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INVERSE SCATTERING TRANSFORM FOR THE NONLOCAL

REVERSE SPACE–TIME NONLINEAR SCHRÖDINGER EQUATION

M. J. Ablowitz,∗ Bao-Feng Feng,† Xu-Dan Luo,‡ and Z. H. Musslimani§

Nonlocal reverse space–time equations of the nonlinear Schrödinger (NLS) type were recently introduced.

They were shown to be integrable infinite-dimensional dynamical systems, and the inverse scattering

transform (IST) for rapidly decaying initial conditions was constructed. Here, we present the IST for

the reverse space–time NLS equation with nonzero boundary conditions (NZBCs) at infinity. The NZBC

problem is more complicated because the branching structure of the associated linear eigenfunctions is

complicated. We analyze two cases, which correspond to two different values of the phase at infinity. We

discuss special soliton solutions and find explicit one-soliton and two-soliton solutions. We also consider

spatially dependent boundary conditions.

Keywords: inverse scattering transform, nonlocal RST NLS equation

DOI: 10.1134/S0040577918090015

1. Introduction

In 1965, Zabusky and Kruskal found that solitary wave solutions of the Korteweg–de Vries (KdV)
equation [1] exhibited special interaction properties; they called these waves solitons. Motivated by this
in 1967, for rapidly decaying initial data on the line, Gardner, Greene, Kruskal, and Miura connected the
KdV equation to the linear Schrödinger equation and outlined a method for solving the Cauchy problem
for the KdV equation using the inverse scattering [2]. Lax learned about these results and soon showed
that the KdV and other equations could result from the compatibility condition of two linear operators; for
the KdV equation, the linear Schrödinger equation was one of them [3].

In 1972, Zakharov and Shabat [4] found that another physically important equation, the nonlinear
Schrödinger (NLS) equation, also had a Lax pair and could be solved (linearized) by inverse scattering.
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The NLS equation, like the KdV equation, was known to arise universally [5]. Motivated by these results
in 1973, Ablowitz, Kaup, Newell, and Segur (AKNS) [6] generalized the linear operators used by Zakharov
and Shabat and showed that the NLS, sine-Gordon [7], modified-KdV, and KdV equations could be solved
(linearized) by inverse scattering. Soon afterwards in 1974, AKNS [8] developed a general framework for
finding integrable systems solvable by what they called the inverse scattering transform (IST). The method
was associated with classes of equations (later called recursion operators) and was used to solve the initial
value problem with rapidly decaying data on the line.

To solve a nonlinear equation using the IST, a nonlinear wave equation is first related [9]–[11] to a
compatible linear scattering, or spectral, problem or Lax pair, denoted by vx = Xv, and an associated
linear time evolution equation, denoted by vt = Tv. The operator X has a function (or functions) called a
potential (or potentials). The operator X and the associated linear time evolution operator, denoted by T ,
are mutually compatible with the nonlinear wave equation that the potential satisfies. Here, we let q(x, t)
denote the potential (solution) of the nonlinear equation.

The idea in [8] was to consider the scattering problem

vx = Xv =

(
−ik q(x, t)

r(x, t) ik

)
v, (1.1)

where v(x, t) = (v1(x, t), v2(x, t))T, k is a time-independent spectral parameter, and q(x, t) and r(x, t) are
complex-valued functions of the real variables x and t. Associated with AKNS scattering problem (1.1) is
the time evolution equation

vt = Tv, (1.2)

where the 2×2 matrix T is a function of q(x, t), r(x, t), and the spectral parameter k. Different matrices T

yield different coupled partial differential equations for q(x, t) and r(x, t) from the compatibility condition
vxt = vtx. Under a certain relation between q(x, t) and r(x, t) (also called symmetry reduction), the resulting
system is compatible and leads to a single integrable evolution equation for q(x, t) or r(x, t). An important
example is the NLS equation

iqt = qxx − 2σ|q|2q, σ = ∓1. (1.3)

Many investigations of the IST treat initial-value problems with rapidly decaying data, for example,
q(x, t), r(x, t) → 0 rapidly as x → ±∞ (see [9]–[11]). But there has been keen interest in other NLS-type
problems with nonzero boundary conditions (NZBCs). The first study using NZBCs was developed for the
NLS equation [12]. The original method for solving the inverse problem for NZBCs used two Riemann
surfaces associated with square-root branch points in the eigenfunctions (scattering data). An important
improvement involved introducing a uniformization variable [13]. This transforms the inverse problem into
a more standard inverse problem in the upper/lower half-planes in the new variable. Subsequently, several
researchers studied the NLS equation and related problems in this manner (see [14]–[21]), thus substantially
enhancing the applicability and range of the IST method.

New nonlocal symmetry reductions for the AKNS scattering problem were recently identified [22].
These include (here σ = ∓1)

• r(x, t) = σq∗(x,−t),

• r(x, t) = σq∗(−x, t),

• r(x, t) = σq(−x,−t), and

• r(x, t) = σq∗(−x,−t).
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Each of these symmetry reductions leads to new classes of nonlocal nonlinear integrable equations and new
types of inverse problems. The IST with decaying data was constructed for many associated equations [22].
An important example is the PT -symmetric NLS equation [23], [24]. A nonlocal PT -symmetric Davey–
Stewartson equation was also analyzed [25]. We recall that an evolution equation is said to be PT -symmetric
if it is invariant under the combined action of the parity operator P (x → −x) and the time-reversal
symmetry (complex conjugation) T . The IST with NZBCs has so far only been considered for the PT -
symmetric case r(x, t) = σq∗(−x, t) [26], i.e., for the PT -symmetric NLS equation

iqt = qxx − 2σq2(x, t)q∗(−x, t), σ = ∓1. (1.4)

In addition to PT -symmetric NLS equation (1.4), corresponding to the symmetry reduction r(x, t) =
σq(−x,−t), the integrability of the nonlocal reverse space–time (RST) NLS equation

iqt(x, t) = qxx(x, t) − 2σq2(x, t)q(−x,−t) (1.5)

was also established, and the IST for rapidly decaying boundary conditions (BCs) was developed [22]. It
is remarkable that this equation is such a simple modification of NLS equation (1.3). We mention two
aspects of RST NLS equation (1.5). First, σ need not be only ±1; it can be anywhere on the unit circle,
i.e., σ = eiθ, θ ∈ R. Second, unlike the NLS equation or PT -symmetric NLS equation, the coefficient σ

can be scaled away in this case. Namely, transforming (1.5) by q → (−1/σ)1/2q allows considering only the
case σ = 1 without loss of generality.

Although the IST under the symmetry reduction r(x, t) = σq(−x,−t) was analyzed for decaying data,
the IST for the nonlocal RST NLS equation with NZBCs is still new and open. There are significant
differences between this case and the PT -symmetric case considered in [26]. These nonlocal systems exhibit
many interesting differences from their local counterparts.

The solution process via IST employs direct and inverse scattering. It can be briefly described as
follows. From a suitable initial condition for the potential q(x, t = 0), the data is transformed via the direct
scattering problem X into the scattering data S(k, t = 0). The associated operator T determines the time
evolution of the scattering data S(k, t) for any t �= 0. Via inverse scattering, the scattering data at any time
t is then used to reconstruct eigenfunctions from linear integral equations, and the solution of the nonlinear
evolution equation q(x, t) is recovered from this information.

While IST has been used to solve (linearize) the Cauchy initial-value problem with decaying and, in
some cases, nonzero boundary values at infinity for numerous nonlinear equations, the method with NZBCs
is more difficult because of more complex branching structure of the associated linear eigenfunctions.

Here, we analyze the direct and IST associated with the nonlocal RST NLS equation with the NZBCs

q(x, t) → q0e
i(2σq2

0 t+θ±), x → ±∞, (1.6)

where θ+ +θ− = 0 and θ+ +θ− = π. We note that some properties of the NZBCs associated with RST NLS
equation (1.5) can be obtained directly. If we assume that q → q±(t) as x → ±∞, then Eq. (1.5) yields

iq±,t(t) = −2σq2
±(t)q∓(−t). (1.7)

This implies that
q+(t)q−(−t) = C0 = const, (1.8)

and (1.7) is hence simplified to
iq±,t(t) = −2σC0q±(t). (1.9)
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This equation has the solution
q±(t) = |q±(0)|e2iσC0teiθ± , (1.10)

where θ± are constant. Because C0 = |q+(0)| · |q−(0)| · ei(θ++θ−), if θ+ + θ− = 0 or θ+ + θ− = π, then
C0 is real. Otherwise, it is complex, and the background either grows or decays exponentially as |t| → ∞.
Without loss of generality, we take q±(0) = q0 = const.

In Sec. 3, we find the nonsingular dark one-soliton solution with σ = 1 and θ+ + θ− = 0

q(x, t) =
q0e

2iq2
0t[eiθ+ · e2q0x sin θ+ + e−iθ+ · e2q2

0t sin(2θ+)]
e2q0x sin θ+ + e2q2

0t sin(2θ+)
. (1.11)

In Sec. 4, we show that there is no corresponding exponentially decaying one-soliton solution with σ = 1
and θ+ + θ− = π because a single eigenvalue is found in the continuous spectrum. The simplest decaying
pure reflectionless potential generates a two-soliton solution. There are nonsingular two-soliton solutions.

In Sec. 5, we show that there also exist solutions for the nonlocal RST NLS equation satisfying the
spatially dependent BCs

q(x, t) → q0e
i(αt+βx+θ±) as x → ±∞, (1.12)

where both α and β are real. We verify the Galilean invariance for the classical NLS equation.
We can also find novel types of solutions of the above equations that are singular along space–time

lines (see [27]).
Finally, we emphasize that the IST for NZBCs associated with the novel nonlocal RST NLS equation

leads to new solutions; the boundary-value problems studied here extend the technique and applicability of
the IST method.

2. The RST NLS equation: Compatible linear system

Nonlocal RST NLS equation (1.5) is associated with the 2×2 compatible systems

vx = Xv =

(
−ik q(x, t)

σq(−x,−t) ik

)
v, (2.1)

vt = Tv =

(
2ik2 + iσq(x, t)q(−x,−t) −2kq(x, t) − iqx(x, t)

−2σkq(−x,−t) − σiqx(−x,−t) −2ik2 − iσq(x, t)q(−x,−t)

)
v. (2.2)

Such compatibility relations are well-known (see [8], [9]).
We see that as x → ±∞, the eigenfunctions of the spatial scattering problem asymptotically satisfy

(
v1

v2

)
x

=

(
−ik q0e

i(αt+θ±)

σq0e
i(−αt+θ∓) ik

) (
v1

v2

)
, (2.3)

where α = 2σq2
0 (see Eq. (1.6)).

3. Nonlocal RST equation: σ = 1 and θ+ + θ− = 0

3.1. Direct scattering. In this section, we consider the NZBCs given above in (1.6) with σ = 1 and
θ+ + θ− = 0. With this condition, Eq. (2.3) conveniently reduces to

∂2vj

∂x2
= −(k2 − q2

0)vj , j = 1, 2. (3.1)
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Each of the two equations has two linearly independent solutions eiλx and e−iλx as |x| → ∞, where
λ =

√
k2 − q2

0 . The variable k is then considered to belong to a Riemann surface K consisting of two sheets
C1 and C2 with the complex plane cut along (−∞,−q0] ∪ [q0, +∞) and its edges glued such that λ(k) is
continuous through the cut. We introduce the local polar coordinates

k − q0 = r1e
iθ1 , 0 ≤ θ1 < 2π, k + q0 = r2e

iθ2 , −π ≤ θ2 < π, (3.2)

where r1 = |k − q0| and r2 = |k + q0|. The function λ(k) then becomes single-valued on K, i.e.,

λ(k) =

⎧⎨
⎩

λ1(k) = (r1r2)1/2ei(θ1+θ2)/2, k ∈ C1,

λ2(k) = −(r1r2)1/2ei(θ1+θ2)/2, k ∈ C2.
(3.3)

Moreover, if k ∈ C1, then Imλ ≥ 0, and if k ∈ C2, then Imλ ≤ 0. Hence, the variable λ is considered to
belong to the complex plane consisting of the upper half-plane U+ (Im λ ≥ 0) and the lower half-plane U−
(Im λ ≤ 0) glued together along the real axis; the transition occurs at Imλ = 0. The transformation k → λ

maps C1 onto U+, C2 onto U−, the cut (−∞,−q0] ∪ [q0, +∞) onto the real axis, and the points ±q0 to 0
(see Figs. 1 and 2 on p. 6 in [26]).

3.2. Eigenfunctions. It is natural to introduce the eigenfunctions defined by the BCs

φ(x, k) ∼ we−iλx, φ̄(x, k) ∼ weiλx (3.4)

as x → −∞ and
ψ(x, k) ∼ veiλx, ψ̄(x, k) ∼ ve−iλx (3.5)

as x → +∞. We substitute them in (2.3) and obtain

w =

(
λ + k

iq+

)
, w =

(
−iq−

λ + k

)
, v =

(
−iq+

λ + k

)
, v =

(
λ + k

iq−

)
, (3.6)

which satisfy the BCs. These BCs reduce to the well-known BCs in the decaying case. We remark that the
functions q+ and q− are in fact functions of time: q+ = q+(−t) and q− = q−(t) for w and w whose BCs are
evaluated at −∞, and q+ = q+(t) and q− = q−(−t) for v and v whose BCs are evaluated at +∞. But for
the purposes of this section, the precise time dependence is unimportant, and we therefore use a simpler
notation and omit the explicit time dependence.

In the following analysis, it is convenient to consider functions with constant BCs. We define the
bounded eigenfunctions as

M(x, k) = eiλxφ(x, k), M(x, k) = e−iλxφ̄(x, k),

N(x, k) = e−iλxψ(x, k), N(x, k) = eiλxψ̄(x, k).
(3.7)

The eigenfunctions can be represented using the integral equations

M(x, k) =

(
λ + k

iq+

)
+

∫ +∞

−∞
G−(x − x′, k)((Q − Q−)M)(x′, k) dx′,

M(x, k) =

(
−iq−

λ + k

)
+

∫ +∞

−∞
G−(x − x′, k)((Q − Q−)M)(x′, k) dx′,

N(x, k) =

(
−iq+

λ + k

)
+

∫ +∞

−∞
G+(x − x′, k)((Q − Q+)M)(x′, k) dx′,

N(x, k) =

(
λ + k

iq−

)
+

∫ +∞

−∞
G+(x − x′, k)((Q − Q+)M)(x′, k) dx′.

(3.8)
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Using the Fourier transform method, we obtain

G−(x, k) =
θ(x)
2λ

[(1 + e2iλx)λI − i(e2iλx − 1)(ikJ + Q−)],

G−(x, k) =
θ(x)
2λ

[(1 + e−2iλx)λI + i(e−2iλx − 1)(ikJ + Q−)],

G+(x, k) = −θ(−x)
2λ

[(1 + e−2iλx)λI + i(e−2iλx − 1)(ikJ + Q+)],

G+(x, k) = −θ(−x)
2λ

[(1 + e2iλx)λI − i(e2iλx − 1)(ikJ + Q+)],

(3.9)

where θ(x) is the Heaviside function, i.e., θ(x) = 1 if x > 0 and θ(x) = 0 if x < 0.

Definition 1. We say that f ∈ L1(R) if
∫ +∞
−∞ |f(x)| dx < ∞, and we say that f ∈ L1,N(R) if∫ +∞

−∞ |f(x)| · (1 + |x|)N dx < ∞, where N = 1, 2, . . . is a given positive integer.

We then have the following result.

Theorem 1. Let the elements of Q − Q± belong to L1(R). Then for each x ∈ R, the eigenfunctions

M(x, k) and N(x, k) are continuous for k ∈ C1 \ {±q0} and analytic for k ∈ C1, and M(x, k) and N(x, k)
are continuous for k ∈ C2 \ {±q0} and analytic for k ∈ C2. In addition, if the elements of Q − Q± belong

to L1,2(R), then for each x ∈ R, the eigenfunctions M(x, k) and N(x, k) are continuous for k ∈ C1 and

analytic for k ∈ C1, and M(x, k) and N(x, k) are continuous for k ∈ C2 and analytic for k ∈ C2. Here, Cj ,

j = 1, 2, are the closures of Cj , j = 1, 2.

The proof uses Neumann series with Imλ ≥ 0 or Im λ > 0 appropriately; it is similar to the proof
in [26].

Remark 1. Similarly to Theorem 3.2 in [26], we can rewrite the Green’s functions in terms of the
projectors. For example,

M(x, k) =

(
λ + k

−iq∗+

)
+

∫ x

−∞
[P−

−iλ + e2iλ(x−x′)P−
iλ]((Q − Q−)M)(x′, k) dx′, (3.10)

where

P±
−iλ(k) =

1
2λ

(
λ + k iq±

iq∓ λ − k

)
, P±

iλ(k) =
1
2λ

(
λ − k −iq±

−iq∓ λ + k

)
. (3.11)

To extend the continuity property tot k = ±q0, we rewrite P−
−iλ + e2iλ(x−x′)P−

iλ as I2 + [e2iλ(x−x′) − 1]P−
iλ

and use the estimate

‖I2 + [e2iλ(x−x′) − 1]P−
iλ‖ ≤ 1 + 2|x − x′| · |k| ≤

≤ max{1, 2|k|}(1 + |x|)(1 + |x′|) ≤ max{1, 2|k|}(1 + |x|)2, (3.12)

and the elements of Q − Q± belonging to L1,2(R) are therefore required.
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3.3. Scattering data. The two eigenfunctions φ, φ̄, ψ, ψ̄ are linearly independent. Indeed, if
u(x, k) = (u1(x, k), u2(x, k))T and v(x, k) = (v1(x, k), v2(x, k))T are any two solutions of (2.1) for σ = 1,
then we have

d

dx
W (u, v) = 0, (3.13)

where the Wronskian W (u, v) of u and v is given by W (u, v) = u1v2 − u2v1. It follows from asymptotic
formulas (3.4) and (3.5) that

W (φ, φ̄) = lim
x→−∞

W (φ(x, k), φ̄(x, k)) = 2λ(λ + k), (3.14)

W (ψ, ψ̄) = lim
x→+∞

W (ψ(x, k), ψ̄(x, k)) = −2λ(λ + k), (3.15)

which proves that the functions φ(x, k) and φ̄(x, k) are linearly independent, as are ψ and ψ̄, with the only
exception being the branch points ±q0. Hence, we can write φ(x, k) and φ̄(x, k) as linear combinations of
ψ(x, k) and ψ̄(x, k), or vice versa. Therefore, the relations

φ(x, k) = b(k)ψ(x, k) + a(k)ψ̄(x, k), (3.16)

φ̄(x, k) = ā(k)ψ(x, k) + b(k)ψ̄(x, k) (3.17)

hold for any k such that all four eigenfunctions exist. Combining (3.14) and (3.15), we can deduce that the
scattering data satisfy the characterization equation

a(k)ā(k) − b(k)b̄(k) = 1. (3.18)

The scattering data can be represented in terms of Wronskians of the eigenfunctions, i.e.,

a(k) =
W (φ(x, k), ψ(x, k))
W (ψ̄(x, k), ψ(x, k))

=
W (φ(x, k), ψ(x, k))

2λ(λ + k)
,

ā(k) = −W (φ̄(x, k), ψ̄(x, k))
W (ψ̄(x, k), ψ(x, k))

= −W (φ̄(x, k), ψ̄(x, k))
2λ(λ + k)

,

b(k) = −W (φ(x, k), ψ̄(x, k))
W (ψ̄(x, k), ψ(x, k))

= −W (φ(x, k), ψ̄(x, k))
2λ(λ + k)

,

b̄(k) =
W (φ̄(x, k), ψ(x, k))
W (ψ̄(x, k), ψ(x, k))

=
W (φ̄(x, k), ψ(x, k))

2λ(λ + k)
.

(3.19)

We then obtain the following theorem from the analytic behavior of the eigenfunctions.

Theorem 2. Let the elements of Q−Q± belong to L1(R). Then a(k) is continuous for k ∈ C1 \{±q0}
and analytic for k ∈ C1, and ā(k) is continuous for k ∈ C2 \ {±q0} and analytic for k ∈ C2. Moreover,

b(k) and b̄(k) are continuous in k ∈ (−∞,−q0) ∪ (q0, +∞). In addition, if the elements of Q − Q± belong

to L1,2(R), then a(k)λ(k) is continuous for k ∈ C1 and analytic for k ∈ C1, and ā(k)λ(k) is continuous for

k ∈ C2 and analytic for k ∈ C2. Moreover, b(k)λ(k) and b̄(k)λ(k) are continuous for k ∈ R. If the elements

of Q − Q± do not increase faster than e−ax2
, where a is a positive real number, then a(k)λ(k), ā(k)λ(k),

b(k)λ(k), and b̄(k)λ(k) are analytic for k ∈ K.
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The proof of Theorem 2 follows from the Wronskian relations (also see [26]).
We note that (3.16) and (3.17) can be written as

μ(x, k) = ρ(k)e2iλxN(x, k) + N(x, k), μ̄(x, k) = N(x, k) + ρ̄(k)e−2iλxN(x, k), (3.20)

where μ(x, k) = M(x, k)a−1(k), μ̄(x, k) = M(x, k)ā−1(k), ρ(k) = b(k)a−1(k), and ρ̄(k) = b̄(k)ā−1(k). We
introduce the 2×2 matrices

m+(x, k) = (μ(x, k), N(x, k)), m−(x, k) = (N(x, k), μ̄(x, k)), (3.21)

which are respectively meromorphic in C1 and C2. Hence, we can write the Riemann–Hilbert problem or
“jump” conditions in the k plane as

m+(x, k) − m−(x, k) = m−(x, k)

(
−ρ(k)ρ̄(k) −ρ̄(k)e−2iλx

ρ(k)e2iλx 0

)
(3.22)

on the contour Σ: k ∈ (−∞,−q0]∪ [q0, +∞). We recall that Imλ > 0 on C1, Im λ < 0 on C2, and Imλ = 0
on Σ.

3.4. Symmetry reductions. The symmetry in the potential induces a symmetry between the eigen-
functions. Indeed, if v(x, k) = (v1(x, k), v2(x, k))T solves (2.1) for σ = 1, then (v2(−x, k),−v1(−x, k))T also
solves (2.1) for σ = 1. Taking BCs (3.6) into account, we can obtain

ψ(x, k) =

(
0 −1

1 0

)
φ(−x, k), ψ̄(x, k) =

(
0 1

−1 0

)
φ̄(−x, k). (3.23)

Using (3.7), we can obtain the symmetry relations for the eigenfunctions, i.e.,

N(x, k) =

(
0 −1

1 0

)
M(−x, k), N(x, k) =

(
0 1

−1 0

)
M(−x, k). (3.24)

From the Wronskian representations for the scattering data and the above symmetry relations, we obtain

b̄(k) = b(k). (3.25)

3.5. Uniformization coordinates. Before discussing the zeros of the scattering data and solving
the inverse problem, we introduce a uniformization variable z defined by the conformal map

z = z(k) = k + λ(k), (3.26)

where λ =
√

k2 − q2
0 and the inverse map is given by k = k(z) = (z + q2

0/z)/2. Then λ(z) = (z − q2
0/z)/2.

We observe that

1. the upper sheet C1 and the lower sheet C2 of the Riemann surface K are mapped onto the respective
upper half-plane C

+ and lower half-plane C
− of the complex-z plane,

2. the cut (−∞,−q0] ∪ [q0, +∞) on the Riemann surface is mapped onto the real-z axis, and

3. the segments [−q0, q0] on C1 and C2 are mapped onto the respective upper and lower semicircles of
radius q0 centered at the origin of the complex-z plane.

It follows from Theorem 1 that the eigenfunctions M(x, z) and N(x, z) are analytic in the upper half-
plane, i.e., z ∈ C

+, and M(x, z) and N(x, z) are analytic in the lower half-plane, i.e., z ∈ C
−. Moreover,

according to Theorem 2, a(z) is analytic in the upper half-plane (z ∈ C
+) and ā(z) is analytic in the lower

half-plane (z ∈ C
−).
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3.6. Symmetries via uniformization coordinates. From the eigenfunction symmetries above, we
obtain

ψ(x, z) =

(
0 −1

1 0

)
φ(−x, z), ψ̄(x, z) =

(
0 1

−1 0

)
φ̄(−x, z). (3.27)

Further, (k, λ) → (k,−λ) as z → q2
0/z. Hence,

φ

(
x,

q2
0

z

)
=

q2
0/z

−iq−
φ̄(x, z), ψ

(
x,

q2
0

z

)
=

−iq+

z
ψ̄(x, z), Im z < 0. (3.28)

Similarly, we can obtain

N(x, z) =

(
0 −1

1 0

)
M(−x, z), N(x, z) =

(
0 1

−1 0

)
M(−x, z),

b̄(z) = b(z), a

(
q2
0

z

)
= e2iθ+ ā(z), Im z < 0, b

(
q2
0

z

)
= −b̄(z).

(3.29)

3.7. Asymptotic behavior of eigenfunctions and scattering data. To solve the inverse problem,
we must determine the asymptotic behavior of the eigenfunctions and scattering data both as z → ∞ and
as z → 0. From the integral equations (in terms of Green’s functions), we obtain

N(x, z) ∼

⎛
⎝z

q(x)
q+

iq−

⎞
⎠ , z → 0,

a(z) =

⎧⎨
⎩

1, z → ∞,

e2iθ+ , z → 0,
ā(z) =

⎧⎨
⎩

1, z → ∞,

e−2iθ+ , z → 0,
(3.30)

lim
z→∞

zb(z) = 0, lim
z→0

b(z)
z2

= 0. (3.31)

3.8. Riemann–Hilbert problem via uniformization coordinates.

3.8.1. Left scattering problem. To take the behavior of the eigenfunctions into account, we can
write the “jump” conditions at the real-z axis as

M(x, z)
za(z)

− N(x, z)
z

= ρ(z)ei(z−q2
0/z)x N(x, z)

z
,

M(x, z)
zā(z)

− N(x, z)
z

= ρ̄(z)e−i(z−q2
0/z)x N(x, z)

z
.

(3.32)

and the functions are hence bounded at infinity, although they have an additional pole at z = 0. We note
that M(x, z)/a(z) as a function of z is defined in the upper half-plane C

+, where it by assumption has
simple poles zj, i.e., a(zj) = 0, and that M(x, z)/ā(z) is defined in the lower half-plane C

−, where it has
simple poles z̄j , i.e., ā(z̄j) = 0. Indeed, this is similar to the case of the NLS equation where a(z) and
ā(z) can have multiple zeros and/or zeros on the real axis [8]. The notion of “proper zeros” omits these
nongeneric possibilities. At zeros of a and ā, we have

M(x, zj) = b(zj)ei(zj−q2
0/zj)xN(x, zj), M(x, z̄j) = b̄(z̄j)e−i(z̄j−q2

0/z̄j)xN(x, z̄j). (3.33)
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Subtracting the values at infinity, the induced pole at the origin, and the poles (assumed to be simple) in
the respective upper and lower half-planes at a(zj) = 0, j = 1, 2, . . . , J , and ā(z̄j), j = 1, 2, . . . , J̄ (we later
see that J = J̄), yields

[
M(x, z)
za(z)

−
(

1

0

)
− 1

z

(
0

iq−

)
−

J∑
j=1

M(x, zj)
(z − zj)zja′(zj)

]
−

−
[
N(x, z)

z
−

(
1

0

)
− 1

z

(
0

iq−

)
−

J∑
j=1

b(zj)ei(zj−q2
0/zj)xN(x, zj)

(z − zj)zja′(zj)

]
=

= ρ(z)ei(z−q2
0/z)x N(x, z)

z
, (3.34)

[
M(x, z)
zā(z)

−
(

0

1

)
− 1

z

(
−iq+

0

)
−

J̄∑
j=1

M(x, z̄j)
(z − z̄j)z̄ja′(z̄j)

]
−

−
[
N(x, z)

z
−

(
0

1

)
− 1

z

(
−iq+

0

)
−

J̄∑
j=1

b̄(z̄j)e−i(z̄j−q2
0/z̄j)xN(x, z̄j)

(z − z̄j)z̄j ā′(z̄j)

]
=

= ρ̄(z)e−i(z−q2
0/z)x N(x, z)

z
. (3.35)

We now introduce the projection operators

P±(f)(z) =
1

2πi

∫ +∞

−∞

f(ξ)
ξ − (z ± i0)

dξ, (3.36)

which are well defined for any function f(ξ) that is integrable on the real axis. If f±(ξ) is analytic in the
upper and lower z plane and decays at large ξ, then

P±(f±)(z) = ±f±(z), P∓(f±)(z) = 0. (3.37)

Applying P− to (3.34) and P+ to (3.35), we can obtain

N(x, z) =

(
z

iq−

)
+

J∑
j=1

zb(zj)ei(zj−q2
0/zj)xN(x, zj)

(z − zj)zja′(zj)
+

+
z

2πi

∫ +∞

−∞

ρ(ξ)
ξ(ξ − z)

ei(ξ−q2
0/ξ)xN(x, ξ) dξ, (3.38)

N(x, z) =

(
−iq+

z

)
+

J̄∑
j=1

zb̄(z̄j)e−i(z̄j−q2
0/z̄j)xN(x, z̄j)

(z − z̄j)z̄j ā′(z̄j)
−

− z

2πi

∫ +∞

−∞

ρ̄(ξ)
ξ(ξ − z)

e−i(ξ−q2
0/ξ)xN(x, ξ) dξ. (3.39)

Because the symmetries are between eigenfunctions defined at both ±∞, we proceed to obtain the
inverse scattering integral equations defined from the right end.
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3.8.2. Right scattering problem. The right scattering problem can be written as

ψ(x, z) = α(z)φ̄(x, z) + β(z)φ(x, z), ψ̄(x, z) = ᾱ(z)φ(x, z) + β̄(z)φ̄(x, z), (3.40)

where α(z), ᾱ(z), β(z), and β̄(z) are the right scattering data. Moreover, we can obtain the right scattering
data and left scattering data satisfying the relations

ᾱ(z) = ā(z), α(z) = a(z), β̄(z) = −b(z), β(z) = −b̄(z). (3.41)

Thence, by the symmetry relations for the scattering data, we have

N(x, z)
za(z)

− M(x, z)
z

= ρ∗(−z∗)e−i(z−q2
0/z)x M(x, z)

z
,

N(x, z)
zā(z)

− M(x, z)
z

= ρ̄∗(−z∗)ei(z−q2
0/z)x M(x, z)

z
,

(3.42)

and the functions are hence bounded at infinity, although they have an additional pole at z = 0. We note
that N(x, z)/a(z) as a function of z is defined in the upper half-plane C

+, where (by assumption) it has
simple poles zj , i.e., a(zj) = 0, and that N(x, z)/ā(z) is defined in the lower half-plane C

−, where it has
simple poles z̄j , i.e., ā(z̄j) = 0. At the zeros of a and ā,

N(x, zj) = −b̄(zj)M(x, zj)e−i(zj−q2
0/zj)x,

N(x, z̄j) = −b(z̄j)M(x, z̄j)ei(z̄j−q2
0/z̄j)x.

(3.43)

As before, subtracting the values at infinity, the induced pole at the origin, and the poles (assumed to be
simple) in the respective upper and lower half-planes at a(zj) = 0, j = 1, 2, . . . , J , and ā(z̄j), j = 1, 2, . . . , J̄,
then yields

[
N(x, z)
za(z)

−
(

0

1

)
− 1

z

(
−iq−

0

)
−

J∑
j=1

N(x, zj)
(z − zj)zja′(zj)

]
−

−
[
M(x, z)

z
−

(
0

1

)
− 1

z

(
−iq−

0

)
−

J∑
j=1

−b̄(zj)M(x, zj)e−i(zj−q2
0/zj)x

(z − zj)zja′(zj)

]
=

= ρ∗(−z∗)e−i(z−q2
0/z)x M(x, z)

z
, (3.44)

[
N(x, z)
zā(z)

−
(

1

0

)
− 1

z

(
0

iq+

)
−

J̄∑
j=1

N(x, z̄j)
(z − z̄j)z̄j ā′(z̄j)

]
−

−
[
M(x, z)

z
−

(
1

0

)
− 1

z

(
0

iq+

)
−

J̄∑
j=1

−b(z̄j)M(x, z̄j)ei(z̄j−q2
0/z̄j)x

(z − z̄j)z̄j ā′(z̄j)

]
=

= ρ̄∗(−z∗)ei(z−q2
0/z)x M(x, z)

z
. (3.45)
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Applying P− to (3.44) and P+ to (3.45), we can obtain

M(x, z) =

(
−iq−

z

)
+

J∑
j=1

−zb̄(zj)M(x, zj)e−i(zj−q2
0/zj)x

(z − zj)zja′(zj)
+

+
z

2πi

∫ +∞

−∞

ρ∗(−ξ)
ξ(ξ − z)

e−i(ξ−q2
0/ξ)xM(x, ξ) dξ,

M(x, z) =

(
z

iq+

)
+

J̄∑
j=1

−zb(z̄j)M(x, z̄j)ei(z̄j−q2
0/z̄j)x

(z − z̄j)z̄j ā′(z̄j)
−

− z

2πi

∫ +∞

−∞

ρ̄∗(−ξ)
ξ(ξ − z)

ei(ξ−q2
0/ξ)xM(x, ξ) dξ.

(3.46)

3.9. Recovering the potentials. We use asymptotic formulas to reconstruct the potential. For
example, we obtain N1(x, z)/z ∼ q(x)/q+ as z → 0 from Eq. (3.30). From (3.38), we can obtain

N1(x, z)
z

∼ 1 +
J∑

j=1

b(zj)ei(zj−q2
0/zj)x

−z2
j a′(zj)

N1(x, zj) +

+
1

2πi

∫ +∞

−∞

ρ(ξ)
ξ2

ei(ξ−q2
0/ξ)xN1(x, ξ) dξ (3.47)

as z → 0. Hence,

q(x) = q+

[
1 +

J∑
j=1

b(zj)ei(zj−q2
0/zj)x

−z2
j a′(zj)

N1(x, zj) +

+
1

2πi

∫ +∞

−∞

ρ(ξ)
ξ2

ei(ξ−q2
0/ξ)xN1(x, ξ) dξ

]
. (3.48)

3.10. Closing the system. From a(q2
0/z) = e2iθ+ ā(z), we obtain J = J̄ . Combining integral

equations (3.38) and (3.39) previously obtained, we obtain(
N1(x, z)

N2(x, z)

)
=

(
−iq+

z

)
+

J∑
j=1

zb̄(z̄j)e−i(z̄j−q2
0/z̄j)x

(z − z̄j)z̄j ā′(z̄j)
×

×

⎛
⎜⎜⎜⎜⎝

z̄j +
J∑

l=1

z̄jb(zl)ei(zl−q2
0/zl)x

(z̄j − zl)zla′(zl)
N1(x, zl) +

z̄j

2πi

∫ +∞

−∞

ρ(ξ)
ξ(ξ − z̄j)

ei(ξ−q2
0/ξ)xN1(x, ξ) dξ

iq− +
J∑

l=1

z̄jb(zl)ei(zl−q2
0/zl)x

(z̄j − zl)zla′(zl)
N2(x, zl) +

z̄j

2πi

∫ +∞

−∞

ρ(ξ)
ξ(ξ − z̄j)

ei(ξ−q2
0/ξ)xN2(x, ξ) dξ

⎞
⎟⎟⎟⎟⎠−

− z

2πi

∫ +∞

−∞

ρ̄(ξ) dξ

ξ(ξ − z)
e−i(ξ−q2

0/ξ)x ×

×

⎛
⎜⎜⎜⎜⎝

ξ +
J∑

l=1

ξb(zl)ei(zl−q2
0/zl)x

(ξ − zl)zla′(zl)
N1(x, zl) +

ξ

2πi

∫ +∞

−∞

ρ(η)
η(η − ξ)

ei(η−q2
0/η)xN1(x, η) dη

iq− +
J∑

l=1

ξb(zl)ei(zl−q2
0/zl)x

(ξ − zl)zla′(zl)
N2(x, zl) +

ξ

2πi

∫ +∞

−∞

ρ(η)
η(η − ξ)

ei(η−q2
0/η)xN2(x, η) dη

⎞
⎟⎟⎟⎟⎠ . (3.49)

Potential (3.48) can be reconstructed from the solution of integral equation (3.49).
We can obtain an analogous equation for M(x, z) [27].
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3.11. Trace formula. We have shown that a(z) and ā(z) are analytic in the respective upper and
lower z planes. As mentioned above, we assume that a(z) has simple zeros, which we call zj. From the
symmetry relation a(q2

0/z) = e2iθ+ ā(z), we can deduce that ā(z) has simple zeros q2
0/zj. We set

γ(z) = a(z)
J∏

j=1

z − q2
0/zj

z − zj
, γ(z) = ā(z)

J∏
j=1

z − zj

z − q2
0/zj

. (3.50)

Then γ(z) and γ(z) are analytic in the respective upper and lower z planes and have no zeros in their
respective half-planes. We can obtain

log γ(z) =
1

2πi

∫ +∞

−∞

log γ(ξ)
ξ − z

dξ,
1

2πi

∫ +∞

−∞

log γ(ξ)
ξ − z

dξ = 0, Im z > 0,

log γ(z) = − 1
2πi

∫ +∞

−∞

log γ(ξ)
ξ − z

dξ,
1

2πi

∫ +∞

−∞

log γ(ξ)
ξ − z

dξ = 0, Im z < 0.

(3.51)

Adding or subtracting these equations in the corresponding half-plane, we obtain

log γ(z) =
1

2πi

∫ +∞

−∞

log γ(ξ)γ(ξ)
ξ − z

dξ, Im z > 0,

log γ(z) = − 1
2πi

∫ +∞

−∞

log γ(ξ)γ(ξ)
ξ − z

dξ, Im z < 0.

(3.52)

We note that γ(z)γ(z) = a(z)ā(z), and from the unitarity condition a(z)ā(z) − b(z)b̄(z) = 1 and the
symmetry b(z) = b̄(z), we obtain

log a(z) = log
( J∏

j=1

z − zj

z − q2
0/zj

)
+

1
2πi

∫ +∞

−∞

log(1 + b2(ξ))
ξ − z

dξ, Im z > 0,

log ā(z) = log
( J∏

j=1

z − q2
0/zj

z − zj

)
− 1

2πi

∫ +∞

−∞

log(1 + b2(ξ))
ξ − z

dξ, Im z < 0.

(3.53)

Hence, we can reconstruct a(k) and ā(k) in terms of the eigenvalues (zeros) and only one function b(k).
Because a(z) ∼ e2iθ+ as z → 0, from the trace formula when b(ξ) = 0 on the real axis, we obtain the
constraint on the reflectionless potentials

J∏
j=1

z2
j = q2J

0 e2iθ+ . (3.54)

3.12. Discrete scattering data and their symmetries. To find reflectionless potentials (solitons),
we must calculate the relevant scattering data: b(zj) and b̄(z̄j), a′(zj) and ā′(zj), j = 1, 2, . . . , J . The latter
functions can be calculated via the trace formulas. We therefore concentrate on the former. Because

N1(x, z) = −M2(−x, z), N2(x, z) = M1(−x, z),

M1(x, zj) = b(zj)ei(zj−q2
0/zj)xN1(x, zj),

M2(x, zj) = b(zj)ei(zj−q2
0/zj)xN2(x, zj),

(3.55)
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we have

N1(x, zj) = −b(zj)e−i(zj−q2
0/zj)xN2(−x, zj), (3.56)

N2(x, zj) = b(zj)e−(zj−q2
0/zj)xN1(−x, zj). (3.57)

Rewriting (3.57), we obtain

N2(−x, zj) = b(zj)e(zj−q2
0/zj)xN1(x, zj). (3.58)

Combining (3.58) with (3.56), we can deduce the symmetry condition on the discrete data b(zj)

− b2(zj) = 1. (3.59)

A similar analysis shows that b̄(z̄j) satisfies an analogous equation −b̄2(z̄j) = 1, i.e.,

b(zj) = ±i, b̄(z̄j) = ±i. (3.60)

By the symmetry relation b̄(z) = b(z), we have b̄(zj) = b(zj) and b(z̄j) = b̄(z̄j).
For J = 1, assuming that 0 < θ+ < π, we have z1 = q0e

iθ+ . By the trace formula with b(ξ) = 0 on the
real axis, we obtain

a′(z1) = a′(q0e
iθ+) =

1
q0(eiθ+ − e−iθ+)

,

ā′(z̄1) = a′(q0e
−iθ+) =

1
q0(e−iθ+ − eiθ+)

.

(3.61)

Moreover, from the symmetry relation b(q2
0/z) = −b̄(z), we obtain

b̄(q0e
−iθ+) = −b(q0e

iθ+). (3.62)

For convenience, we write b(q0e
iθ+) = δi, and then b̄(q0e

−iθ+) = −δi, where δ = ±1.

3.13. Time evolution. Because

vt = Tv =

(
2ik2 + iσq2

0 −2kq0e
i(2σq2

0 t+θ±)

−2σkq0e
i(2σq2

0 t+θ±) −2ik2 + iσq2
0

)
v :=

(
A B

C −A

)
v, (3.63)

where σ = 1, we find that both a(z, t) and ā(z, t) are independent of time and

b(z; t) = b(z; 0) exp
{
−2i

[
q2
0 +

1
2

(
z2 − q4

0

z2

)]
t

}
,

b̄(z; t) = b̄(z; 0) exp
{

2i

[
q2
0 +

1
2

(
z2 − q4

0

z2

)]
t

}
.

(3.64)

Hence,
b(q0e

iθ+ ; t) = δi exp{−2iq2
0[1 + i sin(2θ+)]t},

b̄(q0e
−iθ+ ; t) = −δi exp{2iq2

0[1 − i sin(2θ+)]t}.
(3.65)
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Fig. 1. The amplitude of the one-soliton solution q(x, t) plotted as a function of x and t with the

parameters σ = 1, δ = 1, θ+ = π/3, and q0 = 2.

3.14. Pure one-soliton solution. With J = 1 and b(ξ, t) = 0 (reflectionless potential), from (3.49)
by solving the corresponding Eq. (3.48) (which is a linear system), we obtain

q(x, t) = q0e
i(2q2

0t+θ+)

[
1 − 2i sin θ+b(q0e

iθ+ ; t)e−2q0x sin θ+

q0e2iθ+
N1(x, q0e

iθ+ ; t)
]
, (3.66)

where

N1(x, q0e
iθ+) =

−iq0e
i(2q2

0t+θ+) − q0e
iθ+e−2q0x sin θ+ b̄(q0e

−iθ+ ; t)
1 − e−4q0x sin θ+b(q0eiθ+ ; t)b̄(q0e−iθ+ ; t)

. (3.67)

Solving the corresponding discrete system (3.49) with J = 1, we find that there is a nonsingular pure
one-soliton solution only with δ = 1, which is given by

q(x, t) =
1
2
q0e

i(2q2
0t+θ+)[(1 + e−2iθ+) + (1 − e−2iθ+) tanh(q0x sin θ+ − q2

0t sin(2θ+))]. (3.68)

We display a typical nonsingular one-soliton solution in Fig. 1.

4. Nonlocal RST NLS equation: σ = 1 with θ+ + θ− = π

4.1. Direct scattering. In this section, we consider the NZBCs given in (1.6) above with σ = 1 and
θ+ + θ− = π. Under this condition, Eq. (2.3) conveniently reduces to

∂2vj

∂x2
= −(k2 + q2

0)vj , j = 1, 2. (4.1)

Each of the two equations has two linearly independent solutions eiλx and e−iλx as |x| → ∞, where we
introduce the local polar coordinates

k − iq0 = r1e
iθ1 , −π

2
≤ θ1 <

3π

2
, k + iq0 = r2e

iθ2 , −π

2
≤ θ2 <

3π

2
, (4.2)

with r1 = |k − iq0| and r2 = |k + iq0|. We can write λ(k) = (r1r2)1/2ei(θ1+θ2)/2+imπ with m = 0, 1 and the
respective sheets I (K1) and II (K2). The variable k is then considered to belong to a Riemann surface K

consisting of sheets I and II, both coinciding with the complex plane cut along Σ := [−iq0, iq0] with its edges
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glued such that λ(k) is continuous through the cut. Along the real k axis, we have λ(k) = ±sgn(k)
√

k2 + q2
0 ,

where the plus and minus signs apply on the respective sheets I and II of the Riemann surface and where
the square root sign denotes the principal branch of the real-valued square root function. We let C

+ and
C

− denote the open upper and lower complex half-planes and K
+ and K

− denote the open upper and lower
complex half-planes cut along Σ. Then λ provides one-to-one correspondences between the sets

1. k ∈ K
+ = C

+ \ (0, iq0] and λ ∈ C
+,

2. k ∈ ∂K
+ = R ∪ {is − 0+ : 0 < s < q0} ∪ {iq0} ∪ {is + 0+ : 0 < s < q0} and λ ∈ R,

3. k ∈ K
− = C

− \ [−iq0, 0) and λ ∈ C
−, and

4. k ∈ ∂K
− = R ∪ {is − 0+ : −q0 < s < 0} ∪ {−iq0} ∪ {is + 0+ : −q0 < s < 0} and λ ∈ R.

Moreover, λ+(k) and λ−(k) denote the boundary values taken by λ(k) for k ∈ Σ from the right and
left edges of the cut with λ±(k) = ±

√
q2
0 − |k|2, k = is ± 0+, |s| < q0 on the right and left edge of the cut

(see Figs. 5 and 6 on p. 30 in [26]).

4.2. Eigenfunctions. As in Sec. 3, we introduce the eigenfunctions φ(x, k), φ̄(x, k), ψ(x, k), and
ψ̄(x, k) defined by their BCs. We substitute them in (2.3) with σ = 1 and from (3.5) and (3.6) obtain

w =

(
λ + k

iq+

)
, w =

(
−iq−

λ + k

)
, v =

(
−iq+

λ + k

)
, v =

(
λ + k

iq−

)
, (4.3)

where λ =
√

k2 + q2
0 . We also consider functions with constant BCs and define the same bounded eigen-

functions M(x, k), N(x, k), M(x, k), and N(x, k) defined as in (3.7) with the new definition of λ.
Moreover, the bounded eigenfunctions can be represented using integral equations with the same for-

mulas as (3.8) but with the different definition of λ given above.
Using similar methods as in the preceding case (θ+ + θ− = 0), we obtain the following result.

Theorem 3. Let the elements of Q −Q± belong to L1,1(R). Then for each x ∈ R, the eigenfunctions

M(x, k) and N(x, k) are continuous for k ∈ K+ ∪ ∂K− and analytic for k ∈ K
+, and M(x, k) and N(x, k)

are continuous for k ∈ K− ∪ ∂K+ and analytic for k ∈ K
−.

The proof uses Neumann series and is similar to the proof in [26].

4.2.1. Scattering data. We have

φ(x, k) = b(k)ψ(x, k) + a(k)ψ̄(x, k), φ̄(x, k) = ā(k)ψ(x, k) + b̄(k)ψ̄(x, k) (4.4)

for any k such that all four eigenfunctions exist. Moreover,

a(k)ā(k) − b(k)b̄(k) = 1, (4.5)

where the formulas for a(k), ā(k), b(k), and b̄(k) are given in (3.19) but the definition of λ given in this
section differs from the case in Sec. 3.

If k ∈ (−iq0, iq0), then the above scattering data and eigenfunctions are defined using the corresponding
values on the right and left edges of the cut and are labeled with superscripts ± as clarified below. Explicitly,
for k ∈ (−iq0, iq0), we have

a±(k) =
W (φ±(x, k), ψ±(x, k))

2λ±(λ± + k)
, ā±(k) = −W (φ̄±(x, k), ψ̄±(x, k))

2λ±(λ± + k)
,

b±(k) = −W (φ±(x, k), ψ̄±(x, k))
2λ±(λ± + k)

, b̄±(k) =
W (φ̄±(x, k), ψ±(x, k))

2λ±(λ± + k)
.

(4.6)

We then obtain the following theorem from the analytic behavior of the eigenfunctions.
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Theorem 4. Let the elements of Q − Q± belong to L1,1(R). Then a(k) is continuous for k ∈ K+ ∪
∂K− \ {±iq0} and analytic for k ∈ K

+, and ā(k) is continuous for k ∈ K− ∪ ∂K+ \ {±iq0} and analytic

for k ∈ K
−. Moreover, b(k) and b̄(k) are continuous in k ∈ R ∪ (−iq0, iq0). In addition, if the elements

of Q − Q± do not increase faster than e−ax2
, where a is a positive real number, then a(k)λ(k), ā(k)λ(k),

b(k)λ(k), and b̄(k)λ(k) are analytic for k ∈ K.

The proof uses Neumann series and is similar to the proof in [26].

4.3. Symmetry reductions. The symmetry in the potential induces a symmetry between the eigen-
functions. Indeed, if v(x, k) = (v1(x, k), v2(x, k))T solves (2.1) for σ = 1, then (v2(−x, k),−v1(−x, k))T also
solves (2.1) for σ = 1. Taking the BCs into account, we obtain

ψ(x, k) =

(
0 −1

1 0

)
φ(−x, k), ψ̄(x, k) =

(
0 1

−1 0

)
φ̄(−x, k). (4.7)

We can similarly obtain the symmetry relations of the eigenfunctions, i.e.,

N(x, k) =

(
0 −1

1 0

)
M(−x, k), N(x, k) =

(
0 1

−1 0

)
M(−x, k). (4.8)

We obtain b̄(k) = b(k) from the Wronskian representations for the scattering data and the above symmetry
relations.

4.4. Uniformization coordinates. Similarly, we introduce a uniformization variable z defined by
the conformal map

z = z(k) = k + λ(k), (4.9)

where λ =
√

k2 + q2
0 and the inverse map is given by k = k(z) = (z − q2

0/z)/2. Then λ(z) = (z + q2
0/z)/2.

We let C0 be the circle of radius q0 centered at the origin in z plane. We note the following:

1. The branch cut on either sheet is mapped onto C0. In particular, z(±iq0) = ±iq0 from either sheet,
z(0±I ) = ±q0 and z(0±II) = ∓q0.

2. K1 is mapped onto the exterior of C0, and K2 is mapped onto the interior of C0. In particular,
z(∞I) = ∞ and z(∞II) = 0. The first and second quadrants of K1 are mapped into the respective
first and second quadrants outside C0; the first and second quadrants of K2 are mapped into the
respective second and first quadrants inside C0; zIzII = q2

0 .

3. The regions in the k plane such that Imλ > 0 and Imλ < 0 are respectively mapped onto D+ = {z ∈
C : (|z|2 − q2

0) · Im z > 0} and D− = {z ∈ C : (|z|2 − q2
0) · Im z < 0} (see Fig. 11 on p. 36 in [26]).

We then find that the eigenfunctions M and N are analytic for z ∈ D+ and the eigenfunctions M and
N are analytic for z ∈ D−.

4.5. Symmetries via uniformization coordinates. From the above eigenfunction symmetry re-
lations, we obtain

ψ(x, z) =

(
0 −1

1 0

)
φ(−x, z), ψ̄(x, z) =

(
0 1

−1 0

)
φ̄(−x, z). (4.10)
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Further, if z → −q2
0/z, then (k, λ) → (k,−λ). Hence,

φ

(
x,−q2

0

z

)
=

q2
0/z

iq−
φ̄(x, z), ψ

(
x,−q2

0

z

)
=

−iq+

z
ψ̄(x, z), z ∈ D−. (4.11)

Similarly, we obtain

N(x, z) =

(
0 −1

1 0

)
M(−x, z), N(x, z) =

(
0 1

−1 0

)
M(−x, z), (4.12)

b̄(z) = b(z), a

(
−q2

0

z

)
= −e2iθ+ ā(z), z ∈ D−, b

(
−q2

0

z

)
= −b̄(z). (4.13)

4.6. Asymptotic behavior of eigenfunctions and scattering data. To solve the inverse problem,
we must determine the asymptotic behavior of eigenfunctions and scattering data both as z → ∞ in K1

and as z → 0 in K2. We have

N(x, z) ∼

⎛
⎝z

q(x)
q+

iq−

⎞
⎠ , z → 0,

a(z) =

⎧⎨
⎩

1, z → ∞,

−e2iθ+ , z → 0,
ā(z) =

⎧⎨
⎩

1, z → ∞,

−e−2iθ+ , z → 0,

lim
z→∞

zb(z) = 0, lim
z→0

b(z)
z2

= 0.

(4.14)

4.7. Riemann–Hilbert problem via uniformization coordinates.

4.7.1. Left scattering problem. To take the behavior of the eigenfunctions into account, we can
write the “jump” conditions at Σ, where

Σ := (−∞,−q0) ∪ (q0, +∞) ∪
−−−−−−→
(q0,−q0) ∪ {q0e

iθ, π ≤ θ ≤ 2π}clockwise, upper circle ∪

∪ {q0e
iθ,−π ≤ θ ≤ 0}counterclockwise, lower circle,

as
M(x, z)
za(z)

− N(x, z)
z

= ρ(z)ei(z+q2
0/z)x N(x, z)

z
,

M(x, z)
zā(z)

− N(x, z)
z

= ρ̄(z)e−i(z+q2
0/z)x N(x, z)

z
,

(4.15)

and the functions are hence bounded at infinity, although they have an additional pole at z = 0. We note
that M(x, z)/a(z) as a function of z is defined in D+, where (by assumption) it has simple poles zj , i.e.,
a(zj) = 0, and M(x, z)/ā(z), is defined in D−, where it has simple poles z̄j, i.e., ā(z̄j) = 0. It follows that

M(x, zj) = b(zj)ei(zj+q2
0/zj)xN(x, zj),

M(x, z̄j) = b̄(z̄j)e−i(z̄j+q2
0/z̄j)xN(x, z̄j).

(4.16)
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Subtracting the values at infinity, the induced pole at the origin, and the poles assumed to be simple in D+

and D− respectively at a(zj) = 0, j = 1, 2, . . . , J , and ā(z̄j), j = 1, 2, . . . , J̄ , yields

[
M(x, z)
za(z)

−
(

1

0

)
− 1

z

(
0

iq−

)
−

J∑
j=1

M(x, zj)
(z − zj)zja′(zj)

]
−

−
[
N(x, z)

z
−

(
1

0

)
− 1

z

(
0

iq−

)
−

J∑
j=1

b(zj)ei(zj+q2
0/zj)xN(x, zj)

(z − zj)zja′(zj)

]
=

= ρ(z)ei(z+q2
0/z)x N(x, z)

z
, (4.17)

[
M(x, z)
zā(z)

−
(

0

1

)
− 1

z

(
−iq+

0

)
−

J̄∑
j=1

M(x, z̄j)
(z − z̄j)z̄ja′(z̄j)

]
−

−
[
N(x, z)

z
−

(
0

1

)
− 1

z

(
−iq+

0

)
−

J̄∑
j=1

b̄(z̄j)e−i(z̄j+q2
0/z̄j)xN(x, z̄j)

(z − z̄j)z̄j ā′(z̄j)

]
=

= ρ̄(z)e−i(z+q2
0/z)x N(x, z)

z
. (4.18)

We now introduce the projection operators

P±(f)(z) =
1

2πi

∫
Σ

f(ξ)
ξ − (z ± i0)

dξ, (4.19)

where z is in the ± regions and

Σ := (−∞,−q0) ∪ (q0, +∞) ∪
−−−−−−→
(q0,−q0) ∪ {q0e

iθ, π ≤ θ ≤ 2π}clockwise, upper circle ∪

∪ {q0e
iθ,−π ≤ θ ≤ 0}counterclockwise, lower circle.

If f±(ξ) is analytic in D± and decays at large ξ, then

P±(f±)(z) = ±f±(z), P∓(f±)(z) = 0. (4.20)

Applying P− to (4.17) and P+ to (4.18), we obtain

N(x, z) =

(
z

iq−

)
+

J∑
j=1

zb(zj)ei(zj+q2
0/zj)xN(x, zj)

(z − zj)zja′(zj)
+

+
z

2πi

∫
Σ

ρ(ξ)
ξ(ξ − z)

ei(ξ+q2
0/ξ)xN(x, ξ) dξ,

N(x, z) =

(
−iq+

z

)
+

J̄∑
j=1

zb̄(z̄j)e−i(z̄j+q2
0/z̄j)xN(x, z̄j)

(z − z̄j)z̄jā′(z̄j)
−

− z

2πi

∫
Σ

ρ̄(ξ)
ξ(ξ − z)

e−i(ξ+q2
0/ξ)xN(x, ξ) dξ.

(4.21)
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We can similarly solve the right scattering problem, which is

M(x, z) =

(
−iq−

z

)
+

J∑
j=1

−zb̄(zj)M(x, zj)e−i(zj+q2
0/zj)x

(z − zj)zja′(zj)
+

+
z

2πi

∫
Σ

ρ∗(−ξ∗)
ξ(ξ − z)

e−i(ξ+q2
0/ξ)xM(x, ξ) dξ,

M(x, z) =

(
z

iq+

)
+

J̄∑
j=1

−zb(z̄j)M(x, z̄j)ei(z̄j+q2
0/z̄j)x

(z − z̄j)z̄j ā′(z̄j)
−

− z

2πi

∫
Σ

ρ̄∗(−ξ∗)
ξ(ξ − z)

ei(ξ+q2
0/ξ)xM(x, ξ) dξ.

(4.22)

4.8. Recovery of the potentials. We note that as z → 0, N1(x, z)/z ∼ q(x)/q+,

N1(x, z)
z

∼ 1 +
J∑

j=1

b(zj)ei(zj+q2
0/zj)x

−z2
j a′(zj)

N1(x, zj) +
1

2πi

∫
Σ

ρ(ξ)
ξ2

ei(ξ+q2
0/ξ)xN1(x, ξ) dξ, (4.23)

and we have

q(x) =q+

[
1 +

J∑
j=1

b(zj)ei(zj+q2
0/zj)x

−z2
j a′(zj)

N1(x, zj) +

+
1

2πi

∫
Σ

ρ(ξ)
ξ2

ei(ξ+q2
0/ξ)xN1(x, ξ) dξ

]
. (4.24)

4.9. Closing the system. We obtain J = J̄ from a(−q2
0/z) = −e2iθ+ ā(z). Combining the integral

equations of eigenfunctions, we obtain

(
N1(x, z)

N2(x, z)

)
=

(
−iq+

z

)
+

J∑
j=1

zb̄(z̄j)e−i(z̄j+q2
0/z̄j)x

(z − z̄j)z̄j ā′(z̄j)
×

×

⎛
⎜⎜⎜⎜⎜⎝

z̄j +
J∑

l=1

z̄jb(zl)ei(zl+q2
0/zl)x

(z̄j − zl)zla′(zl)
N1(x, zl) +

z̄j

2πi

∫
Σ

ρ(ξ)
ξ(ξ − z̄j)

ei(ξ+q2
0/ξ)xN1(x, ξ) dξ

iq− +
J∑

l=1

z̄jb(zl)ei(zl+q2
0/zl)x

(z̄j − zl)zla′(zl)
N2(x, zl) +

z̄j

2πi

∫
Σ

ρ(ξ)
ξ(ξ − z̄j)

ei(ξ+q2
0/ξ)xN2(x, ξ) dξ

⎞
⎟⎟⎟⎟⎟⎠ −

− z

2πi

∫
Σ

ρ̄(ξ)
ξ(ξ − z)

e−i(ξ+q2
0/ξ)x ×

×

⎛
⎜⎜⎜⎜⎜⎝

ξ +
J∑

l=1

ξb(zl)ei(zl−q2
0/zl)x

(ξ − zl)zla′(zl)
N1(x, zl) +

ξ

2πi

∫
Σ

ρ(η)
η(η − ξ)

ei(η+q2
0/η)xN1(x, η) dη

iq− +
J∑

l=1

ξb(zl)ei(zl+q2
0/zl)x

(ξ − zl)zla′(zl)
N2(x, zl) +

ξ

2πi

∫
Σ

ρ(η)
η(η − ξ)

ei(η+q2
0/η)xN2(x, η) dη

⎞
⎟⎟⎟⎟⎟⎠ dξ. (4.25)

We can reconstruct the potential from (4.24).
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4.10. Trace formula. Similarly to Sec. 3, we obtain the trace formula as

log a(z) = log
( J∏

j=1

z − zj

z + q2
0/zj

)
+

1
2πi

∫
Σ

log(1 + b2(ξ))
ξ − z

dξ, z ∈ D+,

log ā(z) = log
( J∏

j=1

z + q2
0/zj

z − zj

)
− 1

2πi

∫
Σ

log(1 + b2(ξ))
ξ − z

dξ, z ∈ D−.

(4.26)

4.11. Discrete scattering data and their symmetries. To find reflectionless potentials and soli-
tons, we must be able to calculate the relevant discrete scattering data. The coefficients b(zj) and b̄(z̄j),
j = 1, 2, . . . , J , can be calculated in the same way as in Sec. 3, and we have

b̄(zj) = b(zj) = ±i, b(z̄j) = b̄(z̄j) = ±i. (4.27)

Because a(z) ∼ −e2iθ+ as z → 0, from the trace formula with b(ξ) = 0 in Σ, we obtain the constraint for
the reflectionless potentials

J∏
j=1

zj = ±(−1)(J+1)/2qJ
0 eiθ+ . (4.28)

We claim that J ≥ 2. Otherwise, if J = 1, then z1 = ±q0e
iθ+ . This implies that the eigenvalue z1 is on

the circle, which in this case is the continuous spectrum. Such eigenvalues are not proper; they are not
considered here.

4.12. Reflectionless scattering data 2-eigenvalues. In this subsection, we consider scattering
data associated with 2-eigenvalues, i.e., J = 2, with no reflection. We note that |z1| · |z2| = q2

0 . Now let
π < θ+ < 3π/2 and z1 = q1e

iθ1 , where q1 > q0 and 0 < θ1 < π/2. Then z2 = (q2
0/q1)ei(θ+−θ1+π/2), where

π < arg z2 < 2π. In particular, we can choose z1 = iq1, z2 = −i(q2
0/q1), and θ+ = π/2. Then z̄1 = i(q2

0/q1),
z̄2 = −iq1, and z1z2 = q2

0 . From the trace formula with b(ξ) = 0 in Σ, we obtain

a(z) =
z − iq1

z − i(q2
0/q1)

· z + i(q2
0/q1)

z + iq1
, ā(z) =

z − i(q2
0/q1)

z − iq1
· z + iq1

z + i(q2
0/q1)

. (4.29)

We have

a′(iq1) =
−i(q2

1 + q2
0)

2q1(q2
1 − q2

0)
, a′

(
−i

q2
0

q1

)
=

iq1(q2
0 + q2

1)
2q2

0(q
2
0 − q2

1)
,

ā′
(

i
q2
0

q1

)
= − iq1(q2

0 + q2
1)

2q2
0(q

2
0 − q2

1)
, ā′(−iq1) =

i(q2
1 + q2

0)
2q1(q2

1 − q2
0)

.

(4.30)

Moreover, from the symmetry relation b(−q2
0/z) = −b̄(z), we obtain

b(iq1) = δ1i, b

(
−i

q2
0

q1

)
= δ2i, b̄

(
i
q2
0

q1

)
= −δ1i, b̄(−iq1) = −δ2i. (4.31)

4.13. Time evolution. In the same way as in Sec. 3, we find that both a(z, t) and ā(z, t) are
independent of time and

b(z; t) = b(z; 0) exp
{
−2i

[
−q2

0 +
1
2

(
z2 − q4

0

z2

)]
t

}
,

b̄(z; t) = b̄(z; 0) exp
{

2i

[
−q2

0 +
1
2

(
z2 − q4

0

z2

)]
t

}
.

(4.32)
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Hence,

b(iq1; t) = δ1i exp
{
−2i

[
−q2

0 +
1
2

(
−q2

1 +
q4
0

q2
1

)]
t

}
,

b

(
−i

q2
0

q1
; t

)
= δ2i exp

{
−2i

[
−q2

0 +
1
2

(
q2
1 − q4

0

q2
1

)]
t

}
,

b̄

(
i
q2
0

q1
; t

)
= −δ1i exp

{
2i

[
−q2

0 +
1
2

(
q2
1 − q4

0

q2
1

)]
t

}
,

b̄(−iq1; t) = −δ2i exp
{

2i

[
−q2

0 +
1
2

(
−q2

1 +
q4
0

q2
1

)]
t

}
.

(4.33)

4.14. Pure two-soliton solution. With J = 2 and b(ξ, t) = 0 (reflectionless potential), solving the
corresponding discrete system (4.25) and also from (4.24), we find a nonsingular two-soliton solution with
δ1δ2 = −1.

In this case, the normalization constants are

C1(t) :=
b(iq1; t)
a′(iq1; t)

= −2δ1q1(q2
1 − q2

0)
q2
1 + q2

0

exp
{
−2i

[
−q2

0 +
1
2

(
−q2

1 +
q4
0

q2
1

)]
t

}
,

C2(t) :=
b(−i(q2

0/q1); t)
a′(−i(q2

0/q1); t)
=

2δ2q
2
0(q

2
0 − q2

1)
q1(q2

0 + q2
1)

exp
{
−2i

[
−q2

0 +
1
2

(
q2
1 − q4

0

q2
1

)]
t

}
,

C1(t) :=
b̄(i(q2

0/q1); t)
ā′(i(q2

0/q1); t)
=

2δ1q
2
0(q

2
0 − q2

1)
q1(q2

0 + q2
1)

exp
{

2i

[
−q2

0 +
1
2

(
q2
1 − q4

0

q2
1

)]
t

}
,

C2(t) :=
b̄(−iq1; t)
ā′(−iq1; t)

= −2δ2q1(q2
1 − q2

0)
q2
1 + q2

0

exp
{

2i

[
−q2

0 +
1
2

(
−q2

1 +
q4
0

q2
1

)]
t

}
.

(4.34)

For δ1 = 1 and δ2 = −1, we obtain

q(x, t) = e−2iq2
0t ×

×

[
i(q4

0 + q4
1) cos

(
q4
0−q4

1
q2
1

t
)

+ iq0q1(q2
0 + q2

1) cosh
(

q2
0−q2

1
q1

x
)

+ (q4
0 − q4

1) sin
(

q4
0−q4

1
q2
1

t
)]

q1

[
2q0q1 cos

(
(q4

0−q4
1)t

q2
1

)
+ (q2

0 + q2
1) cosh

(
(q2

0−q2
1)x

q1

)] . (4.35)

For δ1 = −1 and δ2 = 1, we obtain

q(x, t) = e−2iq2
0t ×

×

[
−i(q4

0 + q4
1) cos

(
q4
0−q4

1
q2
1

t
)

+ iq0q1(q2
0 + q2

1) cosh
(

q2
0−q2

1
q1

x
)

+ (−q4
0 + q4

1) sin
(

q4
0−q4

1
q2
1

t
)]

q1

[
−2q0q1 cos

(
(q4

0−q4
1)t

q2
1

)
+ (q2

0 + q2
1) cosh

(
(q2

0−q2
1)x

q1

)] . (4.36)

In Fig. 2, we display a typical two-soliton solution of breather type with δ1 = −δ1 = 1.

5. Spatially dependent BCs

5.1. RST NLS: Spatial boundary values. We next consider the RST NLS equation

iqt(x, t) = qxx(x, t) − 2σq2(x, t)q(−x,−t) (5.1)
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Fig. 2. The amplitude of q(x, t) with δ1 = 1, δ2 = −1, q1 = 4, and q0 = 2.

with the BC
q(x, t) → q0e

i(αt+βx+θ±) (5.2)

as x → ±∞, where q0 > 0, 0 ≤ θ± < 2π, and both α and β are real. We see that α = β2 + 2σρq2
0 , and the

BC then becomes
q(x, t) → q0e

i[(β2+2σρq2
0)t+βx+θ±] (5.3)

as x → ±∞, where β is real and ρ = ±1. In particular, ρ = 1 if θ+ + θ− = 0, and ρ = −1 if θ+ + θ− = π.
Setting q(x, t) = q̃(x, t)eiβx, we obtain

iq̃t(x, t) = q̃xx(x, t) + 2iβq̃x(x, t) − [β2 + 2σq̃(x, t)q̃(−x,−t)]q̃(x, t), (5.4)

which is associated with the 2×2 compatible system

vx = Xv =

(
−ikq̃(x, t)

σq̃(−x,−t) ik

)
v,

vt = Tv =

=

⎛
⎜⎜⎜⎜⎜⎝

2ik2 − 2βik +

+ iσq̃(x, t)q̃(−x,−t) +
β2

2
i

−2kq̃(x, t) + 2βq̃(x, t) − iq̃x(x, t)

−2σkq̃(−x,−t) +
+ iσq̃x(−x,−t) + 2βσq̃(−x,−t)

−2ik2 + 2βik −
− iσq̃(x, t)q̃(−x,−t) − β2

2
i

⎞
⎟⎟⎟⎟⎟⎠ v.

(5.5)

We then find that a(k, t) and ā(k, t) are independent of time and b(k, t) and b̄(k, t) depend on time as

b(k, t) = b(0) exp
{
−2i

[
σρq2

0 +
β2

2
− 2λ(β − k)

]
t

}
,

b̄(k, t) = b̄(0) exp
{

2i

[
σρq2

0 +
β2

2
− 2λ(β − k)

]
t

}
.

(5.6)
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We can take σ = 1 as discussed in Sec. 1 and J = 1 and δ = 1 from Sec. 3. Then

b(q0e
iθ+ ; t) = i exp

{
−2i

[
q2
0 +

β2

2
− 2iq0 sin θ+(β − q0 cos θ+)

]
t

}
,

b̄(q0e
−iθ+ ; t) = −i exp

{
2i

[
q2
0 +

β2

2
+ 2iq0 sin θ+(β − q0 cos θ+)

]
t

}
.

(5.7)

We thus obtain a pure one-soliton solution

q(x, t) = eiβxq0e
2iq2

0t ×

× (−e−iθ+ + eiθ++4q0 sin θ+(x+2βt−2q0t cos θ+) − 2i sin θ+e−iβ2t+2q0 sin θ+(x+2βt−2q0t cos θ+))
e4q0 sin θ+(x+2βt−2q0t cos θ+) − 1

. (5.8)

Remark 2. For β �= 0, the above solution is singular along the punctured line x = Ct, where C, t �= 0.

5.2. Standard NLS equation: Spatial boundary values. The NLS equation has the form

iqt(x, t) = qxx(x, t) − 2σ|q(x, t)|2q(x, t), (5.9)

where q∗ denotes the complex conjugate of q and σ = ∓1. We consider the BC

q(x, t) → q0e
i(αt+βx+θ±), x → ±∞, (5.10)

where q0 > 0, 0 ≤ θ± < 2π, and both α and β are real. It is easy to see that α = β2 + 2σq2
0 , and the BC

then becomes
q(x, t) → q0e

i[(β2+2σq2
0)t+βx+θ±] (5.11)

as x → ±∞, where β is real. Setting q(x, t) = q̃(x, t)eiβx, we obtain

iq̃t = q̃xx + 2iβq̃x − (β2 + 2σ|q̃|2)q̃, (5.12)

which is associated with the 2×2 compatible system

vx = Xv =

(
−ikq̃(x, t)

σq̃∗(x, t) ik

)
v, (5.13)

vt = Tv =

⎛
⎜⎝2ik2 − 2βik + iσ|q̃|2 +

β2

2
i −2q̃k + 2βq̃ − iq̃x

−2σq̃∗k + iσq̃∗x + 2βσq̃∗ −2ik2 + 2βik − iσ|q̃|2 − β2

2
i

⎞
⎟⎠ v. (5.14)

We then find that both a(k, t) and ā(k, t) are independent of time,

b(k, t) = b(0) exp
{
−2i

[
σq2

0 +
β2

2
− 2λ(β − k)

]
t

}
,

b̄(k, t) = b̄(0) exp
{

2i

[
σq2

0 +
β2

2
− 2λ(β − k)

]
t

}
.

(5.15)

Scattering problem (5.13) is the same as the NLS equation with the NZBC

q̃(x, t) → q0e
i(2σq2

0 t+θ±), x → ±∞. (5.16)
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The only difference between the standard NLS equation and (5.12) in their IST formulations is the time
evolution. Based on the scattering problem and one-soliton solution of the defocusing NLS equation [15],
with σ = 1, we obtain

q(x, t) = q̃eiβx =

= eiβx

[
q0e

i[(β2+2q2
0)t+θ+] +

iC∗
1 (0)α∗

1 exp[2i(q2
0 + β2/2)t − 4v1(β − k1)t − 2v1x]

1 + (q0|C1(0)|/2v1)e−2v1x−4v1(β−k1)t

]
, (5.17)

where α1 = k1 + iv1, v1 =
√

q2
0 − k2

1 , −q0 < k1 < q0, e2v1x0 = q0|C1(0)|/2v1, and C∗
1 (0) = −|C1(0)|eiθ+ .

We can rewrite it in the form

q(x, t) = q0e
2iq2

0tei(βx+β2t)

[
eiθ+ +

iC∗
1 (0)(α∗

1/q0)e−2v1(x+2βt−2k1t)

1 + (q0|C1(0)|/2v1)e−2v1(x+2βt−2k1t)

]
. (5.18)

A property of the NLS equation is its Galilean invariance, i.e., if q1(x, t) solves the NLS equation and
satisfies the BC q1(x, t) → q0e

i(2σq2
0 t+θ±) as x → ±∞, then q2(x, t) := q1(x+2βt, t)ei(βx+β2t) also solves the

NLS equation and satisfies the BC q2(x, t) → q0e
i[(β2+2σq2

0)t+βx+θ±] as x → ±∞. For σ = 1, the one-soliton
solution is given by

q1(x, t) = q0e
2iq2

0t

[
eiθ+ +

iC∗
1 (0)(α∗

1/q0)e−2v1(x−2k1t)

1 + (q0|C1(0)|/2v1)e−2v1(x−2k1t)

]
. (5.19)

We have q(x, t) = q1(x+2βt, t)ei(βx+β2t), which means that the IST result agrees with the result based
on the Galilean invariance of the NLS equation. By taking α = k1/q0 and γ = −v1/q0, possibly up to a
phase, we can simplify q1(x, t) and q(x, t) as

q1(x, t) = q0e
2iq2

0t[γ tanh(q0γ(x − 2q0αt − x0)) − iα],

q(x, t) = q0e
2iq2

0tei(βx+β2t)[γ tanh(q0γ(x + 2βt − 2q0αt − x0)) − iα],
(5.20)

where α2 + γ2 = 1.
If we ignore the nonlinear term, then the linear partial differential equation

iqt(x, t) − qxx(x, t) = 0 (5.21)

also satisfies the Galilean invariance. Indeed, by the Fourier transform,

u1(x, t) =
1
2π

∫ ∞

−∞
b(1)(ξ)ei(ξx+ξ2t) dξ (5.22)

is a solution of (5.21). We set u2(x, t) = u1(x + 2βt, t)ei(βx+β2t), and then

u2(x, t) =
1
2π

∫ ∞

−∞
b(1)(ξ)ei(ξ+β)xei(ξ+β)2t dξ. (5.23)

Redefining the variables (ξ′ = ξ + β) shows that u2(x, t) is also a solution of (5.21), which implies that the
Galilean invariance is also satisfied for the linear problem.
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