of SP1 has diminished from 0.96 to 0.46
(i.e., from 960 to 460 Mbps) since EUs have an alternative SP.

Next, w9 assumes values of 0.25, 0.30, 0.40, and 0.50, and
the computed values for w2 are 0.20, 0.24, 0.32, and 0.40.
When SP2 has an increasing payoff w9 from 0.25 to 0.50,
its strategy also increases from 0.15 to 0.91 (i.e., from
150 to 910 Mbps). However, SP1, whose payoff w4 remains
constant at 0.40, decreases its strategy from 0.96 to 0.46 (i.e.,
from 960 to 460 Mbps). This conflicting behavior between the
two SPs allows the EUs to still get service even if one of the
SPs is decreasing its strategy.

2) Network Economics: Fig. 3a illustrates the effect of SP2

service availability w2 to the VN capacity of SP1 as a result
of solving (23) using the Runge-Kutta method. At x = 0.5
and as w2 is increased, the VN capacity of SP1 y1 decreases
from 0.83 to 0.72. That is, a more reachable competing SP
can accommodate more users, causing the demand for other
SPs to decrease.

Likewise, from numerically solving (23), the influence of
the SP2 competition w6 to the VN capacity of SP1 is plotted
in Fig. 3b. It shows that SP1 increases its VN capacity when
the effect of competition from SP2 w6 is greater. For instance,
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Fig. 4. Network economics of a three-SP, two-InP NV system.

TABLE X

EFFECT OF w2 AND w3 ON E∗(x, y∗
1 , y∗

2 , y∗
3 , z∗1z∗2)

at x = 0.5, y1 goes from 0.65 to 0.92. In other words, the SP1

will try to increase its capacity to satisfies its users.
Lastly, the PN capacity as a function of the VN1 capacity

is found by solving (25). Fig. 3c shows the changes to the PN
capacity with respect to the SP2-to-InP payoff w14, with all
initial capacities lowered to 0.10. At y1 = 0.5, as the payoff
w14 of SP2 is increased, the PN capacity supply z increases
from 0.12 to 0.42 to keep up with the increasing demand
from SP2.

C. Three-SP, Two-InP Network Virtualization System

We conclude this section by showing the economics of a
three-SP, two-InP NV system. From (31), this configuration
includes 36 network parameters. Consequently, for brevity,
we only show the values of parameters that vary in each setup.

1) Network Resource Strategies: To show the effect of
the service availabilities w2 and w3 of SP2 and SP3 to the
equilibrium point E∗(x, y∗1 , y

∗
2 , y

∗
3 , z

∗
1z

∗
2), we set w2 and w3

to 0.50, 0.55, 0.60, and 0.65 while keeping all the other
parameters constant. The results are tabulated in X. We can
infer that when the service availabilities of SP2 and SP3

increase, the resource strategy y∗1 of SP1 decreases. Moreover,
the resource strategies y∗2 of SP2 and y∗3 of SP3 also decrease.

2) Network Economics: The effect of service availabilities
w2 and w3 of SP2 and SP3, respectively, to the VN capacity
supply of SP1 is shown in Fig. 4a. It is evident that as the other
two SPs become more available to the EUs, with w2 and w3

taking values 0.80, 1.00, 1.20, and 1.40, the capacity supply
of SP1 decreases. This may be attributed to the behavior of
the EUs having more choices for the SPs. However, the trend
for VN1 capacity supply y1 stays the same where it decreases
with increasing EUs demand.

In Fig. 4b, the effect of SP2-to-InP1 payoff w27 and SP3-to-
InP1 payoff w28 to the PN capacity supply of InP1 z1 is shown.

As w27 and w28 increases, z1 increases with the demand from
SP1 as well. That is, InP1 can afford to increase its supply as
long as its payoff for doing so increases, no matter from which
SP the increase in payoff comes from. Finally, for networks
with higher number of SP and InP, they can be analyzed and
simulated in a similar way.

VII. CONCLUSION

In this paper, we have focused on a novel approach to
NV resource allocation and economics based on prey-predator
food chain model. We have formulated models for a one-
SP, one-InP and two-SP, one-InP NV systems, as well as
generalized it to N -SP, M -InP NV system. Properties and
analyses of these configurations have also been presented. The
derivation of the equilibrium point of these models, as well
as the conditions for its existence and stability, have also
been discussed. In addition, models that associate the EU
demand to the SP supply and the SP demand to the InP
supply have been proposed. Numerical simulations have been
performed to demonstrate the characteristics of these models.
We have learned that the SP and the InP resource strategies
depend on NV parameters such as payoff, failure, service,
and congestion factors. Therefore, the SP and InP can control
their resource strategies by changing the relevant network
parameters. Moreover, the capacity supplies of the SP and the
InP as a function of their respective demand also change with
these network parameters.
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