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ABSTRACT

Smart apparel with embedded sensors have the potential to revo-
lutionize human behavior sensing by leveraging everyday clothing
as the sensing substrate. However, existing textile-based sensing
techniques rely on tight-fitting garments to obtain sufficient signal to
noise, making it uncomfortable to wear and limiting the technology
to niche applications like athletic performance monitoring.

Our solution leverages functionalized fabric to measure the tribo-
electric charges induced by folding and compression of the textile
itself, making it a more natural fit for everyday clothing. However,
the large sensing surface of a functionalized textile also increases
body-coupled noise and motion artifacts, and introduces new chal-
lenges in how we suppress noise to detect the weak triboelectric
signal. We address these challenges using a combination of tex-
tile, electronics, and signal analysis-based innovations, and robustly
sense joint motions by improving SNR and extracting highly dis-
criminative features from the signal. Additionally, we demonstrate
how the same sensor can be used to measure relative changes in skin
moisture levels induced by sweating. Our design uses a simple-to-
manufacture layered architecture that can be incorporated into any
conventional, loosely worn textile. We show that the sensor has high
performance in natural conditions by benchmarking the accuracy
of sensing several kinematic metrics as well as sweat level. Addi-
tionally, we provide real-world performance evaluations across three
application case studies including activity classification, perspira-
tion measurements during exercise, and comfort level detection for
HVAC systems.
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1 INTRODUCTION

While much of the recent research in the wireless sensing community
has surrounded wearable technology like wristbands, phones, and
glasses, one area that has seen relatively little work is smart apparel
i.e. the integration of wearables in clothing. But the market for
smart garments has grown steadily and is projected to have one of
the highest growth rates among wearables over the next few years
[11]. There is also increasing commercial activity including projects
like Google Jacquard [2], and smart apparel from major clothing
manufacturers like Nike, Under Armour, Ralph Lauren, and Levi’s
[3-6].

From a sensing perspective, a major advantage of smart clothing
is the ability to monitor the signal directly at the location where the
signal is strongest. In the context of joint sensing, it allows us to
measure at the joint and not be limited to locations such as the wrist
or waist. The ability to measure individual joints can enable many
applications. For example, the knee and ankle joints are important to
monitor gait disorders that can occur due to neurological causes like
Dementia and Parkinson’s, as well as non-neurological causes such
as Osteoarthritis, intoxication, and medications (e.g. sedatives). The
ability to measure joint movements is also an essential part of bal-
ance, posture, and motor control rehabilitation from conditions like
stroke, as well as for mass-market athletic performance monitoring.

But a key drawback of existing textile-based joint sensing tech-
nology is that these generally only work with tight-fitting garments,
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i.e. when the textile is worn as a second skin. This is for two reasons:
a) stretch sensing-based methods [21] use tight-fitting textiles to
increase stretch during joint movement, and b) other modalities like
IMU and EMG rely on tight-fitting garments to reduce noise by
improving skin contact and reducing motion artifacts.

However, a second skin is uncomfortable to wear on a regular
basis, and we need new designs that can be used with loose-fitting,
everyday clothing. We argue that in-order to achieve this goal, we
need a radical shift in how we think about smart clothing. Rather than
integrate traditional sensors like an IMU or stretch with the textile,
we need a clean-slate approach that leverages the unique properties
of the textile to enable entirely new ways of sensing using clothing.
Specifically, a textile folds, compresses, twists, and scrunches during
movement of the joint, and if we can find a way to measure these
changes, it can offer an alternate fabric-based way of measuring
joints while not requiring tight-fitting clothing.

To enable such fabric-based sensing capability, we build on recent
work in functionalized triboelectric textiles — triboelectric textiles
comprise layers that transfer surface charge from one layer to another
and generate a voltage or current upon separation [28, 35, 36]. The
advantage of triboelectric textiles for our problem is two-fold: a)
since charge transfer between triboelectric textile layers happens due
to the relative movement of the layers, it should allow us to measure
the changes in the textile during joint movement even when wearing
loose-fitting garments, and b) since the textile itself is the sensor, it
allows us to leave the joint free of discrete electronics and wires, and
place signal conditioning and other electronics at more convenient
locations away from the joint.

While a triboelectric textile presents an exciting opportunity, we
understand very little about its practicality for sensing when inte-
grated into everyday clothing. We are certain to encounter a host
of noise issues including electromagnetic noise, static potentials,
and motion artifacts. These noise issues are exacerbated due to the
large surface offered by textiles and the loose fit, and introduce chal-
lenges in how we recover a weak triboelectric signal and sufficiently
suppress noise.

We address these issues and present the design of a novel fabric-
based triboelectric joint sensor, Tribexor, that is simple to manufac-
ture and is able to accurately detect individual joint motions while
integrated with loosely worn clothing. The sensor system involves
a co-design of the textile and electronics that tackles noise removal
and signal enhancement by a combination of textile domain and
electronics domain approaches. The final design of Tribexor consists
of several discrete, stacked fabric layers that are stitched together
and connected to a small form factor, low power amplification circuit
and an embedded radio. We then look in detail at the signal output of
the Tribexor sensor and try to explain the signal behavior from first
principles, and extract highly discriminating and explainable fea-
tures that allow us to detect joint movement, separate joint extension
versus flexion, and estimate joint velocity.

While our original intent was to leverage such textiles for joint
sensing, we stumbled upon an interesting observation during our
experiments. We noticed that our sensor can also be used to mea-
sure sweating behavior since the triboelectric textile itself undergoes
changes due to exposure to sweat. This provides a sensor reading
that is equivalent to an Electrodermal Activity (EDA) sensor (al-
ternately referred to as Galvanic Skin Response or GSR [20]). The

ability to monitor joint movements together with sweat levels opens
up additional applications such as improving comfort by adjusting
HVAC settings and monitoring hydration while exercising.

In summary, the main contributions of this work are:

o We present Tribexor, a novel fabric-based triboelectric joint
sensing system that can be integrated with loose-fitting cloth-
ing and senses joint flexion and extension, joint velocity, and
sweat level.

e We show that Tribexor has 95.1% accuracy for detecting
flexion and extension for elbow and knee joints, 88.8% accu-
racy for estimating elbow angular velocity, and 83.0% accu-
racy when estimating knee angular velocity. Additionally, we
demonstrate the ability to detect moisture at the joint induced
by sweating.

e We present two case studies: 1) activity recognition where
Tribexor distinguishes between typical arm-based activities
with 91.3% accuracy, and 2) thermal comfort detection that
demonstrates Tribexor can be used to sense relative skin
moisture levels that correspond to sweating.

2 RELATED WORK

The ultimate goal of this work is to develop a truly wearable joint
sensor, i.e. one that is unobtrusive and integrated seamlessly into our
everyday lives. Most existing sensor solutions fall short of this goal.

Discrete wearable sensors: Several prior efforts have used dis-
crete sensors like IMUs and EMG electrodes for sensing joint move-
ments. But this poses two challenges. The first challenge is that these
sensors require tight contact to reduce motion artifacts due to the
sensor moving around, so they do not work with loose clothing. The
second challenge is that placing rigid sensor circuits at or close to
the joint makes it prone to wear since the joint is in constant motion.
Several efforts attempt to reconstruct joint movements by leveraging
the signal from IMUs that are not placed at the joint itself, but at
comfortable locations like the wrist [27]. However, this leads to
a loss in accuracy — a wrist-worn IMU senses an aggregation of
elbow, shoulder, and body movements which are hard to separate in
an accurate manner.

Textile-based stretch sensors: In the textile domain, the most
commonly used method for joint sensing is using conductive threads
that change their resistance when stretched. But this approach is also
reliant on tight wear to generate sufficient stretch upon movement.
As aresult, it is primarily used in athletic performance wear [1].

A notable exception is work by Gioberto and Dunne [14] which
demonstrates a specialized overlock stitch pattern to induce stretch in
the seam of denim jeans. The idea is clever but difficult to generalize
to clothing that does not have such a thick seam at the joint.
Textile-based triboelectrics: There has been substantial interest
in triboelectric generators (TEGs) in the material science research
community [12, 15, 18]. TEGs convert small force inputs into an
electrical (voltage and current) output. Because these devices op-
erate by detecting surface potential changes created upon contact
and release of dissimilar surfaces (due to either the triboelectric
effect or contact electrification), micro- and nanostructured sur-
faces are needed to optimize voltage output. Such surfaces are typ-
ically generated on plastic or rigid glass substrates using various
lithographic techniques.[31, 32, 34] Selected endeavors to create



Table 1: Challenges faced by wearable joint sensing technologies

Technology overview Tightness Accuracy | Robustness Fabrication References
Discrete wearable sensors | Wrist wearable Low High Wearable electronics [27]
Textile-based Complex
stretch sensing Varies Medium Medium stitch pattern [13, 14]
Textile-based Self contained
triboelectrics Stretch fit Unknown High nano-fibers [12, 28]
In-Situ
perspiration sensing Stretch fit Medium Medium Textile sensing [10]
fabric-like polymer composites are known but these approximations Triboelectric Series  Contact
. P e Conductive Electrode
1ac]<.lthe ;rghzgen;()cor;fort, ﬂex1t?111ty and brf:atha}?ll;ty of nfartrlgaé Human Body DlslacHic
textiles.[18, 25, 26]. From a sensing perspective, the focus o Nylon \ BlElE e

research has primarily been on sensing tactile interaction with tribo-
electrics [17, 36] as opposed to body movements. In addition, work
on triboelectric textiles has been in relatively clean lab environments
free from all of the noise sources and motion artifacts introduced
in actual wear [33]. Our work differs from this body of work in its
focus on natural textiles, body movement sensing, and real-world
environments,

In-situ Perspiration sensing: Tribexor not only measures joint
motion but also a user’s level of perspiration. Clinical gold-standard
measures for perspiration sensing include weighing collected sweat
generated or weighing an athlete before and after exercise [9]. But
more recently there has been significant work on measuring various
biochemical markers from sweat. These techniques generally use
dedicated microchips or discrete humidity sensors that need to be
placed at the sweating location (via integration with textile or wear-
able) [29]. Our work is unique in two ways: a) we use the fabric to
simultaneously provide joint movement and perspiration information
and b) we require no sensor electronics at the joint.

3 TEXTILE - ELECTRONICS CO-DESIGN

The overall hardware design of Tribexor consists of a smart textile
sensor integrated with a small form factor electronic circuit used
for amplification and signal conditioning. The sensor consists of a
triboelectric-optimized textile patch and is used to collect electrical
charge generated by the textile; a multi-stage amplifier circuit is used
to amplify the voltage of the tribo signal and reject noise.

The central challenge that we address in the hardware design of
Tribexor is how to get sufficiently strong signal to noise ratio (SNR)
from the textile to detect states of interest. This overall challenge
in turn can be broken down into two parts: a) the first step is to get
sufficient transferred charge via triboelectricity such that the states
are detectable, and b) the second step is to minimize noise from
various sources to improve SNR. We look at these two challenges.

3.1 Maximizing triboelectric charge transfer

Overview of triboelectric textile sensing: Before we describe
how we maximize transferred charge, we need to present some
preliminaries regarding triboelectric textiles. Triboelectric textiles
fundamentally measure motion via charge transfer. While there is
still some debate over the mechanism of charge transfer in triboelec-
tric devices [22], their operation in vertical contact mode is generally
understood as depicted in Figure 1. When two dielectric layers come
into contact, static charging occurs over the contacting surface area.
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Figure 1: A triboelectric surface charge transfer mechanism in-
duces a voltage on the textile electrodes when the textile and
attached joint are bent.

Overall, the charge on the device remains at zero due to the charges
being located in the same plane. Upon subsequent separation of
the dielectric layers and therein the charges, an alternating current
between the electrodes is induced to compensate for the charge im-
balance; the generated charges are collected on conductive layers
adjacent to the dielectric layers. Thus, open-circuit voltage is de-
pendent on the surface charge density (o), separation distance (x(t))
between dielectric layers, and permittivity of free space (ep).

Increasing triboelectric surface charge transfer: When opti-
mizing a triboelectric textile for sensing, the critical parameter under
our control is surface charge density (o), since this defines the over-
all sensitivity of the magnitude of generated voltage to joint motion
(x(t)). Our first goal is therefore to design the fabric to maximize
surface charge transfer.

We start with cotton as our preferred textile material due to its
widespread use. As shown in Figure 1, the surface charge density
of pristine cotton is quite low, and is well below what is needed
to sense movement. To increase charge transfer to higher levels
that we can detect, the cotton lycra fabrics are functionalized in
separate solutions [7] with different silane moieties, one containing
an amine group that acts as the positively-charging triboelectric
surface, and the other containing a fluorocarbon chain group that
acts as the negatively-charging triboelectric surface. Sewn to the
back of each functionalized layer is a set of electrode strips made of
commercially-available conductive silver nylon fabric.

Our approach to functionalize fabric also makes it more suitable
for loosely worn clothing. Since we can use a large functionalized
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Figure 2: The voltage amplitude of sensed elbow joint motions is stable for a normal-sized, loosely worn elbow sleeve after functional-

izing in solution.

triboelectric patch, we can cover most of the area that undergoes
movement and aggregate the resulting charge. For example, in the
case of the elbow joint, the functionalized fabric covers the entire
front of the elbow.

Demonstrating the effect of functionalization: To demonstrate
the advantage of our approach, we place a pristine textile sleeve over
a user’s elbow joint and ask them to perform several flexions and
extensions in a clean electromagnetic environment. We measure the
output voltage after amplification and show the measured voltage in
Figure 2a in blue. We have the same user perform the same speed
flexion and extension movements in the same environment, this time
with a functionalized textile of the same geometry. We align the
peaks corresponding to motion and plot the measured voltage in red
(Figure 2a). We can see that the higher surface charge density of the
functionalized textile results in an order of magnitude increase in
signal amplitude.

Figure 2b demonstrates the effect of tightness of fit on the signal.
We have a user wear Tribexor in two configurations: a) in loose
configuration, the sensing textile is worn over a sweatshirt and an
inner shirt i.e there are multiple layers of loose clothing under the
sensor, and b) in tight configuration, a sleeve that is moderately
tight fitting is worn directly over the skin. In both cases, the user
repeats identical elbow motions. As shown in the figure, we find
that the triboelectric voltage output is not very sensitive to tightness,
demonstrating its potential for integration into everyday clothing.

The current textile design is a vertically integrated arrangement of
fabric layers; while this design is simple to manufacture, we envision
a more tightly integrated design that collapses layers into a thinner
form factor. Our design shares elements similar to those found in
nanoelectronics efforts that combine triboelectric primitives within
a single thread [35].

3.2 Dealing with noise sources

The large surface area offered by a functionalized textile is a double-
edged sword. On one hand, it aggregates the signal and increases
SNR. On the other hand, it presents a large conductive surface which

acts as a large antenna that absorbs more noise from the environment
and the body.

Noise sources: There are two primary sources of noise that we
need to deal with in Tribexor. The first is electromagnetic noise.
Body coupled sensors with large surface area are significantly vul-
nerable to injection of low frequency interference injected by the
nearby environment. In particular, 60 Hz noise is ubiquitous any-
where near powered infrastructure, resulting in coupling changes
that occur because of the changes in effective surface area (folds and
wrinkles) and tightness of contact with skin as the elbow joint opens
and closes.

The second source of noise is static field coupling. 1deally, a
triboelectric joint sensor will only measure the motion of the attached
joint. But this is not always the case — in addition to electromagnetic
noise sources, significant changes in body voltage potential can
occur as a result of other body motions and triboelectric charge
transfers between a user’s body and the outside environment.

Why is it hard to reject EM and static field noise? While the
sources of noise are similar to those observed for other modalities
including ECG, EMG, and EOG, there are important differences.
The first is form-factor. An electrode has a tiny footprint compared
to a textile which acts as a much larger noise-absorbing antenna.
In addition, when the tribo-textiles are used on loose clothing, the
distance between the fabric and skin changes constantly due to body
movements unlike electrodes that are attached to the skin. This re-
sults in continuous changes in the coupling capacitance, making
it harder to predict and deal with the noise. The second is place-
ment. Since electrodes are placed on the skin, different electrodes in
contact with body absorb similar noise power in their electrodes. A
differential amplifier can therefore reject this noise while letting the
signal through (e.g. in the case of ECG, the electrical signal from
the heart is stronger at one electrode and weaker at the other but the
noise is similar). In our case, fabric layers are stacked vertically i.e.
they have different separations from the skin. As a result, the inner
electrode is affected by body coupling noises while the outer contact
is absorbing noises from environment. This asymmetry means that
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the noise in the two contacts can be quite different and cannot be
completely removed by subtracting the signals.

Solution - part 1: The conductive shield The first stage of our
solution uses a textile-based shield to isolate the inner and outer
electrodes from noise sources. This is possible by adding additional
conductive layers above and below the electrodes to act as a Faraday
cage for our textile layers. Our design is shown in Figure 4. The
electrodes and functionalized fabric are covered with one layer of
plain cotton lycra, used as a dialectric, and one layer of conductive
silver nylon fabric that together act as a Faraday cage to shield
the triboelectric device from the effects of electric fields. The blue
layer is a two-ply gauze fabric used to enhance separation of the
triboelectric layers and as a structural element that allows Tribexor
to be integrated with a shirt or used as a stand alone sensing sleeve.

Solution - part 2: Differential amplifier The second stage of our
pipeline is a differential amplifier. The most important use of the
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Figure 5: Here we show a breakdown of each noise filtering
stage: (left) Amplifier increases signal but the triboelectric sig-
nal is barely visible whereas the undesirable static field noise
during walking is very large, (middle) Differential Amplifier
(DA) increases the signal and reduces noise, (right) Textile
shielding removes most of the static field signal and retails the
triboelectric signal.

differential amplifier is to enhance the signal since during charge
transfer, one of the charge carrying layers becomes more positively
charged, and the other more negatively charged. Additionally, it also
helps to attenuate some of the static field and 60 Hz powerline noise,
although not all of it since the conductive charge gathering contacts
are not capturing identical noise profiles as previously mentioned.

Solution - part 3: Analog filtering and amplification stages Since
there is still significant residual noise after the differential amplifier,
we need additional filtering stages to reduce the noise level. To calcu-
late gain and filtering order of our analog circuit, our goal is to reach
an SNR Of 10 dB and a final triboelectric signal amplitude of 1 V
to fully utilize the dynamic range of the ADC used in the wearable
system. We set the cut-off frequency of the filtering stages to be
10 Hz to fully capture the fastest anticipated human movements. The
overall gain of the circuit can be calculated as:

Ve
Gaingg = 10109({3—7”)2 = Gaingg = 60dB (€))
L
And the order of the filtering stage is calculated in Eqn 2.
Frej
log( F )X a XN >10 = (Psignai = Poise) )
c

Note that « is the slope of the first order filter, which is 20
dB/decade and N is the target order of designed filter. Fy¢; is the
frequency to be rejected, in this case 60 Hz, and F, is the 3 dB
cut-off frequency of our filter. Py;gpq; and Ppoise are the power of
the signal and noise at the output node of the differential amplifier,
respectively. Consequently, a 4th order filtering is required. Taking
these parameters into consideration, we designed the amplifier stages
as shown in Figure 3.

Demonstrating the combined effect: How well does our solution
work? Figure 5 breaks down the effect of each of the stages of our
solution. We omit the initial raw signal since this visually looks
like a flat line where the signal is undetectable. If we amplify this
signal using our four-stage amplifier, the signal corresponding to
joint movement can be seen as relatively small changes but the noise
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Figure 6: Tribexor’s output in response to a flexion followed by
an extension. Features used in inferring joint state are anno-
tated.

from walking is substantial and dominates. If we add the differential
amplifier, the joint movement signal becomes a lot stronger for
reasons explained earlier. This stage also removes some of the 60 Hz
and static field noise but not all of it. Finally, if we include the textile
shielding, it removes most of the noise while retaining most of the
triboelectric signal.

4 INFERRING JOINT STATE AND SWEAT
CONCENTRATION

We now turn to analyzing the characteristics of the de-noised signal
from Tribexor. We obtain two signals of interest from our sensor.
The first is the fast varying changes during flexion and extension of
the joint (the phasic component). The second is the slow varying
changes due to the state of the joint (the tonic component), which
is the change in baseline that can be observed while the joint is
stationary. These two signals can be separated from one another
by utilizing a low-pass filter. The reason these are both of interest
is that the phasic component is useful for identifying specific joint
movements, whereas the tonic component provides information
about the wetness and salt content in the textile, thereby allowing it
to be used to sense exposure to sweat. We describe these two signals
in more detail in the coming sections.

4.1 Inferring Joint State

We first look at the dynamic or phasic component of the time-series
voltage signal from the textile sensor, and ask how we can map
from voltage to the direction of joint movement and the velocity of
joint movement. To understand this, we need to obtain an in-depth
understanding of the signal characteristics.

Understanding signal characteristics: Figure 6 shows an output
instance of an elbow flexion and extension. There are three key
parameters of interest: a) the charge and discharge rates annotated as
01 and 6, b) the baseline voltage when the joint is in the extended vs
flexed static position annotated as 1 and S, and c) the peak height
of the flexion/extension, ¢. We now explain how these parameters
can be used to determine joint state.

The charge and discharge rates (0;) of the textile vary according
to the start and end state of the textile. At the start of an extension
motion, the textile is in a compressed state. As the arm is extended,
the layers separate, causing a voltage peak at roughly the midpoint
of motion; the voltage subsequently decays because of conductive
paths between the textile layers. During a flexion action, the same
signal features occur, but at different relative rates. Initially, there is
much less surface contact between the textile layers; during motion,
a peak still occurs because of separation but at a slower rate. The final
state of the textile is a compressed state which results in fast voltage
discharge because of more conductive paths available between the
textile layers. As a result of this behavior, we consistently find that
01 > 0, during extension, and ¢; < 02 during flexion.

The signal baseline (f;) also changes depending on whether the
joint is in the flexed vs extended static position. There are two
reasons behind the change. First, the effective surface area and
intimacy of contact with the skin will vary as a joint opens or closes.
We expect that more EM noise is injected when capacitive coupling
is higher, while less is injected when coupling is lower. Second, the
impedance between the electrodes and ground plane shielding cause
asymmetric signal changes at the input of the differential amplifier.
The inputs of the amplifier are the base nodes of BJT transistors.
As the impedance of electrodes changes, the bias current of the
differential amplifier changes which results in a very small voltage
shift in the output of the differential amplifier. This offset, though
small, is amplified and is observed as a baseline shifti.e. f; > fa.

The peak height (¢) depends on the velocity of the joint since
the tribo layers move more quickly relative to each other, relating in
more compression and expansion and therefore greater amount of
charge transfer.

Determining joint state: Given this behavior, it is easy to see
how these three parameters can be leveraged to determine joint state
and velocity. To distinguish direction of joint motion i.e. whether
the joint flexed or extended, the charge/discharge rates (6;) and the
signal baseline (f;) are the most useful. To determine velocity of
joint motion, the peak height (¢) during flexion/extension is most
useful.

From a detection standpoint, these observations give us explain-
able features that can be used to distinguish between joint states.
Such explainability is increasingly important, particularly when de-
signing robust classification methods.

4.2 Continuous Sweat Monitoring

So far, we have looked at the dynamic or phasic components of
the triboelectric signal. We now turn to the slowly varying baseline
signal or the tonic component. While sweat monitoring was not our
original purpose, our experiments revealed that the baseline signal
varied due to sweat which can be used as an additional sensor signal.

Why does sweat affect the output signal? The reason is because
the wetting happens in one direction — the inner layers absorb
more sweat whereas the outer layers that are close to air are more
dry. This results in an impedance difference between the outer and
inner electrodes. As depicted in Figure 3, R; and R, represent the
impedances between the outer electrode and shielding layer and
inner electrode and shielding layer, respectively. Since sweating
initially affects internal layers, it reduces R. As a result, a small DC



offset is generated at the output node of the differential amplifier.
This small voltage is then amplified in the electronics circuits to
create an observable change at the output of Tribexor.

The sweat-induced changes can either be viewed as a useful signal
to measure sweating behavior or as noise that confounds the joint
measurement signal. If viewed as noise, we can coat the insulation
layer between shielding layer and charge collecting electrodes with
a hydrophobic coating so as to make it water-repellent [37]. In this
work, we look at sweat as a useful biochemical signal that can be
captured by Tribexor in addition to its use as a joint movement
Sensor.

5 IMPLEMENTATION

Our current implementation of Tribexor was the result of several
design iterations that evolved as we evaluated the signal output
of triboelectric textiles in real-world settings. The first version of
Tribexor consisted of a woven arrangement of positive and negative
charge carrying threads and collection electrodes. We found that
the total surface area of interaction between tribo materials was
insufficient to produce a significant signal output. The second version
of Tribexor saw the transition to the layered design we described in
§3. The increased surface area in the layered design allowed us to
see significant signal magnitude changes that correlated with joint
motion when worn, but we discovered that this DC signal change was
actually coupled electromagnetic noise that changed depending on
the amount of coupling with the arm that was related to position and
not velocity. This observation motivated us to include the differential
amplification stage, which caused signal peaks from triboelectric
charge and discharge to become visible at the beginning and end
portions of individual arm motions. The addition of a microcontroller
and BLE radio allowed us to perform untethered experiments with
mobile users; however, we observed charge/discharge peaks that
correlated with foot impact while walking. This observation resulted
in the final prototype that includes signal shielding layers on either
side of Tribexor to reduce static field coupling from outside the
measured joint. We now describe this final design in greater detail
(depicted in Figure 10).

Layered Textile Sensor The layered textile is comprised of mul-
tiple sheets of cotton/lycra spandex (90%/10%, Dharma Trading
Co.) and silver-plated nylon/elastic fiber (76%/24%, LessEMF.com)
fabrics. To chemically alter the cotton lycra surfaces for tribo func-
tionality: purchased fabric was cut and washed by sonicating in
deionized water for 15 minutes to remove any stray fibers or par-
ticles from the surface. The swatches were then rinsed with iso-
propanol and air-dried before soaking for 25 minutes in their respec-
tive solutions, which included 1% by vol. trichloro(1H,1H,2H,2H-
perfluorooctyl)silane in hexanes for the negatively-charging surface
and 10% by vol. (3-aminopropyl)trimethoxysilane in isopropanol
for the positively-charging surface. After, the swatches were rinsed
with their respective solvents, hexanes or isopropanol, in order to
remove excess, unreacted solutes, then air-dried before constructing
the Tribexor.

To assemble Tribexor, the stretchy silver nylon fabric was cut
into six 6 in. x 1.5 in. strips and sewn around the strip perimeters
onto the active tribo layers (three strips to a functional layer, making
three devices in total.) Another layer of pristine (unfunctionalized,

as received) cotton lycra was then attached by sewing around the
perimeters of the strips, leaving one short side unsewn for access to
electrical wire connections. Finally, a second layer of 8 in. x 8§ in.
pristine cotton lycra with a layer of 7 in. x 7 in. silver nylon stretch
fabric centered on the back side was attached around its edges on
top of the first pristine cotton lycra layer. Altogether, Tribexor layers
from the outside in are as follows: silver nylon, 2 cotton lycras, silver
nylon electrode strips, tribo-active layer 1, gauze spacer, tribo-active
layer 2, silver nylon electrode strips, 2 cotton lycras, silver nylon.
The gauze spacer layer covers one inch inward from the edges on
opposite sides of the Tribexor, extending outward on both sides to
wrap around the limb of the person testing the device. Velcro strips
on the gauze allow the user to adjust the size of Tribexor.

The two outermost shield layers (pristine cotton lycra with silver
nylon back) are connected with braided wires and are adhered to the
fabric using conductive adhesive. The two charge collection layers
of a single device are connected to the inputs of the differential
amplifier with a similar wire and are also adhered using conductive
glue.

Electronics and Software The signal processing, computation,
and communication elements of Tribexor are provided by a 4 layer
3.2 cm x 2.3 cm printed circuit board that we designed and a Blufruit
Micro MCU with a BLE radio. Our PCB board uses an AD629
differential amplifier with unity gain and a gain stage that consists
of 4 BA10324A operational amplifiers; the overall gain and cutoff
frequency of the amplification and filtering stages is 60 dB and
10 Hz. The output of the gain stages is fed to the attached Arduino.
We collect a stream of ADC values at 80 Hz for further analysis. The
electronics circuit board draws roughly 2 mA of current from a 3.3 v
power supply. We note that our focus was on signal analysis of an
all-textile joint sensing device rather than power consumption and
form-factor, and there is significant room for optimization on both
fronts.

The motion capture room used for collecting ground truth data is
equipped with a Qualisys Oqus Infrared Motion Capture System.

Digital filtering is performed on the voltage signals to reject high
frequency noise. For motion detection, a band-pass filter is used to
detect the triboelectric signal regardless of the DC level. Finally, for
sweat detection, a low-pass filter is applied to the output signal to
track the voltage baseline.

6 EVALUATION

Our evaluation shows the advantages of Tribexor for joint and per-
spiration sensing through a combination of benchmarks and natural
experiments.

6.1 Joint Sensing Performance

Tribexor can sense many markers pertaining to joint movement. In
this section, we present a few careful benchmarks with a single user
and then present a more complex case study with more users.

Flexion vs Extension Detection: Our first set of benchmarks
looks at how well we can separate flexion versus extension of the-
joint using the features shown in Figure 6. We only look at the utility
of the two core features 0; and f; to understand how useful these
two features are to performance.



Flexion Extension Accuracy
Precision | Recall | Precision | Recall
Stationary (Dry) | .986 964 989 968 976
Elbow | Stationary (Wet) | 1.00 1.00 1.00 1.00 1.00
Walking (Dry) | .881 .881 .881 .881 .881
Knee Stationary (Dry) | .924 .895 .894 923 903

Table 2: Precision and Recall of Flexion and Extension Classification under different conditions
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Figure 7: We record different arm velocity motions along with
ground truth and find that a linear function describes the rela-
tion between signal peak voltage and angular velocity.

Let us first look at results for the elbow joint. We collect motion
data by having a user perform flexion and extension arm motions
for 5 minutes. We then use this data to train a logistic regression
based classifier. The classifier is then tested on the same user for data
during several different experimental conditions including wearing
a moist sleeve, walking while performing the action, and wearing
the sleeve in different positions.

Results for binary classifications are summarized in Table 2; we
are able to detect flexion and extension with very high precision and
recall across a range of conditions. Our best results are measured
during benchmark experiments when moisture was introduced — we
observed that Tribexor achieves perfect precision and recall as a
consequence of larger shifts in DC baseline magnitude. Our worst
results were obtained from benchmarks collected while a user was
walking, but still yielded precision and recall values of 88.1%; we
hypothesize that small shifts in the textile and low amplitude static
coupled noise could result in low-velocity joint motions being mis-
classified.

We perform a similar study for the knee joint. We collected data
while a seated user flexes and extends their knee periodically across
a range of speeds. A logistic regression classifier is trained for this
joint to do the binary classification between knee extension and
flexion. The results are quite good for the knee joint as well as
shown in the last row of Table 2.

Estimating angular velocity: Next, we look at how well Tribexor
can estimate angular velocity of the elbow and knee joint. First, we
look at data from the elbow joint from a single user and look at the
relationship between the peak height (¢ in Figure 6) and the joint
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Figure 8: CDF plot for error in angular velocity estimation
across multiple wears of the textile. The median error is 11%
for the elbow and 17 % for the knee.

velocity measured using a motion capture system. Figure 7 validates
our intuition and shows that the peak height is indeed linearly related
to angular velocity.

Next, we look at how well Tribexor can estimate angular velocity
across multiple wears of a textile. While in general, the voltage
extracted is highly correlated with the angular speed, loosely worn
textiles like sweatshirts are often worn over different inner layers.
In addition, the fabric folding and compression may differ slightly
each time the textile is worn leading to signal differences.

To characterize the error, we ask the user to remove and re-wear
the shirt five times. We then used five-fold cross validation where we
calibrated the sensor from data from four of the times the textile was
worn, and tested the performance on the held-out data, and repeated
this five times.

Figure 8 shows a cumulative distribution of the error. Our results
show that, as expected, there is error due to differences across the
times when the textile is worn. But we also see that the median
angular velocity error is only 11% for the elbow and 17% for the
knee. This means that despite the fact that Tribexor is integrated
with loose clothing, it provides a reasonable estimate of the velocity
under natural settings.

Minimum sensitivity: We now look at the sensitivity of Tribexor
i.e. what is the minimum joint velocity that can be detected using the
captured signal. According to [19], the typical peak angular velocity
for an elbow joint during curl exercises is approximately 200 deg/sec.
So, our objective is to be able to detect a signal well below this peak
speed so that we can capture the entire flexion and extension motion.
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Figure 9: Comparison between reconstructed angular velocity
and ground truth for elbow flexion and extension.

Figure 10: User wearing Tribexor implemented as a sleeve.

Figure 9 compares the estimated angular velocity against ground
truth when a user is flexing and extending their arm at moderate

speeds. We see that the minimum sensitivity is roughly 50 degrees/second.

The primary reason for this minimum threshold is that we used fixed
gain parameters rather than an Automatic Gain Control (AGC) cir-
cuit. We expect that future hardware revisions should be able to im-
prove sensitivity. Once we cross the minimum sensitivity, Tribexor
tracks the ground truth signal very accurately. Thus, these bench-
marks show that Tribexor is a reliable joint sensor and is sufficiently
sensitive to capture normal hand movements.

Case Study: Activity recognition — We now turn to a less con-
trolled user study to examine how Tribexor performs in a natural
setting. Our case study examines the benefits of Tribexor for recog-
nizing a variety of activities that involve the elbow including eating,
walking, and brushing. There has been a significant amount of work
on recognizing these activities using inertial sensors on wristworn
devices [8, 23]. Our goal is to show that Tribexor can provide an
equivalent capability with just loosely worn textiles.

In this experiment. 14 participants (9 male, 5 female) were asked
to wear the shirt with Tribexor sewn on. The users wore a medium
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Figure 11: Signal features computed from Tribexor can be used
to distinguish between 4 different activity classes with high ac-
curacy.

sized shirt on which Tribexor was sewed to the elbow, as shown
in Figure 10. Participants were asked to perform the following ac-
tivities as normal: eating chips and drinking water, brushing their
teeth, walking, and staying still. They were not restricted to a limited
eating/drinking pattern. As a result, participants followed their own
unique way of eating/drinking (holding a drink or bag of chips in
one hand or leaving them on the table, reaching for water or chips at
will and placing them wherever they wanted after use). The measure-
ments were performed in an office environment with non-participants
walking around in the vicinity during measurements. Participants
were aged from 24 to 35 years old. Their height ranged from 5’3"
to 6 ft, they weighed from 117 to 220 lbs. We also measured the
elbow circumference for each user to ensure that our results were
not sensitive to looseness of wear. In our experiment, the elbow cir-
cumference of participants ranged from 9 to 12 inches. In total, we
collected 110 minutes of data which were almost equally distributed
among mentioned activities and users. Ground truth was obtained by
recording video and hand-labeling the activity instances by checking
timestamps recorded by Tribexor.

We segmented the data into windows and extracted several fea-
tures from the data as summarized in Table 3. We use several features
in addition to the core features since activities span longer timescales
and have more variability. We used a standard SVM classifier and
five-fold cross validation to classify between the different activities.
Our results showed that the SVM classifier can successfully clas-
sify the test activities with 91.3% accuracy. Figure 11 shows the
confusion matrix for this classification.

6.2 Sweat Sensing Performance

Next, we turn to the sweat sensing capability of the triboelectric
textile. To undertand this, we empirically explored the correlation
between the reading obtained from Tribexor with a variety of other
measures — salt concentration, water volume, and skin conductance
from a Galvanic Skin Response (GSR) sensor. The results we show



Feature Description

Statistical features

We use several statistical features including the signal average, quartiles, standard deviation, and cross-correlation
across windows. These provide information about elbow angle changes and variations over different time-spans.

Frequency domain features

Human elbow movements are often distinct in the frequency domain, particularly for hand-to-mouth actions like
eating, drinking, or smoking, and periodic movements during brushing and sports activities. We look at the top
frequency peaks, as well as the signal power.

Magnitude features
the fast elbow movements.

We look at the signal envelope and peaks including peak density and peak height. Peaks capture information about

Table 3: Features used for activity classification. In addition to core features, we extract several other features relevant to activity

detection.

are based on a rather laborious process since once we wetted the
sensor in a particular way, we need to machine dry it before we use
it again.

Estimating sweat level from the triboelectric signal: We now
look at how well Tribexor can detect the concentration of sweat. To
understand this, we design a controlled measurement setup where we
spray the textile with salt water with 40 mMoles of salt concentration,
which is similar to that of human sweat. The textile is wrapped
around a cylinder shaped object to act as human elbow. During the
measurement, the textile is placed on top of a precise digital balance
that is used to manually record the textile weight as an indication of
salt water applied to the textile.

To better simulate human sweat, we manually adjust rate of water
deposition to match normal rate of human sweating. According to
[16], the average human sweats at rate of 13 ml/minute. The arm
accounts for roughly 10% of body surface [30], so we assume that
roughly 1.3 ml/minute is generated by the joint. Salt water is applied
on front half of the textile which covers around 1/6 of human arm.
As aresult, solution is sprayed on the textile at rate of 0.2 ml/minute
to best mimic human sweating.

Since we only care about the changes in the baseline signal i.e.
in Figure 6, we use a low-pass filter to remove triboelectric signals
generated from hand movements. The result is only the baseline
changes due to salt-water accumulation.

Figure 12 shows the changes in baseline, 8, as a function of
salt water volume. The voltage baseline has a clear second order
polynomial relation to salt water volume with a low RMS error of
0.1 V. While there will be natural variations in sweat accumulations
in the textile due to evaporation, our results are promising since it
provides a fabric-based method to measure sweat.

Case Study 1: Measuring Perspiration During Exercise — We
now look at the ability to detect the sweat concentration on a user’s
skin during strenuous activities. This provides an additional metric
of exertion for the user in addition to running speed or heart rate. To
demonstrate this, we asked a user to wear Tribexor on their elbow
while wearing an Affectiva Q sensor on their wrist [24]. The Q
sensor provides an indirect measure of skin moisture level by using
skin conductivity as a proxy. We use this as a gold standard metric
to evaluate the effectiveness of Tribexor. To detect sweating, we
apply a low pass filter on the signal output to reject high-frequency
noise. The resulting output represents a baseline for different elbow
states. The user was asked to perform a combination of walking and
running on a treadmill. There were no restrictions on running or
walking speed, arm position or swing, or rest periods where the user
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Figure 12: We measure Tribexor’s baseline signal output as a
function of controlled increases in salt water volume and find a
2nd order polynomial relationship.
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Figure 13: The baseline signal output can be used to measure
sweat levels during exercise. We show that Tribexor’s signal out-
put roughly tracks skin conductivity, which is used as a measure
of skin moisture level.

consumed water. Tribexor’s output was collected at a sampling rate
of 50 Hz, while the Q sensor was configured to use its maximum
sampling rate of 8 Hz. The two sensor streams used a common clock
to synchronize prior to the start of the experiment.

Figure 13 shows the extracted signal baseline together with the
measured skin conductivity. The results are interesting and show
that the signal provided by Tribexor closely tracks the signal from



a GSR sensor but simultaneously provides more information about
the current activity state.

Let us first look at the correlation with the GSR sensor. A GSR
sensor monitors skin conductivity between two electrodes to measure
stimulus that makes sweat glands become more active and allows
current to flow more readily. The Tribexor signal is also a cumulative
effect of sweat on the resistance of the textile, hence this tracks the
GSR reading. This result provides evidence that Tribexor can provide
an equivalent signal as GSR. GSR sensors are widely used as a signal
of psychological or physiological arousal. The fact that Tribexor
provides a similar signal demonstrate a novel textile-based version
of a galvanic skin response signal that requires no electrodes.

The second observation is that the phasic (dynamic) component
of the signal also shifts when the user is walking vs running. This is
because the elbow state is different in walking and running. Users
run with their elbows bent which increases the compression between
the grounded shielding layers and charge collection layers. This
results in a shift in the baseline resulting in a higher voltage level.
When the user starts walking, their elbow extends more and results
in a reduced baseline. Thus, we see that by analyzing the phasic
and tonic components of the signal we can obtain complementary
information about the joint.

Case Study 2: Comfort Level Detection for Smart HVAC Sys-
tems — Our final case study further explores the sweat sensing
capability of Tribexor. In this application, we focus on determining
users’ comfort levels in controlled climate environments such as
homes, offices, or cars. For example, one possible scenario is HVAC
monitoring during nighttime where the textile monitors sweating
and adjusts temperature.

In this study, we demonstrate Tribexor’s ability to detect the
comfort of a car passenger. To do this, we set the car’s temperature
to 90°F, which is outside of a typical human’s comfort zone. We
then monitor the voltage output of Tribexor as well as the Q Sensor
as in the previous case study to provide a gold standard measure of
sweating behavior. We simultaneously record the car’s temperature
using a portable temperature and humidity sensor. In contrast to
the previous case study, the user remains mostly stationary in a
position that roughly corresponds to that normally used while driving
— the user’s right hand (same arm instrumented with Tribexor), is
occasionally moved between the steering wheel and shifter. We
remove the dynamic changes due to hand movements and focus on
the changes in baseline.

Figure 14 shows Tribexor’s output altogether with skin conduc-
tance and temperature. The figure shows that as the measured base-
line signal output begins to increase quickly when the temperature
value moves above ~73 degrees F, which is roughly the temperature
that exceeds the comfort zone of a typical human. When the car’s
temperature increases above 80 degrees F, we see a sharp increase
in Tribexor’s output, as well as the Q sensor, indicating that the user
may be well outside of their personal comfort zone. This metric is
especially useful because it takes into account other information that
varies across users and context, such as their body type or number
of layers of clothing they are wearing. All of these can change the
ideal comfort temperature for a particular user, and Tribexor allows
us to measure these changes.
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Figure 14: Tribexor can also be used to measure elevated skin
moisture caused by thermal discomfort. Here we show the base-
line signal output significantly increases when a user is taken
outside of their thermal comfort zone; we validate this result
with wrist skin conductivity.

7 DISCUSSION

We now discuss some of the limitations of our current approach and
avenues of future work.

Tribexor is a fabric-based device and while we were able to deal
with moderate wetness, the output was too unpredictable at high
levels of wetness. Since we were also interested in measuring skin
moisture level, we chose not to use water repellent fabrics in our
current design but this could be an option if the device needs to
operate at higher wetness levels.

While we have demonstrated the basic functionality of Tribexor,
there are many exciting directions that are enabled by this new sens-
ing technique. One direction is instrumenting clothing with multiple
instances of Tribexor to sense multiple joints simultaneously. For
example, smart textile patches in an elderly individuals’ pant legs
can monitor gait to detect imbalance that might indicate neurological
disease progression. Since Tribexor can be placed at multiple joints
where clothing is worn, it can be used to monitor user’s movements
during long periods of time with less burden on the user. This would
be particularly useful for elder monitoring and degenerative illness
progression tracking, such as Osteoartheritis and Parkinson’s dis-
ease. Similarly, Tribexor could be used to track a user’s rehabilitation
progress after recovering from injury or surgery. Another direction
is combining energy harvesting with triboelectric sensing. Triboelec-
tric textiles generate a small amount of energy during movement
which can potentially be leveraged to improve the energy-efficiency
of smart textiles.

8 CONCLUSION

In this work, we presented the design of Tribexor, an end-to-end
sensing system that leverages triboelectric textiles to measure joint
motions and sweating behavior. While triboelectric textiles have
been evaluated in lab environments, our work takes this technology
from the lab to the natural environment and addresses challenges in
reducing noise, understanding signal characteristics and extracting
useful features. We quantified the performance of Tribexor by bench-
marking its robustness as well as through real-world performance



evaluation across three application case studies including activity
classification, perspiration measurements during exercise, and com-
fort level detection for HVAC systems. In our future work, we aim to
extend joint sensing to the entire body and focus on clinical metrics
including gait differential and athletic performance applications that
focus more on joint motion accuracy. We also plan to better optimize
the device itself by exploring fabrication techniques that combine the
individual textile layers and leverage harvested triboelectric energy
to power other system components.
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