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Abstract

Interactions between mutations play a central role in shaping the fitness landscape, but
a clear picture of intragenic epistasis has yet to emerge. To further reveal the
prevalence and patterns of intragenic epistasis, we present a survey of epistatic
interactions between sequential mutations in TEM-1 p-lactamase. We measured the
fitness effect of ~12,000 pairs of consecutive amino acid substitutions and used our
previous study of the fitness effects of single amino acid substitutions to calculate
epistasis for over 8,000 mutation pairs. Since sequential mutations are prone to
physically interact, we postulated that our study would be surveying specific epistasis
instead of nonspecific epistasis. We found widespread negative epistasis, especially in
beta-strands, and a high frequency of negative sign epistasis among individually
beneficial mutations. Negative epistasis (52%) occurred 7.6 times as frequently as
positive epistasis (6.8%). Buried residues experienced more negative epistasis that
surface exposed residues. However, TEM-1 exhibited a couple of hotspots for positive
epistasis, most notably L221/ R222 at which many combinations of mutations positively
interacted. This study is the first to systematically examine pairwise epistasis throughout

an entire protein performing its native function in its native host.
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Introduction

Understanding the fitness effects of mutations is fundamental to the study of molecular
evolution. Mutations can have different effects depending on the genetic background in
which they occur. For example, a mutation that is beneficial in one context may become
deleterious in another, limiting mutational trajectories or yielding evolutionary dead-
ends. This interaction between two or more mutations, called epistasis, plays a central
role in evolution. Epistasis affects speciation [1, 2], the benefits of recombination and

sex [3], genetic robustness [4, 5], and the predictability of evolution [6].

Genetic interactions can manifest in various ways. When two or more mutations interact
such that their combined effect is more beneficial than predicted from their individual
effects, it is termed positive epistasis. Alternatively, negative epistasis occurs when the
combined effect is more deleterious than predicted. The magnitude of epistasis can
have important consequences for the dynamics of evolution by affecting the curvature of
the fitness landscape [7]. Sign epistasis occurs when a mutation’s effect changes from
deleterious to beneficial by the presence of an additional mutation. The opposite is
termed negative sign epistasis. A particular case of sign epistasis is reciprocal sign
epistasis, in which two or more individual mutations are deleterious individually, but their
combined effect is beneficial. This type of epistasis is particularly consequential in
shaping the topography of the fitness landscape, causing local ruggedness and

rendering certain peaks inaccessible [8].



Despite its theoretical importance in evolution, epistasis is understudied empirically and
its contribution to evolution is not well understood. Empirical studies have aimed to
elucidate aspects of epistasis in various ways. For example, examination of the fitness
effects of multiple mutations from ancestral sequences of Hsp90 [9], and computational
prediction epistatic effects from large fithess datasets for naturally-occurring mutations
HIV-1 protease and reverse transcriptase [10] provide evidence that epistasis shapes
natural protein evolution. As a complementary approach, the advent of deep
sequencing technology has provided the ability to explicitly quantifying the functional or
fitness effects of two or more mutations within a gene. Studies of intragenic epistasis
have found it to be widespread [11-13] or rare [14, 15], mutational interactions to be
typically strong [16] or weak [17], and sign epistasis to occur at a wide range of
frequencies [13, 18]. The lack of consensus reflects the variety of molecules studied,
differences in function or fithess measurements, modes of analysis, and fundamental
limitations of multi-mutant studies. Recent studies of epistatic interactions in RNA
molecules, which are attractive due to their typically shorter gene lengths and fewer
possible combinations of mutations, reveal a predominance of negative epistasis [19].
While it is possible to characterize nearly all combinations of two point mutations in a
small RNA molecule, capturing the full landscape of every pair of amino acid
substitutions in an average size protein is currently beyond our limits. Intragenic
epistasis studies of proteins necessarily compensate by looking at combinations of a
small subset of mutations, focusing on a small region, or surveying a small fraction of

the possible pairs.



Many studies have focused on combinations of a small set of mutations, or random
mutations in the background of a few “anchor mutations”. For example, a study by
Schenk et al. [18] looked exclusively at combinations of beneficial mutations, quantifying
epistasis in sets of four single mutations that had a known “large effect” or “small effect”
on improving antibiotic resistance. They found significant negative epistasis in both
landscapes and pervasive negative sign epistasis, especially among large effect
mutations. Parera and Martinez [16] tested epistasis by introducing a known deleterious
amino acid substitution into various backgrounds of a protease and measuring catalytic
efficiency compared to wildtype. Significant epistasis was observed in 50 of the 56
backgrounds tested. A study by Bank at el. [11] analyzed more than 1,000 double
mutants comprised of 7 point mutation backgrounds of neutral to slightly deleterious
effect and found common negative epistasis (46%) and rare positive epistasis. While
these studies show important patterns in epistasis among a few known mutations, or
among random mutations in the background of a few anchor mutations, they may be
limited in their ability to capture larger epistatic trends. We previously reported epistatic
landscapes along an evolutionary pathway [20] wherein ~12,500 single amino acid
mutants were analyzed in the background of the mutations that make up an adaptive
pathway from TEM-1 to TEM-15 B-lactamase, which contains the E104K and G238S
mutations. The anchor mutation in each landscape (E104K or G238S) was found to be
a determining factor in the patterns of epistasis observed. For instance, while epistasis

with E104K was rare (8%), it was observed for 53% of mutant pairs with G238S. This



suggests that the use of anchor mutations to capture general trends in epistasis may

bias the conclusions.

Studies that looked at random pairs of mutations often focused their scope to a small
domain within a protein. Often the domain has been excised from its native protein,
necessitating the characterization of interactions affecting a biophysical property, such
as binding, in a non-native context. For instance, Araya et al. calculated epistasis for
~5000 variants in a 34-amino acid WW binding domain using phage display [17]. They
found epistasis to be rare, with values small in magnitude, and no population tendency
toward positive or negative epistasis. In a 2014 study, Olson et al. quantified the effects
of all double mutations between all positions in the IgG- binding domain of protein G
(GB1), using in vitro mRNA display [14]. They reported notable instances of both
positive and negative epistasis, as well as sign epistasis, but overall observed that
epistasis was rare. Likewise, Melamed et al. [15] analyzed double mutants within a 90
amino acid RNA recognition motif in a poly(A)-binding protein and found that only 3.6%
exhibited negative epistasis and 1.0% exhibited positive epistasis. They also found that
pairs of mutations zero to five residues apart along the primary sequence exhibited a
significantly higher frequency of both positive and negative epistasis than pairs further
apart. Bank et al. [11] examined epistasis among all possible combinations of 13 amino
acid mutations at 6 sites in the heat shock protein, Hsp90. They found a prevalent
pattern of negative epistasis and ruggedness in their local landscape, concluding that

predicting fithess landscapes from the effects of individual mutations is made



exceedingly difficult by genetic interactions. These studies on small domains are
instrumental in revealing local epistatic interactions involved in a particular biophysical
property, but are limited in capturing epistatic effects involving the entire protein in its

native, biological context [13].

Few studies have examined interactions between random pairs of mutations throughout
an entire protein. A 2016 study of the fitness landscape of the green fluorescent protein
defined fitness as the level of fluorescence in E. coli[21]. The authors sampled ~2% of
all possible pairs of mutations, representing 30% of pairs of positions in the protein, and
found that less than 5% exhibited epistasis. They observed pairs exhibiting epistasis to
be located at sites across the gene, but slightly closer together than random. They
found that pairs containing weak-effect mutations exhibited epistasis more often than
pairs containing strong effect mutations, and suggest that the combined effect of weak
mutations exhausts a stability threshold. Finally, they observed both strong and weak
epistasis more prevalently among pairs of two buried sites, compared to pairs
containing at least one solvent exposed site. Overall, they conclude that pairwise

epistasis is more common at sites important to function.

Existing studies lack a survey of pairwise intragenic epistasis of a protein performing its
native function in its native host in which the mutations are not limited to a particular
domain or involve a small set of anchor mutations. Here, we examine pairwise epistasis

throughout TEM-1 B-lactamase, a 286 amino acid antibiotic resistance protein native to



E. coli. Informed by the observation that epistasis is more prevalent in pairs close
together in primary sequence [15], we asked a specific question: how does epistasis
present in pairs of consecutive amino acid substitutions throughout the protein?
Previously, we quantified the fitness effect of nearly all (95.6%) possible single amino
acid substitutions in TEM-1 [22]. We use this data set to compare individual effects of
mutations to the fitness effects of over 8,000 sequential double mutants. We mapped
the resulting epistasis values on sequence and structure and present overall trends in

epistasis between sequential mutations in TEM-1.

Results

Fitness landscape of sequential double mutants

TEM-1 is a convenient model for the study of gene/protein evolution, as it confers an
easily identifiable and quantifiable phenotype — resistance to penicillin antibiotics, such
as ampicillin (Amp). Although growth competition experiments in the presence of Amp
can be used to measure enrichment of various alleles as a proxy for fitness, the values
obtain depend on the concentration of Amp used [23]. In addition, the relative growth
rate of cells with different alleles will change over time as the Amp in the culture is
degraded, so the fitness values obtained are not precise relative growth rate
comparisons. In addition, growth competition experiments have low resolution of low
fitness alleles. As an alternative, minimum inhibitory concentration (MIC) assays can be

used as a proxy for fitness, quantifying the ability of the allele to confer resistance to the



antibiotic [24, 25], but MIC assays are not high throughput. Here, we use our previously
described synthetic biology approach to quantify Amp resistance in a MIC-like fashion
as a proxy for fitness [22, 26]. This method overcomes the limitations of growth
competition experiments and standard MIC assays, as the fithess measures are
ampicillin concentration independent and low fitness values are as precisely measured
as high fitness values. Our fitness values measure the level of ampicillin resistance
conferred by the gene and are predictive of fithess values measured by growth
competition experiments in the presence of a range of ampicillin concentrations

(Supplementary Fig. S1).

We created a library of ~30,000 sequential double mutants in TEM-1 using inverse PCR
using abutting, degenerate primers in which the 5’-end of one primer had the sequence
(NNN)2 [27]. We created separate libraries for each third of the gene to be compatible
with the read length of the lllumina MiSeq 2x300 deep sequencing platform. Due to the
nature of the genetic code, a consequence of using NNN to encode the mutations is
that our libraries were biased towards certain amino acid substitutions (e.g. mutation to
serine will occur six times as often as mutation to tryptophan) (Supplementary Fig. S2).
However, mutations occurring naturally are biased in a similar way based on the genetic
code (i.e. mutation to serine occurs more frequently than mutation to tryptophan). In
addition, our library is not biased towards those amino acid substitutions that would
most likely occur in TEM-1, which would be those occurring by single base substitution

in the TEM-1 codons. We focused on studying the epistasis between sequential amino



acid substitutions in the TEM-1 protein, not on epistatic interactions that would likely

occur by single base substitutions in the TEM-1 gene.

We plated transformed SNO301 E. coli cells with the double mutant library on plates
containing tetracycline and 13 different Amp concentrations ranging from 0.25 pg/ml to
1024 ng/ml. Whereas Amp prevents growth if the Amp concentration is too high relative
to the amount of Amp resistance conferred, tetracycline prevents growth if the
concentration of Amp is too low relative to the amount of Amp resistance conferred. As
a result, a particular allele will confer growth only in a narrow range of Amp
concentrations — a behavior that results from the band-pass synthetic gene circuit in
SNO301 cells (see Firnberg et al. [22] for a detailed explanation). We recovered the
resulting sublibraries from the plates, PCR-amplified the appropriate third of the gene
with lllumina MiSeq compatible barcodes, and deep sequenced the amplicons to

determine how often each allele appeared on each plate.

Sequencing reads of alleles containing synonymous codons were grouped together to
gain statistical power. This comes at the expense of examining potential differences in
fitness between alleles with synonymous codons. This is most relevant at the beginning
of the gene, where synonymous mutations can cause differences in translations rates
due to differences in RNA structure[22, 28, 29]. Although we have evidence that
synonymous mutations in the first ten codons of TEM-1 can have fitness effects [22],

these effects are the exception and not the rule. In addition, fitness values for individual



codon substitutions in TEM-1 (as opposed to combining data for synonymous codons
for each amino acid substitution) usually have a high uncertainty due to a low number of
counts in Firnberg et al., an uncertainty that would make detection of epistatic effects
difficult. A result of our grouping of synonymous codons is the potential for a slight
overrepresentation of the extent of epistasis, particularly at the beginning of the signal
sequence. Supplementary Data S1 tabulates all sequencing counts. The reported
fitness (w) is the calculated Amp concentration at which the mutant allele appeared
most frequently relative to the same value calculated for wildtype allele (tabulated in
Supplementary Data S2). We calculated fitness values only for double amino acid
mutants with 20 or more sequencing counts to focus on those fithess measurements

with lower uncertainty (see Materials and Methods for a more detailed explanation).

We next applied an adjustment to these fithess measurements to account for potential
experimental differences between the two sets of fithess measurements. Our epistasis
calculations rely on consistent fitness measurements between our previous fitness
measurements of single mutants [22] and the measurements of double mutants
presented here. Thus, we took measures to ensure that the fitness values were
consistent between the two experiments. We hypothesized that small differences in
plating, incubation temperature, or other experimental factors may affect a cell’s
propensity to form a colony on each plate, perhaps resulting in a slight shift higher or

lower in the Amp concentrations that favor growth. Such phenomena would result in



systematic shifts in fitness values between the two experiments, which could be

different for different ranges of fitness values.

To examine this possibility, we compared single mutant fithess values measured in
each experiment. Our double mutant library creation technique also produced alleles
containing an amino acid substitution next to a synonymous mutation. We assumed that
all observed synonymous mutations were neutral, consistent with our previous
observations that the vast majority of synonymous mutations in TEM-1 are neutral [22].
We compared the fitness values for the 1,470 such alleles in our experiment with the
corresponding single mutant fitness values from Firnberg et al. We observed small
offsets in fitness values that were different for different fithess value ranges. For
example, fithess values less than ~0.125 were ~30% higher in the double mutant data
set than the single mutant data set, whereas fitness values nearer to the wildtype value
had a much smaller offset. Based on this observation, we adjusted the double mutant
fithess measurements set to account for these differences. These adjustments are
provided as Supplementary Data S4. We judge this cross-experiment normalization
procedure to be the most justifiable way to compare the two sets of data. However, we
also analyzed the data without the fitness value adjustments, and the overall trends

presented in this study remained the same.

We obtained fitness values for 12,374 alleles of unique double mutant pairs, with an

average of 30 pairs per position. This number represents 12.0% (12,374/102,855) of all



possible consecutive double mutants. The distribution of fitness values of the double-
mutants shows a shift toward lower fitness values (Fig. 1b), compared to the distribution
of fitness values of the single mutants (Fig. 1a). Only 89 double mutations resulted in
fitness values significantly higher than wildtype. Nearly half (49.9%) of double mutations
resulted in a near-complete loss of function (w<0.05). This shift toward low fitness is
expected and in agreement with other mutation accumulation studies [15, 21], including

one on TEM-1 [5].

Epistatic landscape of sequential double mutants
We define pairwise epistasis as occurring when the product of the fithess values of two
individual mutations differs from the fitness of the combined pair. Epistasis (g) between

mutation A with fitness wa and mutation B with fithess wasis calculated as:

€45 = 10810 (w) (1)

WAWB

where wo is the fithess of wildtype TEM-1 and wasis the fitness of the double mutant.
We calculated epistasis values for 8.1% (8,302/102,885) of all possible pairs of
sequential amino acid substitutions. For our epistasis analysis, we exclude pairs
containing mutations with individual fitness values less than 0.02 to avoid the lower limit
in fithness measurements causing high epistasis values by artifact. Epistasis
measurements were determined to be significantly different than zero if they were

greater or less than 0 by twice the error estimate in the epistasis measurement (see



Methods). Over half (58%) of all double mutants analyzed exhibited significant epistasis
(Fig. 2b). The high prevalence of epistasis compared to most other studies is consistent
with the previous observation that epistasis is more common in sequential mutations
than in non-sequential mutations [15], although we do not have a corresponding
measure of the frequency of epistasis among random mutations in TEM-1 to which we
can directly compare. It may also reflect differences in the prevalence of epistasis with
regard to fitness (here the ability of the allele to confer Amp resistance to live cells),
compared to epistasis with regard to a less complex biophysical property, as
hypothesized by Sackman and Rokyta [13]. The distribution of epistasis values was
skewed toward negative values, with a mean epistasis of -0.32 and a median of -0.18,
indicating that the combined fitness effect of two mutations is often more deleterious
than predicted in the absence of epistasis. Negative epistasis (51%) occurred 7.5 times
as frequently as positive epistasis (6.8%). This pervasive negative epistasis is
consistent with a TEM-1 mutation accumulation study that concluded its fithess

landscape is characterized by negative epistasis [5].

A comparison of observed fitness values (was) to predicted fitness in the absence of

epistasis (waws) clearly shows the prevalence of negative epistasis (Fig. 2a). We found
that the product of single mutant fithess values (i.e. the predicted fitness in the absence
of epistasis) predicted double mutant fithess values with a Pearson’s R? of 0.71. This is
within the range of the correlations found in other epistasis studies, which had R? values

ranging from 0.67 [17] t0 0.76 [15].



Relationship between epistasis and protein sequence/structure

Examining epistasis among sequential double mutant pairs allowed us to map median
epistasis at each position and look at trends within secondary structures (Fig. 3).
Although negative epistasis dominates, there were 19 pairs of positions with positive
median epistasis values, indicating hot spots for synergistic potential (Fig. 3a).
Interestingly, we note a particularly high median epistasis at positional pair 221-222.
This median was calculated from a total of 21 observations. With the exception of one
pair, the double mutants at this position were combinations of deleterious single
mutations (median fitness of 0.052). Residues L221 and R222 make up the first two
amino acids of a four-residue helical element (helix 10). Positive epistasis, indicating a
higher than expected fitness between individually deleterious mutations at this positional
pair suggests hotspot for compensatory interactions, possibly buffering structural

disruptions in the helix.

Positive epistasis occurred three times more frequently in the signal sequence (17.8%)
than in the mature protein (5.82%) (P<0.0001, Fisher’s exact test) (Fig. 3c), although
our reported frequency of both positive and negative epistasis in the signal sequence
may be slightly inflated due to the potential for fitness effects of synonymous mutations
in the first 10 codons (as discussed above). The signal sequence is a 23 amino acid
peptide that directs export of the protein to the periplasmic space of E. coli. The signal

sequence is removed in the periplasm and is not part of the mature protein. However,



mutations within the signal sequence can change protein abundance and therefore
affect fitness. Over half (52%) of the occurrences of positive epistasis in the signal
sequence were between one beneficial and one deleterious mutation, with the
remaining 48% being between mutations that are deleterious individually. Positive
epistasis in this region suggests detrimental mutations are easily partially compensated

by mutations at adjoining positions.

In the mature protein, negative epistasis occurred most often in beta-strands (Fig. 3c),
indicating that two sequential mutations within these structures is often more detrimental
than the combination of their individual effects. A majority (68%) of mutations occurring
in beta-strands were individually deleterious. The side chains of sequential mutations
are not expected to physically interact because sequential amino acids point in different
directions in a beta strand. Rather, deleterious mutations probably cause backbone
shifts that affect the fitness effects of sequential mutations in non-additive ways — an
interaction through the backbone. As deleterious mutations in beta-strands likely result
from packing problems and decreases in stability, these findings suggest that the
threshold robustness to additional deleterious mutations [5] is more often exhausted in
beta-strands, presumably because the complexity of the structure has more constraints

on the amino acids at each position.

We also examined epistasis among surface residues versus buried residues. We define

surface residues as those with >20% solvent accessibility, and buried residues as those



with <20% solvent accessibility. On average, buried residue pairs exhibited lower
epistasis values than surface residue pairs (P <0.0001, by Student’s t-test), suggesting
that multiple mutations at internally oriented residues are more likely to interact
antagonistically (Fig. 3d). Epistasis values for buried residues also had a broader
distribution of values than epistasis values for solvent accessible residues (P<0.0001 by
Brown—Forsythe test). We observed no obvious pattern in epistasis between different
pairs of amino acids; however, we note that the lowest two median epistasis values
occurred between pairs of two cysteines and pairs of two aspartic acids (Supplementary
Fig. S4). We found no correlation between epistasis and the distance from the active

site (Supplementary Fig. S5).

The influence of fithess effect sign and size on epistasis.

Previous studies have noted differences in epistasis among individually beneficial
versus deleterious mutations [11, 18]. Additionally, Pumir et al. [30] posited that the
effect size of the mutation may influence its epistatic effect in the context of another
mutation. To probe this further, we examined epistasis versus the effect size of the
individual mutations contained in the pair. We define a mutation as deleterious if its
fitness is more than two times its error below wildtype fitness and beneficial if its fithess
is more than two times its error above wildtype fitness. In general, we observed
epistasis more frequently in pairs containing at least one deleterious mutation than in
pairs containing at least one beneficial mutation (Fig. 4). Epistasis was especially

prevalent among large effect deleterious mutations (w<0.1), with nearly 90% of all pairs



containing a large effect deleterious mutation exhibiting either positive or negative
epistasis (Fig. 4a). In particular, pairs containing large effect deleterious mutations have
a higher frequency of positive epistasis than pairs containing small effect deleterious
mutations, suggesting that the fitness cost of highly deleterious mutations can be
somewhat dampened by the presence of an additional mutation. Our inability to observe
any meaningful trends in epistasis for pairs containing at least one beneficial mutation
(Fig. 4b) may be due to the small number of mutations with statistically significant

beneficial effects (Fig. 1a).

Sign epistasis

We also examined sign epistasis for 11,679 double mutant alleles for which we had
corresponding single mutant fitness values. Sign epistasis is solely determined by the
sign of fitness measurements (beneficial or deleterious). Unlike magnitude epistasis, it
is not calculated from the product or ratio of two fitness values. Therefore, we included
pairs containing single mutants with w<0.02 in the analysis of sign epistasis. By
definition, positive sign epistasis can occur only for pairs containing at least one
deleterious mutation and negative sign epistasis can occur only for pairs containing at
least one beneficial mutation. We observe positive sign epistasis in only 13 out of 9673
pairs containing a deleterious mutation. The low frequency of positive sign epistasis
indicates a scarcity of paths to climb above wildtype fitness in a single step from a
deleterious mutation. Negative sign epistasis is much more prevalent, occurring in

55.4% of pairs containing a beneficial mutation. This indicates a moderately rugged



landscape for sequential double mutants that is dominated by fitness valleys. We
examined the relationship between negative sign epistasis and individual mutation
effect size, but found the frequency to be >50% across all effect sizes. Thus, for
beneficial mutations, the magnitude of the fitness effect does not predict the likelihood
of surrounding fitness valleys. We found no cases of reciprocal sign epistasis,
suggesting that many peaks may be accessible on the TEM-1 fitness landscape through

accumulation of one mutation at a time.

Discussion

The picture of epistasis in protein evolution is still emerging. Our study examines
pairwise intragenic epistasis in TEM-1 beta-lactamase in the context of it performing its
native function (antibiotic resistance) in its native host (E. coli). Although TEM-1 is
native to E. coli, it differs from most E. coli genes because it is found on plasmids
(instead of the chromosome), which can be transferred among different bacteria.
Whether this difference would impact the extent of epistasis is unknown. We contend
that fitness and epistasis measurements are best performed in their native host when
the goal is to understand the landscapes that shape the natural evolution of proteins.
Studies that extract proteins from their native environment will miss native fitness and
epistatic effects arising from the interaction of the protein and the cell and may be
colored by non-native fitness and epistatic effects arising from non-native interactions.

For example, mutations may promote misfolding [31] or misinteractions [32] that have



deleterious effects on cell growth (i.e. fitness), and such effects will be environment

dependent.

We specifically examined pairwise epistasis between sequential amino acid
substitutions across the entire length of the primary sequence. Our intent was to study
the inherent susceptibility of the TEM-1 protein to epistatic interactions between
sequential amino acid substitutions, not to study epistatic interactions between the
mutations that are most likely to occur in the TEM-1 gene (i.e. those achieved with a
single bp substitution). The results of our study should be viewed with these limitations
in mind. We postulated that consecutive double mutants represent a subset of possible
mutational pairs that are more likely to exhibit epistatic effects due to spatial proximity
and direct physical link in the backbone. As such, these epistatic effects are likely

examples of specific epistasis as opposed to nonspecific epistasis.

Epistatic interactions can be classified as specific or nonspecific [33]. Specific epistasis
results from direct physical interactions, and as such, these mutations result in
nonadditivity on the level of biophysical properties, such as stability, activity, or binding.
To the extent that these properties determine organismal fitness, the nonadditivity of
biophysical properties explains epistasis on the fitness level. In contrast, nonspecific
epistasis results from a nonlinear dependence of fitness on the biophysical properties
themselves. With nonspecific epistasis, mutations may act additively on the level of the

protein, but epistasis exists on the level of organismal fitness. Mutations that exhibit



nonspecific epistasis often do so with a relatively large number of mutations. For
example, the M182T mutation in TEM-1 stabilizes the folded state and is a global
suppressor mutation [34]. The presence of M182T reduces the deleterious fitness effect
of many mutations throughout the entire protein [24] — mutations that are presumably
destabilizing. This nonspecific, positive epistasis manifests not from nonadditive effects
of the two mutations on stability, but from the nonlinear mapping of stability to the
probability of the folded state [5] and thus the cellular abundance of the protein (a
biological property that effects fitness). This results in proteins having a stability
robustness threshold [5]. Nonspecific epistasis may represent a significant fraction of all
intragenic epistatic effects, as Dasmeh et al. estimate that 30-40% of epistasis can be
attributed to protein folding stability [35]. A protein’s interaction with the cells protein
quality control machinery (chaperones and proteases), and a mutation’s effect on those

interactions will also shape fitness/epistatic effects and the stability threshold [36].

The relative contributions of specific and nonspecific epistasis to protein evolution is an
important open question [37]. One challenge in addressing this question is the difficulty
in attributing a measured epistatic effect as specific or nonspecific in a high-throughput
manner. By studying sequential mutations — mutations that are highly likely to interact
due to their proximity — we postulate that we are predominantly measuring specific
epistasis. Here, we take a broad definition of “physically interact” to include mutations
that interact through movement of the peptide backbone (as might well occur in

sequential mutations). For instance, when a position is mutated in the interior of the



protein to a larger amino acid, the protein structure must compensate. One way it may
do this is through adjusting the relative position of the peptide backbone that includes
the mutated amino acid. This adjustment would be prone to affect, in nonadditive ways,
the fitness effects of mutations at adjacent positions. In this manner, we believe that
many of the epistatic effects in this study are likely to be specific. We contrast this study
with our previous study on epistasis in TEM-1 involving the G238S mutation [20]. The
G238S mutation exhibited negative epistasis with 58% of other mutations throughout
TEM-1 and decreases stability about 2 kcal/mol [38]. Most epistasis with G238S is likely
nonspecific epistasis and manifests from G238S’s deleterious effect on stability.
However, negative epistasis involving G238S and some other mutations may well be
specific in nature. We note that a protein’s stability threshold can be exhausted by

specific negative epistasis and nonspecific negative epistasis.

We find widespread negative epistasis between sequential mutations in TEM-1
evaluated in its native environment, though hotspots for positive epistasis existed. This
high frequency of epistasis contrasts with the typically low frequency of epistasis found
in studies that focus on epistasis on the level of biophysical properties measured in non-
native environments [14-17, 21]. Our study does not address the reasons for the higher
frequency of epistasis. The higher frequency is likely some combination of measuring
fitness on the level of the cell (instead of the protein level) [39][33, 40], measuring
fitness of the protein in its native environment, and measuring fitness only for sequential

mutations. We can say that measuring fitness effects of mutations in a protein in its



native environment and at the level of the cell should better provide fitness and epistatic
landscapes that reflect those that constrain and shape protein evolution. Our study
lends support to the emerging picture of pervasive negative epistasis among mutations
studied in their native context, the threshold robustness hypothesis, and the relationship
between solvent accessibility and epistasis. Our findings lend support to the hypothesis
that epistasis may be pervasive with regard to biological fithess despite underlying

additive mutational effects on biophysical properties such as stability.

Materials and Methods

Library Creation

The TEM-1 gene was expressed on pSkunk3, a 4.36 kb plasmid containing
spectinomycin resistance and the p15 origin of replication, under the IPTG-inducible tac
promotor in E. coli. We used inverse PCR with primers (IDT) designed to create every
possible sequential double mutant in TEM-1, using NNN-NNN degenerate nucleotide
oligos and a compatible reverse primer designed for each position. PCR products were
visualized using gel electrophoresis, to confirm the creation of a linearized plasmid
product at each of the 286 positions. We pooled the PCR products, isolated the ~4 kb
band from an agarose electrophoresis gel, phosphorylated the DNA at 37°C (NEB T4
PNK), and ligated it overnight at 16°C. NEB 5-alpha F’ laclq E. coli were transformed

with the ligation product and plated on LB-agar plates containing 50 ng/mi



spectinomycin and 2% glucose (w/v). At least 500,000 transformants were obtained for

each third.

We recovered each library from the plate in LB media and isolated the plasmid library.
We transformed electrocompetent SNO301 E. coli cells with each library and plated on
LB-agar plates containing 50 ug/ml spectinomycin, 50 ug/ml chloramphenicol, and 2%
glucose. At least 80,000 transformants were obtained from each third. We recovered
each library from the plate in LB media and made glycerol stocks. The library sizes were
greater than the number of sequences we could analyze by deep sequencing. Thus,
we prepared a smaller sublibraries of each library by plating ~10,000 CFU from each
library on LB-agar plates with 50 pg/ml spectinomycin, 50 ug/ml chloramphenicol, and
2% glucose (i.e. permissive growth conditions), recovering those cells, and creating final

frozen sublibrary stocks for selection.

Selection and Sequencing

High-throughput selection for resistance to ampicillin (Amp) was performed using a
band-pass genetic circuit, described previously [22]. Briefly, E. coli SNO301 cells
containing the double mutant library were plated on LB-agar plates containing 20 pg/ml
tetracycline and 13 different Amp concentrations, ranging from 0.25 pg/ml to 1024
ug/ml, in 2-fold increments. Plates were incubated for 21 hours at 37°C. The library was
plated in triplicate on each Amp concentration and the CFUs from each plate were

counted to determine the frequency of colonies appearing on each plate. Based on



these counts, a proportional amount of barcoded PCR amplicon from each plate was
deep sequenced. Amplicons were prepared by recovering the cells from each selection
plate, isolating the plasmid DNA, and performing PCR with appropriate primers as
described previously [20, 22]. Barcodes to identify each plate and adapters compatible
with lllumina MiSeq platform were added in this PCR step. Amplicons were pooled and

sequenced using lllumina MiSeq with 300 base pair, paired-end reads.

Data Analysis

The de-multiplexed MiSeq reads were analyzed using custom MATLAB scripts. Paired-
end reads were trimmed and concatenated to yield full length reads. Each read was
then aligned to TEM-1 using a Smith-Waterman algorithm with a gap opening penalty of
100. Reads with an alignment score lower than 300 were filtered out and only reads
containing two sequential codon substitutions were used for analysis. Fitness was
calculated for each unique double amino acid mutant based on the counts from each
plate (Amp concentration). Synonymous codons were grouped together and total counts
were used to calculate the single amino acid fitness. First, counts were adjusted based
on the number of sequencing reads obtained from each plate relative to the CFUs
observed on that plate, as described previously [20]. Detailed description of the fitness
calculation can be found in our previous studies [20, 22], which we followed with a few
minor differences. In this study, we excluded alleles with fewer than 20 counts and
alleles with a maximum single plate count less than 1/3 the total count. We exclude

alleles with fewer than 20 counts in order to focus on fithess measurements that had



smaller uncertainty. We excluded alleles with a maximum single plate count less than
1/3 the total count to eliminate alleles for which the count distribution made the correct
fitness ambiguous. For example, a small number of alleles had two clusters of counts
(we hypothesize that this arises from some plasmids with the indicated mutation having
an additional, spontaneous mutation outside the sequencing range) and a small number
of alleles had a low level of counts on many plates without a clear cluster of counts (we
hypothesize that this arises when an allele is absent or present at low frequency in the
library and the position is prone to sequencing errors). For each allele (i) that passed
these criteria, the plate with the highest adjusted counts and the four plates on either
side (i.e. two plates with higher Amp and two plates with lower Amp) were used to

calculate an unnormalized fitness value, representing the midpoint resistance to Amp:

_ Zé‘i1 Ciplogz(ap)

fi===n.. (2)

13
Zp=1 Cip

where ¢;, is the adjusted count of allele 7on plate p, and a,is the Amp concentration on

plate p (in ug/ml). The reported fitness values are normalized to wildtype TEM-1:

2fi
Wi = 2f TEM-1 (3)

Wildtype fithess was calculated in the same way (i.e. using adjusted sequencing counts)
and verified separately by separately plating cells expressing wildtype TEM-1 in

triplicate during the bandpass selection step. Both colony counts of the wildtype plates



and wildtype sequencing counts revealed a midpoint Amp resistance of ~185 ug/ml
(186.1ug/ml, 184.8 ug/ml, and 182.3ug/ml for each of the thirds, and 187.4 ug/ml for the
colony counts). Wildtype sequencing counts and colony counts are provided in

Supplementary Data S3.

We adjusted the fitness measurements based on a comparison between fitness values
for 1,470 single amino acid substitutions containing a synonymous wild type mutation
and the corresponding single amino acid fitness values from Firnberg et al. [22]. We
calculated a ratio of the two fitness values across different fitness value ranges. Based
on the offset of this value from 1, we determined adjustment factors for each range of
fitness values, which ranged from 0.52 to 0.97. We multiplied the calculated double
mutant fithess values by these adjustment factors and used these cross-experiment
normalized fitness values for all subsequent analysis, which is presented in this study.
We also analyzed the data without the fitness value adjustments, and the overall trends

presented in this study remained the same.
Error in fitness (o,,,) was estimated via Eqs 4 and 5, using our previously determined
correlation between sequencing counts (n;) and the standard deviation of the difference

in fitness between synonymous alleles [20, 22].

Ow; = W; X e; (4)



where ej, the upper-level estimate of the fraction error in fitness, is given by:

e; = 0.667n,70387 (5)

Fitness values were determined to be significantly different than 1 if they were greater
or less than 1 by twice the error estimate.
Epistasis was calculated using Eq. 1. To determine epistasis values that were

significantly different than 0, upper and lower limits were calculated using Eqs 6 and 7:

w w

€apu = 10810 [ﬁ](l +Je,? + ep? + ey? + e452) (6)
w w

€ap,L = 10810 [Wil;;](l —Jea? +ep? +eg? + eyp?) (7)

Epistasis values were determined to be significantly positive or significantly negative

based on Eq 8 and 9, respectively:

€4 — Z(SAB - GAB,L) >0 (8)

Y Z(SAB - GAB,U) <0 9)

Sign epistasis was determined based on fitness measurements of the individual

mutations and double mutant pair. Positive sign epistasis was defined as occurring



when at least one of the mutants was individually deleterious (less than twice the error
below 1), and the double mutant was beneficial (greater than twice the error above 1).
Likewise, negative sign epistasis was defined as occurring when at least one of the
mutants was individually beneficial, and the double mutant was deleterious. Reciprocal
sign epistasis required both mutants to be individually deleterious, while the double

mutant was beneficial. Negative reciprocal sign epistasis was the inverse.
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Fig. 1. Distribution of mutational fitness effects of single and double mutants IN
TEM-1. (a) Distribution of 5460 single mutant fitness values from Firnberg et al. [22]. (b)
Distribution of 12,374 sequential double mutant fitness values. The single mutant
distribution has a very small number of fitness values >1.8 that are not shown. Bars are
stacked to show total fractions. Fitness values are normalized to that of wildtype TEM-1
beta-lactamase. Fitness values that are significantly different from 1.0 are indicated in

red. Supplementary Data S2 tabulates all fitness values of double mutants.
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Fig. 2. Distribution of epistasis values among sequential mutations in TEM-1. (a)
Observed fitness versus predicted fitness for 8,302 double mutant alleles. Predicted
fitness assumes no epistasis. (b) The distribution of epistasis values among 8,302
double mutant alleles. Bars are stacked to show total fractions. Significant epistasis

values are indicated in red. Supplementary Data S2 tabulates all epistasis values.
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Fig. 3. The relationship between protein sequence, structure, and epistasis in
TEM-1. (a) Median epistasis values across the TEM-1 primary sequence. Median
values were calculated only for position pairs with 5 or more epistasis values. Median
epistasis for a mutation pair is plotted at the first position of that pair. Colored bars

indicate regions that code for the signal sequence (yellow), alpha helices (green), beta



strands (blue), and the omega loop (grey). Asterisks indicate the location of important
catalytic residues. (b) Median epistasis values mapped onto the TEM-1 structure. Active
site residues are indicated in green. (c) Frequency of positive epistasis (blue), negative
epistasis (red), and no or not significant epistasis (grey) in the signal sequence and
secondary structure elements. Data are categorized by the structural identity of the first
mutation. Distribution of fitness values for these categories is provided as
Supplementary Fig. S3. (d) Epistasis distributions for buried and surface residues. The

median value of the distribution is indicated.



1 -

—_
Q
~—
—_
—_
~

0.9 - 0.9 1
0.8 - o 0.8 -
€@ [N
2 0.7 - < 07 1
Z 06 < 06
< U.0 7 < 0.6 ;
S 05 S 05 N\
-
g 04 2 0.4 - \
[
2 03 - i 0.3 -
024 0.2 -
0.1 - \—/\»\_—\_/\/ 0.1 \_,_//\
0' u u u d 0 T T
-1 -0.8 -0.6 -0.4 -0.2 0.2 03 0.4
Fitness Change of Deleterious Mutation Fitness Change of Beneficial Mutation
—— Positive Epistasis =~ —— Negative Epistasis No Epistasis or No Significant Epistasis

Fig. 4. The effect of size and nature of the mutational effect on the frequency of
positive and negative epistasis. Frequency of epistasis among mutation pairs with (a)
at least one deleterious mutation and (b) at least one beneficial mutation. The
deleterious or beneficial mutation must have a statistically significant effect on fitness,
but the other mutation in the pair may be deleterious, beneficial, or neutral. Boxcar

smoothing was applied to the data to improve visualization of trends.
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Supplementary Fig. S1. Fitness values for amino acid substitutions in TEM-1
measured by growth competition compared to fitness values measured by our
bandpass MIC-like method [22]. Stiffler et al [23] performed the growth competition
experiments in liquid LB media (with different concentrations of Amp as indicated) with
DH10B E. coli cells containing TEM-1 under its native, constitutive promoter on plasmid
pBR322. The fitness value associated with a mutation was measured by calculating the
change in allele frequency relative to wildtype between before and after the growth
competition. We performed our experiments on LB-agar plates with SNO301 E. coli
cells containing TEM-1 under the IPTG-inducible tac promoter on a lower-copy p15A
origin plasmid [22]. Fitness was measured as the resistance of cells carrying the
mutation relative to wildtype using the bandpass system. This fitness measurement
does not depend on the ampicillin concentration in the media (i.e. the fitness
measurement for Firnberg et al is the same in all five graphs). The line is x=y.
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Supplementary Fig. S2. (a) Experimental distribution of epistasis values obtained for
pairs of amino acids in this study (b) Theoretical distribution of possible pairs of amino
acids based on the genetic code.
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Supplementary Fig. S4. Median epistasis between pairs of mutant amino acids. The
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