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Abstract 

Interactions between mutations play a central role in shaping the fitness landscape, but 

a clear picture of intragenic epistasis has yet to emerge. To further reveal the 

prevalence and patterns of intragenic epistasis, we present a survey of epistatic 

interactions between sequential mutations in TEM-1 b-lactamase. We measured the 

fitness effect of ~12,000 pairs of consecutive amino acid substitutions and used our 

previous study of the fitness effects of single amino acid substitutions to calculate 

epistasis for over 8,000 mutation pairs. Since sequential mutations are prone to 

physically interact, we postulated that our study would be surveying specific epistasis 

instead of nonspecific epistasis. We found widespread negative epistasis, especially in 

beta-strands, and a high frequency of negative sign epistasis among individually 

beneficial mutations. Negative epistasis (52%) occurred 7.6 times as frequently as 

positive epistasis (6.8%).  Buried residues experienced more negative epistasis that 

surface exposed residues. However, TEM-1 exhibited a couple of hotspots for positive 

epistasis, most notably L221/ R222 at which many combinations of mutations positively 

interacted. This study is the first to systematically examine pairwise epistasis throughout 

an entire protein performing its native function in its native host.   

 

Keywords: Fitness landscapes, epistasis, antibiotic resistance protein, protein evolution 

 

  



Introduction 

Understanding the fitness effects of mutations is fundamental to the study of molecular 

evolution. Mutations can have different effects depending on the genetic background in 

which they occur. For example, a mutation that is beneficial in one context may become 

deleterious in another, limiting mutational trajectories or yielding evolutionary dead-

ends. This interaction between two or more mutations, called epistasis, plays a central 

role in evolution. Epistasis affects speciation [1, 2], the benefits of recombination and 

sex [3], genetic robustness [4, 5], and the predictability of evolution [6].  

 

Genetic interactions can manifest in various ways. When two or more mutations interact 

such that their combined effect is more beneficial than predicted from their individual 

effects, it is termed positive epistasis. Alternatively, negative epistasis occurs when the 

combined effect is more deleterious than predicted. The magnitude of epistasis can 

have important consequences for the dynamics of evolution by affecting the curvature of 

the fitness landscape [7]. Sign epistasis occurs when a mutation’s effect changes from 

deleterious to beneficial by the presence of an additional mutation. The opposite is 

termed negative sign epistasis. A particular case of sign epistasis is reciprocal sign 

epistasis, in which two or more individual mutations are deleterious individually, but their 

combined effect is beneficial. This type of epistasis is particularly consequential in 

shaping the topography of the fitness landscape, causing local ruggedness and 

rendering certain peaks inaccessible [8]. 

 



Despite its theoretical importance in evolution, epistasis is understudied empirically and 

its contribution to evolution is not well understood. Empirical studies have aimed to 

elucidate aspects of epistasis in various ways. For example, examination of the fitness 

effects of multiple mutations from ancestral sequences of Hsp90 [9], and computational 

prediction epistatic effects from large fitness datasets for naturally-occurring mutations 

HIV-1 protease and reverse transcriptase [10] provide evidence that epistasis shapes 

natural protein evolution. As a complementary approach, the advent of deep 

sequencing technology has provided the ability to explicitly quantifying the functional or 

fitness effects of two or more mutations within a gene. Studies of intragenic epistasis 

have found it to be widespread [11-13] or rare [14, 15], mutational interactions to be 

typically strong [16] or weak [17], and sign epistasis to occur at a wide range of 

frequencies [13, 18]. The lack of consensus reflects the variety of molecules studied, 

differences in function or fitness measurements, modes of analysis, and fundamental 

limitations of multi-mutant studies. Recent studies of epistatic interactions in RNA 

molecules, which are attractive due to their typically shorter gene lengths and fewer 

possible combinations of mutations, reveal a predominance of negative epistasis [19]. 

While it is possible to characterize nearly all combinations of two point mutations in a 

small RNA molecule, capturing the full landscape of every pair of amino acid 

substitutions in an average size protein is currently beyond our limits. Intragenic 

epistasis studies of proteins necessarily compensate by looking at combinations of a 

small subset of mutations, focusing on a small region, or surveying a small fraction of 

the possible pairs. 



 

Many studies have focused on combinations of a small set of mutations, or random 

mutations in the background of a few “anchor mutations”. For example, a study by 

Schenk et al. [18] looked exclusively at combinations of beneficial mutations, quantifying 

epistasis in sets of four single mutations that had a known “large effect” or “small effect” 

on improving antibiotic resistance. They found significant negative epistasis in both 

landscapes and pervasive negative sign epistasis, especially among large effect 

mutations. Parera and Martinez [16] tested epistasis by introducing a known deleterious 

amino acid substitution into various backgrounds of a protease and measuring catalytic 

efficiency compared to wildtype. Significant epistasis was observed in 50 of the 56 

backgrounds tested. A study by Bank at el. [11] analyzed more than 1,000 double 

mutants comprised of 7 point mutation backgrounds of neutral to slightly deleterious 

effect and found common negative epistasis (46%) and rare positive epistasis. While 

these studies show important patterns in epistasis among a few known mutations, or 

among random mutations in the background of a few anchor mutations, they may be 

limited in their ability to capture larger epistatic trends. We previously reported epistatic 

landscapes along an evolutionary pathway [20] wherein ~12,500 single amino acid 

mutants were analyzed in the background of the mutations that make up an adaptive 

pathway from TEM-1 to TEM-15 b-lactamase, which contains the E104K and G238S 

mutations. The anchor mutation in each landscape (E104K or G238S) was found to be 

a determining factor in the patterns of epistasis observed. For instance, while epistasis 

with E104K was rare (8%), it was observed for 53% of mutant pairs with G238S. This 



suggests that the use of anchor mutations to capture general trends in epistasis may 

bias the conclusions.  

 

Studies that looked at random pairs of mutations often focused their scope to a small 

domain within a protein.  Often the domain has been excised from its native protein, 

necessitating the characterization of interactions affecting a biophysical property, such 

as binding, in a non-native context. For instance, Araya et al. calculated epistasis for 

~5000 variants in a 34-amino acid WW binding domain using phage display [17]. They 

found epistasis to be rare, with values small in magnitude, and no population tendency 

toward positive or negative epistasis. In a 2014 study, Olson et al. quantified the effects 

of all double mutations between all positions in the IgG- binding domain of protein G 

(GB1), using in vitro mRNA display [14]. They reported notable instances of both 

positive and negative epistasis, as well as sign epistasis, but overall observed that 

epistasis was rare. Likewise, Melamed et al. [15] analyzed double mutants within a 90 

amino acid RNA recognition motif in a poly(A)-binding protein and found that only 3.6% 

exhibited negative epistasis and 1.0% exhibited positive epistasis. They also found that 

pairs of mutations zero to five residues apart along the primary sequence exhibited a 

significantly higher frequency of both positive and negative epistasis than pairs further 

apart.  Bank et al. [11] examined epistasis among all possible combinations of 13 amino 

acid mutations at 6 sites in the heat shock protein, Hsp90. They found a prevalent 

pattern of negative epistasis and ruggedness in their local landscape, concluding that 

predicting fitness landscapes from the effects of individual mutations is made 



exceedingly difficult by genetic interactions. These studies on small domains are 

instrumental in revealing local epistatic interactions involved in a particular biophysical 

property, but are limited in capturing epistatic effects involving the entire protein in its 

native, biological context [13]. 

     

Few studies have examined interactions between random pairs of mutations throughout 

an entire protein. A 2016 study of the fitness landscape of the green fluorescent protein 

defined fitness as the level of fluorescence in E. coli [21]. The authors sampled ~2% of 

all possible pairs of mutations, representing 30% of pairs of positions in the protein, and 

found that less than 5% exhibited epistasis. They observed pairs exhibiting epistasis to 

be located at sites across the gene, but slightly closer together than random. They 

found that pairs containing weak-effect mutations exhibited epistasis more often than 

pairs containing strong effect mutations, and suggest that the combined effect of weak 

mutations exhausts a stability threshold. Finally, they observed both strong and weak 

epistasis more prevalently among pairs of two buried sites, compared to pairs 

containing at least one solvent exposed site. Overall, they conclude that pairwise 

epistasis is more common at sites important to function.  

 

Existing studies lack a survey of pairwise intragenic epistasis of a protein performing its 

native function in its native host in which the mutations are not limited to a particular 

domain or involve a small set of anchor mutations. Here, we examine pairwise epistasis 

throughout TEM-1 b-lactamase, a 286 amino acid antibiotic resistance protein native to 



E. coli. Informed by the observation that epistasis is more prevalent in pairs close 

together in primary sequence [15], we asked a specific question: how does epistasis 

present in pairs of consecutive amino acid substitutions throughout the protein? 

Previously, we quantified the fitness effect of nearly all (95.6%) possible single amino 

acid substitutions in TEM-1 [22]. We use this data set to compare individual effects of 

mutations to the fitness effects of over 8,000 sequential double mutants. We mapped 

the resulting epistasis values on sequence and structure and present overall trends in 

epistasis between sequential mutations in TEM-1.  

 

Results  

 

Fitness landscape of sequential double mutants 

TEM-1 is a convenient model for the study of gene/protein evolution, as it confers an 

easily identifiable and quantifiable phenotype – resistance to penicillin antibiotics, such 

as ampicillin (Amp). Although growth competition experiments in the presence of Amp 

can be used to measure enrichment of various alleles as a proxy for fitness, the values 

obtain depend on the concentration of Amp used [23]. In addition, the relative growth 

rate of cells with different alleles will change over time as the Amp in the culture is 

degraded, so the fitness values obtained are not precise relative growth rate 

comparisons. In addition, growth competition experiments have low resolution of low 

fitness alleles.  As an alternative, minimum inhibitory concentration (MIC) assays can be 

used as a proxy for fitness, quantifying the ability of the allele to confer resistance to the 



antibiotic [24, 25], but MIC assays are not high throughput. Here, we use our previously 

described synthetic biology approach to quantify Amp resistance in a MIC-like fashion 

as a proxy for fitness [22, 26]. This method overcomes the limitations of growth 

competition experiments and standard MIC assays, as the fitness measures are 

ampicillin concentration independent and low fitness values are as precisely measured 

as high fitness values. Our fitness values measure the level of ampicillin resistance 

conferred by the gene and are predictive of fitness values measured by growth 

competition experiments in the presence of a range of ampicillin concentrations 

(Supplementary Fig. S1). 

 

We created a library of ~30,000 sequential double mutants in TEM-1 using inverse PCR 

using abutting, degenerate primers in which the 5’-end of one primer had the sequence 

(NNN)2 [27]. We created separate libraries for each third of the gene to be compatible 

with the read length of the Illumina MiSeq 2x300 deep sequencing platform. Due to the 

nature of the genetic code, a consequence of using NNN to encode the mutations is 

that our libraries were biased towards certain amino acid substitutions (e.g. mutation to 

serine will occur six times as often as mutation to tryptophan) (Supplementary Fig. S2).  

However, mutations occurring naturally are biased in a similar way based on the genetic 

code (i.e. mutation to serine occurs more frequently than mutation to tryptophan). In 

addition, our library is not biased towards those amino acid substitutions that would 

most likely occur in TEM-1, which would be those occurring by single base substitution 

in the TEM-1 codons. We focused on studying the epistasis between sequential amino 



acid substitutions in the TEM-1 protein, not on epistatic interactions that would likely 

occur by single base substitutions in the TEM-1 gene.   

 

We plated transformed SN0301 E. coli cells with the double mutant library on plates 

containing tetracycline and 13 different Amp concentrations ranging from 0.25 µg/ml to 

1024 µg/ml. Whereas Amp prevents growth if the Amp concentration is too high relative 

to the amount of Amp resistance conferred, tetracycline prevents growth if the 

concentration of Amp is too low relative to the amount of Amp resistance conferred.  As 

a result, a particular allele will confer growth only in a narrow range of Amp 

concentrations – a behavior that results from the band-pass synthetic gene circuit in 

SNO301 cells (see Firnberg et al. [22] for a detailed explanation). We recovered the 

resulting sublibraries from the plates, PCR-amplified the appropriate third of the gene 

with Illumina MiSeq compatible barcodes, and deep sequenced the amplicons to 

determine how often each allele appeared on each plate.  

 

Sequencing reads of alleles containing synonymous codons were grouped together to 

gain statistical power. This comes at the expense of examining potential differences in 

fitness between alleles with synonymous codons.  This is most relevant at the beginning 

of the gene, where synonymous mutations can cause differences in translations rates 

due to differences in RNA structure[22, 28, 29]. Although we have evidence that 

synonymous mutations in the first ten codons of TEM-1 can have fitness effects [22], 

these effects are the exception and not the rule. In addition, fitness values for individual 



codon substitutions in TEM-1 (as opposed to combining data for synonymous codons 

for each amino acid substitution) usually have a high uncertainty due to a low number of 

counts in Firnberg et al., an uncertainty that would make detection of epistatic effects 

difficult. A result of our grouping of synonymous codons is the potential for a slight 

overrepresentation of the extent of epistasis, particularly at the beginning of the signal 

sequence. Supplementary Data S1 tabulates all sequencing counts. The reported 

fitness (w) is the calculated Amp concentration at which the mutant allele appeared 

most frequently relative to the same value calculated for wildtype allele (tabulated in 

Supplementary Data S2). We calculated fitness values only for double amino acid 

mutants with 20 or more sequencing counts to focus on those fitness measurements 

with lower uncertainty (see Materials and Methods for a more detailed explanation).  

 

We next applied an adjustment to these fitness measurements to account for potential 

experimental differences between the two sets of fitness measurements.  Our epistasis 

calculations rely on consistent fitness measurements between our previous fitness 

measurements of single mutants [22] and the measurements of double mutants 

presented here.  Thus, we took measures to ensure that the fitness values were 

consistent between the two experiments. We hypothesized that small differences in 

plating, incubation temperature, or other experimental factors may affect a cell’s 

propensity to form a colony on each plate, perhaps resulting in a slight shift higher or 

lower in the Amp concentrations that favor growth. Such phenomena would result in 



systematic shifts in fitness values between the two experiments, which could be 

different for different ranges of fitness values.  

 

To examine this possibility, we compared single mutant fitness values measured in 

each experiment. Our double mutant library creation technique also produced alleles 

containing an amino acid substitution next to a synonymous mutation. We assumed that 

all observed synonymous mutations were neutral, consistent with our previous 

observations that the vast majority of synonymous mutations in TEM-1 are neutral [22]. 

We compared the fitness values for the 1,470 such alleles in our experiment with the 

corresponding single mutant fitness values from Firnberg et al. We observed small 

offsets in fitness values that were different for different fitness value ranges. For 

example, fitness values less than ~0.125 were ~30% higher in the double mutant data 

set than the single mutant data set, whereas fitness values nearer to the wildtype value 

had a much smaller offset. Based on this observation, we adjusted the double mutant 

fitness measurements set to account for these differences. These adjustments are 

provided as Supplementary Data S4. We judge this cross-experiment normalization 

procedure to be the most justifiable way to compare the two sets of data. However, we 

also analyzed the data without the fitness value adjustments, and the overall trends 

presented in this study remained the same. 

 

We obtained fitness values for 12,374 alleles of unique double mutant pairs, with an 

average of 30 pairs per position. This number represents 12.0% (12,374/102,855) of all 



possible consecutive double mutants. The distribution of fitness values of the double-

mutants shows a shift toward lower fitness values (Fig. 1b), compared to the distribution 

of fitness values of the single mutants (Fig. 1a). Only 89 double mutations resulted in 

fitness values significantly higher than wildtype. Nearly half (49.9%) of double mutations 

resulted in a near-complete loss of function (w<0.05). This shift toward low fitness is 

expected and in agreement with other mutation accumulation studies [15, 21], including 

one on TEM-1 [5].  

 

Epistatic landscape of sequential double mutants 

We define pairwise epistasis as occurring when the product of the fitness values of two 

individual mutations differs from the fitness of the combined pair. Epistasis (e) between 

mutation A with fitness wA and mutation B with fitness wB is calculated as: 

 

 𝜀"# = log() *
+,-+.
+,+-

/ (1) 

 

where wo  is the fitness of wildtype TEM-1 and wAB is the fitness of the double mutant. 

We calculated epistasis values for 8.1% (8,302/102,885) of all possible pairs of 

sequential amino acid substitutions. For our epistasis analysis, we exclude pairs 

containing mutations with individual fitness values less than 0.02 to avoid the lower limit 

in fitness measurements causing high epistasis values by artifact. Epistasis 

measurements were determined to be significantly different than zero if they were 

greater or less than 0 by twice the error estimate in the epistasis measurement (see 



Methods).  Over half (58%) of all double mutants analyzed exhibited significant epistasis 

(Fig. 2b). The high prevalence of epistasis compared to most other studies is consistent 

with the previous observation that epistasis is more common in sequential  mutations 

than in non-sequential mutations [15], although we do not have a corresponding 

measure of the frequency of epistasis among random mutations in TEM-1 to which we 

can directly compare. It may also reflect differences in the prevalence of epistasis with 

regard to fitness (here the ability of the allele to confer Amp resistance to live cells), 

compared to epistasis with regard to a less complex biophysical property, as 

hypothesized by Sackman and Rokyta [13]. The distribution of epistasis values was 

skewed toward negative values, with a mean epistasis of -0.32 and a median of -0.18, 

indicating that the combined fitness effect of two mutations is often more deleterious 

than predicted in the absence of epistasis. Negative epistasis (51%) occurred 7.5 times 

as frequently as positive epistasis (6.8%). This pervasive negative epistasis is 

consistent with a TEM-1 mutation accumulation study that concluded its fitness 

landscape is characterized by negative epistasis [5]. 

 

A comparison of observed fitness values (wAB) to predicted fitness in the absence of 

epistasis (wAwB) clearly shows the prevalence of negative epistasis (Fig. 2a). We found 

that the product of single mutant fitness values (i.e. the predicted fitness in the absence 

of epistasis) predicted double mutant fitness values with a Pearson’s R2 of 0.71. This is 

within the range of the correlations found in other epistasis studies, which had R2 values 

ranging from 0.67 [17] to 0.76 [15].  



 

Relationship between epistasis and protein sequence/structure 

Examining epistasis among sequential double mutant pairs allowed us to map median 

epistasis at each position and look at trends within secondary structures (Fig. 3). 

Although negative epistasis dominates, there were 19 pairs of positions with positive 

median epistasis values, indicating hot spots for synergistic potential (Fig. 3a). 

Interestingly, we note a particularly high median epistasis at positional pair 221-222. 

This median was calculated from a total of 21 observations. With the exception of one 

pair, the double mutants at this position were combinations of deleterious single 

mutations (median fitness of 0.052). Residues L221 and R222 make up the first two 

amino acids of a four-residue helical element (helix 10). Positive epistasis, indicating a 

higher than expected fitness between individually deleterious mutations at this positional 

pair suggests hotspot for compensatory interactions, possibly buffering structural 

disruptions in the helix.  

 

Positive epistasis occurred three times more frequently in the signal sequence (17.8%) 

than in the mature protein (5.82%) (P<0.0001, Fisher’s exact test) (Fig. 3c), although 

our reported frequency of both positive and negative epistasis in the signal sequence 

may be slightly inflated due to the potential for fitness effects of synonymous mutations 

in the first 10 codons (as discussed above). The signal sequence is a 23 amino acid 

peptide that directs export of the protein to the periplasmic space of E. coli. The signal 

sequence is removed in the periplasm and is not part of the mature protein. However, 



mutations within the signal sequence can change protein abundance and therefore 

affect fitness. Over half (52%) of the occurrences of positive epistasis in the signal 

sequence were between one beneficial and one deleterious mutation, with the 

remaining 48% being between mutations that are deleterious individually. Positive 

epistasis in this region suggests detrimental mutations are easily partially compensated 

by mutations at adjoining positions. 

 

In the mature protein, negative epistasis occurred most often in beta-strands (Fig. 3c), 

indicating that two sequential mutations within these structures is often more detrimental 

than the combination of their individual effects. A majority (68%) of mutations occurring 

in beta-strands were individually deleterious. The side chains of sequential mutations 

are not expected to physically interact because sequential amino acids point in different 

directions in a beta strand.  Rather, deleterious mutations probably cause backbone 

shifts that affect the fitness effects of sequential mutations in non-additive ways – an 

interaction through the backbone. As deleterious mutations in beta-strands likely result 

from packing problems and decreases in stability, these findings suggest that the 

threshold robustness to additional deleterious mutations [5] is more often exhausted in 

beta-strands, presumably because the complexity of the structure has more constraints 

on the amino acids at each position.  

 

We also examined epistasis among surface residues versus buried residues. We define 

surface residues as those with >20% solvent accessibility, and buried residues as those 



with <20% solvent accessibility. On average, buried residue pairs exhibited lower 

epistasis values than surface residue pairs (P <0.0001, by Student’s t-test), suggesting 

that multiple mutations at internally oriented residues are more likely to interact 

antagonistically (Fig. 3d). Epistasis values for buried residues also had a broader 

distribution of values than epistasis values for solvent accessible residues (P<0.0001 by 

Brown–Forsythe test). We observed no obvious pattern in epistasis between different 

pairs of amino acids; however, we note that the lowest two median epistasis values 

occurred between pairs of two cysteines and pairs of two aspartic acids (Supplementary 

Fig. S4). We found no correlation between epistasis and the distance from the active 

site (Supplementary Fig. S5).     

 

The influence of fitness effect sign and size on epistasis. 

Previous studies have noted differences in epistasis among individually beneficial 

versus deleterious mutations [11, 18]. Additionally, Pumir et al. [30] posited that the 

effect size of the mutation may influence its epistatic effect in the context of another 

mutation. To probe this further, we examined epistasis versus the effect size of the 

individual mutations contained in the pair. We define a mutation as deleterious if its 

fitness is more than two times its error below wildtype fitness and beneficial if its fitness 

is more than two times its error above wildtype fitness. In general, we observed 

epistasis more frequently in pairs containing at least one deleterious mutation than in 

pairs containing at least one beneficial mutation (Fig. 4). Epistasis was especially 

prevalent among large effect deleterious mutations (w<0.1), with nearly 90% of all pairs 



containing a large effect deleterious mutation exhibiting either positive or negative 

epistasis (Fig. 4a). In particular, pairs containing large effect deleterious mutations have 

a higher frequency of positive epistasis than pairs containing small effect deleterious 

mutations, suggesting that the fitness cost of highly deleterious mutations can be 

somewhat dampened by the presence of an additional mutation. Our inability to observe 

any meaningful trends in epistasis for pairs containing at least one beneficial mutation 

(Fig. 4b) may be due to the small number of mutations with statistically significant 

beneficial effects (Fig. 1a).   

 

Sign epistasis 

We also examined sign epistasis for 11,679 double mutant alleles for which we had 

corresponding single mutant fitness values. Sign epistasis is solely determined by the 

sign of fitness measurements (beneficial or deleterious). Unlike magnitude epistasis, it 

is not calculated from the product or ratio of two fitness values. Therefore, we included 

pairs containing single mutants with w<0.02 in the analysis of sign epistasis. By 

definition, positive sign epistasis can occur only for pairs containing at least one 

deleterious mutation and negative sign epistasis can occur only for pairs containing at 

least one beneficial mutation. We observe positive sign epistasis in only 13 out of 9673 

pairs containing a deleterious mutation. The low frequency of positive sign epistasis 

indicates a scarcity of paths to climb above wildtype fitness in a single step from a 

deleterious mutation.  Negative sign epistasis is much more prevalent, occurring in 

55.4% of pairs containing a beneficial mutation. This indicates a moderately rugged 



landscape for sequential double mutants that is dominated by fitness valleys. We 

examined the relationship between negative sign epistasis and individual mutation 

effect size, but found the frequency to be >50% across all effect sizes. Thus, for 

beneficial mutations, the magnitude of the fitness effect does not predict the likelihood 

of surrounding fitness valleys. We found no cases of reciprocal sign epistasis, 

suggesting that many peaks may be accessible on the TEM-1 fitness landscape through 

accumulation of one mutation at a time.  

 

 

Discussion 

The picture of epistasis in protein evolution is still emerging. Our study examines 

pairwise intragenic epistasis in TEM-1 beta-lactamase in the context of it performing its 

native function (antibiotic resistance) in its native host (E. coli). Although TEM-1 is 

native to E. coli, it differs from most E. coli genes because it is found on plasmids 

(instead of the chromosome), which can be transferred among different bacteria. 

Whether this difference would impact the extent of epistasis is unknown. We contend 

that fitness and epistasis measurements are best performed in their native host when 

the goal is to understand the landscapes that shape the natural evolution of proteins. 

Studies that extract proteins from their native environment will miss native fitness and 

epistatic effects arising from the interaction of the protein and the cell and may be 

colored by non-native fitness and epistatic effects arising from non-native interactions.  

For example, mutations may promote misfolding [31] or misinteractions [32] that have 



deleterious effects on cell growth (i.e. fitness), and such effects will be environment 

dependent.  

 

We specifically examined pairwise epistasis between sequential amino acid 

substitutions across the entire length of the primary sequence. Our intent was to study 

the inherent susceptibility of the TEM-1 protein to epistatic interactions between 

sequential amino acid substitutions, not to study epistatic interactions between the 

mutations that are most likely to occur in the TEM-1 gene (i.e. those achieved with a 

single bp substitution).  The results of our study should be viewed with these limitations 

in mind.  We postulated that consecutive double mutants represent a subset of possible 

mutational pairs that are more likely to exhibit epistatic effects due to spatial proximity 

and direct physical link in the backbone. As such, these epistatic effects are likely 

examples of specific epistasis as opposed to nonspecific epistasis.  

  

Epistatic interactions can be classified as specific or nonspecific [33]. Specific epistasis 

results from direct physical interactions, and as such, these mutations result in 

nonadditivity on the level of biophysical properties, such as stability, activity, or binding. 

To the extent that these properties determine organismal fitness, the nonadditivity of 

biophysical properties explains epistasis on the fitness level. In contrast, nonspecific 

epistasis results from a nonlinear dependence of fitness on the biophysical properties 

themselves. With nonspecific epistasis, mutations may act additively on the level of the 

protein, but epistasis exists on the level of organismal fitness. Mutations that exhibit 



nonspecific epistasis often do so with a relatively large number of mutations. For 

example, the M182T mutation in TEM-1 stabilizes the folded state and is a global 

suppressor mutation [34]. The presence of M182T reduces the deleterious fitness effect 

of many mutations throughout the entire protein [24] – mutations that are presumably 

destabilizing.  This nonspecific, positive epistasis manifests not from nonadditive effects 

of the two mutations on stability, but from the nonlinear mapping of stability to the 

probability of the folded state [5] and thus the cellular abundance of the protein (a 

biological property that effects fitness). This results in proteins having a stability 

robustness threshold [5]. Nonspecific epistasis may represent a significant fraction of all 

intragenic epistatic effects, as Dasmeh et al. estimate that 30-40% of epistasis can be 

attributed to protein folding stability [35]. A protein’s interaction with the cells protein 

quality control machinery (chaperones and proteases), and a mutation’s effect on those 

interactions will also shape fitness/epistatic effects and the stability threshold [36]. 

 

The relative contributions of specific and nonspecific epistasis to protein evolution is an 

important open question [37]. One challenge in addressing this question is the difficulty 

in attributing a measured epistatic effect as specific or nonspecific in a high-throughput 

manner. By studying sequential mutations – mutations that are highly likely to interact 

due to their proximity – we postulate that we are predominantly measuring specific 

epistasis. Here, we take a broad definition of “physically interact” to include mutations 

that interact through movement of the peptide backbone (as might well occur in 

sequential mutations).  For instance, when a position is mutated in the interior of the 



protein to a larger amino acid, the protein structure must compensate. One way it may 

do this is through adjusting the relative position of the peptide backbone that includes 

the mutated amino acid. This adjustment would be prone to affect, in nonadditive ways, 

the fitness effects of mutations at adjacent positions. In this manner, we believe that 

many of the epistatic effects in this study are likely to be specific. We contrast this study 

with our previous study on epistasis in TEM-1 involving the G238S mutation [20]. The 

G238S mutation exhibited negative epistasis with 58% of other mutations throughout 

TEM-1 and decreases stability about 2 kcal/mol [38]. Most epistasis with G238S is likely 

nonspecific epistasis and manifests from G238S’s deleterious effect on stability.  

However, negative epistasis involving G238S and some other mutations may well be 

specific in nature. We note that a protein’s stability threshold can be exhausted by 

specific negative epistasis and nonspecific negative epistasis.   

 

We find widespread negative epistasis between sequential mutations in TEM-1 

evaluated in its native environment, though hotspots for positive epistasis existed. This 

high frequency of epistasis contrasts with the typically low frequency of epistasis found 

in studies that focus on epistasis on the level of biophysical properties measured in non-

native environments [14-17, 21]. Our study does not address the reasons for the higher 

frequency of epistasis. The higher frequency is likely some combination of measuring 

fitness on the level of the cell (instead of the protein level) [39][33, 40], measuring 

fitness of the protein in its native environment, and measuring fitness only for sequential 

mutations. We can say that measuring fitness effects of mutations in a protein in its 



native environment and at the level of the cell should better provide fitness and epistatic 

landscapes that reflect those that constrain and shape protein evolution. Our study 

lends support to the emerging picture of pervasive negative epistasis among mutations 

studied in their native context, the threshold robustness hypothesis, and the relationship 

between solvent accessibility and epistasis. Our findings lend support to the hypothesis 

that epistasis may be pervasive with regard to biological fitness despite underlying 

additive mutational effects on biophysical properties such as stability.  

 

 

Materials and Methods 

 

Library Creation 

The TEM-1 gene was expressed on pSkunk3, a 4.36 kb plasmid containing 

spectinomycin resistance and the p15 origin of replication, under the IPTG-inducible tac 

promotor in E. coli. We used inverse PCR with primers (IDT) designed to create every 

possible sequential double mutant in TEM-1, using NNN-NNN degenerate nucleotide 

oligos and a compatible reverse primer designed for each position. PCR products were 

visualized using gel electrophoresis, to confirm the creation of a linearized plasmid 

product at each of the 286 positions. We pooled the PCR products, isolated the ~4 kb 

band from an agarose electrophoresis gel, phosphorylated the DNA at 37°C (NEB T4 

PNK), and ligated it overnight at 16°C. NEB 5-alpha F’ lacIq E. coli were transformed 

with the ligation product and plated on LB-agar plates containing 50 µg/ml 



spectinomycin and 2% glucose (w/v). At least 500,000 transformants were obtained for 

each third.  

 

We recovered each library from the plate in LB media and isolated the plasmid library. 

We transformed electrocompetent SNO301 E. coli cells with each library and plated on 

LB-agar plates containing 50 µg/ml spectinomycin, 50 µg/ml chloramphenicol, and 2% 

glucose. At least 80,000 transformants were obtained from each third. We recovered 

each library from the plate in LB media and made glycerol stocks. The library sizes were 

greater than the number of sequences we could analyze by deep sequencing.  Thus, 

we prepared a smaller sublibraries of each library by plating ~10,000 CFU from each 

library on LB-agar plates with 50 µg/ml spectinomycin, 50 µg/ml chloramphenicol, and 

2% glucose (i.e. permissive growth conditions), recovering those cells, and creating final 

frozen sublibrary stocks for selection.          

 

Selection and Sequencing 

High-throughput selection for resistance to ampicillin (Amp) was performed using a 

band-pass genetic circuit, described previously [22]. Briefly, E. coli SNO301 cells 

containing the double mutant library were plated on LB-agar plates containing 20 µg/ml 

tetracycline and 13 different Amp concentrations, ranging from 0.25 µg/ml to 1024 

µg/ml, in 2-fold increments. Plates were incubated for 21 hours at 37°C. The library was 

plated in triplicate on each Amp concentration and the CFUs from each plate were 

counted to determine the frequency of colonies appearing on each plate. Based on 



these counts, a proportional amount of barcoded PCR amplicon from each plate was 

deep sequenced. Amplicons were prepared by recovering the cells from each selection 

plate, isolating the plasmid DNA, and performing PCR with appropriate primers as 

described previously [20, 22]. Barcodes to identify each plate and adapters compatible 

with Illumina MiSeq platform were added in this PCR step. Amplicons were pooled and 

sequenced using Illumina MiSeq with 300 base pair, paired-end reads.   

 

Data Analysis 

The de-multiplexed MiSeq reads were analyzed using custom MATLAB scripts. Paired-

end reads were trimmed and concatenated to yield full length reads. Each read was 

then aligned to TEM-1 using a Smith-Waterman algorithm with a gap opening penalty of 

100. Reads with an alignment score lower than 300 were filtered out and only reads 

containing two sequential codon substitutions were used for analysis. Fitness was 

calculated for each unique double amino acid mutant based on the counts from each 

plate (Amp concentration). Synonymous codons were grouped together and total counts 

were used to calculate the single amino acid fitness. First, counts were adjusted based 

on the number of sequencing reads obtained from each plate relative to the CFUs 

observed on that plate, as described previously [20]. Detailed description of the fitness 

calculation can be found in our previous studies [20, 22], which we followed with a few 

minor differences. In this study, we excluded alleles with fewer than 20 counts and 

alleles with a maximum single plate count less than 1/3 the total count. We exclude 

alleles with fewer than 20 counts in order to focus on fitness measurements that had 



smaller uncertainty. We excluded alleles with a maximum single plate count less than 

1/3 the total count to eliminate alleles for which the count distribution made the correct 

fitness ambiguous.  For example, a small number of alleles had two clusters of counts 

(we hypothesize that this arises from some plasmids with the indicated mutation having 

an additional, spontaneous mutation outside the sequencing range) and a small number 

of alleles had a low level of counts on many plates without a clear cluster of counts (we 

hypothesize that this arises when an allele is absent or present at low frequency in the 

library and the position is prone to sequencing errors). For each allele (i) that passed 

these criteria, the plate with the highest adjusted counts and the four plates on either 

side (i.e. two plates with higher Amp and two plates with lower Amp) were used to 

calculate an unnormalized fitness value, representing the midpoint resistance to Amp:  

 

   𝑓1 =
∑ 34,6 789:(<6)>?
6@>

∑ 34,6>?
6@>

   (2) 

 

where ci,p is the adjusted count of allele i on plate p, and ap is the Amp concentration on 

plate p (in µg/ml). The reported fitness values are normalized to wildtype TEM-1: 

 

 𝑤1 =
FG4

FGHIJK>
   (3) 

 

Wildtype fitness was calculated in the same way (i.e. using adjusted sequencing counts) 

and verified separately by separately plating cells expressing wildtype TEM-1 in 

triplicate during the bandpass selection step. Both colony counts of the wildtype plates 



and wildtype sequencing counts revealed a midpoint Amp resistance of ~185 µg/ml 

(186.1µg/ml, 184.8 µg/ml, and 182.3µg/ml for each of the thirds, and 187.4 µg/ml for the 

colony counts). Wildtype sequencing counts and colony counts are provided in 

Supplementary Data S3. 

 

We adjusted the fitness measurements based on a comparison between fitness values 

for 1,470 single amino acid substitutions containing a synonymous wild type mutation 

and the corresponding single amino acid fitness values from Firnberg et al. [22]. We 

calculated a ratio of the two fitness values across different fitness value ranges. Based 

on the offset of this value from 1, we determined adjustment factors for each range of 

fitness values, which ranged from 0.52 to 0.97. We multiplied the calculated double 

mutant fitness values by these adjustment factors and used these cross-experiment 

normalized fitness values for all subsequent analysis, which is presented in this study. 

We also analyzed the data without the fitness value adjustments, and the overall trends 

presented in this study remained the same.   

 

Error in fitness (𝜎+4) was estimated via Eqs 4 and 5, using our previously determined 

correlation between sequencing counts (𝑛1) and the standard deviation of the difference 

in fitness between synonymous alleles [20, 22].  

 

 𝜎+4 = 𝑤1 × 𝑒1  (4) 

 



where ei, the upper-level estimate of the fraction error in fitness, is given by: 

 

 𝑒1 = 0.667𝑛1T).UVW (5) 

 

Fitness values were determined to be significantly different than 1 if they were greater 

or less than 1 by twice the error estimate.  

Epistasis was calculated using Eq. 1. To determine epistasis values that were 

significantly different than 0, upper and lower limits were calculated using Eqs 6 and 7: 

 

 𝜖"#,Y = log() Z
+,-+[
+,+-

\]1 + `𝑒"F + 𝑒#F + 𝑒)F + 𝑒"#Fa  (6) 

 

 𝜖"#,b = log() Z
+,-+[
+,+-

\]1 − `𝑒"F + 𝑒#F + 𝑒)F + 𝑒"#Fa  (7) 

 

Epistasis values were determined to be significantly positive or significantly negative 

based on Eq 8 and 9, respectively: 

 

 𝜀"# − 2]𝜀"# − 𝜖"#,ba > 0   (8) 

 

 𝜀"# − 2]𝜀"# − 𝜖"#,Ya < 0   (9) 

 

Sign epistasis was determined based on fitness measurements of the individual 

mutations and double mutant pair. Positive sign epistasis was defined as occurring 



when at least one of the mutants was individually deleterious (less than twice the error 

below 1), and the double mutant was beneficial (greater than twice the error above 1). 

Likewise, negative sign epistasis was defined as occurring when at least one of the 

mutants was individually beneficial, and the double mutant was deleterious. Reciprocal 

sign epistasis required both mutants to be individually deleterious, while the double 

mutant was beneficial. Negative reciprocal sign epistasis was the inverse.  
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Figure Legends

Fig. 1. Distribution of mutational fitness effects of single and double mutants IN 

TEM-1. (a) Distribution of 5460 single mutant fitness values from Firnberg et al. [22]. (b) 

Distribution of 12,374 sequential double mutant fitness values. The single mutant 

distribution has a very small number of fitness values >1.8 that are not shown. Bars are 

stacked to show total fractions. Fitness values are normalized to that of wildtype TEM-1 

beta-lactamase. Fitness values that are significantly different from 1.0 are indicated in 

red. Supplementary Data S2 tabulates all fitness values of double mutants. 



Fig. 2. Distribution of epistasis values among sequential mutations in TEM-1. (a) 

Observed fitness versus predicted fitness for 8,302 double mutant alleles. Predicted 

fitness assumes no epistasis. (b) The distribution of epistasis values among 8,302 

double mutant alleles. Bars are stacked to show total fractions. Significant epistasis 

values are indicated in red. Supplementary Data S2 tabulates all epistasis values. 



Fig. 3. The relationship between protein sequence, structure, and epistasis in 

TEM-1. (a) Median epistasis values across the TEM-1 primary sequence. Median 

values were calculated only for position pairs with 5 or more epistasis values. Median 

epistasis for a mutation pair is plotted at the first position of that pair. Colored bars 

indicate regions that code for the signal sequence (yellow), alpha helices (green), beta 



strands (blue), and the omega loop (grey).  Asterisks indicate the location of important 

catalytic residues. (b) Median epistasis values mapped onto the TEM-1 structure. Active 

site residues are indicated in green. (c) Frequency of positive epistasis (blue), negative 

epistasis (red), and no or not significant epistasis (grey) in the signal sequence and 

secondary structure elements. Data are categorized by the structural identity of the first 

mutation. Distribution of fitness values for these categories is provided as 

Supplementary Fig. S3. (d) Epistasis distributions for buried and surface residues. The 

median value of the distribution is indicated. 

  



Fig. 4. The effect of size and nature of the mutational effect on the frequency of 

positive and negative epistasis. Frequency of epistasis among mutation pairs with (a) 

at least one deleterious mutation and (b) at least one beneficial mutation. The 

deleterious or beneficial mutation must have a statistically significant effect on fitness, 

but the other mutation in the pair may be deleterious, beneficial, or neutral.  Boxcar 

smoothing was applied to the data to improve visualization of trends.  
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Supplementary Fig. S1. Fitness values for amino acid substitutions in TEM-1 
measured by growth competition compared to fitness values measured by our 
bandpass MIC-like method [22]. Stiffler et al [23] performed the growth competition 
experiments in liquid LB media (with different concentrations of Amp as indicated) with 
DH10B E. coli cells containing TEM-1 under its native, constitutive promoter on plasmid 
pBR322. The fitness value associated with a mutation was measured by calculating the 
change in allele frequency relative to wildtype between before and after the growth 
competition. We performed our experiments on LB-agar plates with SNO301 E. coli 
cells containing TEM-1 under the IPTG-inducible tac promoter on a lower-copy p15A 
origin plasmid [22].  Fitness was measured as the resistance of cells carrying the 
mutation relative to wildtype using the bandpass system. This fitness measurement 
does not depend on the ampicillin concentration in the media (i.e. the fitness 
measurement for Firnberg et al is the same in all five graphs).  The line is x=y. 
 
 
 
 
 
 
 



Supplementary Fig. S2. (a) Experimental distribution of epistasis values obtained for 
pairs of amino acids in this study (b) Theoretical distribution of possible pairs of amino 
acids based on the genetic code.    

 
Supplementary Fig. S3. Epistasis values for the signal sequence and secondary 
structures. The central line indicates the median, and the bottom and top edges of the 
box indicate the 25th and 75th percentiles. The whiskers extend to the most extreme 
data points not considered outliers, which are represented by circles. 
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W 7 12 19 21 13 48 4 5 8 6 6 1 3 3 3 9 6 8 4 3 W 6 6 6 4 4 4 4 4 3 2 2 2 2 2 2 2 2 2 1 1

(a) (b)



 
Supplementary Fig. S4. Median epistasis between pairs of mutant amino acids. The 
heat map indicates median epistasis values for mutant amino acid pairs that occurred 
throughout the protein. Median values are presented only for pairs with five or more 
epistasis values.   

 
Supplementary Fig. S5. Epistasis as a function of distance from the active site S70. 
Distance was calculated from the first amino acid substituted.  
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