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Abstract—Binary stochastic neurons (BSN’s) form an integral
part of many machine learning algorithms, motivating the devel-
opment of hardware accelerators for this complex function. It has
been recognized that hardware BSN’s can be implemented using
low barrier magnets (LBM’s) by minimally modifying present-
day magnetoresistive random access memory (MRAM) devices.
A crucial parameter that determines the response of these LBM
based BSN designs is the correlation time of magnetization,
7c. In this letter, we show that for magnets with low energy
barriers (A ~ kg7 and below), circular disk magnets with in-
plane magnetic anisotropy (IMA) lead to 7. values that are two
orders of magnitude smaller compared to 7. for magnets having
perpendicular magnetic anisotropy (PMA) and provide analytical
descriptions. We show that this striking difference in 7. is due to a
precession-like fluctuation mechanism that is enabled by the large
demagnetization field in IMA magnets. We provide a detailed
energy-delay performance evaluation of previously proposed BSN
designs based on Spin-Orbit-Torque (SOT) MRAM and Spin-
Transfer-Torque (STT) MRAM employing low barrier circular
IMA magnets by SPICE simulations. The designs exhibit sub-ns
response times leading to energy requirements of ~a few fJ to
evaluate the BSN function, orders of magnitude lower than digital
CMOS implementations with a much larger footprint. While
modern MRAM technology is based on PMA magnets, results in
this paper suggest that low barrier circular IMA magnets may
be more suitable for this application.

Index Terms—Binary stochastic neuron, hardware implemen-
tation, low barrier magnet, embedded MTJ, probabilistic com-
puting

I. INTRODUCTION

Many inference and machine learning algorithms are based
on networks of binary stochastic neurons (BSN’s) [1]-[6] each
of whose response m; at time step (n+1) is determined by the
input I; at time n (r;: random number between —1 and +1):

m;(n + 1) = sgnftanh I;(n) — ;] (1)

In the absence of an input I; the output m; fluctuates randomly
between two values —1 and +1. A positive I;(n) makes +1
more likely, while a negative I;(n) makes —1 more likely
[7]. Each BSN described by Eq. 1 receives its input from
a weighted sum of other BSN’s obtained from a “synapse”
Ii(n) = >_; Wi mj(n). A wide variety of functions can be
implemented by properly designing or learning the weights
Wi; [8]-[10].

The BSN function (Eq. 1) is evaluated repeatedly in modern
algorithms but they are typically implemented in software.
Efforts have been put into developing a suitable hardware for
accelerating evaluation of this function, many of which are
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Fig. 1. Fluctuation Dynamics of LBM: (a) Schematic illustration
of circular LBM with saturation magnetization M and volume Q =
m(D/2)%t and the magnetization m = M/Ms; = (mg,my,m;) =
(cos @, sin 0 sin ¢, sin 6 cos ¢). SPICE simulation shows m(t) dynamics on
Bloch sphere of a low barrier circular magnet with (A ~ 0) for magnet
with (b) Hyp, ~ 0 and (c) Hyp, =~ —4nMs =~ —13.8 kOe, where
Hy, = 2K/t — 4wMs is the perpendicular anisotropy along x-axis and
the in-plane anisotropy Hj; ~ 0 due to circular shape.

based on magnetoresistive random access memory (MRAM)
technology which is a major contender in the field of non-
volatile memory using stable magnets to store information in
the form of 0’s and 1’s. By contrast, BSN’s can be built out of
nanomagnets designed to have low energy barriers [11]-[18].
The performance of such BSN designs are largely dependent
on the magnetization fluctuation rates of the LBM’s, making
it important to design the low barrier magnet to have a high
fluctuation rate.

Stable magnets could be redesigned to have low energy
barriers by scaling the magnetic anisotropy [19]. The energy
associated with a magnet is given by

1 1
E = §HkpMSQ(1 —m2) + iniMSQ(l —m?)

where, Hy,, = 2K/t — 4w M, is the perpendicular anisotropy
field along x-axis, K is the surface anisotrpy density, Hy;
is the in-plane anisotropy along z-axis, M is the saturation
magnetization and 2 is the volume of the magnet. Low barrier
magnets can be obtained by adjusting the thickness ¢ of
perpendicular anisotropy (PMA) magnets so that Hy, ~ 0
making Apyra = HppM;Q/2 ~ 0 or by making in-plane
anisotropy (IMA) magnet’s shape circular so that Hy; ~ 0
making Arpa = HpiMsQ/2 ~ 0. Such magnets with
diameters that are less than about 100 nm have been shown to
exhibit monodomain behavior [19]-[21]. It is important to note
that while modifying existing interfacial PMA free layers by
modulating the thickness to make them IMA seems relatively
straightforward, replacing highly optimized fixed PMA layers
[22] with IMA stacks could prove more challenging.

The time scale of fluctuations can be very different for the
two categories of low barrier magnets as shown in Fig. 1b
and c. In PMA with vanishing perpendicular anisotropy field
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making A — 0, the thermal noise makes the magnetization
fluctuate randomly anywhere on the Bloch sphere, while in
circular IMA with no preferred easy axis and a large effective
demagnetization field (Hp = 4w M) restricts the fluctuations
to to a compressed region near the equator (i.e. in-plane
moment), making more rapid fluctuations possible.

In this letter, we present a distinction between fluctuation
dynamics of low barrier PMA and IMA magnets providing
analytical expressions for two very important parameters for
performance evaluation of hardware BSN’s: the correlation
time 7. and pinning current I, for A ~ kg7 and below.
Circular IMA magnets have a correlation time two orders of
magnitude smaller compared to PMA and a pinning current
that is much higher. We also present a device level perfor-
mance evaluation on two previously proposed compact BSN
designs [23], [24] using circular IMA magnet and show that
the sub-ns operation results in only ~ a few fJ of energy
requirement for evaluating the BSN function which is orders
of magnitude lower than its CMOS implementation [25], [26].

II. LOW BARRIER MAGNETS

Binary stochastic neurons could be viewed as a tunable
random number generator and a key parameter defining its
performance would be the rate at which it produces the
random numbers. For an LBM BSN, this rate is related to
the magnetization fluctuation rate of the low barrier magnet.
The time it takes for the magnet to lose its memory, the
correlation time 7. is defined by the full-width-half-maxima of
the temporal auto-correlation function C(t) of magnetization
and could be used to characterize the relevant time-scale of
operation of BSN.

In low barrier magnets where the energy barrier is well
below the thermal energy (A < kpT) its magnetization
becomes a continuous variable. The Arrhenius law which
describes the thermal fluctuations of high barrier magnets
(A > kgT) with two distinct magnetic states thus does
not hold for LBM [17], [27]. Instead, thermal fluctuations
in monodomain low barrier magnets could be characterized
starting from Fokker-Planck equation (FPE) [28], [29] or the
Landau-Lifshitz-Gilbert (LLG) equation including a Langevin
term describing thermal fluctuation [27], [30].

Coffey et. al. [29] analyzes the magnetic fluctuations in
a PMA magnet due to thermal noise in detail by using the
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Fig. 2. Correlation Time of PMA and IMA magnets (a) The normal-
ized auto-correlation of magnetic fluctuations taken in the z direction, (b)
Comparison of 7. as a function of number of spins Ny = M:Q/pup where
M, = 1100 emu/cc and the volume §2 is varied. Damping coefficient « is
assumed to be 0.01: Results from numerical simulations agree well with the
equations cited in the text.

Fokker-Planck equation (FPE) derived by W. F. Brown [28].
The analysis presented in these references focused on high-
barrier magnets but are not limited to it and thus can be
evaluated for A — 0 to describe the low barrier magnet
dynamics of PMA magnets which agree well with numerical
results.

kgT
PMA: = -2
C(t) = exp ( - MSQM)
MsQ

Te = a*kaTan)

In low barrier circular IMA magnets when thermal noise kicks
the magnetization out-of-plane, due to absence of an easy axis
and the presence of large orthogonal demagnetization field Hp
the in-plane magnetization starts precessing. If we consider an
ensemble of such magnets each with a different precession
frequency due to thermal noise, the average magnetization
vector would quickly dissipate. The auto-correlation function
of the in-plane magnetization m, = cos(¢4(t)) could be
expressed as:

C(t) = /_ 11 dmy, cos(yHpmyt)p(m;) / /_ 11 dmgp(ms)

where the in-plane precession dynamics is described by
o(t) = yHpm,t [30] for low damping «. The perpendic-
ular magnetization m,, follows a Boltzmann distribution with
p(my) ~ exp(—HpMsQm?2 /2kgT). For large values of Hp
the integral could be extended to oo and evaluated to give
an expression for the auto-correlation function and correlation
time as follows:

HpkpT\ t?
) _ o (HpksB
IMA: C(t) =exp ( vy (SQ ) 5 )

1 MsQ
= /8 In(2)—y/
T 8 In( )’y HokpT

In numerical simulations, we observe essentially the same
auto-correlation behavior, even when the correlation function
is obtained from the time-dependent fluctuations of a single
magnet fluctuating for long time periods as shown in Fig. 2a.
In PMA no such precessional fluctuation mechanism exists as
the internal fields are compensated.

Another important parameter for evaluating an LBM based
stochastic device performance is itds sensitivity to spin current.
To maintain stochasticity in MRAM type devices, they should
be immune to read current, and the amount of current required
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Fig. 3. Pinning current of PMA and IMA magnets (a) PMA and IMA
magnet’s long time averaged magnetization (m) as a function of applied spin
current Ig, (b) Comparison of PMA/IMA Ip as a function of number of
spins Ns = MsQ/up where My = 1100 emu/cc and the volume  is
varied. Damping coefficient c is assumed to be 0.01: Results from numerical
simulations agree well with the equations cited in the text.
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to bias BSN devices is also relevant for power considerations.
In high barrier magnets the concept of switching current is
presented [31], for low barrier magnets we refer to pinning
currents as the relevant quantity which can be mathematically
defined as: Ip = ({m)/Is)~! as shown in Fig. 3. The pinning
currents for PMA can be derived from steady-state Fokker-
Planck equation as described in Ref. [32], while for IMA mag-
nets with A — 0 and low damping, the pinning current can be
approximated from the relation Ip = gNsC(0)/ [, dtC(t).
Fig. 3 shows that the numerical results are well described by
the obtained expressions:

PMA: Ip — % kT @)

2 |2
IMA: Ip = %q,/ﬂ/HDMSQ kpT (5)
v

The derivation of Eq. 4 and Eq. 5 assume zero energy barriers,
but numerically we observe that these equations are approxi-
mately valid for barriers up to A ~ kg7 In practice obtaining
near-zero barrier circular magnets could be challenging due
to process variation. For interconnected networks of p-bits,
a distribution of correlation times for each p-bit needs to be
considered as shown in Ref. [33].

Note that IMA-based designs can achieve sub-nanosecond
correlation times even with fairly large volumes, provided that
monodomain behavior can be preserved with a small enough
diameter, while PMA-based designs tend to be much slower
making IMA magnets more suitable for BSN applications.
This is accompanied by fairly large pinning currents for IMA
compared to PMA which minimizes read disturb effects.

In the following section for the performance evaluation of
two LBM based hardware BSN designs we used circular IMA
magnets M1 and M2 with volumes 8007 and 204807 nm?,
respectively.

III. PERFORMANCE EVALUATION OF HARDWARE BSN
USING CIRCULAR IMA LBM

In this section we evaluate the steady-state and time re-
sponse of two hardware BSN designs proposed in the past
[23], [24] shown in Fig. 4 and measure the energy and delay
associated with each.

The designs makes use of a magnetic tunnel junction (MTJ)
whose free layer is a low barrier magnet with a fluctuating
magnetization m(t), resulting in a fluctuating resistance,
RMTJ(t)_l = G(][l + mzz(t)TMR/(Q + TMR)] where G()
is the average conductance and TMR is the tunneling magne-
toresistance. The fluctuating resistance Rp;7s(t) is converted
to a fluctuating voltage V;(t) by the potential divider:

Vi(t) _ Ryri(t) — Ro
Vbp/2 Rnrs(t) + Ro

The fluctuations are controlled by two different mechanisms
in the two designs. BSN-A is a spin-orbit-torque controlled
device [23] which uses the input spin current (in y direction)
from the GSHE layer to pin the free layer magnetization (in z
direction) of the MTJ thereby pinning R;7; and implements
(+) configuration of Eq. 6. BSN-B is a series resistance con-
trolled device [24] which uses the input voltage to control the
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Fig. 4. Two BSN designs using stochastic MTJ with fluctuating resistance:
(a) BSN-A uses an input spin current to pin the fluctuating resistance [23].
Structurally it looks similar to spin-orbit torque magnetoresistive random
access memory (SOT-MRAM). (b) BSN-B looks similar to spin transfer torque
MRAM (STT-MRAM) but it makes no use of spin torque. The input voltage
controls the resistance of a field effect transistor (FET) which is in series with
the MTJ [24]. (c) and (d) show the circuit models used for SPICE simulations.

transistor resistance Ry and implements the (—) configuration
of Eq. 6. Ideally Rj;7; remains unchanged, though in actual
designs it may be important to consider unintended pinning
effects of the current. Both designs use a minimum sized
CMOS inverter to convert the fulctuating V; into a rail-to-
rail output Voyr. In each case we will use SPICE simulations
based on state-of-the-art stochastic Landau-Lifshitz-Gilbert (s-
LLG) models for LBM’s [34] free layer of the MTJ having
Go ~ (25KQ)~! and TMR = 2P?/(1 — P?) = 110% with
polarization P ~ 0.6 coupled with 14 nm HP FinFET’s [35]
to show that the output voltage Vo from a specific BSN
is approximately related to its input V7 by an equation that
mimics Eq. 1 :

Vour (t + to)
VouTto

V]N(t)
INO

~ sgn |tanh —r(t) (7)
with scaling factors Voyro, Vino,to characterizing the spe-
cific hardware design.

A. Steady-State Response

Fig. 5 shows the individual steady state response of design
A,B using magnet M1 and M2, which can all collapse onto
the same curve using appropriate scaling parameters. The
output scaling quantity VouTo =~ Vpp/2 = 0.4V is the same
for all cases as this quantity is defined entirely by CMOS
inverter output voltage swing. On the other hand, the input
scaling parameters are very design dependent. For BSN-A
Iing is determined by pinning currents of magnets M1 and
M2. Indeed, the scaling parameters in Fig. 5b were obtained
from Eq. 5. For BSN-B Ving ~ 50mV for both magnets,
determined by transistor characteristics. Note that the SPICE
simulations include the read disturb current, but its effect is
minimal due to the high pinning currents of low barrier IMA
compared to PMA as can be seen from Eq. 4 and Eq. 5.
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Fig. 5. Steady-state Response: (a) Plot of (Vour) (averaged over a time 0 1000 20000 1000 2000 0 10 20 30 0 10 20 30
time(ps) time(ps) time(ps) time(ps)

window > 7¢) vs Vi for designs A, B using magnets M1, M2. The grey
lines indicate VouT without time averaging. (b) All four plots in (a) collapse
onto a single curve using appropriate scaling parameters VouTo, liNo, VINO-
The resulting curve approximately follows the time averaged (m;) of Eq. 1.

B. Time Response

Fig. 6 shows the two relevant timescales associated with
BSN operation. First is the correlation time of the output
voltage which is determined by the magnet parameters. Indeed,
the FWHM of the autocorrelation function corresponds well
to Eq. 3, which is expected since circuit related times are
much shorter in this case. Second is the response time which is
very design dependent. For BSN-A it is determined by magnet
physics while for BSN-B it is determined by transistor physics
[36]. Our analysis shows that the response time t( of a single
BSN-B neuron is independent of magnet parameters. However,
the response of an interconnected network of such neurons
would also involve the magnet correlation time 7.
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Fig. 6. Two relevant time-scales for BSN Operation: (a), (b) show

correlation time and (c),(d) show response time. (a) Output voltage fluctuations
with I; = 0 for designs A, B using magnets M1, M2. (b) Correspond-
ing normalized autocorrelation functions. (c) Response to a step function
I; : =10 — 0 at t=0 averaged over 1000 ensembles for all four cases.(d)
All four curves in (c) collapse onto a single curve using appropriate scaling
parameter .

C. Power Consumption
Fig. 7 shows the power drawn from the sources +Vpp/2

individually by the MTJ branch and the inverter branch as
Vi is stepped at ¢ = 0 from different initial to final values as

Fig. 7. Power Consumption for (a) BSN-A and (b) BSN-B when the input
is stepped at t=0 as indicated.

indicated. The steady-state values of the power dissipated in
both the MTJ and inverter branches agree quantitatively with
the simple estimate (see dashed line in Figures) from V3, /R,
where R is the appropriate resistance, namely Ry;ry+ R for
the MTJ branch, and Rnwyos+ Rpmos for the inverter branch.
For the MTJ branch, the power dissipated is ~10-20 yW for
all cases except in the middle panel for BSN-B. In this case
the final state involves a large negative input voltage Vi for
which the series transistor is turned OFF, making the resistance
R extremely large, so that V3,/R — 0. In all other cases,
the total R is of the order of the MT]J resistance ~ 25K¢2,
so that V3, /R ~ 25uW. For the inverter branch, BSN-A
dissipates ~10 uW since the voltage at the inverter input in
all cases remains close to the threshold value making both
NMOS and PMOS branches fairly conducting. On the other
hand, for BSN-B, PMOS and NMOS get turned off for large
positive and for large negative input Vi respectively, making
the effective R very large. Only for input voltages ~ 0, both
PMOS and NMOS branches are conducting, giving rise to a
steady-state power ~ 10uW like BSN-A. This number could
be lowered if we can engineer larger voltage fluctuations at the
inverter input, |§V;| ~ P2Vpp/(4— P*). Our assumed TMR
of 110% corresponds to P ~ 0.6, giving a |§V;| ~ 75 mV.
Note that in this analysis the power drawn from V;y is not
considered which is expected to be very different for a low
input impedance design (BSN-A) compared to a high input
impedance design (BSN-B) and will depend on the driving
mechanism and circuitry. Overall, both designs suffer from
significant steady-state power losses and would need to be
turned off when not in use. This can be done straightforwardly
for BSN-B using a large negative input voltage V;x. The key
point to note is that the energy dissipated during the evaluation
of the BSN function is ~ 20 uW x 50 ps =1 fJ which is
orders of magnitude smaller than CMOS implementations of
the same function [25], [26] as noted earlier from system level
simulations in [37]. The device level analysis presented here
elucidates the role of proper magnet design for achieving the
subnanosecond response times that is crucial for fast and low
energy operation. The analysis also suggests low barrier IMA
magnet as a more suitable candidate for BSN type applications
due to its fast fluctuation dynamics, while modern non-volatile
MRAM technology is largely based on PMA magnets [38].
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