No Training Hurdles: Fast Training-Agnostic Attacks to Infer
Your Typing

Song Fang* Ian Markwood Yao Liu
University of Oklahoma University of South Florida University of South Florida
songf@ou.edu imarkwood@mail.usf.edu yliu@cse.usf.edu

Shangqing Zhao Zhuo Lu Haojin Zhu
University of South Florida University of South Florida Shanghai Jiaotong University
shangqing@mail.usf.edu zhuolu@usf.edu zhu-hj@cs.sjtu.edu.cn

ABSTRACT

Traditional methods to eavesdrop keystrokes leverage some mal-
ware installed in a target computer to record the keystrokes for
an adversary. Existing research work has identified a new class of
attacks that can eavesdrop the keystrokes in a non-invasive way
without infecting the target computer to install a malware. The
common idea is that pressing a key of a keyboard can cause a unique
and subtle environmental change, which can be captured and ana-
lyzed by the eavesdropper to learn the keystrokes. For these attacks,
however, a training phase must be accomplished to establish the
relationship between an observed environmental change and the
action of pressing a specific key. This significantly limits the impact
and practicality of these attacks.

In this paper, we discover that it is possible to design keystroke
eavesdropping attacks without requiring the training phase. We
create this attack based on the channel state information extracted
from wireless signal. To eavesdrop keystrokes, we establish a map-
ping between typing each letter and its respective environmental
change by exploiting the correlation among observed changes and
known structures of dictionary words. We implement this attack on
software-defined radio platforms and conduct a suite of experiments
to validate the impact of this attack. We point out that this paper
does not propose to use wireless signal for inferring keystrokes,
since such work already exists. Instead, the main goal of this paper
is to propose new techniques to remove the training process, which
can make existing work unpractical.

CCS CONCEPTS

« Security and privacy — Mobile and wireless security;

KEYWORDS

keystroke; correlation; eavesdropping attack

*This work was done at the University of South Florida. The author is now affiliated
with the University of Oklahoma.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10...$15.00
https://doi.org/10.1145/3243734.3243755

ACM Reference Format:

Song Fang, Ian Markwood, Yao Liu, Shangqing Zhao, Zhuo Lu, and Haojin
Zhu. 2018. No Training Hurdles: Fast Training-Agnostic Attacks to Infer
Your Typing. In 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS ’18), October 15-19, 2018, Toronto, ON, Canada. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3243734.3243755

1 INTRODUCTION

Sensitive information such as classified documents, trade secrets, or
private emails are typeset and input into a computer for storage or
transmission almost exclusively via a keyboard. Emerging research
work has identified a new class of attacks that can eavesdrop the
keystrokes in a non-invasive way [6, 7, 11, 12, 18, 21, 26, 28, 32, 37,
40, 42]. These new attacks eliminate the requirement to infect the
target computer with a keylogger or other malware to violate the
user’s privacy. Their common underlying principle is that pressing
a key on a keyboard causes subtle environmental impacts unique
to that key, which can be observed and correlated for all keys. For
example, an eavesdropper can set up a malicious WiFi router to
receive the wireless signal emitted by a target laptop. A user press-
ing a key causes a unique disturbance on the received signal, and
the eavesdropper can analyze these disturbances to learn which
key is pressed. In general, these non-invasive keystroke eavesdrop-
ping attacks can be classified into three categories, vibration based
attacks [21, 26], acoustic signal based attacks [7, 12, 37, 42], and
wireless signal based attacks [6, 11, 18].

These attacks also share a common weakness, that of requiring
a training phase to be at all effective. This establishes the rela-
tionships between observed environmental disturbances and spe-
cific key presses. During the attack phase, unknown disturbances
are compared with those recorded in the training phase to de-
termine which key was most likely pressed. However, the train-
ing significantly limits the impact of these attacks. Most existing
works [6, 7, 11, 18, 21, 26, 28, 32, 37, 40] assume the attacker has
some way to perform the training in a practical situation, but none
have provided technical details justifying their logistical feasibil-
ity. [12] proposes a practical way to collect keystrokes for training
by Voice-over-IP (VoIP) software (e.g., Skype), while this technique
targets the scenario when the attacker is able to talk with the target
user via VoIP calls.

Requiring training imposes a large practical hurdle for the at-
tacker - most users are in full physical control of their keyboards,
whether they are part of a laptop set in arbitrary locations or on
a roll-out keyboard tray (a common feature of desks). Anytime

https://doi.org/10.1145/3243734.3243755
https://doi.org/10.1145/3243734.3243755

a laptop is moved or a keyboard tray is pushed in or pulled out
slightly, any previous training efforts are invalidated. A user may
also change typing behaviors (heaviness of hand, etc.) during use
of the computer. Hence, training must be conducted frequently to
cope with all these changes. Because training requires knowledge of
what key is pressed to construct a mapping, and therefore requires
access to the system for some time, it is impossible to retrain once
the user has control of the system, and it is highly difficult to train
on systems controlled physically by the user (which are most).

In this paper, we make non-invasive keystroke eavesdropping
practical under realistic circumstances, by removing the training
requirement entirely. Not only does this make these attacks actually
possible, but it also makes them far less invasive still, because
physical access to the system is never required.

Intuitively, statistical methods provide a way to remove the train-
ing phase. Frequency analysis [16] is a typical unsupervised learn-
ing method based on the statistical observation that certain letters
normally occur with varying frequencies in a given language. In
English, the letter ‘e’ is the most often used. An input text of suf-
ficiently large size will have a distribution of letter frequencies
close to the typical distribution of English letters [3]. Since an en-
vironmental disturbance is associated with a key, by analyzing
the frequencies of observed disturbances, the attacker can possi-
bly determine the associated keys. Intuitively, the most frequently
observed disturbance is likely to be caused by typing the letter ‘e’.

However, statistical methods determine the typical distribution
of English letters by ingesting a large amount of text, while the
distribution within a small sample text may not be quite the same.
The discrepancy between sample and typical distributions is unpre-
dictable, so correlating observed environmental disturbances and
keystrokes requires collecting statistics over a long time period,
during which the environmental disturbances (e.g., wireless signal
properties) for different keystrokes must remain static as well as dis-
tinct from one another. In practice, these disturbances (especially
wireless signals) may change over the time due to environmen-
tal changes and mobility, preventing the attacker from collecting
sufficient reliable statistics for accurate keystroke inference.

We point out that this paper does not propose to use wireless
signal for keystroke inference, since existing work [6, 11, 18] has
been already proposed to infer keystrokes by using wireless signal.
All existing work requires a training process, which imposes a large
practical hurdle for the attacker. This paper aims to remove the
strong dependency of existing work on the training process to make
the keystroke inference attack a practical threat.

The challenges with using statistical methods motivate us to
develop an effective approach for non-invasive keyboard eavesdrop-
ping within a shorter time window. We analyze the self-contained
structures of words, which can be immediately observed by typ-
ing a single word, rather than probabilistic statistics among words,
which require many words to establish. In particular, we notice that
the repetition or uniqueness of characters in a word shows through
the structure of repeated or unique environmental disturbances
collected in the process of eavesdropping. For example, assume
that a user types “sense”, and accordingly the attacker observes five
environmental disturbances. The first and fourth observed distur-
bances are similar to each other, because they are caused by the
action of pressing the same key “s”. Similarly, the second and last

disturbances appear alike, because they are caused by pressing the
same key “e”. This structural information enables the attacker to
quickly identify the typed word, as only one word “sense” from
the 1,500 most frequently used words [13] matches this structure.
Thus, the search space quickly shrinks from 1,500 to only 1 word,
enabling a much faster establishment of a mapping between dis-
turbances and characters typed. This observation also requires no
prior interaction with the user’s system and thus facilitates fast and
accurate training-agnostic keyboard eavesdropping.

To exploit this observation, we must compare the correlations
among letters of words with those among observed disturbances.
This requires a self-contained feature that can quantify such corre-
lations and be compared against others. We identify and describe
herein such a feature, having three necessary characteristics. First,
it achieves high uniqueness to provide fast distinction among dif-
ferently structured words. Second, it can be extracted both from
words and sets of observed environmental disturbances, so the
two can be compared. Lastly, as more words are typed, their corre-
sponding structures can be captured and integrated with previous
information to refine and shrink the search space.

Using this feature, we create approaches to compare sets of
observed disturbances to possible candidate words. Our technique
has mechanisms to adapt to and retain high accuracy in the presence
of natural noise and sudden environmental changes, which may
cause similar disturbances to appear different or vice versa. It is
similarly able to continue inferring letters in the presence of non-
alphabetical characters such as punctuation, navigation arrows,
delete and backspace keys, etc.

Our attack analyzes disturbances in a wireless signal, which can
penetrate through obstacles, so it does not require line-of-sight
between the attacker and the victim. External wireless devices con-
trolled by the attacker are used to collect the signal disturbances,
so there is no need for exploits to install malware on the target
computer. The attack is especially suitable for the wireless sce-
nario, since the wireless channel is time-varying and it can quickly
determine the disturbance-key relationship. Within a short time
window, the attacker can apply this relationship to infer the remain-
ing keystrokes, including typed words not in the dictionary.

We implement this attack on Universal Software Radio Peripher-
als (USRPs) X300 platform. The experiment results show that for a
sample input of 150 words, the proposed attack can recognize an
average 95.3% of these words, whereas frequency analysis can only
recognize less than 2.4%. We also note that the attacker only needs
1-2 minutes to collect 50 words to identify the disturbance-key rela-
tionship that allows a word recovery rate of 94.3%. The attacker is
also able to reach a word recovery ratio of 86% in the presence of a
classification error rate as high as 20%. Furthermore, we show that
the attacker can effectively decrease the entropy of a 9-character
password from 54.8 bits to as low as 5.4 bits, vastly reducing the
maximum brute-force attempts required for breaking the key from
31.08 quadrillion to just 42.

We also emphasize while the proposed attack targets English, it
can be extended to other languages, because similar to English, the
letters of any language are correlated and combine in some ways to
form words. Thus, as long as these word structures are identified,
the proposed attack can be easily customized for a target language
to map correlations among observed disturbances to those among

letters of words. In this paper, as a proof-of-concept, we focus on
English, since it is widely used.

The rest of the paper is organized as follows. Section 2 describes
background information. Section 3 explains the proposed attack
and Section 4 presents experiment results. Possible defense methods
are discussed in Section 5. Sections 6 and 7 lastly describe related
work and conclude this paper.

2 PRELIMINARIES

Because wireless signals can penetrate through obstacles [4, 5, 27],
we monitor this environment for our training-agnostic attack to
remove the line-of-sight requirement. Without loss of generality,
in this paper, we choose the channel state information (CSI) to
capture the wireless signal disturbance caused by keystrokes. In
the following, we impart preliminary knowledge about CSI and the
general method used by existing work employing CSI to launch the
keystroke eavesdropping attack.

2.1 Channel State Information

As discussed earlier, finger movement can induce disturbances into
the surrounding wireless signal. The disturbances can be quantified
by the CSI measurement [15], which describes how the wireless
channel impacts the radio signal that propagates through the chan-
nel (e.g., amplitude attenuation and phase shift).

The orthogonal frequency-division multiplexing (OFDM) tech-
nique is widely used in modern wireless communication systems
(e.g., 802.11a/g/n/ac/ad). OFDM utilizes multiple subcarrier frequen-
cies to encode a packet, and the channel frequency responses mea-
sured from the subcarriers form the CSI of OFDM. The channel
frequency response at time ¢ is denoted by H(f,t), where f repre-
sents a particular subcarrier frequency, and it is usually estimated by
using a pseudo noise sequence that is publicly known [15]. Specifi-
cally, a transmitter sends a pseudo noise sequence over the wireless
channel, and the receiver estimates the channel frequency response
from the received, distorted copy and the publicly known original
sequence. Let X (f,t) denote the transmitted pseudo noise sequence.
Based on the received signal Y(f,t), H(f,t) can be calculated by

H(f,t) = ;E’;i; Existing work utilizes the amplitude of CSI to

extract keystroke waveforms [6, 18]. In this paper, we also explore
the amplitude of CSI and refer to this as just “CSI” in the following.

2.2 Existing Work on CSI-based Keystroke
Inference

Researchers have proposed to utilize CSI to recognize subtle human
activities, including mouth movements [34] and keystrokes [6, 18].
Existing techniques ([6, 18]) on CSI-based keystroke inference as-
sume that the attacker typically sets up a wireless transmitter and
receiver in the close proximity of the target keyboard. If the key-
board is part of a computer like a laptop that can connect to wireless
networks, the computer itself transmits the wireless signal when-
ever it needs to exchange information with the WiFi router, and
thus it can play the role of the transmitter for the attacker. The
receiver can then be a malicious 802.11 access point that provides
free WiFi service to attract victim computers to connect to it. In
a general case, the attacker can also create a custom transmitter

and receiver using software-defined radio platforms such as USRPs.
The transmitter transmits the wireless signal to create a radio en-
vironment, and the receiver receives the signal from the wireless
channel and computes the CSL

These techniques normally use three steps to infer keystrokes,
namely, pre-processing, training, and testing. Pre-processing re-
moves noise from the CSI, reduces computational complexity for
the keystroke inference, and segments the time series of the CSI
into individual samples that correspond to keystrokes. The training
phase records each keystroke and the corresponding CSI so that a
training model for classification can be built. In the testing phase,
an observed CSI for an unknown keystroke is matched within the
training model to determine which keystroke it corresponds to.
The training-agnostic attack described in this paper uses the same
pre-processing step as these existing techniques.

3 ATTACK DESIGN

Existing work requires a training process to construct the rela-
tionship between observed CSI and keystrokes. We propose to
remove the requirement of the training phase by quantifying the
self-contained structures of words to recognize keystrokes without
training. We next detail the necessary technical components we
have developed.

3.1 System Overview

We consider a general attack scenario, where the attacker uses
a customized transmitter and receiver pair to launch this attack.
The attacker can constantly transmit the wireless signal, or just
whenever typing activity is detected. In the latter case, a WiFi
packet analyzer can detect when a user starts to type [18]. We also
assume that the typed content is in English, though the attack can
target other languages just as easily.

The receiver needs to collect the CSI, so the attacker implements
a channel estimation algorithm such as the one mentioned in Sec-
tion 2.1 on a software-defined radio platform. The input of the
algorithm is the wireless signal received over the wireless chan-
nel, and the output is the CSI. The channel estimation algorithm
computes the CSI based on the received signal, which is a contin-
uous wave. Thus, the CSI returned by the algorithm forms a time
series, and this stream is divided by the pre-processing step into
individual segments that correspond to the actions of pressing a
key. In this paper, we refer to a segment as a CSI sample. After
pre-processing, unlike the existing methods, the training-agnostic
attack described in this paper takes three different important steps
to infer keystrokes, namely CSI word group generation, dictionary
demodulation, and alphabet matching.

CSIword group generation partitions the CSI samples into groups
corresponding to each typed word. The attacker will explore the
correlation among and order of unique letters in each word to infer
keystrokes, and thus needs to separate the stream into words. This
step performs this task by identifying the CSI samples caused by
pressing the space key, since words are almost always separated by
a space. Dictionary demodulation aligns the correlation of CSI sam-
ples to that of letters in a word, so as to find the corresponding word
for a CSI word group. Based on the demodulation result, potential
mappings are formed between CSI samples and keystrokes, with

CSI word group

CSl sample CSl sample CSlsample CSI sample
F R)
s ;
3 A S . A A AN
g i — < _

The time series of CSI

Figure 1: The CSI word group for the word “from”.

which the attacker can infer the remaining typed words, including
those not appearing in the dictionary.

3.2 CSI word group generation

CSI word group generation involves classification, sorting, and
word segmentation.

3.2.1 Classification. Dynamic Time Warping is a classical tech-
nique to measure the similarity between two temporal sequences [29],
and it has been widely used to identify the spatial similarity be-
tween the signal profiles of two wireless links [6, 17, 18, 36]. Thus,
to quantify the similarity between two CSI samples, we utilize
the Dynamic Time Warping technique to calculate the distance
between them. A small distance indicates that both CSI samples
are similar and accordingly that they originate from the same key.
Conversely, a large distance indicates that they deviate from each
other, and that they are caused by two different keys. We assume
that the victim user presses a single key at a time, since this is the
common typing behavior for most keyboard users.

3.2.2 Sorting. Since the space character is almost always used to
connect consecutive words, it normally appears more frequently
than any other characters in a long text. We thus expect that the
CSI sample caused by the space key also appears more frequently
than other CSI samples. The classification outcome includes mul-
tiple sets, each consisting of similar CSI samples. We sort the sets
according to size and associate the space key with the largest set, so
that all observed CSI samples in this set are assumed to be caused
by pressing the spacebar. If this association is incorrect, we will
ultimately not be able to recover meaningful English words. In that
case, we continue on, associating the space key to the second largest
set and reattempting the same recovery process. We try these sets
from largest to smallest cardinality until we successfully recover
meaningful English words or exhaust all sets.

3.2.3 Word Segmentation. Once the set of CSI samples associated
with the space key is identified, we can start the word segmentation
process to find the CSI samples comprising each word of the typed
content. Everything between two successive CSI samples from the
space-associated set are grouped together. In the following, we refer
to such a group as a CSI word group, and this does not include the
spaces at either end. CSI word groups will be used as the input
of the dictionary demodulation method to eventually establish
the complete mapping between the CSI samples and keystrokes.
Figure 1 is an example of the CSI word group for the word “from”
which consists of samples that are caused by typing letters ‘f’, ‘r’,
‘0’, and ‘m’.

3.3 Dictionary Demodulation

Dictionary demodulation converts CSI word groups to correspond-
ing English words. We begin by developing a feature to apply to
these CSI word groups suitable for narrowing down the search
space of possible candidates. Then we show how to apply this
feature to words and sentences and handle errors.

3.3.1 Feature Selection. Ideally, a feature extracted from each CSI
word group would enable us to uniquely determine the correspond-
ing word. If the dictionary has n words, a perfect feature would
classify the n words into n groups, each having one member only,
such that an input CSI word group can uniquely match to a word
based on this feature. Our strategy is thus to find a feature that can
divide all words in the dictionary into as many sets as possible, to
achieve high distinguishability.

Due to the lack of training, we have to identify a feature from
only the self-contained relationships among the letters of a word
(the CSI samples of a CSI word group). Without knowing the exact
letters in a word, but having a CSI sample for each letter, we can
determine the number of constituent letters and whether or not any
letters in the word are repeated. These two pieces of information
yield two features to partition words, and we utilize a top 1,500
most frequently used word list [13] as the dictionary to calculate
the number of sets divided by each. To quantify the distinguisha-
bility of a feature, we define a new metric, called the uniqueness
rate, as the ratio Tp/T, where T is the number of considered words,
and Tj, represents the number of sets obtained by dividing T words
according the selected feature. The uniqueness rate should be max-
imized for the best partitioning of the words. We next evaluate the
uniqueness rates for our two features:

Length: We empirically find that all words in this dictionary are
1-14 characters long. If we choose length as the only feature, we can
divide all words into 14 sets, the members of each set having the
same length. Only two words (i.e., ‘administration’ and ‘responsibil-
ity’) in the dictionary are of length 14; therefore a CSI word group
of length 14 has only two candidates. On average, however, each
set has 1,500/14 ~ 107 words. This means that an input CSI word
group will have an average of 107 possible candidate words based
on the length feature. The uniqueness rate is then 14/1,500 ~ 0.009.

CSI Sample Repetition: We also count the number of distinct let-
ters that repeat. We denote the repetition information of a word
as Sy, and we set S, = 0 if no repetition is found. Otherwise, we
denote S, by (t1,- - ,t,), where r is the number of distinct letters
that repeat, and t; (i € {1,--- ,r}) denotes how many times the cor-
responding letter repeats. For example, the repetition information
for the word “level” should be (2, 2), because 2 different letters (‘1
and ‘¢’) repeat, and both letters repeat twice respectively. Consider-
ing a word of length L, we can quantify the repetition information
using (L,S;). Using this repetition information, we can then di-
vide all 1,500 words into a total of 63 sets, such that members of
each set share the same value of (L,S,). On average, each set has
1,500/63 ~ 24 words, so an input CSI word group will be mapped
to one of 24 words based on this feature. The uniqueness rate is
then 63/1,500 ~ 0.042.

The repetition feature has better distinguishability than the
length feature, because its larger uniqueness rate yields a smaller
average set cardinality, and hence a reduced search space to map

0.9 E Repetition
0.8 M Relationship matrix

207

®

2 0.6

205

[}

504

503
0.2
0.1

2 3 45 6 7 8 9 10 11 12 13
Word length

Figure 2: Uniqueness rate for words of different length.

1

o o o
IS o)

Uniqueness rate

o
[

0 L L L L L L L L
4 6 8 10 12 14 16 18 20 22 24 26

The number of letters in a phrase
Figure 3: Uniqueness rate for joint words.

an input CSI word group to a word. The repetition feature only
provides the result of repeated letters in a word, however, and does
not consider the position information of these letters. We expect
that the uniqueness rate can be further increased if we construct
a feature that not only employs the word length and repetition
information, but also distinguishes the positions of repeated letters
from non-repeated letters.

3.3.2 Inter-Element Relationship Matrix. We define a new data
structure to represent the structure of every word/CSI word group.
Specifically, we denote a word or a CSI word group by a vector
[x1,...,xn] of n elements, each of which is a letter (CSI sample).
We then define its inter-element relationship matrix as

ra1oore T ... TIin
M.] |21 722 23 Tam
"ma Tn2 tn3 ... Tnn
To construct M, for a CSI word group [x1,...,Xn], we set r; j = 1if

x; and x; are similar CSI samples as classified during the CSI word
group generation step (Section 3.2). Otherwise, we set r; j = 0. Note
the diagonal elements are always 1 and the matrix is symmetric.

We build the inter-element relationship matrix for each word and
ultimately partition the 1,500 most commonly used words into 337
sets. The words in a particular set having the same inter-element
relationship matrix. On average, each set has about 1,500/337 ~
4 words which are possible candidates for the CSI word group
having that inter-element relationship matrix. The corresponding
uniqueness rate is 337/1,500 ~ 0.225, which is much larger than
those of the previously discussed features.

Empirically, we find that the uniqueness rates for words of differ-
ent lengths are not evenly distributed, and this fact actually enables
our scheme. Figure 2 presents the uniqueness rates for the inter-
element relationship matrix as well as the repetition feature for
comparison, respective to word length. The relationship matrix
clearly performs much better than the repetition feature in all cases,
but very evident also is that as words become larger, they become
more uniquely structured, leading to high uniqueness rates for the
relationship matrix feature. For example, the uniqueness rate for a
3 letter word is 0.025, while that for a word of 10 letters is 0.940.

Indeed, a phrase comprised of multiple words can be considered
as one “long word” for the purpose of generating an inter-element
relationship matrix, though the dictionary must also expand to
contain these combinations. Assuming a phrase formed by N words,
the new dictionary will include T1 T - - - Tyy phrases, where T; (1 <
i < N) is the size of the set of candidate words having length equal
to the i-th CSI word group. Figure 3 illustrates how the uniqueness
rate benefits from the combination of each pair of two words from
the dictionary of 1,500 most used words. The words in each pair
range from 2 to 13 characters in length, for a possible total of 4-26
characters. The uniqueness rate jumps as the length of these word
pairs increases, and after 18 total characters, the pair of words has
a fully unique structure. This indicates that within a few words it
should always be possible to narrow down to the specific content
the victim is typing, giving rise to our joint demodulation method.

3.3.3 Joint Demodulation Example. Before describing the general
joint demodulation technique, we first show a simple clarifying
example to illustrate how to demodulate the CSI word groups. As-
sume that a simple dictionary W = {‘among’, ‘apple’, ‘are’, ‘hat’,
‘honey’, ‘hope’, ‘old’, ‘offer’, ‘pen’}. Further assume that the user
types in two words “apple” and “pen”. We denote the CSI word
groups corresponding to these typed words by c1||c2||c3||cal|cs and
cellc7llcs, respectively, where c; is the i-th observed CSI sample
after identification and removal of spaces.

Due to the previously discussed consistency between CSI sam-
ples for the same character, samples ¢y and c3 within the first CSI
word group are similar. The inter-element relationship matrix Ry is
correspondingly

€k € €3 € G5
c1 1 o 0 0 O
ca |0 1 1 0 0
c3 |0 1 1 0 0
¢4 |0 0 O 1 0
¢ LO 0 0 0 1

Matrix R is constructed in the same way for the second word. Com-
bining both words and considering all similar CSI samples forms
the joint sequence c1|c2||c3]|callcs||cs|lc7||cs, and likewise the new
inter-element relationship matrix R4y can be obtained. To search
the dictionary W for these CSI word groups, we pre-compute the
inter-element relationship matrix for each word in W. We compare
each with R; and find the words “apple” and “offer” survive this
test. Each is compared with Rz, and “hat”, “old”, “are”, and “pen”
survive the test for the second word group. The 8 resulting candi-
dates for the two-word sequence are thus “apple||are”, “apple||hat”,
“apple||old”, “apple||pen”, “offer||are”, “offer||hat”, “offer||old”, and
“offer||pen”. We use T to denote the set of these candidates. Again,

we generate the relationship matrix for each new candidate in T
and compare it with Rpeq,. Only “apple||pen” survives this test and
must be the final result.

3.3.4 General Joint Demodulation Method. In the following, we
extend the joint demodulation method utilized in this example to m
CSI'word groups. After CSI word group generation, assume that the
attacker obtains from the eavesdropped typing m CSI word groups
denoted by S = {51,S52,...,5Sm}. We further use Wi, Ws,. .. Wy
to denote the g words in the dictionary W. Our goal is to find a
phrase of m words that corresponds to the m CSI word groups.
Clearly, while each individual CSI word group could have several
candidate dictionary words with matching structure, each candidate
will impose a mapping of some CSI samples and letters on some
successive words, and several of these possible mappings will result
in successive words that are not real, so the below technique works
to rule out these impossible mappings. The full method includes
two steps: 1) demodulation of each single CSI word group; and 2)
joint demodulation of multiple CSI word groups.

Step 1: This step finds initial candidate words for each CSI word
group or determines if a word cannot be immediately demodulated
and must be returned to later. We first create the inter-element
relationship matrices for Wi, Wa,. . ., Wq in our dictionary W. We
next iterate over each S; € S, creating its inter-element relationship
matrix and considering the subset W’ of W whose entries are of
the same length as S;. We compare the relationship matrix of S;
to that of each W; € W’ and mark that W as a candidate if the
two matrices are equal. If no candidates match, the word must not
appear in the collection of English words comprising our dictionary,
so we add S; to the “undemodulated set” U.

Step 2: This step works to build up a mapping between CSI
samples and letters that works for multiple CSI word groups simul-
taneously, successively ruling out the many candidates established
by the first step, until (ideally) only one candidate remains for each
word and the message is uncovered. Conceptually, we iterate over
the word groups not in the undemodulated set U,

(a) concatenating each with all those previous,

(b) applying each possible mapping thus far constructed,

(c) ruling out all candidates that cannot coexist with any mappings,

(d) and adding any new CSI sample/character mapping information
from the remaining candidates.

Specifically, we name T; the concatenation of the first i — 1 CSI
word groups {S1,...,Si-1},1 < i < m, excluding any Sy € U.In
other words, while considering S;, we concatenate all the previous
CSI word groups which have candidates into T;. Candidates for
T;, or groups of valid words satisfying the structures of the CSI
samples comprising T;, are denoted by T;. = {T;,,Tj,,. .. ,Ti,,}-
Further, candidates for S;, as determined by Step 1, are denoted by
Sic = {Si,,Si,,. - ,Siq }. With T;||S; signifying the concatenation
of T; and S;, we calculate the inter-element relationship matrix for
T;||S;, as well as that for every Ti;11Si;. . Ti; € Tic,Six € Sic- We
note that this is p X g matrices to be compared and that this series
of comparisons happens at each iteration; we analyze the time
complexity in Section 4.3, and our experiments show the number of
comparisons converges quickly over successive iterations. Then, if
the relationship matrix for one such T; ;11Si; matches that for T;|S;,
we know that the CSI sample/character mapping of the candidate

Algorithm 1 Joint Demodulation

1: procedure JoINT_DEMOD(S;, T, Si., U)
2 T(i+1)c<—@(i>0)

3 for Ti; in Ti do

4 for S;, in ;. do

5: if M(TiHSi):M(TinSik) then

6 Tii+1)e < Tirye Y Ty 1S,
7 end if

8 end for

9: end for

10: if T(j41). = 0 then > no candidates, skip S;
11: U<UUS;

12: Tii+nye < Tic

13: end if

14: return T(;;)., U

15: end procedure

Si, will work in concordance with the mapping established for
T;, while maintaining the structure stipulated by T;||S;. Each such
Ti; 11Si is therefore a new candidate for Tj1.

In the event that no T; 1Sk has a relationship matrix matching
that for T;||S;, this means that no CSI sample/character mappings
satisfying the structure of T; result in valid words within our dic-
tionary when applied to S;. Such S; are placed in U and execution
skips to Sj+1. Pseudocode for this step is shown in Algorithm 1.
In this manner, we iterate over i and gradually build up T; until
all distinct CSI samples are mapped to characters in the alphabet.
At this time, the mapping can be applied to the remaining word
groups, including those in U, for which no matches were found in
the dictionary used. An example of this final alphabet matching is
visible in Figure 4.

3.3.5 Error tolerance. Wireless channel noise may cause CSI clas-
sification errors, such that a recorded CSI sample for a character
typed might not appear like others for that character or may appear
like a different character. Otherwise, CSI samples may be classified
correctly but a typo by the user may mean a word is misspelled and
will not appear in the dictionary. This can cause a concatenated set
of CSI word groups to have an incorrect inter-element relationship
matrix, which may match with invalid words or have no candidates
at all. The latter is the ideal case as the word group having the CSI
sample in question will simply be added to the undemodulated set
and skipped. However, if invalid words are incorporated into the
candidates for joint demodulation, incorrect relationship matrices
will continue to be used as the joint demodulation progresses, and
the content recovery will fail. We have observed in experiments that
even if a wrong matrix matches to other word sequences, cascading
discovery failures inevitably happen for successive words.

The attacker may employ this observation to work around the
presence of typos or CSI classification errors. If a CSI word group
is successfully demodulated but continuous recovery failures occur
thereafter, this word can be added to the undemodulated set and
skipped in favor of proceeding with the next word. Further word
groups are thus less likely to be processed with an incorrect portion
of the relationship matrix, and a correct mapping is more probable.
Algorithm 2 shows how our system checks for cascading errors at

dictionary demodulation space space
R e e L

A AR B

i vy
CSl word group 1 CSl word group 2 Sl word group 3
oy By

apple hat old

alphabet matching

Figure 4: Assume a simple dictionary of three words “apple”,
“hat”, and “old”, typed in that order by the user. The alphabet
of this dictionary consists of 8 letters “a”;‘p”;1”,"¢”,"h”t”“0”,
and “d”. Dictionary demodulation maps each letter in this
alphabet to the corresponding CSI sample, and any further
CSI word groups may simply have this mapping applied
to them. After matching, suppose the user then types the
word “deed", the attacker can directly demodulate the ob-
served CSI word group, which did not appear in the dictio-
nary. Next, assume instead the second typed word is “would”.
Since “w” and “u” do not appear in the alphabet of this sim-
ple dictionary, the attacker cannot decode them but can con-
tinue decoding the other letters “o0”, “1”, and “d”.

Algorithm 2 Error Handling

t: [T(i41)c»U] = Joint_DEMOD(S;, Ti(, Sic-» U)

2 if T(j11) # Tic then > demodulation success
3 F « allowable failure threshold

4 flag « true

5: forjef{i+1,---,i+F}do

6 [T(j+1)c> Ul=Joint_DEMOD(S;, Tj(, Sji, U)

7 if T(j41)-#Tjc then > demodulation success
8 flag « false; break > reset failure count
9 end if

10: end for

11 if flag then > reached failure threshold
12: U« UuUS; > skip S;
13: T(i+1)(j — Tic

14: end if

15: end if

each step i based on the demodulation result for S;. Finally, when
the mapping is complete and applied to the CSI word groups in the
undemodulated set, any errors in CSI classification or typos will
persist, but not further damage the results. The attacker can use
some common knowledge to work out these errors and any other
ambiguities.

In the event the cascading errors do not seem to be avoidable,
this is evidence that the wireless channel has changed, because as
previously mentioned the wireless channel is time-varying. In this
case, the dictionary demodulation may be begun anew, so that the
attack can adapt to the changes.

3.3.6 Impact of Non-Alphabetical Characters. Users mostly type al-
phabetical characters and spaces, but also occasionally use numbers
and punctuation, which obviously cannot be matched by examining
word structures. If these appear during alphabet mapping construc-
tion, they will cause cascading demodulation errors, be added to
the undemodulated set, and be skipped, similar to typos or CSI clas-
sification errors as just discussed. If the mapping has already been
constructed, the CSI samples for these numbers or punctuation will
not appear in the mapping and will be left as unknown. In both
cases, the attacker can use some common knowledge to infer or
narrow down candidates for these characters.

For example, users press the backspace key to remove multiple
characters before the cursor and then continue typing. For a CSI
word group that is recovered as “ababxxout”, the attacker may
recognize that the unidentified character “x” corresponds to the
backspace key and that the word should be “about”. In another case,
a user may press the left arrow key to move the cursor backward,
insert some text, and then press the right arrow key to return the
cursor to the original position. Hence, the left and right arrow
keys often appear in pairs and are each pressed multiple times. In
this way, an attacker may infer the word “about” from a CSI word
group recovered as “aut<<borr”, with unidentified samples “<” and
“>” corresponding to left and right arrow keys, respectively.

4 EXPERIMENT RESULTS

We implement the training-agnostic keystroke eavesdropping at-
tack using USRPs. The prototype attack system includes a wireless
transmitter and a receiver. Each node is a USRP X300 with 40 MHz
bandwidth CBX daughterboards [14]. The channel estimation algo-
rithm runs at the receiver to extract the CSI for key inference.

The target user operates a desktop computer with a Dell SK-8115
USB wired standard keyboard. The transmitter and the receiver
are placed at opposite positions relative to the keyboard. We place
the transmitter at a distance of 3 meters away from the keyboard,
and the receiver under the 2 cm-thick desk, at a distance of 50
cm away from the keyboard. Also, there is a 4 cm-thick wooden
barrier between the transmitter and the keyboard. Thus, both the
transmitter and the receiver are not within line-of-sight of the
target user. We also form a dictionary using the top 1,500 most
frequently used English words [13].

4.1 Example Recovery Process

In this section, we will demonstrate the process of recovering a
sample user’s typed text to illustrate the attack and the sort of
performance that may be expected.

CSI Sample Extraction: To extract the CSI samples from the
CSI time series, we utilize the same pre-processing step as these
existing techniques [6, 18]. Correspondingly, we implement the
pre-processing through three phases, which are noise removal,
Principle Component Analysis (PCA) [30], and segmentation. First,
we experimentally observe the frequency of the CSI influenced by
keystrokes always lies within a low frequency range of 2 to 30 Hz.
Thus, we utilize a Butterworth low-pass filter [24] to mitigate the
impact of ambient noise, which normally has a higher frequency.
Initially, the receiver obtains CSI from all subcarriers. We then
apply the PCA technique to decrease computational complexity by

«107° Original CSI time series

[0}
S10
g8
<
6 L L L L
0 2 4 6 8
Time (s)
12 %107 ‘ Afterfilter ‘ ‘

Amplitude

Figure 5: The CSI word group for the word “sense”.

Input: the boy was there when the sun rose
CSI sample: €,6,¢; €,65C, €1CCy C1C,C5C10C5 C1CoC5C,, €1C5C5 CoCpnCyy CrpCsCoCsy

C

single *

112 112 112 8 249 112 112 249

2 words |3 words |4 words|5 words|6 words|7 words|8 words|

joint © 6944 210963 3304 99 99 61 15

C

Figure 6: The evolution of the amount of candidates re-
turned as words are processed.

converting the received CSI into a set of orthogonal components,
called principle components [30], which most represent the effects
of the keystrokes. The segmentation phase separates the full CSI
time series into the individual CSI samples corresponding to single
unknown keystrokes. After the receiver assigns the space character
to the most frequently appearing CSI sample group, the remaining
samples are grouped into CSI word groups. Figure 5 shows the CSI
word group for the word “sense”. The full data contains five CSI
samples caused by pressing the keys ‘s, ‘¢’, ‘n’, °s’, and ‘e’ as visible
on the figure. By using Dynamic Time Warping, we can classify
the five samples into three sets, including the pair of the first and
fourth samples, the pair of the second and fifth samples, and the
third sample alone.

Next, we illustrate how the collected CSI word groups can be
narrowed down to the typed content. We choose the Harvard sen-
tences [23] to be typed in for our experiments; these are phonetically
balanced sentences commonly used for testing speech recognition
techniques. For this example recovery, we randomly select five
sentences from these representative English sentences, with a total
of 41 words. While we process the collected CSI, we record Cyipngie.
which is the number of words that have the same inter-element
relationship matrix as the current CSI word group under processing,
and Cjoint, which is the number of candidates returned by the joint
demodulation algorithm for each CSI word group.

Figure 6 shows Cgp g1 and Cjoin; during the processing of this
sentence. To facilitate understanding, we also mark the CSI sample
sets on this figure. For example, fi, f2, and f3 represent the CSI
sample sets caused by typing the letters ‘t’, ‘h’, ‘e’, respectively. We
can see that Cs;p g1, is 112 for three-letter words, and consequently
Cjoint increases dramatically from 112 to 6,944 and then to 210,963
as the second and third CSI word groups are added, as these word

Input paragraph: The boy was there when the sun rose. A rod
is used to catch pink salmon. The source of the huge river is
the clear spring. Kick the ball straight and follow through.
Help the woman get back to her feet.

Step 1 - Searching results:

The boy/box was there when the sun rose. A *** is used to
catch *#¥* *¥x%% The source of the huge river is the clear
spring. **** the ball straight and follow through. Help the
woman get back to her ****,

Step 2 - Recovering words not in the dictionary:

(1) rod; (2) pink; (3) salmon; (4) Kick; (5) feet.

Figure 7: Example paragraph recovery.

groups share no common CSI samples. However, as more CSI word
groups are added, the joint demodulation algorithm finds more
common CSI samples, which shrinks the search space. Cjoin¢ drops
sharply from 210,963 to 3,304 after the fourth CSI word group is
processed, and further reduces to 15 as the remaining CSI word
groups are processed.

After the demodulation phase, two candidates are returned as
shown in Figure 7. The two differ by only one word; the second
word is either “boy" or “box". Even for the wrong candidate, 97.6%
of the words are successfully recovered, and all characters except
one. The example paragraph also contains five words (“rod”, “pink”,
“salmon”, “kick”, and “feet”) that are not in the dictionary. These
are still successfully recovered, however, because their constituent
CSI samples also appear in other words, and their sample/letter
mappings have already been determined by the matching phase.

4.2 Eavesdropping Accuracy

We now quantify the general performance of our attack. We de-
fine the word recovery ratio as the ratio of successfully recovered
words to the total number of input words. We employ this metric
to ascertain the accuracy of our attack using 100 online articles ran-
domly selected from CNN, New York Times, and Voice of America.
For comparison purposes, we also apply the traditional frequency
analysis technique to the segmented CSI samples.

4.2.1 Single Article Recovery. We first type a piece of CNN news [2]
into a computer, and collect the CSI while typing. We then extract
the CSI samples and run the demodulation algorithm. Suppose the
demodulation algorithm returns N candidates for the typed content.
We use WRR; (i € {1,---,N}) to denote the word recovery ratio
for the i'" candidate. We consider the overall word recovery ratio
WRR of the proposed attack to be calculated as the average of these
word recovery ratios for each candidate: WRR = Zf\i 1 Wf]Ri .
Figure 8 shows the overall word recovery ratio as a function of
the number of typed words. We can observe for the first couple of
typed words, the ratio is less than 0.17, because these words are
not in the dictionary or the joint demodulation algorithm returns
wrong candidates. As more words are typed in, the ratio increases
significantly and fluctuates, since newly typed words may or may
not be identified correctly in the various candidates. After a suffi-
cient number of words are typed, the mapping between CSI samples
and the alphabetic letters converges to only one candidate. As a
result, the word recovery ratio stabilizes at a high value. As shown

0.2

—_

0.1

o
©

Typed content: police indicated they knew the
identity of the assailant who fatally stabbed

etaoinshrdlcumwfgypbvkjxqz
(a) Letter frequency distribution in English

unarmed police officer

0.2

o
o)

0.1

I
»

<~ (1) Recover with frequency analysis

molnce nhdncated trep bheg tre ndehtntp ow tre
assanlaht gro watallp stayyed fhaiued molnce

etaorisnhdlicmpfuwbykgvijgxz
5 (b) Letter frequency distribution in the typed content

owwneei

Word recovery ratio
o
N

<~ (2) Recovery with the proposed attack
police indicated they knew the identity of the
assailant who fatally stabbed unarmed police

50 100
Number of typed words

Figure 8: WRR vs. word count

etaorisnhdlcmpfuwbykgvijgxz
(c) Difference

Figure 9: Comparing distributions.

Figure 10: Recovered words.

—_

1 . ‘ ; ; ——=—T==
1 e R IR A e
—1500-word dictionary - e —Frequecy analysis
o 0.8|/|~~1000-word dictionary 0.8 ',: 008f - -The proposed attack
® - - 500-word dictionary w " ©
= [a) g >
2061 006 0.6
2 E 3
: -s g
€04 S04 20.4¢t
B i
g ’ ' g
0.2} 2 0.2}
0 | —P(Lwrrsos < L)
) = |7 P(Lwrrsos < L)
%.4 0.5 0.6 0.7 0.8 0.9 1 00 -20 60 %O 100 150 200 250 300 350 400 450

Success rate of classification

Figure 11: Word recovery ratios vs. CSI Figure 12:
sample classification errors. and Ly RrRr>0.9-

in Figure 8, when more than 52 words have been typed, the overall
word recovery ratio remains above 0.96.

For meaningful results, we apply the frequency analysis recov-
ery technique to compare with our method. Figure 9(a) shows the
typical distribution of frequencies of English letters [16], while
Figure 9(b) shows the distribution of letters in the typed text. Be-
cause the typed text is short and not representative of the whole
English language, the sample distribution is not perfectly equal to
the typical distribution. This difference is highlighted in Figure 9(c)
and causes the word recovery ratio for the frequency analysis to be
as low as 0.07. Figure 10 shows parts of the recovery results using
the frequency analysis and our method. The content recovered us-
ing the frequency analysis is meaningless, whereas our new attack
successfully recovers the typed words.

Impact of CSI sample classification errors and dictionary
size: As discussed in Section 3.3.5, errors in grouping CSI samples
during the pre-processing step may occasionally lead to a failure in
demodulating a CSI word group when the pattern of the word is
not correctly detected. To test the impact of this on the overall word
recovery ratio, we artificially introduce errors into the groupings
and attempt the demodulation algorithm using the intentionally in-
correct data. Specifically, we vary the number of correctly grouped
CSI samples from 40% to 100% in intervals of 5%, and measure the
resulting overall word recovery ratio. We also examine the effects
of using dictionaries of three different sizes, including the 500, 1000,
and 1500 most frequently used words.

We repeat this experiment 10 times and present the average
results in Figure 11. Intuitively, more correctly classified CSI sam-
ples result in higher word recovery ratios, as do larger dictionaries.
Nonetheless, we also note that only 80% of CSI samples need be

40
Number L of typed words

CDFs

Total number of words

of LwRrr>0.s Figure 13: Frequency analysis vs. the
proposed attack.

correctly classified for the overall word recovery ratios to achieve
0.86, 0.81, and 0.7 for the various dictionary sizes.

4.2.2 Average Article Recovery. We repeat the above experiment for
100 online articles. Intuitively based on the discussed observations,
the proposed attack should achieve a high word recovery ratio for
a long text. Considering a desired overall word recovery ratio of 0.8
or 0.9, let Lyyrr>0.8 and Ly rr>0.9 denote the required number of
typed words from each article to satisfy those ratios, respectively.
Figure 12 shows the empirical cumulative distribution functions
(CDFs) of Lywrr>0.s and Ly RrRr>0.9, indicating conclusively longer
input text results in higher word recovery ratios. Specifically, for
more than 82.4% of articles, the achieved word recovery ratio is
greater than 0.8 and 0.9 when the number of these words is greater
than 27 and 42, respectively.

Figure 13 compares the efficacy of our attack and the frequency
analysis technique. Our attack can achieve a 0.82 word recovery
ratio after 50 typed words, whereas the frequency analysis requires
typing 150 words before any can be successfully recovered. Indeed,
the highest ratio achieved by the frequency analysis in these online
articles is around 0.1, after 450 words, while in stark contrast our
attack stabilizes around 0.95 after 150 words.

4.3 Time Complexity Analysis

As our attack requires no training, its processing time is naturally
of interest. The comparison of inter-element relationship matrices
is the dominant part of the demodulation phase of our dictionary
demodulation algorithm, so we count the required comparisons to
calculate complexity. Dictionary sizes have a bearing on this count,
as a larger dictionary results in more candidate words found for a

10°
—1500-word dictionary 2
g 10 ——1000-word dictionary| | € 208
€ ---500-word dictionary 2 v/] R
2 cognt || eemmmmmTTTTTTT =0 al
c10° 3 g 0.6
5 8
§1o2 ----------------- g g 0.4
g 3 —1500-word dictionary| 1 5 —1500-word dictionary
é;’ 10' ,g -7 ——1000-word dictionary 2 0.2 [——1000-word dictionary| 1
[---500-word dictionary ---500-word dictionary
10° ‘ ‘ 10° : : : 0
0 10 40 50 0 10 40 50 0 10 40

20 30
Number of words

20 30
Number of words

20 30
Number of words

Figure 14: New comparisons vs. the num- Figure 15: Total comparisons vs. the Figure 16: Recovery of volunteer-typed

ber of processed words.

CSI word group and thus a larger search space. Consequently we
examine the time complexity while using three different dictionar-
ies, which contain the top 500, 1000, and 1500 most frequently used
words [13].

During the 100 experiments discussed in Section 4.2, we count
the comparisons needed to generate candidates for the typed con-
tent each time a new CSI word group is added to the dictionary
demodulation process. Figure 14 shows the average comparison
number for each newly typed word, on a log scale. This number
greatly increases for the first few typed words but promptly de-
creases to a low value below 10 as more words are typed. This was
seen for a single sentence in Figure 6 and holds true for these 100
trials as well. The addition of more unique letters results in a vastly
enlarged search space, while the later inclusion of more repeated
letters imposes a structure to the words and quickly reduces the
search space again. For a 1500-word dictionary, the average num-
ber of required comparisons for the 4¢" word is 4.4 x 10%, while it
becomes 1.6 for the 50t/ word.

Interestingly, the search space for a larger dictionary shrinks
faster than that of a smaller dictionary as more words are typed,
despite being larger after the first few words. For example, for
the 45! word, the average numbers of required comparisons for
the 1500-, 1000-, and 500-word dictionaries are 20.6, 39.7, and 70.1,
respectively. At first, a larger dictionary will find more matches
for the word structures searched, but this quickly narrows down
as repeated letters are added. Conversely, a smaller dictionary has
a lower probability of finding candidate words for a particular
structure, leading to skipped words, and therefore requiring more
typed words before repeated letters can appear and reduce the
search space.

Figure 15 shows the cumulative average comparison numbers
(i.e., the total time complexities) as more words are typed, for the
three dictionary sizes. The time is clearly spent mostly on inferring
the first couple of words, after which the total time complexity
stabilizes. This trend is the same for all dictionaries, though larger
dictionaries see distinctly more total comparisons and consequently
higher time complexity. Larger dictionaries also stabilize faster,
however; the 1500-, 1000-, and 500-word dictionaries stabilize at 8,
11, and 15 typed words, respectively.

number of processed words.

“secrets".

4.4 An Example of the Attack

We recruited 10 volunteers and asked each of them to type a para-
graph of “secret” content for us to attempt to eavesdrop. For ethical
reasons, we did not ask them to type actual secrets or content that
they would wish to keep private, but simply to type comprehensible
English content which we did not provide them.

While each volunteer typed, the receiver continuously collected
CSI data, which was then processed and the eavesdropping result
presented to the volunteer. Volunteers compared the recovered
content with their typed content to quantify the word recovery rate
of the proposed attack. Figure 16 shows the resulting average word
recovery ratios as each word is typed and with the use of the three
different dictionary sizes. In practice, the proposed attack achieves
a word recovery ratio of more than 0.8 after 28 words are typed,
regardless of dictionary size. Additionally, a larger dictionary yields
a higher word recovery ratio. With more than 40 typed words and a
dictionary of 1,500 words, the ratio exceeds 0.94. This demonstrates
that the proposed attack can recover typed secrets effectively and
efficiently in a real-world setting.

4.5 Password Entropy Reduction

Modern password requirements include letters, numbers, and spe-
cial characters. The strength of a password lies in its resistance to
brute-force guessing attacks, and is a function of length, complex-
ity, and unpredictability. Our unobtrusive keyboard eavesdropping
attack focuses on inferring letters, but it can still greatly decrease
password strength. As users normally type both passwords and
comprehensive English content during typical computer usage, we
can apply the alphabet matching afforded by the latter to infer
significant portions of the former.

Typical users usually pick fewer non-letter characters in their
password in order to make it easy to remember, leaving the pass-
word more vulnerable to these attacks. We did preliminary exper-
iments to evaluate the entropy reduction impact using the pass-
word list, which contains 342,508 passwords leaked from Yahoo!
Voices [1]. Figure 17 shows the average ratios of letter characters in
passwords with different lengths. We observe that the ratio of letters
in a password with a length ranging from 6 to 12 lies between 0.65
to 0.73, and also with the key length increasing, the ratio of letters
slightly increases. Analyzing the leaked passwords, we found that
98.42% of passwords are 12 characters or fewer, and people utilize

an average of 8.72 letters for a 12-character password. This means
that the difficulty for guessing a 12-character random password is
reduced to that for guessing an extremely weak password of 3-4
characters. Furthermore, the attacker knows these 3-4 characters
are not English letters.

In this section, we quantify the damage our attack can inflict on
password entropy, the typical measure of password strength. The en-
tropy of a password X is defined as H(X) = — X7, P(x;)-log, P(x;),
where x; (i € {1,2,--- ,n}) is one of n possible values of the pass-
word X and P(x;) represents the probability that X = x; holds.
Considering a keyboard housing N characters, a password with
length [selected at random has N ! possible values and [-log, N bits
of entropy. Suppose this password has I” letter characters and [— I’
non-letter characters. The keyboard with N characters necessarily
contains 26 letters and N —26 non-alphabetical characters. Having
successfully established a full CSI sample/letter mapping and ap-
plying this mapping to the CSI samples comprising the password,
its entropy becomes (I — I’) log, (N — 26) bits. As users typically
choose passwords mostly comprised of letters for ease of memory,
the proposed attack should reduce the entropy significantly.

In our experiment, we then randomly select 1000 9-character
passwords from the Yahoo! Voices dataset. 32 non-alphanumerical
characters are allowed in passwords, yielding 42 non-alphabetical
characters when factoring in numbers. However, we find that an
average 6.38 of 9 characters were letters, meaning their discovery
will vastly reduce entropy. Each of these 1000 passwords was added
to the end of the text typed by volunteers in the previous experi-
ment, and the resulting CSI sample/letter map was applied to each.
We compare the inferred password information to the original pass-
word, to identify the correctly recovered characters and calculate
the difference in password entropy.

Figure 18 plots the empirical probability mass functions (PMFs)
of the password entropies before and after the proposed attack is
applied, respectively. A randomly selected 9-character password
with the assumed keyboard layout provides 54.8 bits of entropy
and requires a maximum of 31.08 quadrillion brute force attempts.
After applying our attack, the password entropy can be decreased
to within a range of 5.4 to 27.0 bits, such that breaking a 9-character
password is reduced to guessing 1-5 non-letter characters. The max-
imum number of brute-force attack attempts targeting a password
with an entropy of 5.4 bits is just 42. In fact, 89.0% of the randomly
selected passwords have less than 16.2 bits of entropy after our
attack, which means that at most 74,000 brute-force attack attempts
are required for the vast majority of these passwords. Evidently,
the security of these passwords is decreased by several orders of
magnitude courtesy of the proposed attack.

5 DEFENSE DISCUSSION

The proposed attack explores the inter-element relationship matrix
to eavesdrop keystrokes. An intuitive defense solution is thus to
disrupt the attacker from obtaining the correct relationship. The
user may manually encrypt the words to be typed by using some
traditional substitution and permutation ciphers. However, this
approach is impractical, because it requires the user to calculate and
type in the ciphertext, an unintelligible string of random appearance
which would take much more time to type and incur numerous

1
08 M Before attack
L038
4 = © After attack
$0.6 &6
2 g
So4 '§°'4
o L
' B
0 ¢ . L B .
0 6 7 8 9 10 11 12 5.4 10.816.221.6 27 .. 548
Key length Password entropy

Figure 17: Ratio of letters vs. Figure 18: The PMFs of pass-
key length. word entropies.

input errors. The encryption also brings extreme computational
burden to the user.

In a more expedient fashion, the user may disrupt the inter-
element relationship among letters by randomly inserting a large
number of uncommonly used characters (e.g., \, <, >, and &) while
typing. Specifically, if the user inserts uncommon characters before
the first word, the matrix of the first observed CSI word group will
either match an incorrect word or not match with any word in the
dictionary, so the demodulation algorithm will return incorrect or
no candidates. In the former case, the attacker can still correctly
demodulate the following word if it shares no letters with the
previous. If no candidates are returned, the attacker will discard the
first observed CSI word group and start the demodulation algorithm
at the second observed CSI word group. Clearly in both cases,
to confuse subsequent words, the user must continue inserting
uncommon characters in each word.

To further mislead the attacker, the user can also construct se-
quences of uncommon characters with the same inter-element
relationship matrices as various words in the dictionary. The user
can type several of these “fake words” before inputting the mean-
ingful content, and continue typing fake words periodically. The
fake words can not only feed the attacker with wrong mappings
but also mislead the attacker with incorrect eavesdropping results.
To prevent the fake words from interfering with the meaningful
content, the user may employ a computer program that automati-
cally searches for and removes the uncommon characters or fake
words from the input text.

Beyond disrupting the inter-element relationship matrix, we
can also prevent the attacker from receiving useful CSI Users can
employ a wireless jamming device that constantly transmits noise
signals to the wireless channel to interfere with the attacker’s trans-
missions. Thus the attacker will not be able to collect accurate CSI,
which is required for all wireless-based keyboard eavesdropping
attacks, including the proposed one. However, the user will have to
set up an external wireless device and turn it on whenever needing
to type. This method has more hardware demands than the previous,
but it does not require inserting many additional characters.

6 RELATED WORK

Existing non-invasive attacks to infer keystrokes fall into the fol-
lowing categories:

Vibration based attacks: Typing on a keyboard can cause vibra-
tions on the surface where the keyboard rests, with subtle differ-
ences depending on keys typed [21, 26]. The accelerometer of a

nearby phone or tablet on the same surface can capture the vi-
brations. With training, an attacker can establish the relationship
between the keystroke and the acceleration disturbance caused by
the vibration. In the detection phase, the attacker can then recover
the typed content by applying this relationship.

Cai et al. discovered typing different keys on a soft keyboard on
a smartphone may also cause different vibrations [10]. Hence, an
invasive key inference attack can be constructed if the attacker can
install a key logging malware on the target phone. Recent research
has further discovered keystrokes can be inferred by exploiting
the accelerometer of a compromised smart smartwatch that a vic-
tim wears on the wrist [20, 35]. Under the assumption that the
attacker and the user may cause similar impact on accelerometer
measurement, the wrist movement trajectory may be used to recon-
struct the finger movement trajectory to determine what keys are
pressed. [20] novelly combines both accelerometer data and acous-
tic emanations acquired with a smartwatch to attack keyboards.
These methods using smartwatches [20, 35], however, require some
kind of malware to be installed on the wrist-worn device to read
the sensor data and report them to the adversary.

Acoustic signal based attacks: It has been observed typing on
a keyboard can produce sounds unique to each key. Researchers
extract features from these sounds and then train a classifier to re-
construct the keystrokes [7, 12, 37, 42]. Some work also exists which
relaxes the requirement for training. For example, [42] uses an statis-
tical unsupervised training method to design a supervised classifier.
However, the proposed method is faster than the method in [42]
for establishing the mapping between features and keystrokes. The
fundamental reason for this advantage is that the proposed method
is based on word structures whereas the method in [42] is based on
statistics. Specifically, the method in [42] uses the Hidden Markov
Model (HMM) for key recognition. HMM requires creating a statis-
tical Markov state transition matrix. Creating an accurate transition
matrix requires a large number of samples (features). For exam-
ple, [42] mentions that the attacker needs to collect 50 features for
good performance. This means that the state transition matrix is 50-
by-50, with each of these 2500 elements representing a state-to-state
transition probability. Such a transition matrix can be estimated
with reasonable accuracy only after the number of letters a user
types is 2500 or larger. Therefore, as discussed in [42], the HMM
method requires collecting 10 minutes worth of keystrokes (around
340 words) for a word recovery rate of 87.6%. This minimized train-
ing method may not function for wireless based attacks, as due to
the time-varying nature of the wireless channel, a training time of
10 minutes may be too long to generate a useful mapping between
observed CSI samples and letters. Unlike [42], frequency analysis,
and all other statistical methods, the proposed method explores the
self-contained structures of words, which can be observed for each
word immediately as it is typed, rather than probabilistic statistics
among words, which require many words to establish. Thus, the
proposed attack only needs 50 words within 1-2 minutes for a word
recovery rate of 94.3%.

An adversary may use a triangulation localization technique to
localize the sound source and accordingly infer which keys are
typed [19, 41]. This approach, however, requires the adversary to
have sophisticated equipment that can precisely measure the sound
propagation distance from the key to equipment, and also requires

line-of-sight between the keyboard and equipment. Both of these
requirements hinder attack plausibility and application. Berger et
al. infer keystrokes with the observation that similar sounds are
highly likely to come from keys positioned close to each other on
the keyboard [9]. This technique aims to reconstruct a single long
(7-13 characters) word that must appear in the dictionary, whereas
the goal of the proposed attack is to reconstruct the entire typed
content regardless of whether or not all its constituent words are
in the dictionary.

Timing based attacks: Keystroke timing patterns can be another
source to infer keystrokes [28, 32, 40]. For example, [32] infers
keystroke sequences by using the inter-keystroke timing infor-
mation collected from the arrival times of the SSH packets. [28]
proposes to infer keystrokes by utilizing the keystroke timing in-
formation gathered via cache-based load measurements on an idle
machine. [40] infers keystroke sequences by utilizing the shared
information on a multi-user system. However, except for the ways
to obtain the keystroke timing information (e.g., launching a SSH
session [32], installing a malicious virtual machine on the target
physical machine [28], owning a user account on a multi-core sys-
tem [40]), these timing-based attacks all require a training process
to statistically generate the attack models.

Wireless signal based attacks: There are emerging research efforts
performing keystroke eavesdropping attacks using wireless signals
due to the ubiquitous deployment of wireless infrastructures, the
radio signal nature of invisibility, and the elimination of the line-of-
sight requirement. In particular, [11] infers keystrokes by examining
the amplitude and phase changes of the wireless signal, and [6, 18]
utilize the channel condition extracted from the observed wireless
signal to distinguish keystrokes. All these works still require a
training process to construct the relationship between the observed
signal feature and the typing.

Camera-based attacks: A traditional and intuitive method to infer
keystrokes is to use cameras to record the typing process and then
identify keystrokes by analyzing the recorded video. Researchers
have found that video recording of hand movement [8, 31, 39], tablet
backside motion [33], or the shadow around fingertips [38], is also
able to aid the keystroke inference. However, when the movement
of interest does not happen in the presence of a camera, keystroke
activities cannot be detected.

Cryptanalysis based attacks: Cryptanalysis is a technique of dis-
covering secrets. Cryptanalysis attacks can be in the form of known-
plaintext or ciphertext-only attacks. If we consider the CSI sample
as the ciphertext and the original typed content as the plaintext,
the training-based keystroke inference attacks [6, 18] are indeed
known-plaintext attacks, because the attacker must know some
plaintext (i.e., typed content) and the corresponding ciphertext (i.e.,
CSI) for training. The proposed method does not require the training
data and thus it is a ciphertext-only attack. Existing ciphertext-only
attacks that attempt to decode the ciphertext of natural language
are largely based on the statistical information about the cipher-
text [22, 25]. For example, [25] regards the author of an instant
message conversation as the plaintext and applies character fre-
quency analysis to instant messages for authorship identification
and validation. [22] recovers the plaintext by using a statistical
language model and a dynamic programming algorithm.

Nevertheless, collecting statistical information implies that the
attacker needs to acquire a large amount of ciphertext. This may
not be suitable for the wireless based keystroke inference, because
collecting the wireless statistics does require a long time period
of observation. As mentioned earlier, this can prevent the attacker
from collecting sufficient reliable statistics for accurate keystroke
inference. The proposed method is based on the self-contained
feature of words instead and thus does not require the long-time
observation about wireless statistics.

7 CONCLUSION

We identify a new type of keystroke eavesdropping attack. Com-
pared with all previously discovered attacks, the attack reported
in this paper can bypass (1) the requirement of the training phase,
which is impractical for most attack scenarios, (2) the requirement
to deceive the user or bypass the user’s anti-virus and firewall
software to install malware on the target device, and (3) the re-
quirement of line-of-sight between the attacker’s device and the
keyboard. This attack is constructed based on the CSI extracted
from the wireless signal. An essential component to this attack is
a joint demodulation algorithm, which we create to establish the
mapping between each letter and the corresponding CSI sample
without training. We implement this attack on USRP X300 platform
running GNURadio, and conduct experiments to validate this attack.
The experiment results show that the word recovery ratio of the
proposed attack is 0.95 for an input of 150 words, whereas that of
the traditional frequency analysis method is less than 0.02.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers for
the insightful comments and feedback. The authors at the Univer-
sity of South Florida were supported in part by NSF under grants
CNS-1527144, CNS-1553304, and CNS-1717969. The author at the
Shanghai Jiaotong University was supported by NSFC under grant
61672350.

REFERENCES

[1] 2017. 2012 Yahoo! Voices hack. https://en.wikipedia.org/wiki/2012_Yahoo!
_Voices_hack.

[2] 2017. London attack: Assailant shot dead after 4 killed near Parliament. http://
www.cnn.com/2017/03/22/europe/uk- parliament-firearms- incident/index.html.

[3] 2017. Statistical Distributions of English Text. http://www.data-compression.
com/english.html.

[4] Fadel Adib, Chen-Yu Hsu, Hongzi Mao, Dina Katabi, and Frédo Durand. 2015.
Capturing the Human Figure Through a Wall. ACM Trans. Graph. 34, 6, Article
219 (Oct. 2015), 13 pages.

[5] Fadel Adib and Dina Katabi. 2013. See Through Walls with WiFi!. In Proceedings
of the 2013 ACM Conference on SSIGCOMM (SIGCOMM ’13). ACM, Hong Kong,
China, 75-86.

[6] Kamran Ali, Alex X. Liu, Wei Wang, and Muhammad Shahzad. 2015. Keystroke
Recognition Using WiFi Signals. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking (MobiCom ’15). ACM, Paris,
France, 90-102.

[7] Dmitri Asonov and Rakesh Agrawal. 2004. Keyboard acoustic emanations. In
Proceedings of the IEEE Symposium on Security and Privacy. IEEE Computer
Society, 3-11.

[8] Davide Balzarotti, Marco Cova, and Giovanni Vigna. 2008. ClearShot: Eavesdrop-

ping on Keyboard Input from Video. In Proceedings of the IEEE Symposium on

Security and Privacy. IEEE Computer Society, 170-183.

Yigael Berger, Avishai Wool, and Arie Yeredor. 2006. Dictionary Attacks Using

Keyboard Acoustic Emanations. In Proceedings of the 13th ACM Conference on

Computer and Communications Security (CCS '06). ACM, Alexandria, Virginia,

USA, 245-254.

=

[10

[11

[12

[20

[21

[22]

[23

[24

[25

[26

[27

[28

[29

[30

(31

(32]

(33]

Liang Cai and Hao Chen. 2011. TouchLogger: Inferring Keystrokes on Touch
Screen from Smartphone Motion. In Proceedings of the 6th USENIX Conference on
Hot Topics in Security (HotSec’11). USENIX Association, San Francisco, CA.

Bo Chen, Vivek Yenamandra, and Kannan Srinivasan. 2015. Tracking Keystrokes
Using Wireless Signals. In Proceedings of the 13th Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys ’15). ACM, Florence, Italy,
31-44.

Alberto Compagno, Mauro Conti, Daniele Lain, and Gene Tsudik. 2017. Don’T
Skype & Type!: Acoustic Eavesdropping in Voice-Over-IP. In Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security (ASIA
CCS ’17). ACM, Abu Dhabi, United Arab Emirates, 703-715.

Mark Davies. 2017. Word frequency data from the Corpus of Contemporary
American English (COCA). http://www.wordfrequency.info/free.asp.

Matt Ettus. 2005. USRP user’s and developer’s guide. Ettus Research LLC.
Andrea Goldsmith. 2005. Wireless Communications. Cambridge University Press,
New York, NY, USA.

Jonathan Katz and Yehuda Lindell. 2007. Introduction to Modern Cryptography
(Chapman & Hall/Crc Cryptography and Network Security Series). Chapman &
Hall/CRC.

Swarun Kumar, Ezzeldin Hamed, Dina Katabi, and Li Erran Li. 2014. LTE Radio
Analytics Made Easy and Accessible. In Proceedings of the 2014 ACM Conference
on SIGCOMM (SIGCOMM ’14). ACM, Chicago, Illinois, USA, 211-222.
Mengyuan Li, Yan Meng, Junyi Liu, Haojin Zhu, Xiaohui Liang, Yao Liu, and Na
Ruan. 2016. When CSI Meets Public WiFi: Inferring Your Mobile Phone Password
via WiFi Signals. In Proceedings of the 23Nd ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). ACM, Vienna, Austria, 1068-1079.

Jian Liu, Yan Wang, Gorkem Kar, Yingying Chen, Jie Yang, and Marco Gruteser.
2015. Snooping Keystrokes with Mm-level Audio Ranging on a Single Phone. In
Proceedings of the 21st Annual International Conference on Mobile Computing and
Networking (MobiCom °15). ACM, Paris, France, 142-154.

Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and Kehuan Zhang. 2015. When
Good Becomes Evil: Keystroke Inference with Smartwatch. In Proceedings of the
22Nd ACM SIGSAC Conference on Computer and Communications Security (CCS
’15). ACM, Denver, Colorado, USA, 1273-1285.

Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick Traynor. 2011.
(Sp)iPhone: Decoding Vibrations from Nearby Keyboards Using Mobile Phone
Accelerometers. In Proceedings of the 18th ACM Conference on Computer and
Communications Security (CCS °11). ACM, Chicago, Illinois, USA, 551-562.
Joshua Mason, Kathryn Watkins, Jason Eisner, and Adam Stubblefield. 2006.
A Natural Language Approach to Automated Cryptanalysis of Two-time Pads.
In Proceedings of the 13th ACM Conference on Computer and Communications
Security (CCS °06). ACM, Alexandria, Virginia, USA, 235-244.

IEEE Subcommittee on Subjective Measurements. 1969. IEEE Recommended
Practice for Speech Quality Measurements. IEEE Transactions on Audio and
Electroacoustics 17, 3 (Sep 1969), 227-246.

Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. 1996. Signals &
Systems (2Nd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Angela Orebaugh. 2006. An Instant Messaging Intrusion Detection System
Framework: Using character frequency analysis for authorship identification and
validation. In Proceedings 40th Annual 2006 International Carnahan Conference on
Security Technology. 160-172.

Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. 2012.
ACCessory: Password Inference Using Accelerometers on Smartphones. In Pro-
ceedings of the Twelfth Workshop on Mobile Computing Systems and Applications
(HotMobile ’12). ACM, San Diego, California, Article 9, 6 pages.

Qifan Pu, Sidhant Gupta, Shyamnath Gollakota, and Shwetak Patel. 2013. Whole-
home Gesture Recognition Using Wireless Signals. In Proceedings of the 19th
Annual International Conference on Mobile Computing and Networking (MobiCom
’13). ACM, New York, NY, USA, 27-38.

Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, You, Get off of My Cloud: Exploring Information Leakage in Third-party
Compute Clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS "09). ACM, Chicago, Illinois, USA, 199-212.

Stan Salvador and Philip Chan. 2007. Toward Accurate Dynamic Time Warping
in Linear Time and Space. Intell. Data Anal. 11, 5 (Oct. 2007), 561-580.
Jonathon Shlens. 2014. A Tutorial on Principal Component Analysis. CoRR
abs/1404.1100 (2014). http://arxiv.org/abs/1404.1100

Diksha Shukla, Rajesh Kumar, Abdul Serwadda, and Vir V. Phoha. 2014. Beware,
Your Hands Reveal Your Secrets!. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS ’14). ACM, Scottsdale,
Arizona, USA, 904-917.

Dawn Xiaodong Song, David Wagner, and Xuqing Tian. 2001. Timing Analysis
of Keystrokes and Timing Attacks on SSH. In Proceedings of the 10th Conference
on USENIX Security Symposium - Volume 10 (SSYM’01). USENIX Association,
Washington, D.C., Article 25.

Jingchao Sun, Xiaocong Jin, Yimin Chen, Jinxue Zhang, Rui Zhang, and Yanchao
Zhang. 2016. VISIBLE: Video-Assisted Keystroke Inference from Tablet Backside
Motion. In Proceedings of the 23th Annual Network and Distributed System Security

https://en.wikipedia.org/wiki/2012_Yahoo!_Voices_hack
https://en.wikipedia.org/wiki/2012_Yahoo!_Voices_hack
http://www.cnn.com/2017/03/22/europe/uk-parliament-firearms-incident/index.html
http://www.cnn.com/2017/03/22/europe/uk-parliament-firearms-incident/index.html
http://www.data-compression.com/english.html
http://www.data-compression.com/english.html
http://www.wordfrequency.info/free.asp
http://arxiv.org/abs/1404.1100

[34]

[35]

[36]

[37

[38

[39

[40]

[41]

[42]

Conference (NDSS ’16). The Internet Society, San Diego, California, USA.
Guanhua Wang, Yongpan Zou, Zimu Zhou, Kaishun Wu, and Lionel M. Ni. 2014.
We Can Hear You with Wi-Fi!. In Proceedings of the 20th Annual International
Conference on Mobile Computing and Networking (MobiCom °14). ACM, Maui,
Hawaii, USA, 593-604.

He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury. 2015. MoLe: Motion
Leaks Through Smartwatch Sensors. In Proceedings of the 21st Annual Interna-
tional Conference on Mobile Computing and Networking (MobiCom ’15). ACM,
Paris, France, 155-166.

Jue Wang and Dina Katabi. 2013. Dude, Where’s My Card?: RFID Positioning
That Works with Multipath and Non-line of Sight. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13). ACM, Hong Kong,
China, 51-62.

Junjue Wang, Kaichen Zhao, Xinyu Zhang, and Chunyi Peng. 2014. Ubiqui-
tous Keyboard for Small Mobile Devices: Harnessing Multipath Fading for Fine-
grained Keystroke Localization. In Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys '14). ACM,
Bretton Woods, New Hampshire, USA, 14-27.

Qinggang Yue, Zhen Ling, Xinwen Fu, Benyuan Liu, Kui Ren, and Wei Zhao. 2014.
Blind Recognition of Touched Keys on Mobile Devices. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security (CCS '14).
ACM, Scottsdale, Arizona, USA, 1403-1414.

Qinggang Yue, Zhen Ling, Wei Yu, Benyuan Liu, and Xinwen Fu. 2015. Blind
Recognition of Text Input on Mobile Devices via Natural Language Processing.
In Proceedings of the 2015 Workshop on Privacy-Aware Mobile Computing (PAMCO
’15). ACM, Hangzhou, China, 19-24.

Kehuan Zhang and Xiaofeng Wang. 2009. Peeping Tom in the Neighborhood:
Keystroke Eavesdropping on Multi-User Systems. In Proceedings of the 18th Con-
ference on USENIX Security Symposium (SSYM’09). USENIX Association, Montreal,
Canada, 17-32.

Tong Zhu, Qiang Ma, Shanfeng Zhang, and Yunhao Liu. 2014. Context-free
Attacks Using Keyboard Acoustic Emanations. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’14). ACM,
Scottsdale, Arizona, USA, 453-464.

Li Zhuang, Feng Zhou, and J. D. Tygar. 2005. Keyboard Acoustic Emanations
Revisited. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security (CCS °05). ACM, Alexandria, VA, USA, 373-382.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Channel State Information
	2.2 Existing Work on CSI-based Keystroke Inference

	3 Attack Design
	3.1 System Overview
	3.2 CSI word group generation
	3.3 Dictionary Demodulation

	4 Experiment Results
	4.1 Example Recovery Process
	4.2 Eavesdropping Accuracy
	4.3 Time Complexity Analysis
	4.4 An Example of the Attack
	4.5 Password Entropy Reduction

	5 Defense Discussion
	6 Related Work
	7 Conclusion
	References

