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INVERSE SCATTERING TRANSFORM FOR THE NONLOCAL
REVERSE SPACE-TIME NONLINEAR SCHRODINGER EQUATION

M. J. Ablowitz,* Bao-Feng Feng,’ Xu-Dan Luo, and Z. H. Musslimani®

Nonlocal reverse space—time equations of the nonlinear Schrédinger (NLS) type were recently introduced.
They were shown to be integrable infinite-dimensional dynamical systems, and the inverse scattering
transform (IST) for rapidly decaying initial conditions was constructed. Here, we present the IST for
the reverse space—time NLS equation with nonzero boundary conditions (NZBCs) at infinity. The NZBC
problem is more complicated because the branching structure of the associated linear eigenfunctions is
complicated. We analyze two cases, which correspond to two different values of the phase at infinity. We
discuss special soliton solutions and find explicit one-soliton and two-soliton solutions. We also consider

spatially dependent boundary conditions.
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1. Introduction

In 1965, Zabusky and Kruskal found that solitary wave solutions of the Korteweg—de Vries (KdV)
equation [1] exhibited special interaction properties; they called these waves solitons. Motivated by this
in 1967, for rapidly decaying initial data on the line, Gardner, Greene, Kruskal, and Miura connected the
KdV equation to the linear Schrédinger equation and outlined a method for solving the Cauchy problem
for the KdV equation using the inverse scattering [2]. Lax learned about these results and soon showed
that the KdV and other equations could result from the compatibility condition of two linear operators; for
the KdV equation, the linear Schrodinger equation was one of them [3].

In 1972, Zakharov and Shabat [4] found that another physically important equation, the nonlinear
Schrodinger (NLS) equation, also had a Lax pair and could be solved (linearized) by inverse scattering.
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The NLS equation, like the KdV equation, was known to arise universally [5]. Motivated by these results
in 1973, Ablowitz, Kaup, Newell, and Segur (AKNS) [6] generalized the linear operators used by Zakharov
and Shabat and showed that the NLS, sine-Gordon [7], modified-KdV, and KdV equations could be solved
(linearized) by inverse scattering. Soon afterwards in 1974, AKNS [8] developed a general framework for
finding integrable systems solvable by what they called the inverse scattering transform (IST). The method
was associated with classes of equations (later called recursion operators) and was used to solve the initial
value problem with rapidly decaying data on the line.

To solve a nonlinear equation using the IST, a nonlinear wave equation is first related [9]-[11] to a
compatible linear scattering, or spectral, problem or Lax pair, denoted by v, = Xwv, and an associated
linear time evolution equation, denoted by v; = T'v. The operator X has a function (or functions) called a
potential (or potentials). The operator X and the associated linear time evolution operator, denoted by T,
are mutually compatible with the nonlinear wave equation that the potential satisfies. Here, we let ¢(z,t)
denote the potential (solution) of the nonlinear equation.

The idea in [8] was to consider the scattering problem

B ( —ik o q(=,t) ;
vy = Xv= (r(x,t) i ) , (1.1)

where v(z,t) = (vi(2,t),v2(x,1))T, k is a time-independent spectral parameter, and q(x,t) and r(z,t) are
complex-valued functions of the real variables z and ¢. Associated with AKNS scattering problem (1.1) is
the time evolution equation

vy =T, (1.2)

where the 2x2 matrix T is a function of ¢(z,t), r(z,t), and the spectral parameter k. Different matrices 7'
yield different coupled partial differential equations for ¢(x,t) and r(x,t) from the compatibility condition
Uzt = Vg, Under a certain relation between ¢(z,t) and r(z, t) (also called symmetry reduction), the resulting
system is compatible and leads to a single integrable evolution equation for ¢(z,t) or r(z,t). An important
example is the NLS equation

iq = Qoo — 20|q]?q, o =FL (1.3)

Many investigations of the IST treat initial-value problems with rapidly decaying data, for example,
q(z,t), r(x,t) — 0 rapidly as © — oo (see [9]-[11]). But there has been keen interest in other NLS-type
problems with nonzero boundary conditions (NZBCs). The first study using NZBCs was developed for the
NLS equation [12]. The original method for solving the inverse problem for NZBCs used two Riemann
surfaces associated with square-root branch points in the eigenfunctions (scattering data). An important
improvement involved introducing a uniformization variable [13]. This transforms the inverse problem into
a more standard inverse problem in the upper/lower half-planes in the new variable. Subsequently, several
researchers studied the NLS equation and related problems in this manner (see [14]-[21]), thus substantially
enhancing the applicability and range of the IST method.

New nonlocal symmetry reductions for the AKNS scattering problem were recently identified [22].
These include (here o = F1)

o 1(z,t) = oq* (z, —1),

o 1(1,t) = oq* (=, 1),

o r(z,t) = oq(—x,—t), and
o 1(1,t) = oq* (—z, —t).
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Each of these symmetry reductions leads to new classes of nonlocal nonlinear integrable equations and new
types of inverse problems. The IST with decaying data was constructed for many associated equations [22].
An important example is the PT-symmetric NLS equation [23], [24]. A nonlocal PT-symmetric Davey—
Stewartson equation was also analyzed [25]. We recall that an evolution equation is said to be PT-symmetric
if it is invariant under the combined action of the parity operator P(x — —x) and the time-reversal
symmetry (complex conjugation) T. The IST with NZBCs has so far only been considered for the PT-
symmetric case r(x,t) = oq*(—x,t) [26], i.e., for the PT-symmetric NLS equation

iGe = Qoo — 20¢% (2, t)q" (—2,t), o= Fl. (1.4)

In addition to PT-symmetric NLS equation (1.4), corresponding to the symmetry reduction r(z,t) =
oq(—x, —t), the integrability of the nonlocal reverse space-time (RST) NLS equation

iqi(x,t) = quo(x,t) — 20¢°% (2, t)q(—x, —1) (1.5)

was also established, and the IST for rapidly decaying boundary conditions (BCs) was developed [22]. Tt
is remarkable that this equation is such a simple modification of NLS equation (1.3). We mention two
aspects of RST NLS equation (1.5). First, o need not be only +1; it can be anywhere on the unit circle,
ie., 0 = e 0 c R. Second, unlike the NLS equation or PT-symmetric NLS equation, the coefficient o
can be scaled away in this case. Namely, transforming (1.5) by ¢ — (—1/0)'/?¢ allows considering only the
case 0 = 1 without loss of generality.

Although the IST under the symmetry reduction r(z,t) = oq(—x, —t) was analyzed for decaying data,
the IST for the nonlocal RST NLS equation with NZBCs is still new and open. There are significant
differences between this case and the PT-symmetric case considered in [26]. These nonlocal systems exhibit
many interesting differences from their local counterparts.

The solution process via IST employs direct and inverse scattering. It can be briefly described as
follows. From a suitable initial condition for the potential g(x,¢ = 0), the data is transformed via the direct
scattering problem X into the scattering data S(k,¢ = 0). The associated operator T' determines the time
evolution of the scattering data S(k,t) for any ¢ # 0. Via inverse scattering, the scattering data at any time
t is then used to reconstruct eigenfunctions from linear integral equations, and the solution of the nonlinear
evolution equation ¢(z,t) is recovered from this information.

While IST has been used to solve (linearize) the Cauchy initial-value problem with decaying and, in
some cases, nonzero boundary values at infinity for numerous nonlinear equations, the method with NZBCs
is more difficult because of more complex branching structure of the associated linear eigenfunctions.

Here, we analyze the direct and IST associated with the nonlocal RST NLS equation with the NZBCs

q(z,t) — qoei(%qg”ei)7 x — o0, (1.6)
where 0 +60_ =0 and 61 +60_ = m. We note that some properties of the NZBCs associated with RST NLS
equation (1.5) can be obtained directly. If we assume that ¢ — ¢+ (t) as x — £o0, then Eq. (1.5) yields

iqz,4(t) = —204% (t)az (). (L.7)
This implies that
q+(t)q—(—t) = Co = const, (1.8)
and (1.7) is hence simplified to
iqe +(t) = —20CHq+ (). (1.9)
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This equation has the solution
g+ (t) = |gu(0)|e* 70T, (1.10)

where 64 are constant. Because Cy = |q4(0)] - [¢_(0)] - €’@++0-) if 6, +6_ = 0 or 6, +60_ = 7, then
Cy is real. Otherwise, it is complex, and the background either grows or decays exponentially as |t| — oo.
Without loss of generality, we take ¢+ (0) = ¢o = const.

In Sec. 3, we find the nonsingular dark one-soliton solution with c =1 and 6, +6_ =0

q062iq§t[ei9+ . e2q0wsin 04 + e~ 10+ . equtsin(29+)]

(1.11)

q(a:, t) - e2qox sin 04 + equt sin(2604)

In Sec. 4, we show that there is no corresponding exponentially decaying one-soliton solution with o =1

and 04 + 0_ = 7 because a single eigenvalue is found in the continuous spectrum. The simplest decaying

pure reflectionless potential generates a two-soliton solution. There are nonsingular two-soliton solutions.
In Sec. 5, we show that there also exist solutions for the nonlocal RST NLS equation satisfying the

spatially dependent BCs

i(at+Bz+0+)

q(z,t) — qoe as ¢ — +00, (1.12)

where both « and 3 are real. We verify the Galilean invariance for the classical NLS equation.

We can also find novel types of solutions of the above equations that are singular along space—time
lines (see [27]).

Finally, we emphasize that the IST for NZBCs associated with the novel nonlocal RST NLS equation
leads to new solutions; the boundary-value problems studied here extend the technique and applicability of
the IST method.

2. The RST NLS equation: Compatible linear system

Nonlocal RST NLS equation (1.5) is associated with the 2x2 compatible systems

vy = Xv = < ik Q(%t)) v, (2.1)
oq(—x,—t) ik

vr = T — ( 2ik? +ioq(z,t)q(—z, —t) —2kq(x,t) —igy(z,t) ) ; (2.2)
—20kq(—x, —t) — oiqy(—x, —t) —2ik? —ioq(x,t)q(—x, —t)

Such compatibility relations are well-known (see [8], [9]).
We see that as ©z — Fo00, the eigenfunctions of the spatial scattering problem asymptotically satisfy

v —ik eilat+0+) v
1 _ ' do 1 ’ (2.3)
v2) oqoe(—ottos) ik Vg

where a = 20¢? (see Eq. (1.6)).
3. Nonlocal RST equation: 0 =1 and 6, +60_ =0

3.1. Direct scattering. In this section, we consider the NZBCs given above in (1.6) with ¢ = 1 and
04 + 6_ = 0. With this condition, Eq. (2.3) conveniently reduces to

82vj
Oz

=—(K* =g, j=1.2 (3.1)
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Each of the two equations has two linearly independent solutions e** and e~ ** as |z| — oo, where
A = /k? — g2. The variable k is then considered to belong to a Riemann surface K consisting of two sheets
Cy and Cy with the complex plane cut along (—oo, —go] U [qo, +00) and its edges glued such that A(k) is

continuous through the cut. We introduce the local polar coordinates
k—qozrlewl, 0§91<27T, ]€+q0:7‘2€i92, —7T§92<7T, (32)
where 1, = |k — qo| and r2 = |k + qo|. The function A(k) then becomes single-valued on K, i.e.,

s = [ = (r1ra) /2402012 ke Cy, s
/\g(k) = —(r1r2)1/2ei(91+92)/27 k e Cs.
Moreover, if k£ € C1, then Im A > 0, and if & € Cq, then Im A < 0. Hence, the variable \ is considered to
belong to the complex plane consisting of the upper half-plane Uy (Im A > 0) and the lower half-plane U_
(Im A < 0) glued together along the real axis; the transition occurs at Im A = 0. The transformation k — A
maps C; onto Uy, Cs onto U_, the cut (—oo, —qp] U [go, +00) onto the real axis, and the points +¢g to 0
(see Figs. 1 and 2 on p. 6 in [26]).

3.2. Eigenfunctions. It is natural to introduce the eigenfunctions defined by the BCs
bz, k) ~ we™ A, o(x, k) ~ W (3.4)

as ¢ — —oo and
U(z, k) ~ vet®, (2, k) ~ Te A (3.5)

as ¢ — +oo. We substitute them in (2.3) and obtain

A+ k —iq— —1i A+ k
w = ) s w = q , V= 4+ , U= ] , (36)
iq+ A+ k A+ k iq—

which satisfy the BCs. These BCs reduce to the well-known BCs in the decaying case. We remark that the
functions ¢4 and ¢_ are in fact functions of time: g1 = g4 (—t) and ¢— = ¢_(¢) for w and w whose BCs are
evaluated at —oo, and ¢4 = ¢+ (t) and g— = ¢_(—t) for v and T whose BCs are evaluated at +oo. But for
the purposes of this section, the precise time dependence is unimportant, and we therefore use a simpler
notation and omit the explicit time dependence.

In the following analysis, it is convenient to consider functions with constant BCs. We define the

bounded eigenfunctions as

M(z, k) = e ¢(x, k), M(z, k) = e ™ ¢(x, k),
(3.7)
N(x,k) = e (e, k), N(z,k) = e (a, k).
The eigenfunctions can be represented using the integral equations
Atk Foo
M(ka) = < . ) + G_(a:—x/,k)((Q—Q_)M)(a:',k) dmlv
14+ —o0
Ten=( ")+ [T i@ - e na
x, k) = Atk n _(x—a, _ x, X
(3.8)
—iq+ e ’ ’ ’
N(z, k) = ( ) + Gy(r— 2, k)((Q — Q+)M)(z', k) da’,
Atk —0
Atk Too , , ,
N, k) = ( p ) # [ Calo = B(Q ~ QM) (@ k) da.
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Using the Fourier transform method, we obtain

G_(z, k) = %[(1 + e2ANNT — (&2 — 1) (ikJ + Q)]

G_(z,k) = %ﬁ)[(l + e TN 4 i(e 2N — 1) (ikJ + Q)]

Gy (z,k) = —9(2_;) (14 e 22N 4+ i(e™ 227 —1)(ikJ 4+ Q)] o
Gt k) = ~ 208 (14 @o)0T — (N 1) (kT + Q4 )],

2

where 6(z) is the Heaviside function, i.e., 8(z) =1if 2 > 0 and §(z) =0 if z < 0.

Definition 1. We say that f € LY(R) if fj;f|f(x)|da: < oo, and we say that f € LYNV(R) if

_Jr;o |f(z)] - (1 + |z))N dz < oo, where N =1,2,... is a given positive integer.

We then have the following result.

Theorem 1. Let the elements of Q — Q+ belong to L'(R). Then for each x € R, the eigenfunctions
M (x, k) and N(z,k) are continuous for k € Cy \ {#qo} and analytic for k € Cy, and M (z,k) and N (z, k)
are continuous for k € Co \ {£qo} and analytic for k € Co. In addition, if the elements of Q — Q+ belong
to L2(R), then for each x € R, the eigenfunctions M (x,k) and N(x,k) are continuous for k € C; and
analytic for k € Cq, and M (x,k) and N(z, k) are continuous for k € Cy and analytic for k € Cy. Here, C;,
j =1,2, are the closures of C;, j =1, 2.

The proof uses Neumann series with Im A > 0 or Im A > 0 appropriately; it is similar to the proof
in [26].

Remark 1. Similarly to Theorem 3.2 in [26], we can rewrite the Green’s functions in terms of the

projectors. For example,

— Atk ¢ - 2iX(z—z") p— _ ’ ’
Mz, k)=| |+ P2\ +e PLI(Q — Q-)M)(a', k) dx', (3.10)
—1q, —00
where
1 (A+EkE ¢ 1 (AN—k —i
PE (k) = — ) Prey= =) (3.11)
2A \ igx A—k 2X \—igz A+ k

To extend the continuity property tot k = £qo, we rewrite P, + e**@=2) P~ ag [, 4 [2A =) _1]p
and use the estimate

112 + [e22@==) 1P| < 1+ 2]z — /|- [k| <

< max{1,2|k[}(1 + |2)(1 +|2'|) < max{1,2|k[}(1+ |z|)?, (3.12)

and the elements of @ — @+ belonging to LY?(R) are therefore required.
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3.3. Scattering data. The two eigenfunctions ¢, ¢, 1, 1 are linearly independent. Indeed, if
u(x, k) = (ui(z, k), us(z, k)T and v(x, k) = (vi(z, k), v2(x, k)T are any two solutions of (2.1) for o = 1,
then we have

d
%W(u,v) =0, (3.13)

where the Wronskian W (u,v) of v and v is given by W(u,v) = ujvs — ugvy. It follows from asymptotic
formulas (3.4) and (3.5) that

W(6,3) = lim W(o(x, k), dlz, k) = 2(A+ ) (3.14)
W(, ) = Tim W, k), (@, k) = =2\ + k), (3.15)

which proves that the functions ¢(x, k) and ¢(x, k) are linearly independent, as are ¢ and 1), with the only
exception being the branch points +¢o. Hence, we can write ¢(z, k) and ¢(z, k) as linear combinations of
Y(x, k) and ¥(x, k), or vice versa. Therefore, the relations

oz, k) = b(k)(x, k) + alk)y(z, k), (3.16)
(x, k) = a(k)(x, k) + b(k)Y(z, k) (3.17)

hold for any k such that all four eigenfunctions exist. Combining (3.14) and (3.15), we can deduce that the
scattering data satisfy the characterization equation

a(k)a(k) — b(k)b(k) = 1. (3.18)

The scattering data can be represented in terms of Wronskians of the eigenfunctions, i.e.,

) = WO R0 k) W (. k), v(a, )
W (p(x, k), ¢(x, k)) 2AAN+ k) ’
ath) — WO R G k) W(gla, b). 9. k)
W(p(x, k), (z, k)) 2A(A+ k) ’
_ B (3.19)
by — WO R 9@ R) W k), (. k)
W (b (x, k), (x, k) 2A(N+ k) ’
E(k) _ W(¢Z($, k)a "/J(CCv k)) _ W((;;(CC, k)a "/J(xv k))
W((z, k), ¥(x, k)) 2A(N+ k) '

We then obtain the following theorem from the analytic behavior of the eigenfunctions.

Theorem 2. Let the elements of Q — Q+ belong to L'(R). Then a(k) is continuous for k € C; \ {£qo}
and analytic for k € Cy, and a(k) is continuous for k € Cy \ {£qo} and analytic for k € Cy. Moreover,
b(k) and b(k) are continuous in k € (—00, —qo) U (qo, +00). In addition, if the elements of Q — Q+ belong
to L¥2(R), then a(k)\(k) is continuous for k € C; and analytic for k € Cy, and a(k)\(k) is continuous for
k € Cy and analytic for k € Ca. Moreover, b(k)A(k) and b(k)\(k) are continuous for k € R. If the elements
of Q — Q4 do not increase faster than e~ where a is a positive real number, then a(k)A(k), a(k)A(k),
b(k)A(k), and b(k)A(k) are analytic for k € K.
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The proof of Theorem 2 follows from the Wronskian relations (also see [26]).
We note that (3.16) and (3.17) can be written as

wlz, k) = p(k)e* * N (z, k) + N(z, k), i(z, k) = N(z, k) + p(k)e 2 N (z, k), (3.20)

where p(a, k) = M(z, k)a~' (k), iz, k) = M(x, k)a~" (k). p(k) = b(k)a~" (k). and p(k) = b(k)a " (k). We
introduce the 2x2 matrices

my(z, k) = (p(z, k), N(z, k)), m_(x, k) = (N(Cf,k),ﬂ(ff,k)), (3.21)
which are respectively meromorphic in C; and C,. Hence, we can write the Riemann-Hilbert problem or
“‘jump” conditions in the k plane as

(3.22)

—o(k)p(k) —p(k)e 2ire
m+(x’k)_m—($ak)=m—(x,k)< p(k)p(k) - —p(k) )

p(k)eQiAm 0

on the contour X: k € (—o00, —qo] U[go, +00). We recall that ImA > 0 on Cy, Im A < 0 on Co, and ImA =0
on X.

3.4. Symmetry reductions. The symmetry in the potential induces a symmetry between the eigen-
functions. Indeed, if v(z, k) = (vi(z, k), vo(z, k))T solves (2.1) for 0 = 1, then (va(—2, k), —vi(—x, k)T also
solves (2.1) for ¢ = 1. Taking BCs (3.6) into account, we can obtain

0 —1 _ 0 1\ -
Y(z, k) = o(—z,k), Pz, k)= (=, k). (3.23)
1 0 -1 0
Using (3.7), we can obtain the symmetry relations for the eigenfunctions, i.e.,
0 -1 _ 0 1\__
N(z, k) = (1 0) M(—=z, k), Nz, k) = ( ) O) M(—=x,k). (3.24)

From the Wronskian representations for the scattering data and the above symmetry relations, we obtain
b(k) = b(k). (3.25)

3.5. Uniformization coordinates. Before discussing the zeros of the scattering data and solving
the inverse problem, we introduce a uniformization variable z defined by the conformal map

z=z(k) =k + k), (3.26)

where A = \/k? — ¢Z and the inverse map is given by k = k(z) = (2 + ¢3/2)/2. Then \(z) = (2 — ¢¢/2)/2.
We observe that

1. the upper sheet C; and the lower sheet Cq of the Riemann surface K are mapped onto the respective
upper half-plane C* and lower half-plane C~ of the complex-z plane,

2. the cut (—o0, —qo] U [go, +00) on the Riemann surface is mapped onto the real-z axis, and

3. the segments [—qo, o] on C; and Cs are mapped onto the respective upper and lower semicircles of
radius qo centered at the origin of the complex-z plane.

It follows from Theorem 1 that the eigenfunctions M (z, z) and N(x, z) are analytic in the upper half-
plane, i.e., z € CT, and M (z, z) and N(x,z) are analytic in the lower half-plane, i.e., z € C~. Moreover,
according to Theorem 2, a(z) is analytic in the upper half-plane (z € CT) and a(z) is analytic in the lower
half-plane (z € C).
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3.6. Symmetries via uniformization coordinates. From the eigenfunction symmetries above, we

B 0 -1 - B 0 1\ - 3.97
¢($,2’)— 1 0 ¢(—$,2’), 1/’(33,'3)— 10 ¢(—$,Z). ( )

obtain

Further, (k,\) — (k,—)) as z — ¢3/2. Hence,

¢<x,ﬁ): /% 500 2), ¢(x,‘i—3)=‘iqw<x,z>, hnz <0, (3.28)

z —iq_

Similarly, we can obtain

0 -1 _ 0 1\__
N(z,z) = <1 O) M(—=x,z), N(z,z) = <_ ) M(—=z,2),

(3.29)
b(z) = b(2), a(ﬁ> = ¢%+G(z), Imz <0, b<q—°) — b(2).

z z

3.7. Asymptotic behavior of eigenfunctions and scattering data. To solve the inverse problem,
we must determine the asymptotic behavior of the eigenfunctions and scattering data both as z — oo and
as z — 0. From the integral equations (in terms of Green’s functions), we obtain

B L4(@)
N(xaz) ~ q+ )y R 07
1q—
) 1, z — 00, a(z) 1, z — 00, (3.30)
a\z) = alz) = .
e+ 2 -0, e 20+ 2 0,

lim zb(z) =0, lim o)

Z—00 z—0 22

=0. (3.31)

3.8. Riemann—Hilbert problem via uniformization coordinates.

3.8.1. Left scattering problem. To take the behavior of the eigenfunctions into account, we can
write the “jump” conditions at the real-z axis as

M(ZIJ,Z) _ N(ZIJ,Z) _ p(z)ei(zfqg/z)m N(ZII,Z)

za(z) z z
. . (3.32)
M(xVZ) _ N(iC,Z) — (2 efi(zfqg/z)wN(sz)

za(z) z P(z) z

and the functions are hence bounded at infinity, although they have an additional pole at z = 0. We note
that M(z,z)/a(z) as a function of z is defined in the upper half-plane C*, where it by assumption has
simple poles z;, i.e., a(z;) = 0, and that M(z,z)/a(z) is defined in the lower half-plane C~, where it has
simple poles Z;, i.e., a(Z;) = 0. Indeed, this is similar to the case of the NLS equation where a(z) and
a(z) can have multiple zeros and/or zeros on the real axis [8]. The notion of “proper zeros” omits these
nongeneric possibilities. At zeros of a and a, we have

M (z, 2;) = b(z;)e'Z5~%/%)* N (2, z,), M(x,z;) = b(z;)e "G~ %/%)oN (2, 7). (3.33)
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Subtracting the values at infinity, the induced pole at the origin, and the poles (assumed to be simple) in

the respective upper and lower half-planes at a(z;) =0, j =1,2,...,J, and a(z;), j =1,2,...,J (we later
see that J = .J), yields

M(z,2) (1) 1[0} J M(z, zj) B
{ za(2) <0> z <z’q> ; (Z—Zj)zja’(zj)]

C[N(,2) (1Y 1[0 L b(z))ei=a /20N (2, 2,)]
[ z (0) Z(z’q) 2 (2 = 2j)zj0'(2)) -

- N
= p(z)el(z—qg/z)fﬂ7 (3.34)

C[N@2) (0} 1 (—ias) R bE)e G N z)]
- (-2 00) % :

(z — zj)z;d/ (%)

j=1
: N
= ﬁ(z)eﬂ(zfqg/zw@. (3.35)
We now introduce the projection operators
L™ f©
P = —r ¢, 3.36
L6 = 3 | e (3.36)

which are well defined for any function f(€) that is integrable on the real axis. If f1(£) is analytic in the
upper and lower z plane and decays at large £, then

Pi(f2)(z) = £f+(2),  Px(f2)(2) = 0. (3.37)

Applying P_ to (3.34) and Py to (3.35), we can obtain

- z 2b(z;)etzi— /2T N T, 2;
N(z,2) = (iq_>+z (J)(Z :2)

= — 2j)zj0(25)

z [T p()
Tomi ) EE-2)

; (5 Ne—i(Z—a2 )5 TN (o =
N(z, 2) = <—ZQ+> +Z zb(Z;)e (%i—a0/%5) N(z, %)) B

(z — zj)z;0 (%5)

690/ N (¢, €) de, (3.38)

e IE G /IOTN (1, €) de. (3.39)

Because the symmetries are between eigenfunctions defined at both +oo, we proceed to obtain the
inverse scattering integral equations defined from the right end.
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3.8.2. Right scattering problem. The right scattering problem can be written as

¢($,2’) = a(z)&(x,z)—l—ﬁ(z)qS(a:,z), 1/7)(33,25) :@(z)(b(a:,z)—kﬁ(z)(ﬁ(a:,z), (340)

where a(z), a(z), B(z), and 3(z) are the right scattering data. Moreover, we can obtain the right scattering
data and left scattering data satisfying the relations

a(z)=a(z),  a(z)=alz), PBlz)=-bz),  B(z)=-0b(2). (3.41)

Thence, by the symmetry relations for the scattering data, we have

N(QZ,Z) _ M(QZ,Z) :p*(_z*)e—i(z—qg/z)r‘]\4(:1:7Z)7

za(z) z z
. . (3.42)
Ngx,z) _ M(!E,Z) :,6=o<(_z*)ei(zfqg/z)w]\4'(x7’z)7

za(z) z z

and the functions are hence bounded at infinity, although they have an additional pole at z = 0. We note
that N(z,z)/a(z) as a function of z is defined in the upper half-plane C*, where (by assumption) it has
simple poles z;, i.e., a(z;) = 0, and that N(x,2)/a(z) is defined in the lower half-plane C~, where it has
simple poles Z;, i.e., a(Z;) = 0. At the zeros of @ and @,

N(z,zj) = —b(z;)M(z, zj)e*i(zj*qg/Zj)w7
(3.43)

Nz, z;) = —b(z;) M (x, 2;)e' 75 —90/7)7

As before, subtracting the values at infinity, the induced pole at the origin, and the poles (assumed to be

simple) in the respective upper and lower half-planes at a(z;) =0, =1,2,...,J,and a(z;), j = 1,2,...,J,
then yields

1 (—ig-\ N(z, z;) B
Z( 0 ) Z(Z—Zj)zja’(zj)]

Jj=1

C[M(z,z) [0\ 1 [—ia-\ s bz M(w, zy)e B mab/z)e]
{ z <1> Z( 0) Z (2 = 2j)zj0' (%) a

:p*(_z*)efi(zfqg/z)m M(j’Z)a (344)
_(a:,z)_ Ly 1700 J N(z,z;)
{ za(z) <0 z (iq+> J:Zl (z — zj)z;a (Zj)]
MGz (1) 10 o) (e, 5B
{ Z (0) z (iq+> j; (z — zj)z;a' (%)) B
_ ﬁ*(_z*)ei(z—qg/z)mﬁ(:az). (345)
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Applying P_ to (3.44) and Py to (3.45), we can obtain

_ —3 b e—i(zi—a5/)x
M(z,z) = < q>+z Mz, 2)e ’ +

T o)yl

2 [T (D) ieqzrorn
+27TZ - é-(é-_z)e E M(xag)dga

(3.46)

oz [T (=9
2mi ) oo €€ -
3.9. Recovering the potentials. We use asymptotic formulas to reconstruct the potential. For
example, we obtain N1(z,z)/z ~ q(x)/qs as z — 0 from Eq. (3.30). From (3.38), we can obtain

ei(ffqg/é)wﬂ(x’ €) de.

N zz] qO/zJ)w
L7 p(8) ite-a2/e)
— —e' 0/S)T N 4
to [w e e 1(z, &) d€ (3.47)
as z — 0. Hence,
J
121 qo/ZJ)I
N .
q l: ; —Z a ZJ) 1(37)2:])_'_
1 [t

1 p&) pilE—a3 /O
57 | G O € de | (3.48)

3.10. Closing the system. From a(¢?/z) = e*%+a(z), we obtain J = J. Combining integral
equations (3.38) and (3.39) previously obtained, we obtain

Ny(z,2) —iqy 2b(z;)e " Zi~ % /%)
(Ng(x,z)> < >+JZ_; a(z)

eilzi—a5 /=) Z; oo i
H—Z zﬂ/l Nz + o2 [ 2L i/, ) de

i — z1)za (z1) 2mi J_oo E(€ - %))

>< J—
iba)eir a0 Z /+°° P& ite—a/e)
N. 2 P& ie-aoay
Zq + Z Z] — Zl 214 (Zl) 2($;Zl) + 27‘['7, o é_(é_ — éj)e 2(3})5) dg
+oo  ~
_ PO _ie—gz/0)
27Ti —00 6(6—2)
bz et a0 3 /+°° P)  itn—a/m)

+ N T,z —|—— 76177 q5 nmN z, d

X ‘ zz; (€ —z)za' (1) =) omi | n(n—€) 1(@,m) dn

3.49
z (z1— qO/zl)w 400 p(n) ( )

fb Zl 5
iq- +lz; (& —z1)zad (z1) NQ(x’Zl)_F%[OO n(n —§)

Potential (3.48) can be reconstructed from the solution of integral equation (3.49).
We can obtain an analogous equation for M (z, z) [27].

1=/ N (22, ) dny
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3.11. Trace formula. We have shown that a(z) and a(z) are analytic in the respective upper and
lower z planes. As mentioned above, we assume that a(z) has simple zeros, which we call z;. From the
symmetry relation a(q3/z) = e?"+a(z), we can deduce that a(z) has simple zeros ¢2/z;. We set

Z—Zj

z—qo/z]

2 —q3 /2
2() = a(e) [[ 2Rl () = a(e)

(3.50)
j=1 Z—Zj

h,.:]g

Then v(z) and 7(z) are analytic in the respective upper and lower z planes and have no zeros in their
respective half-planes. We can obtain

1 [T logn(€) L [T logF(€)
1 — — = I
ogy(z) = 27”/00 £, dg, 27ri/,oo c . d¢ =0, Imz>0,
. . (3.51)
iy L [T logF(§) 1 / = log’y(ﬁ)
log7(2) = o [w £z dg, o £ d¢=0, Imz<0.
Adding or subtracting these equations in the corresponding half-plane, we obtain
1 [T ~
logv(2) = / Mdf, Imz >0,
27i E—z
. (3.52)
logﬁ(z):—i_/ Mdf, Imz < 0.
2m ) -z

We note that v(z)¥(z) = a(z)a(z), and from the unitarity condition a(z)a(z) — b(z)b(z) = 1 and the
symmetry b(z) = b(z), we obtain

J oo
loga(z)zlog(H B )Jri,/+ g1+ 5€) 4 1z,

z—qi/z 2mi E—2
(3.53)

J [e'S)
loga(z)zlog(l_lig/zj)—ﬁ/Jr w&, Imz < 0.

Hence, we can reconstruct a(k) and a(k) in terms of the eigenvalues (zeros) and only one function b(k).
Because a(z) ~ e?%+ as z — 0, from the trace formula when b(¢) = 0 on the real axis, we obtain the
constraint on the reflectionless potentials

H 22 = g2 %0+ (3.54)

3.12. Discrete scattering data and their symmetries. To find reflectionless potentials (solitons),
we must calculate the relevant scattering data: b(z;) and b(z;), a'(z;) and @ (z;), j = 1,2,...,J. The latter
functions can be calculated via the trace formulas. We therefore concentrate on the former. Because

Ni(z,2) = —Ma(—zx, 2), No(z,z) = Mi(—z, 2),
M (z, 2j) = b(z)e'Gi—90/2)% N, (x, z), (3.55)
Ms(z, zj) = b(z))e iz qO/Z])wNZ(m zj),
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we have

Ni(z,zj) = —b(zj)e*i(zj*qg/zf)””Ng(—x,zj),

Na(, 2j) = b(z;)e™ G590/ 2" Ny (=z, 2).

Rewriting (3.57), we obtain
No(—z, 2;) = b(zj)e(zf_qg/zj)r]\h (x, z).

Combining (3.58) with (3.56), we can deduce the symmetry condition on the discrete data b(z;)
— bz(zj) =1.
A similar analysis shows that b(Z;) satisfies an analogous equation —b%(z;) = 1, i.e.,
b(z;) = +i, b(z;) = i.

By the symmetry relation b(z) = b(z), we have b(z;) = b(z;) and b(z;) = b(2;).

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

For J = 1, assuming that 0 < §, < 7, we have z; = goe’?+. By the trace formula with b(¢) = 0 on the

real axis, we obtain
1

qo(e’i9+ _ e—i9+)’
1
qo(e—’i9+ _ e’i9+) !

d'(z1) = ' (qoe’*) =

@ (21) = o/ (qoe ") =

Moreover, from the symmetry relation b(g2/z) = —b(z), we obtain
b(goe™"+) = —b(goe™*).

For convenience, we write b(goe’®+) = 6, and then b(goe~"%+) = —6i, where § = +1.

3.13. Time evolution. Because

2ik? +iog? —2kqoei(2o9t+0) A B
v ="Tv= ) N V= v,
—20kqoe’ (270t H0+) —2ik? +ioqd

where o = 1, we find that both a(z,t) and a(z,t) are independent of time and

b(z;t) = b(z;0) exp{—?i {qg + %(22 - Z—é)]t}

B(2:1) = (2 0) exp{Zi [qg + %<22 - g—é)]t}

Hence,
b(qoe™®+;t) = §i exp{—2ig2[1 + isin(26,)]t},
b(goe "+ t) = —diexp{2iga[1 — isin(20,)]t}.
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Fig. 1. The amplitude of the one-soliton solution ¢(x,t) plotted as a function of z and ¢ with the
parameters o0 =1, § =1, 4 = 7/3, and qo = 2.

3.14. Pure one-soliton solution. With J =1 and b(,t) = 0 (reflectionless potential), from (3.49)
by solving the corresponding Eq. (3.48) (which is a linear system), we obtain

2¢sinf.b Oei‘9+;t e*2q0wsin9+
q(z,t) = qo€’ _ +b(q )

2at+64) |1 ,
q06219+

Ni(z, qoe’+3t) ], (3.66)

where 202 )
. 4 ei 2q5t+04) _ €i9+ e—2q0:E sin 9+B e—i9+ ; t
Ny (, goe?+) = —L0 — qoere T blao ). (3.67)
1 — e—4qoxsin 04 b(q0619+ : t)b(qoe—19+ : t)

Solving the corresponding discrete system (3.49) with J = 1, we find that there is a nonsingular pure
one-soliton solution only with § = 1, which is given by

1 . ) .
q(z,t) = §q061(2qgt+9+)[(1 +e720+) 4 (1 — e %% ) tanh(qgox sin O, — gatsin(204))]. (3.68)

We display a typical nonsingular one-soliton solution in Fig. 1.
4. Nonlocal RST NLS equation: 0 =1 with 0, +60_ ==

4.1. Direct scattering. In this section, we consider the NZBCs given in (1.6) above with ¢ = 1 and
0+ + 6_ = w. Under this condition, Eq. (2.3) conveniently reduces to

2.
0%v;

2%y =12 (@)
Each of the two equations has two linearly independent solutions e"** and e~ as |z| — oo, where we
introduce the local polar coordinates
; i0 T 3T ; i0 4 3T
k—iqo =rie™t, —§§01<7, k4 iqo = ree'?, —§§92<7, (4.2)

with 71 = |k — igo| and ro = |k +igo|. We can write A(k) = (r179)/ 2?01 +02)/24m™ with ymy = 0,1 and the
respective sheets I (K;) and II (Ky). The variable k is then considered to belong to a Riemann surface K
consisting of sheets I and II, both coinciding with the complex plane cut along ¥ := [—iqq, iqo] with its edges
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glued such that A(k) is continuous through the cut. Along the real k axis, we have (k) = £sgn(k)+\/k? + ¢3,
where the plus and minus signs apply on the respective sheets I and II of the Riemann surface and where
the square root sign denotes the principal branch of the real-valued square root function. We let C* and
C~ denote the open upper and lower complex half-planes and K™ and K~ denote the open upper and lower
complex half-planes cut along ¥. Then A\ provides one-to-one correspondences between the sets

1. ke Kt =C*\ (0,igo] and A € C*,

2. ke KT =RU{is—0T:0<s<q}U{igp}U{is+0T:0<s<go}and A € R,

3. ke K- =C \[~igo,0) and A € C~, and

4. ke K- =RU{is — 0" : —qo < s <0}U{—igo} U{is+0":—qgy<s<0}and A € R.

Moreover, AT (k) and A~ (k) denote the boundary values taken by A(k) for k € ¥ from the right and
left edges of the cut with A\ (k) = £1/¢2 — |k|?, k = is £ 07, |s| < go on the right and left edge of the cut
(see Figs. 5 and 6 on p. 30 in [26]).

4.2. Eigenfunctions. As in Sec. 3, we introduce the eigenfunctions ¢(z, k), ¢(x,k), ¥(z, k), and
Y(z, k) defined by their BCs. We substitute them in (2.3) with o = 1 and from (3.5) and (3.6) obtain

A+ k —iq— —1i A+ k
w = ) s w = 4 , v = &+ , U= ] , (43)
iq A+ k A+ k iq—

where A = \/m. We also consider functions with constant BCs and define the same bounded eigen-
functions M (z,k), N(z,k), M(z, k), and N(z,k) defined as in (3.7) with the new definition of \.
Moreover, the bounded eigenfunctions can be represented using integral equations with the same for-
mulas as (3.8) but with the different definition of A given above.
Using similar methods as in the preceding case (04 + 6_ = 0), we obtain the following result.

Theorem 3. Let the elements of Q — Q+ belong to L*'(R). Then for each x € R, the eigenfunctions
M (z,k) and N(x, k) are continuous for k € K+ U 0K~ and analytic for k € K+, and M (z,k) and N (x, k)
are continuous for k € K— UK+ and analytic for k € K.

The proof uses Neumann series and is similar to the proof in [26].

4.2.1. Scattering data. We have

oz, k) = b(k)Y (2, k) + a(k)y(x, k), oz, k) = a(k)(z, k) + b(k)p(z, k) (4.4)
for any k such that all four eigenfunctions exist. Moreover,
a(k)a(k) — b(k)b(k) =1, (4.5)

where the formulas for a(k), a(k), b(k), and b(k) are given in (3.19) but the definition of A given in this
section differs from the case in Sec. 3.

If k € (—iqo,iqo), then the above scattering data and eigenfunctions are defined using the corresponding
values on the right and left edges of the cut and are labeled with superscripts + as clarified below. Explicitly,
for k € (—iqo, iqo), we have

e = WO @R ot @ k) s WO k), 0 (@, k)
2AE(NE + k) ’ INEONE + k) ,

(4.6)

_ W(g* (2, k), o (x, k) oy WI(eE (@, k), v* (2, k)
b*(k) = ~ NE(NE+ k) b (k) = INE(ONE + k)

We then obtain the following theorem from the analytic behavior of the eigenfunctions.
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Theorem 4. Let the elements of Q — Q+ belong to L' (R). Then a(k) is continuous for k € K+ U
OK—\ {+iqo} and analytic for k € K*t, and a(k) is continuous for k € K- U 9K+ \ {+iqy} and analytic
for k € K~. Moreover, b(k) and b(k) are continuous in k € R U (—iqo,iqo). In addition, if the elements
ar2

of @ — Q4+ do not increase faster than e~ **" | where a is a positive real number, then a(k)\(k), a(k)\(k),
b(k)A(k), and b(k)A(k) are analytic for k € K.

The proof uses Neumann series and is similar to the proof in [26].

4.3. Symmetry reductions. The symmetry in the potential induces a symmetry between the eigen-
functions. Indeed, if v(z, k) = (vi(z, k), va(z, k))T solves (2.1) for o = 1, then (va(—x, k), —v1 (=, k))T also
solves (2.1) for ¢ = 1. Taking the BCs into account, we obtain

0 —1 _ 0 1\ _
’l/)(ﬂi, k) = <1 0) (b(_ka)a ‘/’(33, k) = <_1 0) d)(_ma k) (47)

We can similarly obtain the symmetry relations of the eigenfunctions, i.e.,

0 -1

— 0 1\ __
. O) M(—=z, k), N(x, k) = <_1 0) M(—x, k). (4.8)

N(x, k) = (
We obtain b(k) = b(k) from the Wronskian representations for the scattering data and the above symmetry
relations.

4.4. Uniformization coordinates. Similarly, we introduce a uniformization variable z defined by
the conformal map
z=2z(k) =k + \k), (4.9)

where A = \/k2 + g2 and the inverse map is given by k = k(2) = (2 — ¢3/2)/2. Then \(z) = (z + ¢3/2)/2.
We let C be the circle of radius qg centered at the origin in z plane. We note the following:

1. The branch cut on either sheet is mapped onto Cy. In particular, z(+igo) = +iqp from either sheet,
2(0F) = +qo and 2(03) = Fqo.

2. Ky is mapped onto the exterior of Cy, and Ko is mapped onto the interior of Cy. In particular,
z(oor) = oo and z(oorr) = 0. The first and second quadrants of K; are mapped into the respective
first and second quadrants outside Cjy; the first and second quadrants of Ky are mapped into the
respective second and first quadrants inside Cy; 21211 = qg.

3. The regions in the k plane such that Im A > 0 and Im A < 0 are respectively mapped onto DV = {2 €
C:(|]2]?-¢3) Imz >0} and D~ = {2z € C: (|2|> — ¢3) - Im 2z < 0} (see Fig. 11 on p. 36 in [26]).

We then find that the eigenfunctions M and N are analytic for z € Dt and the eigenfunctions M and
N are analytic for z € D™

4.5. Symmetries via uniformization coordinates. From the above eigenfunction symmetry re-
lations, we obtain

0 -1 _ 0 1\ _
Y(x,z) = <1 0) o(—x, z), U(x, z) = < ) o(—x, z). (4.10)
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Further, if 2 — —q2/z, then (k,\) — (k, —\). Hence,

¢<a:, —%3) - qfqﬁm,z), w(x, —?) — %&(:ﬁ,z), ceD (4.11)
Similarly, we obtain
N(z,z) = (0 _1> M(~z,2), N(z,2)= ( 0 1) M(-z,2), (4.12)
1 0 ~1 0
b(z) = b(2), (-%0) —e¥+a(z), ze D", b(—q—f) = —b(2). (4.13)

4.6. Asymptotic behavior of eigenfunctions and scattering data. To solve the inverse problem,
we must determine the asymptotic behavior of eigenfunctions and scattering data both as z — oo in Ky

and as z — 0 in Ky5. We have

B q(z)
N(xa Z) ~ q+ )y R 07
1q—
1, z — 00, 1, z — 00, (4.14)
a(z) = ‘ a(z) = ,
_6219+’ z—0, _67210+7 z—0,
, b(z)
Zhlg) zb(z) =0, lli% — = 0.

4.7. Riemann—Hilbert problem via uniformization coordinates.

4.7.1. Left scattering problem. To take the behavior of the eigenfunctions into account, we can

write the “jump” conditions at 3, where

6
X= (—OO, —(]0) U (qO; +OO) U (q07 —(]0) U {qOe , T < 0 < 271—}Clockwise, upper circle )

160
U {qOeZ , T S 0 S 0}countcrclockwisc7 lower circles

as
M(z, z) - N(z,z2) _ p(z)ei(erqg/z)wN(xvz)
za(z) z z
(4.15)

ngv Z) _ N(JZ, Z) _ p(z)e—i(z+qg/z)r N(ZIJ, Z) ’
za(z) z z
and the functions are hence bounded at infinity, although they have an additional pole at z = 0. We note
that M(z,z)/a(z) as a function of z is defined in D™, where (by assumption) it has simple poles zj, i.e.,

a(z;) =0, and M(z,z)/a(z), is defined in D~, where it has simple poles zj, i.e., a(z;) = 0. It follows that

Mz, 25) = b(z;)e' 5+ 0/ 507N (., 2,),
(4.16)

M(z, z;) = b(z;)e "Gt/ 77N (2, 7).

M
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Subtracting the values at infinity, the induced pole at the origin, and the poles assumed to be simple in D+
and D~ respectively at a(z;) =0, j =1,2,...,J, and a(z;), j = 1,2,..., J, yields

M(z,2) (1 _1{0Y) J M(z, 2;) B
{ za(z) <0> z <iq_> Z (Z—Zj)zja’(zj)}

[Nz (1) 1[0) L b(z;)eii+a0 /)% N (2, 2;) B
P () ) :

et (z = 25)zja' (2)

. N
— p(z)el(erq%/Z)wM, (4.17)
z

B N(z,z) B 0 _1 —iq B i [;(gj)efi(iﬂrqg/ij)zﬁ(x’éj)
z 1 z 0

(z — zj)z;0/ (%)

N(x,z)'

= p(z)e iztas/2) (4.18)

We now introduce the projection operators

PoOE) = 5 [ e e (4.19)

where z is in the + regions and

—_—

¥= (—OO, —(]0) U (qO; +OO) U (q07 —(]0) U {qoewa m < 0 < 271—}Clockwise, upper circle )

) {qOewa -7 S 0 S O}Counterclockwise, lower circle-
If fi(€) is analytic in D* and decays at large £, then

Pe(fe)(z) = £fx(2),  P(fx)(z) =0. (4.20)

Applying P_ to (4.17) and Py to (4.18), we obtain

— z zb(z»)ei(zﬁqg/zj)w]\f(x,z-)
N(z,z) = < iq_>+z J(z L+

= — 2j)z0/ (25)

K2 p(§)
2mi Jx £(€ = 2)

. J 5, (5402 /5 Ve T/ —
i NeiE 5N (. 7.
N(z,z) = < q+> +y Ee (=:2) _
z -

o (z — zj)z;0' (%))

IETT/OT N (1, €) de,
(4.21)

z (&)

_ = —i(E+a5 /)T
P S L
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We can similarly solve the right scattering problem, which is

. —q 7 7i(zx+q2/z-)w
- () g s

=1 — 2j)zd' (%)

P(=E") —ierad/e)a
27TZ Eé—(é— ) a M(QZ f)dga

_ (4.22)
- (1) o B
’ i) ‘= (z — zj)z;@' (%))
¢ [ P8 eradsongy
- = [ = M (z, €) dE.
2 Jy €€ 2)° (r:¢)
8. Recovery of the potentials. We note that as z — 0, Ny(z,2)/z ~ q(z)/qy,
AT J ; 2
Ni(z,2) bz e ez 1 / p(&)
A A | Ny — (£+qo/€)wN d 4.93
and we have
J l(zJJqu/ZJ)ﬂU
q{ g Gy )+
L/ (5) l(§+q0/§)wN (z,€)dE|. (4.24)
211 b é‘

4.9. Closing the system. We obtain J = J from a(—q3/z) = —e?¥+a(z). Combining the integral
equations of eigenfunctions, we obtain

Ni(z, 2) I A zB(%)e‘“Zﬁqg/fi)r
<N2(a:,z)> _< z >+Z (z — 2;)z;d' () )

i(zl+q2/zl)w . )
i Nl($7zl)+i/ g(p&el(@rq%/é)w]vl(x’@ de
b))

a
_|_
]
o=
=
| \—/

= zl)zla (z1) 2w §—z)
y _
: b( eiCertad/ s Ay G
iq_ + Sl No(z,21) + == e D /0T N, (1, €) d
4 ; (Z; — z)zd (1) 2(z, 1) 2mi Jx, (€ — %)) e d) &
z P —iterat/o)e
- — —e 0 X
2mi Jy §(€ — 2)
Eb(z) iz =0/ =) £ P itmraz/
+ Ni(z,z) + = | ——=—e'Mt0/Me N, (. 7)d
¢ Z §—z)za! (1) ) o = n(n—¢§) 1) d
« . de. (4.25)
£b(z)el=itan/= £ / PO itn+a?
iq_ + No(z,z)) + —— e!rtaa/ME N, (1. 1) d
a- Z - zl)zla G 2 o - o) dn

We can reconstruct the potential from (4.24).
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4.10. Trace formula. Similarly to Sec. 3, we obtain the trace formula as

J
- z—zj 1 [ log(14b%(6)) N
loga(z)—log(jl:lliz_’_qg/zj)+2m/27§_2 d¢, ze€ DT,

(4.26)

J
loga(z):log<Hm>—%/EW&, ze D™,

4.11. Discrete scattering data and their symmetries. To find reflectionless potentials and soli-
tons, we must be able to calculate the relevant discrete scattering data. The coefficients b(z;) and b(z;),
j=1,2,...,J, can be calculated in the same way as in Sec. 3, and we have

b(zj) = b(z;) = +i, b(z;) = b(z;) = +i. (4.27)

Because a(z) ~ —e?"+ as z — 0, from the trace formula with b(¢) = 0 in %, we obtain the constraint for
the reflectionless potentials

J
[ 7 == 02g e (4.28)
j=1

We claim that J > 2. Otherwise, if J = 1, then z; = %qpe’®+. This implies that the eigenvalue z; is on
the circle, which in this case is the continuous spectrum. Such eigenvalues are not proper; they are not
considered here.

4.12. Reflectionless scattering data 2-eigenvalues. In this subsection, we consider scattering
data associated with 2-eigenvalues, i.e., J = 2, with no reflection. We note that |z1| - |z2| = ¢. Now let
T <0y <37/2and 2, = ¢, where ¢ > qop and 0 < 6; < m/2. Then 2z = (q%/ql)ei(‘)**el*”/z), where
7 < arg ze < 2m. In particular, we can choose 21 = iq1, 22 = —i(¢3/q1), and 0 = 7/2. Then z; = i(¢3/q1),
Zy = —iq1, and 2122 = ¢3. From the trace formula with b(£) = 0 in %, we obtain

a(z) = z—iq  z+i(gg/a) a(z) z—i(gg/q)  z+iq

- - = . . - . 4.29
i) w i cin 2/ 2
We have Lo ) , s o
oy —ilgr + q5) o a0\ _ il +ar)
a'(iq) = 5~ 5 v a =i ") =5 5 oy
2q1(q7 — a5) @/ 245(d6 — 47)
(4.30)
@ _ _im@ta) i+ a)
G\t— | =—55 35 3 a(—iq) = 55— 5
@ 2q5 (a5 — a1) 2q1(qf — q5)
Moreover, from the symmetry relation b(—g3/2) = —b(z), we obtain
a (-4 z
b(iqi) = 611, b(—i—0> = 0y, b(i—0> =010,  b(—iq1) = —dai. (4.31)
a1 a1

4.13. Time evolution. In the same way as in Sec. 3, we find that both a(z,¢) and a(z,t) are
independent of time and

(4.32)
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Hence,

SolSe

Lol V)

1
b(iqi;t) = 51iexp{—2i |:—q(2) + = 5 ( q% 4 >:|t},
2 4
40\ s I 5 1( qoﬂ }
bl —i—;t | = doiexpq —2i + = — 0
( N > ’ p{ [ DT\t
2 4
b(z’q—o ;t) = —51iexp{2i {— . (qf -4 ]t}
q1 @
- . T, 1 qé
b(—igq1;t) = —02iexps 2i|—qy + 5 -+ 2 Y
1

4.14. Pure two-soliton solution. With J =2 and b(§,t) = 0 (reflectionless potential), solving the
corresponding discrete system (4.25) and also from (4.24), we find a nonsingular two-soliton solution with

5152 = —

In this case, the normalization constants are

b(iq1; 1) 26191 (47 — 5) oo 1 s, B
Ci(t) := = — —2i|— B ey,
1( ) a’(iql;t) q% T q(z) exXp 1| —qgp + 9 qi + q%

_ b=ilgs/)it) _ 20205(a5 = af) S o[ o 1( 2 @
) = @) - (@ D) ep{ 2[ "”2(“ q%)H’

(4.33)

) (4.34)
- b(i(gd/q)it)  26143(q3 — q?) { [ > 1( s @
Ci(t) == — = exps 2i|—qs+ =g — = | |t ¢,
0= SRl ~ al@+ D) U
= b(—iqy;t) 20201 (q7 — 43) { [ 5 1( 5 qéﬂ }
Ca(t) == . =- expd 2i|—gd + = ( —gi + 3 ) [t ¢-
2(1) a'(—iqu;t) drqg PP T T
For 41 = 1 and d5 = —1, we obtain
q(z,t) = e 25t x
i(qs + qf) cos(q0 9 t) +iqoq1 (g2 + q%) cosh(q0 9 a:) + (g8 — qb) sin(@tﬂ
i
X (4.35)

a1 [2(]0(]1 Cos(i(q0 q%ql) ) + (g5 + q3) Cosh(i(% 1‘11”)}
For §; = —1 and d> = 1, we obtain

qla,1) = 720 x

X

4 4
[ i) + ai) COb(qO = t) +igoq1 (g3 + q7) Cosh(q" = ﬂr) + (=g +ai) Sin(%tﬂ
_ (‘ZQ 91 )t (qO ql) (4 36)
g1 | —2qoq1 cos ) (¢2 + q3) cosh S

In Fig. 2, we display a typical two-soliton solution of breather type with §; = —d; = 1.
5. Spatially dependent BCs

5.1. RST NLS: Spatial boundary values. We next consider the RST NLS equation

iq(7,t) = qua(,t) — 2aq2(x,t)q(—x, —t) (5.1)
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Fig. 2. The amplitude of ¢(z,t) with 61 =1, 2 = =1, ¢1 = 4, and qo = 2.

with the BC
q(x,t) — goe'*THATHOL) (5.2)

as  — 400, where ¢o > 0, 0 < 61 < 27, and both o and 3 are real. We see that o = 3% + 20pq3, and the
BC then becomes
q(x7 t) — qoei[(ﬁ2+2ﬂpqg)t+ﬁw+9ﬂ (5.3)

as © — Fo00, where (3 is real and p = £1. In particular, p=1if 0y +0_ =0, and p=—-1if 0. +0_ = 7.
Setting q(z,t) = G(x,t)e”®®, we obtain

i(jt(xvt) = (jmm(xvt) + QZﬂ(jﬁ(xvt) - [62 + 20’(}($,t)(j(—$, —t)](j($,t), (54)

which is associated with the 2x2 compatible system

—ikq(x,t
vy = Xv = at, 1) v,
oq(—z,—t) ik

ve=Tv =
2k 2k + . , (5.5)
—2kqg(x,t g(x,t) —iq.(x,t
+ io’d(xv t)d(—:l:, _t> + %Z (I(x; ) + ﬂq(x, ) E (x )
p— Uo
—20ki(—x, —t) + —2ik? + 2B3ik — P
+i0Gy(—x, —t) + 200G (—x, —t) —ioq(z,t)q(—x, —t) — —1i

2

We then find that a(k,t) and a(k,t) are independent of time and b(k,t) and b(k,t) depend on time as

b(k,t) = b(0) eXp{—2i [apqg + %2 —2X\(3 — k)}t},

i (5.6)

b(k,t) = b(0) exp{2i [apqg + % —2X\(B — k)] t}.
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We can take o = 1 as discussed in Sec. 1 and J =1 and § = 1 from Sec. 3. Then

‘ 2
b(goe'®*;t) = iexp{—% [q(z) + % — 2igo sin 04 (8 — qo cos 9+)]t},

(5.7)
_ ) 32
b(goe 0+ t) = —i exp{2i {qg + - + 2igpsin 64 (8 — qo cos 0+)} t}.
We thus obtain a pure one-soliton solution
g(z,1) = P goe' ! x
(—67i0+ + ei0++4qo sin 04 (x+28t—2qot cos64) _ 2i sin 9+67iﬁ2t+2q0 sin 64 (z+28t—2qot cos 0+)) ( )
X 5.8

edqosin 04 (z+2Bt—2qot cos04) _ ]
Remark 2. For 3 # 0, the above solution is singular along the punctured line = Ct, where C,t # 0.

5.2. Standard NLS equation: Spatial boundary values. The NLS equation has the form
iqi(z,t) = quo(x,t) — 20|q(z,t)*q(x, 1), (5.9)
where ¢* denotes the complex conjugate of ¢ and ¢ = F1. We consider the BC
i(at+pBr+04)

q(z,t) — qoe , x — *oo, (5.10)

where gg > 0, 0 < 6+ < 27, and both a and 3 are real. It is easy to see that o = 32 + 20¢2, and the BC
0
then becomes
q(x,t) — qoelllP* 20601+ Pat0+] (5.11)

as x — o0, where 3 is real. Setting q(z,t) = G(z,)e’®, we obtain

which is associated with the 2x2 compatible system

—ikg(xz,t
vy = Xv = i@?) v, (5.13)
oq*(z,t) ik
62
2ik? — 2Bik +ic|q|? + —i —2Ggk + 284 — iy
v =Tv = 2 2 (5.14)

—20G*k +i0qt + 280G —2ik? + 28ik —io|q|* — %z

We then find that both a(k,t) and a(k,t) are independent of time,

2
b(k,t) = b(0) exp{—% [Uqg + % —2X(B — k)}t},
(5.15)
_ _ ﬂz
b(k,t) = b(0) eXp{Zi {aqg +5 - 2N — k)]t}.
Scattering problem (5.13) is the same as the NLS equation with the NZBC
q(z,t) — qoei(%qg”ei), x — *o0. (5.16)

1264



The only difference between the standard NLS equation and (5.12) in their IST formulations is the time
evolution. Based on the scattering problem and one-soliton solution of the defocusing NLS equation [15],
with ¢ = 1, we obtain

g(x,t) = ge'’* =

i3

“lqoe (5.17)

—c 5> +2qy0,] . 1CT(0)a] exp[2i(gh + 4%/2)t — 4v1(B — k1)t — 2v;7] ] 7

1+ (QO|01 (0)|/2U1)6_2v11_401(5—k1)t

where o = ki +iv1, v1 = /g2 — k2, —qo < k1 < qo, €2"**0 = ¢o|C1(0)]/2v1, and Cj(0) = —|C1(0)[e™+.
We can rewrite it in the form

q(z,t) = (]062iqgtei(ﬁw+ﬁ2t) e+ 4

07 (0) (/g )e~ 2 +251-2020) ] 1s)

L+ @lCr (0)]/20r)e 2272510

A property of the NLS equation is its Galilean invariance, i.e., if ¢;(z,t) solves the NLS equation and
satisfies the BC g (z,t) — qoe'27%102) as z — o0, then go(, t) = q1 (x4 20t, t)e!B=+8"D also solves the
NLS equation and satisfies the BC go(z,t) — qoel(B*+2045)t+82+0+] a9 4 — Lo, For o = 1, the one-soliton

solution is given by

iC(0)(at /qo)e2vr (x=2k1t)
1+ (qo|C1(0)|/2vy )e~2vi(z=2k1t) |

2ig3t | if+

q1(z,t) = qoe e (5.19)

We have ¢(z,t) = q1 (v + 204, t)ei(ﬁﬁﬁ%), which means that the IST result agrees with the result based
on the Galilean invariance of the NLS equation. By taking o = k1/qo and v = —v1/qq, possibly up to a
phase, we can simplify ¢;(z,t) and ¢(z,t) as

q1(z,t) = qoe%qgt['y tanh(qoy(z — 2qoat — x9)) — ial,

qlz,t) = qoe®' Bt e P50 [y tanh (gory (z + 26t — 2qoat — o)) — ial, 20
where o? + 42 = 1.
If we ignore the nonlinear term, then the linear partial differential equation
iqt(2,1) — quo(z,t) =0 (5.21)
also satisfies the Galilean invariance. Indeed, by the Fourier transform,
up(x,t) = % /(: b(l)(ﬁ)ei(frﬁ%) dg (5.22)
is a solution of (5.21). We set ug(z,t) = ui(z + Qﬁt,t)ei(ﬁﬁﬁ%), and then
us(x,t) = % /_0:0 b(l)(ﬁ)ei(&ﬁ)rei(&ﬁ)zt deg. (5.23)

Redefining the variables (¢ = £ 4+ (3) shows that wus(x,t) is also a solution of (5.21), which implies that the
Galilean invariance is also satisfied for the linear problem.
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