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Abstract

DNA self-assembly offers a powerful means to construct complex nanostructures and program
dynamic molecular processes such as strand displacement. DNA nanosystems pack high structural
complexity in a small scale (typically, <100 nm) and span dynamic features over long periods of time,
which bring new challenges for characterizations. The spatial and temporal features of DNA
nanosystems require novel experimental methods capable of high resolution imaging over long time
periods. This article reviews recent advances in optical imaging methods for characterizing self-
assembled DNA nanosystems, with particular emphasis on super-resolved fluorescence microscopy.
Several advanced strategies are developed to obtain accurate and detailed images of intricate DNA
nanogeometries and to perform precise tracking of molecular motions in dynamic processes. We
present state-of-the-art instruments and imaging strategies including localization microscopy and
spectral imaging. We discuss how they are used in biological studies and biomedical applications, and
also provide current challenges and future outlook. Overall, this review serves as a practical guide in
optical microscopy for the field of DNA nanotechnology.

1. Introduction

Over the several decades since the discovery of DNA
double helix [1], significant efforts have been devoted
to understanding the biochemical and biophysical
properties of DNA [2-4]. A DNA strand consists of
four distinct bases, adenine (A), thymine (T), guanine
(G), and cytosine (C), in a specific order along the
sugar-phosphate backbone. The complementarity
between A and T and G and C via hydrogen bonds not
only carries genetic information, but also offers a
powerful strategy for molecular self-assembly. In
1982, Seeman first proposed to construct a holiday
junction by connecting 4 strands, each of which has a
single-stranded overhang that is complementary to
one another [5]. This simple concept was adopted by
numerous research groups and has now grown into
the field of DNA nanotechnology [6]. Along the
progress in DNA self-assembly, the synthesis of
oligonucleotides becomes more efficient, thus the
price has decreased drastically over the past two
decades (~$0.10 per base) [7-9]. DNA chemistry also
has advanced such that various chemical moieties such

as fluorophores, affinity ligands, radioactive elements,
proteins and enzymes may be engineered onto
oligonucleotides, and there is a library of modified
DNA strands commercially available. These advances
together make DNA as powerful engineering tools
for widespread applications including biochemical
sensors, materials synthesis/placement, biophysical
tools, drug/payload delivery, nanomechanical sys-
tems, molecular computations, and synthetic biology
[6,10-22].

There are several distinct strategies for designing
and constructing complex nanoscale materials from
DNA. These strategies may be classified as two kinds
[23]. One is building structures from small motifs;
these strands can have certain geometric patterns and
bind with each other, forming complex geometries or
large matrices. Tile-based assembly and DNA bricks
follow such principles. The other strategy is DNA ori-
gami, a widely popular method for constructing
nanoscale structures and patterns from in silico
designs. DNA origami uses a long single strand of
DNA (typically genome of M13 bacteriophage) as a
scaffold which is folded in a predesigned pattern with

© 2019 IOP Publishing Ltd
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Figure 1. Recent advances in structural DNA nanotechnology. Strategies and examples of static nanostructures from DNA. (a) Schematic
of DNA origami method. A long genomic DNA scaffold (black line) is folded into a predesigned pattern by short staple strands (shown in
blue, green, orange, and magenta). Adapted from [24] with permission. Copyright © 2006, Springer Nature. (b) AFM images of DNA
origami structures. Adapted from [24] with permission. Copyright © 2006, Springer Nature. (c) Schematics of tile-based approaches.
High-symmetry DNA motifs. Adapted in part from [43] with permission. Copyright © 2008, Springer Nature, [44] with permission.

© Proceedings of the National Academy of Sciences (2008), [45] with permission. Copyright © 2010, Springer Nature and [49] John
Wiley & Sons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) AFM images of highly periodic 2D lattices. Adapted in
part from [44] with permission. © Proceedings of the National Academy of Sciences (2008), [45] with permission. Copyright © 2010,
Springer Nature, with permission from [46]. Copyright (2005) American Chemical Society and with permission from [47]. Copyright

(2006) American Chemical Society. (e) Images of DNA polyhedra via tile-based assembly reconstructed from cryo-TEM. Adapted in part
from [43] with permission. Copyright © 2008, Springer Nature, [44] with permission. © Proceedings of the National Academy of Sciences
(2008), [45] with permission. Copyright © 2010, Springer Nature and [49] John Wiley & Sons. © 2014 WILEY-VCH Verlag GmbH & Co.

©2012, Springer Nature.

KGaA, Weinheim. (f) AFM images of various shapes from uniquely addressable SSTs. Adapted from [50] with permission. Copyright

the help of a large number of engineered oligonucleo-
tides, so-termed staples (figure 1(a)) [24-27]. This
approach is robust and fault-tolerant with high repro-
ducibility, offering a unique way to manufacture arbi-
trarily-shaped structures with a size of ~100 nm
(figure 1(b)) [28—42]. Tile-based assembly uses small
nucleic acid motifs with sticky ends to construct target
geometries. High-symmetry motifs, such as 3-point-
star and 5-point-star motifs (figure 1(c)), may be
arranged to form 2D periodic lattices or 3D structures
including tetraheron, dodecahedron, buckyball, and
icosahedron (figures 1(d), (e)) [43—48]. A combination
of two or more multi-point-star motifs can form the
even more complex geometries including pentakis
dodecahedra (bottom panel in figure 1(e)) [49]. Finite
complex shapes may also be created from a large

number of uniquely addressable tiles, rather than
high-symmetry assembly of few motifs. This strategy
is called single-stranded tiles (SST) or DNA bricks.
Figure 1(f) shows examples of such structures from
SST with concatenated sticky ends which binds to four
local neighbors during self-assembly [50]. The SST
approach can also be extended for fabricating 3D geo-
metries. The SST bricks are designed with sticky ends
in different directions such that they self-assemble
perpendicularly as well as in parallel direction, thus
forming 3D patterns [51]. This method is flexible in
that each strand is unique and addressable, and has the
ability to create large-scale structures (e.g. up to 1
GDa) [52]. Its drawback, however, is the complexity of
the strands which may result in a low yield compared
to tile-based assembly.
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references cited in the text).

Figure 2. Dynamic DNA structures and processes. (a) Various examples of reconfigurable DNA structures and corresponding TEM
images. Adapted from [53] with permission. © Proceedings of the National Academy of Sciences (2015). (b) Schematic of a DNA tweezer
with open and close conformations based on toehold-mediated strand displacement. Strand F binds with two arms with single-stranded
overhang (shown in red; used as a toehold subsequently) and closes the tweezer. Strand F which is fully complementary to F binds with
Fand releases it by toehold-mediated strand displacement. The tweezer returns to the open state after the release. Adapted from [56]
with permission. Copyright © 2000, Springer Nature. (c) Schematic of a DNA walker that moves along prescriptive landscape and
corresponding AFM images. Adapted from [61] with permission. Copyright © 2011, Springer Nature. (The figures are adapted from

In addition to static structures, DNA self-assembly
may also be engineered to program structural reconfi-
gurations and execute dynamic molecular processes or
cascade reactions. Figure 2(a) shows several examples
of reconfigurable DNA structures [53-55]. These
nanomechanical systems are composed of static and
dynamic subunits such that dynamic parts can move
linearly (e.g. slide back and forth along the track) or
rotate in a circle. The relevant shape-changing
mechanisms include DNA base-pairing and strand
displacement (illustrated in figure 2(b)) [56], thermal
activation/cycling [57], biomolecular reactions (e.g.
biotin-streptavidin conjugation and protein-aptamer
binding) [58, 59], pH changes [60], and electrical/
magnetic fields [55]. Other examples of dynamic DNA
systems are switches, tweezers, and motors. In part-
icular, DNA walkers are programmed to move along
the prescriptive landscape [61, 62—65], These mole-
cular machines are inspired by intracellular protein

motors such as kinesin and myosin that translocate
along microtubules and actin filaments [66—69]. Simi-
lar to the biological motors, DNA motors move along
the track (e.g. DNA tiles or origami) by converting
chemical energy into mechanical motion through
a series of conformational changes. In figure 2(c),
a DNA walker strand translocates along a pre-
determined path of foothold strands on an origami
tile[61, 65].

The fast developments of DNA nanotechnology
demand highly sophisticated characterization tools to
image complex nanostructures and probe related
mechanical, chemical, and biological properties. Char-
acterization of DNA nanosystems is challenging due to
their spatial and temporal features. Static structures typi-
cally range from 10 to 100 nm, and consist of highly
intricate subunits as shown in figures 1 and 2.[30, 38,
70, 71]. Dynamic processes, driven by strand displace-
ment, enzymatic reactions, or other mechanisms, have a
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wide range of temporal characteristics. For example, toe-
hold-mediated strand displacement reactions are gen-
erally fast (e.g. ~1 x 10° /s-M), while DNA walkers
often suffer from slow kinetics [72, 73]. With a typical
walker speed of <1 nm ™", data/image acquisition may
take up to several hours [74—77]. Overall, the character-
ization of the DNA assemblies and processes must have
high spatial and temporal resolution in a wide range.

Traditionally, gel electrophoresis, atomic force
microscopy (AFM) [78], and transmission electron
microscopy (TEM) [79] have been widely used for
DNA characterization, yet they are also limited. For
example, gel electrophoresis is a simple and straight-
forward method that can separate samples based on
their molecular weight. However, ensemble samples
must be used, and individual molecules or structures
cannot be analyzed. AFM can provide precise tomo-
graphy on the surface in a relatively short time period.
AFM uses scanning probes which contact the sample
and detect heights or forces. The obtained information
may be used to form a topography image of the sam-
ple. AFM is a high-resolution method on the order of
fractions of a nanometer. However, the AFM tips may
perturb DNA structures and this method is not sui-
table for imaging 3D geometries. TEM uses a beam of
electrons passing through the specimen, and the image
formed from the interaction between the electrons
and the sample can be interpreted to reveal the struc-
ture of sample. TEM is powerful in visualizing 3D
structures with atomic resolution, yet they are oper-
ated under the vacuum or at extremely low tempera-
tures (i.e. cryo-TEM). Staining may be required in
biological samples such as DNA for better contrast,
and the staining chemicals could affect the integrity of
DNA structures. TEM is not suitable for in situ, real-
time measurements. Contrary to these non-optical
methods, fluorescence imaging has been used in many
fields to directly observe structures and motions. It is
also applied in DNA nanotechnology. Optical micro-
scopy can address these challenges as a non-invasive
imaging platform for fluorescent samples. Recent
advances provided novel strategies to overcome the
optical diffraction limit which led to the 2014 Nobel
Prize in Chemistry and can shed light on DNA struc-
tures and functions with high spatial and temporal
resolution.

1.1. Subdiffraction Optical microscopy

Traditional optical microscopic methods are limited
in imaging individual DNA strands or their assemblies,
because of the optical diffraction limit where the
spatial resolution is roughly the half of the wavelength
or ~\/2 [80, 81]. Several strategies were proposed to
overcome the diffraction limit and achieve super-
resolution images (up to several nanometers) over a
long time period (up to several hours) [82—85]. Optical
imaging typically uses fluorescent proteins or nucleic

YDuetal

acids functionalized with small organic dyes which
emit fluorescence after photo-absorption.

1.1.1. Deterministic methods

Deterministic methods exploit the known absorption
and emission spectra of fluorophores or energy
transfer between fluorophore pairs to overcome the
diffraction limit. One of the most common methods is
Forster resonance energy transfer (FRET) that relies
on energy transfers between two fluorophores: a donor
and an acceptor (figure 3(a)) [86]. The emission energy
of the donor is transferred nonradiatively to the
acceptor, thus resulting in the decrease of the donor
emission and the increase of the acceptor emission.
The transfer efficiency is extremely sensitive to the
distance between the two fluorophores and follows the
equation

Therefore, measurement of the FRET efficiency
can provide quantitative information about the dis-
tance between paired fluorophores with a resolution
of under 10 nm [87, 88]. FRET measurement of an
ensemble sample exploits strong signals from a large
number of molecules, but it is impossible to obtain the
information about individual molecules. Therefore,
single-molecule FRET or SM-FRET is often used to
probe individual molecules and structures.

Another common method is stimulated emission
depletion microscopy (STED) which can create super-
resolution images by selective deactivations of fluor-
ophores. In STED method, a depletion light source is
coupled with an excitation source along the same axis
(figure 3(b)) [90]. The depletion light deactivates an
annulus of fluorophores around the excitation light,
thus removing the effects of the unwanted active fluor-
ophores due to the Airy disk formed by the excitation
source. The remaining fluorophores significantly
improve the image resolution which can achieve
~70 nm [91-93].

1.1.2. Stochastic approaches

Stochastic methods for subdiffraction optical imaging
exploit random behaviors of fluorophores that switch
between ‘on’ and ‘off’ states. At each image acquisition
event, only a fraction of fluorophores emits fluores-
cence which is recorded, while the rest are inactive in
the ‘off” state. In a series of image acquisitions, the
fluorophores become active (i.e. ‘on’ state) randomly
and appear in different image frames. In these images,
single fluorophores appear as circular areas with
intensity, roughly following Gaussian distribution.
These particles are fitted to the distribution functions
to estimate the central position of paritcles [89] so that
the localization precision is drastically improved [94].
One such strategy is binding activated localization
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Figure 3. (a) FRET efficiency as a function of the distance between the FRET pair, a donor and an acceptor. When the donor and
acceptor are close, the donor will excite the acceptor, yielding high FRET. If the pair is far from each other, they will show low FRET.
Adapted from [89] with permission. Copyright © 2008, Springer Nature. (b) Schematic of STED setup. The excitation (EXC) and
STED beams are aligned and focused on the same spot, thus resulting in a subdiffraction spot. Adapted from [90] with permission.
Copyright © 2006, Springer Nature. (The figures are adapted from references cited in the text).
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microscopy or BALM (figure 4(a)) [95]. This method
utilizes analyte-binding dyes which reversibly associ-
ate with and dissociate from the target structures. The
stochastic binding process provides localization

information of the structures with a resolution of
approximately 50 nm [94, 96]. Stochastic optical
reconstruction microscopy (STORM) is another com-
monly used method (figure 4(b)). Here, a subset of
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photo-switchable fluorophores is activated stochasti-
cally at any given moment during imaging. These
fluorophores are deactivated at the next acquisition
time while another subset is imaged. By iterating this
random activation/deactivation process, the fluoro-
phores can be localized and the resulting resolution
can achieve ~20 nm [97, 98].

1.1.3. Instrumentation of super-resolution fluorescence
microscopy

While the equipment needed for subdiffraction ima-
ging varies with different methods, there are several
common featires. For example, total internal reflec-
tion fluorescence microscopes (TIRF) [99] are often
used, where the entire incident light is internally
reflected at the glass-water interface. This forms an
evanescent field, which decays exponentially from the
interface. Thus, a thin layer of approximately 200 nm
is exposed to the incident light. This feature is very
useful for observing fluorophores near/on the surface
and effectively blocking the fluorophores floating in
the solution. As a result, the noise from the floating
fluorophores is minimized, thus the signal-to-noise
ratio is enhanced. There are mainly two ways to use
TIRF: a TIRF objective or a prism. The TIRF objectives
have high numerical apertures and easy to use while
more expensive. The prisms are low cost, but need to
be adjusted in every measurement.

Besides the microscopes, fluorophores, lasers, and
detectors are needed. There is a library of fluor-
ophores. For example, Alexa Fluor is a group of fluor-
escent probes that has a wide range of excitation
wavelengths to choose from and are quite stable. Cy3,
Cy5 and Cy5.5 are from the cyanine family and widely
used in SM-FRET, because the Cy3 emission overlaps
well with the excitation spectra of Cy5 and Cy5.5. In
biological imaging, green fluorescent proteins (GFP)
are often used for labeling in cells and DAPI is used for
staining of DNA. The excitation wavelengths of the
laser sources depend on the spectral properties of
fluorophores used in the measurement. Common
laser lines include 488, 543 and 633 nm. Laser power
should also be considered, because different fluor-
ophores have a range of quantum yields and they need
to be bright enough for measurements and localiza-
tions. Lastly, cameras and detectors used for fluores-
cence imaging need high signal-to-noise ratio.
Electron multiplying CCD (EMCCD) or Intensified
CCD (ICCD) cameras are widely used, because they
can amplify weak signals (i.e. a small number of pho-
tons) from single molecules/analytes and provide
images of improved quality.

1.2. Scope of this review

This article overviews the state-of-the-art strategies for
super-resolution fluorescence imaging of single mole-
cules. Other methods such as AFM and TEM are not
discussed as comprehensive reviews may be found

YDuetal

elsewhere [100]. In this review, we discuss methods for
(1) visualizing static DNA nanostructures including
SM-FRET, STED, and BALM and (2) probing dynamic
processes such as SM-FRET and single particle track-
ing (SPT). First, we present several cases of visualizing
static DNA nanostructures, with emphasis on how the
imaging strategies improve the measurement preci-
sion to obtain super-resolved structural information.
The latter will highlight how SPT and SM-FRET
methods probe dynamic processes, such as monitor-
ing structural changes of DNA and tracking individual
fluorophores/particles for kinetic studies. We envi-
sion that the case studies will provide practical
guides for optical imaging in the field of DNA
nanotechnology.

2. Visualizing static DNA nanostructures

The primary methods for visualizing static DNA
nanostructures are localization microscopy and SM-
FRET. Both approaches are widely used while focusing
on different aspects. Localization microscopy provides
ensemble information of structures by imaging with
high resolution and accuracy. This allows one to
directly observe and measure the geometry of indivi-
dual nanostructures. SM-FRET on the other hand
provides indirect structural information (such as
distance) by measuring relative intensity of a fluor-
ophore pair. This method is mainly used for determin-
ing conformation of DNA structures. Below we
discuss several examples of these methods.

2.1.Localization microscopy

The development in super-resolution fluorescence
microscopy greatly facilitates DNA nanotechnology by
providing methods with ultrahigh resolution to allow
direct observation of nanostructures. Traditional sub-
diffraction strategies such as STED and STORM are
widely adopted, while new approaches such as DNA-
PAINT also show great potential.

Over the past decade, STED, STORM, and other
super-resolution methods are used to greatly improve
the imaging resolution. In a previous study, Kim et al
used YOYO-1 dye to label stretched DNA fragments
(figure 5(a)) [95]. The dye was excited by a 488 nm
laser and depleted by a 592 nm laser. They applied the
two lasers at the DNA fragments with the STED
scheme to greatly reduce the full width half maximum
(FWHM) of the signal resolution from 240 to 47 nm.
With this method, they performed accurate and pre-
cise measurements on lengths of DNA fragments over
a wide range. Schoen et al used BALM to acquire high
resolution images of DNA structures [96]. The inten-
sities of the fluorescent dyes show significant differ-
ences upon binding and unbinding to the DNA
sequence. The stochastic binding process between
DNA and dyes provide localization information about
the DNA molecules and a FWHM of approximately
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27 nm was demonstrated (figure 5(b)) The develop-
ment of various super-resolution microscopy schemes
requires a wide range of fluorescent dyes to accom-
modate different spectral characteristics for particular
applications.[101-103].

2.1.1. DNA-PAINT

DNA-PAINT, first introduced in 2014 [104], uses
programmable and specific binding of dye-labeled
DNA probes. These probes are designed to transiently
bind to specific locations on DNA nanostructures
which makes it photo-switchable and avoids photo-
bleaching. Analysis of the predictable binding kinetics
between the probes and the target strands reconstructs
super-resolution images. Yin and co-workers used this
method to observe various polyhedral structures with
different angles and edges, [105]. Each DNA-origami
tripod that forms polyhedra carries short docking
strands at vertices which are complementary to the
dye-labeled DNA probes. Thus, the structure can be
imaged with dyes in a controllable way without
suffering photobleaching. The DNA-PAINT binding
events were localized with a precision of ~5.4 nm in
the x-y plane while ~9.8 nm in the vertical z direction.
They then combined DNA probes with different dyes
together to construct fluorescent barcodes. These
probes are docked adjacently on DNA origami and
create various barcodes by different combinations.
The barcodes with sub-micrometer dimensions are
shorter than previously reported barcodes and are
potentially useful as in situ single-molecule imaging
probes for targeting proteins and other biomolecules
[106]. As a novel imaging tool, DNA-PAINT can
overcome the photobleaching issues in conventional
localization microscopy. It also has advantages in
controllability and programmability. Yet, there are
several challenges to be addressed, including the
nonfluorogenic imager strand which may generate a
background noise, slow acquisition time, and in vivo
imaging.

2.2. SM-FRET

SM-FRET exploits the high sensitivity of paired fluor-
ophores, thus can measure their separation distance at a
lengthscale of 1 to 10 nm. This method is commonly
used in identifying molecular conformations thanks to
the high sensitivity to the distance change within a single
molecule. Ha group developed SM-FRET to detect the
conformation of a DNA holiday junction, switching
between paralleled and perpendicular states (figure 6(a))
[107]. The donor and acceptor fluorophores were
attached to two ends of the four-way structure. A low
FRET state was monitored when the two ends were
separate from each other; a high FRET state was
recorded when they were in close proximity. The FRET
measurements revealed that the four-way DNA junction
intrinsically adopts antiparallel stacked X-conformation.
Shirude et al used a similar strategy for an analysis of a
G-quadruplex formation [108]. When a G-quadruplex
forms, the donor and acceptor are in close proximity,
resulting in high FRET signals (figure 6(b)). This study
showed that SM-FRET is excellent in identifying DNA
and investigating molecular mechanisms in DNA topol-
ogy. SM-FRET may also be used to investigate bends and
kinks in DNA structures. Wozniak et al induced kinks in
a DNA structure by inserting unpaired sequence and
measured the transfer efficiency for various number of
base-pairs between the donor and the acceptor [109].
The experimental results were compared with a geo-
metric model to predict the distance successfully. These
studies show that SM-FRET can quantitatively deter-
mine the distance in DNA and other molecular struc-
tures and should be a valuable platform in structural and
biophysical studies [110, 111].

3. Probing dynamic processes

Probing dynamic processes differs from visualization
of static structures in that it requires both spatial and
temporal resolution for hours or even one day. With
growing interest in the conformational change of
DNA structures and the movement of DNA based
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nanomachines, several strategies have been intro-
duced for such purposes. SM-FRET reveals the
kinetics of the rapid transitions between different
conformations and helps elucidate how external
stimulations affect the changes. Single particle tracking

provides time-resolved super-resolution images of
moving particles (i.e. fluorophore-labeled DNA) via
localization microscopy. Analysis of the trajectories
provides information about the translocation
dynamics and mechanisms at the nanoscale.
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linkers. (d) Free energy landscape corresponding to the distance between the FRET pairs. Figure adapted with permission from [115].
Copyright (2017) American Chemical Society.

3.1. SM-FRET

The advances of SM-FRET spectroscopy enable single
molecule detection not only with extreme spatial
resolution, but also with high temporal resolution. It
has been widely used to investigate subtle conforma-
tional changes in DNA nanostructures. Klenerman
and colleagues probed the dynamics of a DNA hairpin
loop with SM-FRET with a temporal resolution of
20 ps [112]. The folding and unfolding states of the
hairpin loop correspond to high and low FRET signals.
Based on the measurements, they analyzed the proxi-
mity distribution of different conformations by intro-
ducing the mean relaxation time as a key feature in a
theoretical a model. The relaxation time was tuned by
modulating buffer conditions and the reconfiguration
process was controlled by altering the heterogeneity of
the system. Ha group investigated the folding and
unfolding behaviors of hairpin ribozymes using SM-
FRET with temporal resolution of ~10 us (figure 7)
[113, 114]. Analysis of the transition rates between the
conformations revealed the shape-changing process
where an intermediate
enhanced the probability to transition to the active

structure  significantly

conformation. Castro and co-workers constructed a
DNA origami nanodevice which can transform
between open and close states as shown in figure 8
[115]. The two states of the structure were correlated
with different intensities with SM-FRET signals. From
the measurement, they used close versus open time
periods and ratio of two energy states to describe the
reconfiguration kinetics. They also showed that an
addition of polyethylene glycol or PEG can alter the
environment of the nanodevice and apply force to
change the transformation behaviors. Such controlla-
ble behavior could be useful for measuring compres-
sive depletion forces in physical and biological
applications [116-119].

3.2. Single particle tracking (SPT)

Recent developments of super-resolution imaging
methods allow one to obtain images of single parti-
cles/fluorophores with high spatial and temporal
resolution. Computer-aided analysis of the images
can determine the positions of single particles with
standard deviation under 10nm and show their
time-resolved trajectories. Further information such
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represents the START point, and a large red oval on the other end indicates the STOP point. Figure adapted from [65] with permission.

Copyright © 2010, Springer Nature.

as velocity and scaling features may also be obtained
[120,121].

Salome and colleagues used the SPT scheme to
monitor the tethered motion of particles immobilized
on a surface with DNA [122]. Differential interference
contrast (DIC) microscopy was used to monitor the
particles with temporal and spatial resolution of 40 ms
and 10 nm, respectively. Statistical analysis of multiple
particles revealed the effects of the number and length
of DNA strands. They found that greater number and

shorter strands result in more restricted motion with
smaller maximum displacement Yehl et al built a poly-
styrene particle modified DNA motor that can ran-
domly move on a 2D plane (figure 9) [123]. They used
structured illumination microscopy with 110 nm
resolution to monitor motor trajectories in real time.
Their mean-squared displacement (MSD) analysis
showed that the enzyme-powered rolling behavior of
the particle-bound DNA motors is based on self-
avoiding mechanism.
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Lund and coworkers demonstrated a multi-legged
DNA spider [65] that can carry out a series of autono-
mous actions including ‘start’, ‘follow’, ‘turn’ and
‘stop’ in a programmable manner. On a rectangular
track from DNA origami (65 nm X 90 nm X 2 nm),
they marked START, STOP, and Control points as
shown in figure 10(a). They used both SPT and AFM
for monitoring the motions of the DNA spider. AFM
was used to probe the position and estimate the effi-
ciency of spider motion (figure 10(b)). The behaviors
of the spider on different tracks were analyzed with
or without marked points. SPT-TIRF microscopy
monitored real-time movements of the spider
(figure 10(c)), yielding a direct comparison between
AFM and SPT measurements. It is worth noting that
the AFM can monitor multiple spiders at the same
time, yet the temporal resolution is relatively low (e.g.
of the order of 1 min). The super-resolution SPT is
better at monitoring multiple individual spiders with a
time resolution of ~10sec and a spatial resolution
of ~10 nm.

Choi group demonstrated an autonomous mole-
cular motor that walk step-by-step along a linear
track through a series of conformation changes by
converting chemical energy into mechanical motion

(figure 11). This synthetic walker is reminiscent of
intracellular kinesin motor that moves along micro-
tubule. They designed the walker system using a fluor-
escent quantum dot (QD)-functionalized DNAzyme
strand that catalytically cleaves RNA fuel strands deco-
rated on the carbon nanotube with sequence specifi-
city [124]. This walker translocates processively and
unidirectionally on the linear track from immobilized
carbon nanotubes. They introduced powerful visible/
near-infrared fluorescence microscopy to monitor
time-resolved QD trajectories along carbon nanotubes
that fluoresce in the second near-infrared spectrum
[125]. The visible QD and near-infrared nanotube
images from an EMCCD and an InGaAs camera were
reconstructed for super-resolved trajectories of DNA
walkers with precision of ~20 nm [75]. This novel
optical platform revealed the stochastic behavior of
single DNA motors. From the new discoveries, they
identified the rate-limiting intermediate reactions and
provided a set of general design principles for high-
speed DNA walkers [77]. As briefly outlined here, the
SPT scheme is a powerful platform in probing and
analyzing DNA motors and nanomachines, and
should also help facilitate other branches of DNA
nanotechnology [126, 127].
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4. Summary and outlook

With the rapid development of super-resolution
fluorescence microscopy, powerful optical imaging
platforms are used to study engineered functional
DNA nanosystems. Complex nanogeometries and
their motion/reconfiguration, as well as reaction
dynamics can be probed at single-molecule level,
providing  critical
mechanics, and energetics.

Despite the rapid development, there are still mul-
tiple challenges. For example, 3D imaging is one of
them. Most of current super-resolved fluorescence
microscopy strategies are applied to acquire 2D images
and used from a single perspective at a time, typically
from the top view. There are methods to reconstruct
images of 3D structures. However, obtaining layer-by-
layer images accurately to represent the structure is
still a significant challenge, with the accuracy and ran-
ges limited in the z direction compared to 2D x-y
planes. Another challenge is combining high spatial
resolution with temporal resolution. SPT method has
atemporal resolution of the order of a second, while its
spatial resolution is roughly 10 nm. A better spatial
resolution may be achieved for observing static struc-
tures. SM-FRET is capable of probing both static and
dynamic single molecules with high temporal and spa-
tial resolutions. However, this method is limited to
lengthscale of less than 10 nm and is not suitable for
long-range measurements.

Overcoming these challenges will be essential not
only to the field of DNA nanotechnology, but also
many other areas. Advances of super-resolution
microscopy may be used to solve traditionally difficult
problems. For example, G-quadruplex has significant
implications in biology and medicine, particularly can-
cer, yet it is difficult to probe the conformation in vivo
[128, 129]. Such challenge may benefit from advance-
ment of subdiffraction optical imaging. Similarly,
i-motif formation and DNAzyme activities may also be
probed [130-134]. In engineering, DNA-based reac-
tion cascades including catalytic hairpin assembly
(CHA) and DNA-based nanomachines could also be
monitored inside live cells [135-139]. Finally, there are
also developing interests in using DNA as scaffolds for
nanomanufacturing [140-143]. The ability to probe
and evaluate the structures and processes at the single
molecule level will continue to grow for years to come.
We envision that more advanced, diverse imaging
schemes will undoubtedly help establish DNA nano-
technology as foundations for diverse applications.
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