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Abstract. In this paper, we consider Maxwell’s equations in linear dispersive media described by a single-pole Lorentz model for electronic
polarization. We study two classes of commonly used spatial discretizations: finite difference methods (FD) with arbitrary even order accuracy in
space and high spatial order discontinuous Galerkin (DG) finite element methods. Both types of spatial discretizations are coupled with second
order semi-implicit leap-frog and implicit trapezoidal temporal schemes. By performing detailed dispersion analysis for the semi-discrete and fully
discrete schemes, we obtain rigorous quantification of the dispersion error for Lorentz dispersive dielectrics. In particular, comparisons of dispersion
error can be made taking into account the model parameters, and mesh sizes in the design of the two types of schemes. This work is a continuation
of our previous research on energy-stable numerical schemes for nonlinear dispersive optical media [6, 7]. The results for the numerical dispersion
analysis of the reduced linear model, considered in the present paper, can guide us in the optimal choice of discretization parameters for the more
complicated and nonlinear models. The numerical dispersion analysis of the fully discrete FD and DG schemes, for the dispersive Maxwell model
considered in this paper, clearly indicate the dependence of the numerical dispersion errors on spatial and temporal discretizations, their order of
accuracy, mesh discretization parameters and model parameters. The results obtained here cannot be arrived at by considering discretizations of
Maxwell’s equations in free space. In particular, our results contrast the advantages and disadvantages of using high order FD or DG schemes and
leap-frog or trapezoidal time integrators over different frequency ranges using a variety of measures of numerical dispersion errors. Finally, we
highlight the limitations of the second order accurate temporal discretizations considered.
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1. Introduction. The electromagnetic (EM) field inside a material is governed by the macroscopic Maxwell’s
equations along with constitutive laws that account for the response of the material to the electromagnetic field. In
this work, we consider a linear dispersive material in which the delayed response to the EM field is modeled as
a damped vibrating system for the polarization accounting for the average dipole moment per unit volume over the
atomic structure of the material. The corresponding mathematical equations are called the Lorentz model for electronic
polarization. Such dielectric materials have actual physical dispersion. The complex-valued electric permittivity of
such a dispersive material is frequency dependent and includes physical dissipation, or attenuation. It is well known
that numerical discretizations of (systems of) partial differential equations (PDEs) will have numerical errors. These
errors include dissipation, the dampening of some frequency modes, and dispersion, the frequency dependence of the
phase velocity of numerical wave modes [45]. To preserve the correct physics, it is important that the dispersion and
dissipation effects are accurately captured by numerical schemes, particularly for long time simulations. Thus, an
understanding of how numerical discretizations affect the dispersion relations of PDEs is important in constructing
good numerical schemes that correctly predict wave propagation over long distances. When the PDEs have physi-
cal dispersion modeling a retarded response of the material to the imposed electromagnetic field, the corresponding
numerical discretizations will support numerical dispersion errors that have a complicated dependence on mesh step
sizes, spatial and temporal accuracy and model parameters.

In this paper, we perform dispersion analysis of high spatial order discontinuous Galerkin (DG) and a class of
high order finite difference (FD) schemes, both coupled with second order implicit trapezoidal or semi-implicit leap-
frog temporal discretizations for Maxwell’s equations in linear Lorentz media. The fully discrete time domain (TD)
methods are the leap-frog DGTD or FDTD methods and the trapezoidal DGTD or FDTD methods. This paper is
a continuation of our recent efforts on energy stable numerical schemes for nonlinear dispersive optical media. In
[6, 7], we developed fully discrete energy stable DGTD and FDTD methods, respectively, for Maxwell’s equations
with linear Lorentz and nonlinear Kerr and Raman responses via the auxiliary differential equation (ADE) approach.
These schemes include second order modified leap-frog or trapezoidal temporal schemes combined with high order
DG or FD methods for the spatial discretization. In the ADE approach, ordinary differential equations (ODEs) for the
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evolution of the electric polarization are appended to Maxwell’s equations. The two spatial discretizations that were
used, the DG method and the FD method are very popular methods for electromagnetic simulations in the literature.
The DG methods, which are a class of finite element methods using discontinuous polynomial spaces, have grown
to be broadly adopted for EM simulations in the past two decades. They have been developed and analyzed for time
dependent linear models, including Maxwell’s equations in free space (e.g., [11, 12, 20]), and in dispersive media
(e.g., [16, 24, 31, 33]). The Yee scheme [47] is a leap-frog FDTD method that was initially developed for Maxwell’s
equations in linear dielectrics, and is one of the gold standards for numerical simulation of EM wave propagation in
the time domain. The Yee scheme has been extended to linear dispersive media [25, 30, 29] (see the books [43, 44] and
references therein), and then to nonlinear dispersive media [50, 18, 25, 21, 42]. Additional references for Yee and other
FDTD methods for EM wave propagation in linear and nonlinear Lorentz dispersion can be found in [27, 26, 9, 19, 39]
for the 1D case, and in [15, 28, 50] for 2D and 3D cases.

In our recent work [6, 7], we proved energy stability of fully discrete new FDTD and DGTD schemes for
Maxwell’s equations with Lorentz, Kerr and Raman effects. Both types of schemes employ second order time inte-
grators, while utilizing high order discretizations in space. The schemes are benchmarked on several one-dimensional
test examples and their performance in stability and accuracy are validated. The objective of the present work is to
conduct numerical dispersion analysis of the aforementioned DGTD and FDTD schemes for Maxwell’s equations in
linear Lorentz media, and this can guide us in the optimal choice of numerical discretization parameters for more
general dispersive and nonlinear models.

There has been abundant study on the dispersion analysis of DG methods. Most work was carried out for semi-
discrete schemes, e.g., for scalar linear conservation laws [1, 23, 22, 41, 3], and for the second-order wave equation
[4]. Dispersive behavior of fully discrete DGTD schemes is studied for the one-way wave equation [46, 2] and two-
way wave equations [10]. Particularly, in [40] the accuracy order of the dispersion and dissipation errors of nodal DG
methods with Runge-Kutta time discretization for Maxwell’s equations in free space are analyzed numerically. The
stability and dispersion properties of a variety of FDTD schemes applied to Maxwell’s equations in free space are also
well known (see [43]). Additionally, various time domain finite element methods have been devised for the numerical
approximation of Maxwell’s equations in free space (see [34, 32] and the references therein). There has been relatively
less work on phase error analysis for dispersive dielectrics; see [43, 37, 38, 8] for finite difference methods and [5] for
finite element methods.

To the best of our knowledge, the present work is the first in the literature to conduct dispersion analysis of
fully discrete DGTD methods for Maxwell’s equations in Lorentz dispersive media and providing comparisons of the
numerical dispersion errors with those of fully discrete FDTD methods. By rigorous quantification of the numerical
dispersion error for such dispersive Maxwell systems, we make comparisons of the DGTD and FDTD methods taking
into account the model parameters, spatial and temporal accuracy and mesh sizes in the design of the schemes. Given
the popularity of both DGTD and FDTD methods in science and engineering, such a comparison of errors between
the two schemes will provide practioners of these methods with guidelines on their proper implementation.

Our dispersion analysis indicates that there is a complicated dependence of dispersion errors on the model pa-
rameters, orders of spatial and temporal discretizations, CFL conditions as well as mesh discretization parameters.
We compute and plot a variety of different measures of numerical dispersion errors as functions of the quantity ω

ω1
,

where ω1 is the resonance frequency of the Lorentz material, and ω is an angular frequency. These measures include
normalized phase and group velocities, attenuation constants and an energy velocity [17]. The parameter range of
the quantity ω

ω1
separates the response of the material into distinct bands. We find that some counterintuitive results

can occur for high-loss materials where a low order scheme can have smaller numerical dispersion error than a higher
order scheme. Since this situation does not occur in non-dispersive dielectrics, our results demonstrates the need to
analyze and study the numerical dispersion relation for the Lorentz media beyond those for the case of free space that
commonly appear in the literature. We have made quantitative comparisons of the high order FD and DG schemes
based on the metrics discussed above. We also identify the differences in numerical dispersion due to the temporal in-
tegrator used. In particular, our results clearly identify the limitation of the second order temporal accuracy of our time
discretizations, by identifying distinct bands in the frequency parameter ranges where the high order spatial accuracy
of either the DG or FD schemes is unable to alleviate the error in numerical dispersion due to time discretization.

The rest of the paper is organized as follows. In Section 2 we introduce Maxwell’s equations in a one spatial
dimensional Lorentz dispersive material. In Sections 3 and 4, we present and analyze the dispersion relations and
the relative phase errors for the PDE model, and two semi-discrete in time finite difference numerical schemes, re-
spectively. In Sections 5 and 6 numerical dispersion errors in semi-discrete in space staggered FD methods, and fully
space-time discrete FDTD methods, respectively, are considered, while numerical dispersion errors in semi-discrete in
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space DG methods and fully discrete DGTD methods are studied in Sections 7, and 8, respectively. In Section 9, we
define four quantities that provide different measures of numerical dispersion error and compare these for the FDTD
and DGTD methods. Interpretations and conclusions of our results are made in Section 10.

2. Maxwell’s Equations in a Linear Lorentz Dielectric. We begin by introducing Maxwell’s equations in a
non-magnetic, non-conductive medium Ω ⊂ Rd, d = 1, 2, 3, from time 0 to T , containing no free charges, that govern
the dynamic evolution of the electric field E and the magnetic field H in the form

∂tB +∇×E = 0, in (0, T ]× Ω, (2.1a)

∂tD−∇×H = 0, in (0, T ]× Ω, (2.1b)

∇ ·B = 0, ∇ ·D = 0, in (0, T ]× Ω, (2.1c)

along with initial data that satisfies the Gauss laws (2.1c), and appropriate boundary data. System (2.1) has to be
completed by constitutive laws on [0, T ] × Ω. The electric flux density D, and the magnetic induction B, are related
to the electric field and magnetic field, respectively, via the constitutive laws

D = ε0(ε∞E + P), B = µ0H. (2.2)

The parameter ε0 is the electric permittivity of free space, while µ0 is the magnetic permeability of free space. The
term ε0ε∞E captures the linear instantaneous response of the medium to the EM fields, with ε∞ defined as the relative
electric permittivity in the limit of infinite frequencies. The macroscopic (electric) retarded polarization P is modeled
as a single pole resonance Lorentz dispersion mechanism, in which the time dependent evolution of the polarization
follows the second order ODE [17, 43]

∂2P

∂t2
+ 2γ

∂P

∂t
+ ω2

1P = ω2
pE. (2.3)

In the ODE (2.3), ω1 and ωp are the resonance and plasma frequencies of the medium, respectively, and γ is a damping
constant. The plasma frequency is related to the resonance frequency via the relation ω2

p = (εs−ε∞)ω2
1 := εdω

2
1 . Here

εs is defined as the relative permittivity at zero frequency, and εd measures the strength of the electric field coupling to
the linear Lorentz dispersion model. We note that the limit εd → 0, or εs → ε∞ corresponds to a linear dispersionless
dielectric.

In this paper, we focus on a one dimensional Maxwell model on Ω = R that is obtained from (2.1), (2.2) and
(2.3) by assuming an isotropic and homogeneous material in which electromagnetic plane waves are linearly polarized
and propagate in the x direction. Thus, the electric field is represented by one scalar component E := Ez , while the
magnetic field is represented by the one component H := Hy . All the other variables are similarly represented by
single scalar components. We convert the second order ODE (2.3) for the linear retarded polarization P to first order
form by introducing the linear polarization current density J ,

∂P

∂t
= J,

∂J

∂t
= −2γJ − ω2

1P + ω2
pE. (2.4)

We consider a rescaled formulation of the resulting one spatial dimensional Maxwell-Lorentz system with the
following scaling: let the reference time scale be t0, and reference space scale be x0 with x0 = ct0 and c = 1/

√
µ0ε0.

Henceforth, the rescaled fields and constants are defined based on a reference electric field E0 as follows,

(H/E0)
√
µ0/ε0 → H, D/(ε0E0)→ D, P/E0 → P, (J/E0)t0 → J, E/E0 → E,

ω1t0 → ω1, ωpt0 → ωp, γt0 → γ,

where for simplicity, we have used the same notation to denote the scaled and original variables. In summary, we
arrive at the following dimensionless Maxwell’s equations with linear Lorentz dispersion in one dimension:

∂H

∂t
=
∂E

∂x
, (2.5a)

∂D

∂t
=
∂H

∂x
, (2.5b)

∂P

∂t
= J, (2.5c)

∂J

∂t
= −2γJ − ω2

1P + ω2
pE, (2.5d)

3



D = ε∞E + P. (2.5e)

3. Dispersion Relations. The Maxwell-Lorentz system (2.5) is a linear dispersive system, i.e. it admits plane
wave solutions of the form ei(kx−ωt) for all its unknown field variables, with the property that the speed of propagation
of these waves is not independent of the wave number k or the angular frequency ω [45]. In this section, we derive the
dispersion relation of (2.5) and highlight its main properties. We assume the space-time harmonic variation

X(x, t) ≡ X0e
i(kx−ωt), (3.1)

of all field components X ∈ {H,E, P, J}. Substituting (3.1) in (2.5) yields the system

ωH0 + kE0 = 0, (3.2a)
kH0 + ε∞ωE0 + ωP0 = 0, (3.2b)

iωP0 + J0 = 0, (3.2c)

ω2
pE0 − ω2

1P0 + (iω − 2γ) J0 = 0. (3.2d)

Define the vector U = [H0, E0, P0, J0]T containing all amplitudes of the field solution, then (3.2) can be rewritten
as a linear system, given by

AU = 0, with A =


ω k 0 0
k ε∞ω ω 0
0 0 iω 1
0 ω2

p −ω2
1 iω − 2γ

 . (3.3)

By solving det(A) = 0, we obtain the exact dispersion relation for (2.5) as

k = ±kex, with kex = ω
√
ε(ω̂;p), and ε(ω̂;p) = ε∞

(
1− εd/ε∞

ω̂2 + 2iγ̂ω̂ − 1

)
. (3.4)

Here, ε(ω̂;p) is the permittivity of the medium dependent on the “relative” frequency ω̂ = ω/ω1 and the parameter
set p = [εs, ε∞, γ̂], with γ̂ = γ/ω1. The permittivity is clearly frequency dependent and displays the dispersive nature
of the system. A major goal in the design and construction of numerical methods for linear dispersive PDEs is to
devise methods that accurately capture the medium’s complex permittivity [43]. We will assume that εs > 0, ε∞ > 0
and εd = εs − ε∞ > 0. These assumptions are based on physical considerations [43]. In the dispersion analysis, we
assume ω is a real number, and restrict ω ≥ 0 in this work. Note that ε(ω̂;p) and k can be complex, depending on the
values that certain parameters assume.

For lossless materials (i.e. γ̂ = 0), the medium absorption band is defined by ω̂ ∈ [1,
√
εs/ε∞], in which

ε(ω̂;p) ≤ 0 and kex is an imaginary number or zero. Outside the medium absorption band, i.e. for other ω̂ values,
we have ε(ω̂;p) > 0 and kex is a real number. Moreover, it is easy to check |kex| → ∞ as ω̂ approaches 1 (the
resonance frequency, which is also the lower bound of the medium absorption band) and kex = 0 at the upper bound
ω̂ =

√
εs/ε∞. In this paper, we are mainly interested in low-loss materials, i.e. γ̂ > 0 with γ̂ � 1. In this case, the

dispersion relation retains similar properties, which means |kex| is a large number around ω̂ = 1 and a small number
near ω̂ =

√
εs/ε∞. This behavior of the exact dispersion relation has implications for the numerical dispersion errors,

as illustrated in later sections.

REMARK 3.1. In the literature, dispersion relations can be presented in two ways; 1) representing the continuous
or discrete angular frequency ω ∈ C as a function of the exact and continuous wave number k ∈ R (and also of the
model parameters and possible mesh parameters); 2) representing the continuous or discrete wave number k ∈ C as
a function of the exact and continuous angular frequency ω ∈ R [43]. In the first approach, we will obtain a fourth
order polynomial for ω as a function of k and other parameters. We provide some insight into approach 1 in Appendix
A, for the semi-discrete in space FDTD discretizations in which the effect of high order FDTD spatial approximations
on the dispersion relation is clearly evident in terms of the symbol of the spatial discretization operators. In this paper,
we mainly use the second approach since in this approach we are able to explicitly identify the effects of discretization
on the permittivity of the Maxwell-Lorentz model (2.5).

Before we proceed, for convenience of the readers, we gather some notations frequently used in the paper, together
with the place of their first appearances in a table listed below.
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TABLE 3.1
Notations used and the place of their first appearance. The symbol ∗ in the superscript can be LF (for the leap-frog temporal scheme) or TP

(for the trapezoidal temporal scheme).

ω̂ γ̂ W W1 K ε(ω̂;p) δ(ω̂;p) Ψ∗(ω̂)

Def ω/ω1 γ/ω1 ω∆t ω1∆t kexh ε∞ −
εd

ω̂2 + 2iγ̂ ω̂ − 1

εd ω̂ (ω̂ + iγ̂)

(ω̂2 + 2iγ̂ ω̂ − 1)2

∣∣∣∣kex(ω̂)− k∗(ω̂)

kex(ω̂)

∣∣∣∣
Eqn (3.4) (3.4) (4.5) (4.5) (5.10) (3.4) (4.9) (4.10), (4.15)

ΨFD,2M (ω̂) Ψ∗FD,2M (ω̂) ΨDG,p(ω̂) Ψ∗DG,p(ω̂)

Def
∣∣∣∣kex(ω̂)− kFD,2M (ω̂)

kex(ω̂)

∣∣∣∣ ∣∣∣∣kex(ω̂)− k∗FD,2M (ω̂)

kex(ω̂)

∣∣∣∣ ∣∣∣∣kex(ω̂)− kDG,p(ω̂)

kex(ω̂)

∣∣∣∣ ∣∣∣∣kex(ω̂)− k∗DG,p(ω̂)

kex(ω̂)

∣∣∣∣
Eqn (5.22) Figure 6.3 Figure 7.1 Figure 8.1

4. Second Order Accurate Temporal Discretizations. This section concerns the dispersion analysis of the
semi-discrete in time schemes. Continuing from our previous work [6, 7], we consider two types of commonly used
second-order time schemes for the linear system (2.5), both implicit in the ODE parts. Let ∆t > 0 be a temporal mesh
step. Suppose un(x) is the solution at time tn = n∆t, n ∈ N, with u = H, E, D, P, J . Then, we compute un+1(x)
at time tn+1 = tn + ∆t by the following methods. The first scheme uses a staggered leap-frog discretization in time
for the PDE part, with the magnetic field H staggered in time from the rest of the field components. The scheme is
given by:

Hn+1/2 −Hn

∆t/2
=
∂En

∂x
, (4.1a)

Dn+1 −Dn

∆t
=
∂Hn+1/2

∂x
, (4.1b)

Pn+1 − Pn

∆t
=

1

2

(
Jn + Jn+1

)
, (4.1c)

Jn+1 − Jn

∆t
= −γ

(
Jn + Jn+1

)
− ω2

1

2

(
Pn + Pn+1

)
+
ω2
p

2

(
En + En+1

)
, (4.1d)

Dn+1 = ε∞E
n+1 + Pn+1, (4.1e)

Hn+1 −Hn+1/2

∆t/2
=
∂En+1

∂x
. (4.1f)

The second scheme, which is a fully implicit scheme based on the trapezoidal rule, is given as follows:

Hn+1 −Hn

∆t
=

1

2

(
∂En+1

∂x
+
∂En

∂x

)
, (4.2a)

Dn+1 −Dn

∆t
=

1

2

(
∂Hn+1

∂x
+
∂Hn

∂x

)
, (4.2b)

Pn+1 − Pn

∆t
=

1

2

(
Jn + Jn+1

)
, (4.2c)

Jn+1 − Jn

∆t
=− γ

(
Jn + Jn+1

)
− ω2

1

2

(
Pn + Pn+1

)
+
ω2
p

2

(
En + En+1

)
, (4.2d)

Dn+1 =ε∞E
n+1 + Pn+1. (4.2e)

Similar to the continuous case, we can perform dispersion analysis on the semi-discrete schemes (4.1) and (4.2)
by assuming the time discrete plane wave solution as

Xn(x) ≡ X0e
i(k*x−ωtn), (4.3)

where ∗ can be LF (with respect to the leap-frog scheme (4.1)) or TP (with respect to the trapezoidal scheme (4.2)).
Define U = [H0, E0, P0, J0]T as the vector containing all amplitudes of the field solutions. Substituting (4.3) in the
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schemes (4.1) or (4.2), we obtain linear systems for each case in the form

A∗U = 0. (4.4)

The semi-discrete numerical dispersion relation can be then obtained from det(A∗) = 0.

For the leap-frog scheme (4.1), we have

ALF =


sin
(
W
2

)
∆t
2 k

LF 0 0

∆t
2 k

LF ε∞ sin
(
W
2

)
sin
(
W
2

)
0

0 0 i sin
(
W
2

)
∆t
2 cos

(
W
2

)
0 ∆t

2 ω
2
p cos

(
W
2

)
−∆t

2 ω
2
1 cos

(
W
2

)
i sin

(
W
2

)
− γ∆t cos

(
W
2

)

 , (4.5)

where W := ω∆t = ω̂W1, with W1 := ω1∆t. This yields the dispersion relation

kLF = ±ω
√
ε(ω̂LF;pLF), with ε(ω̂LF;pLF) = εLF

∞

1− εLF
d /εLF

∞(
ω̂LF

)2

+ 2iγ̂LF ω̂LF − 1

 , (4.6)

where sω :=
sin(W2 )

W
2

and rω :=
tan(W2 )

W
2

as in [37], and ω̂LF = ω̂rω,p
LF = [εLF

s , εLF
∞ , γ̂LF], with components given

by the identities
εLF
s = εss

2
ω, ε

LF
∞ = ε∞s

2
ω, γ̂

LF = γ̂. (4.7)

In this form, we can clearly identify how the leap-frog time discretization misrepresents the permittivity by misrepre-
senting the parameters of the model. These misrepresentations are solely due to the discretizations of the ODEs by the
leap-frog time integrator. The misrepresentations depend on the value of the (exact) angular frequency that is chosen,
and in particular as W

2 approaches zero, the discrete parameters approach the continuous ones. Thus, a guideline for
practitioners using this time integrator to control these misrepresentation, is to choose ∆t so that cos

(
W
2

)
≈ 1 across

the range of frequencies present in the short pulse that propagates in the medium [37].

To further analyze the dispersion error, we consider the regime when W � 1, and obtain the Taylor expansion of
(4.6) with respect to W as

kLF = ±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2

)
W 2 +O(W 4)

)
, (4.8)

where

δ(ω̂;p) =
εd ω̂ (ω̂ + i γ̂)(

ω̂2 + 2i γ̂ ω̂ − 1
)2 . (4.9)

We define the relative phase error for the LF scheme to be the ratio

ΨLF(ω̂) :=

∣∣∣∣kLF(ω̂)− kex(ω̂)

kex(ω̂)

∣∣∣∣ =

∣∣∣∣∣∣
√
ε(ω̂LF;pLF)−

√
ε(ω̂;p)√

ε(ω̂;p)

∣∣∣∣∣∣ . (4.10)

Here, we consider kLF in (4.6) with plus sign in front. A similar definition will be used for all semi-discrete and fully
discrete schemes that appear in this paper, and provides quantitative measurement of the numerical dispersion error.
Equation (4.8) verifies a second order dispersion error in time of the leap-frog scheme in the small time step limit.

Similarly, for the trapezoidal method (4.2), we can obtain

ATP =


sin
(
W
2

)
∆t
2 k

TP cos
(
W
2

)
0 0

∆t
2 k

TP cos
(
W
2

)
ε∞ sin

(
W
2

)
sin
(
W
2

)
0

0 0 i sin
(
W
2

)
∆t
2 cos

(
W
2

)
0 ∆t

2 ω
2
p cos

(
W
2

)
−∆t

2 ω
2
1 cos

(
W
2

)
i sin

(
W
2

)
− γ∆t cos

(
W
2

)

 . (4.11)
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This leads to the dispersion relation

kTP = ±ω
√
ε(ω̂TP;pTP) =

sω
rω
kLF, with ε(ω̂TP;pTP) = εTP

∞

1− εTP
d /εTP

∞(
ω̂TP

)2

+ 2i γ̂TP ω̂TP − 1

 , (4.12)

where ω̂TP = ω̂rω,p
TP = [εTP

s , εTP
∞ , γ̂TP], with components given as

εTP
s = εsr

2
ω, ε

TP
∞ = ε∞r

2
ω, γ̂

TP = γ̂. (4.13)

Again, we can clearly identify how the trapezoidal time discretization misrepresents the permittivity. In particular, this
method misrepresents the dissipation and medium resonance in the same manner as the leap-frog method. However,
the relative permittivities ε∞ and εs are misrepresented in a different manner. Thus, the speeds of propagation of
discrete plane waves are different in these two discretizations. In particular, the slow and fast speeds in the medium,
corresponding to relative permittivities εs and ε∞, respectively, are different.

In the small time step limit, for W � 1, we have

kTP = ±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1

)
W 2 +O(W 4)

)
, (4.14)

which indicates second order accuracy in time for the relative phase error for the trapezoidal scheme defined, in a
similar manner to the leap-frog scheme, as

ΨTP(ω̂) :=

∣∣∣∣kTP(ω̂)− kex(ω̂)

kex(ω̂)

∣∣∣∣ =

∣∣∣∣∣∣
√
ε(ω̂TP;pTP)−

√
ε(ω̂;p)√

ε(ω̂;p)

∣∣∣∣∣∣ . (4.15)

Finally, we make qualitative comparisons of the leap-frog and trapezoidal temporal discretizations. For low-loss
materials, the conclusions can be implied from considering the case of γ̂ = 0. For this case, for a given set of
parameters p, ε(ω̂;p) and δ(ω̂;p) ≥ 0 are real numbers. When ω̂ →

√
εs/ε∞, we have ε(ω̂;p) → 0. This means

δ(ω̂;p)

ε(ω̂;p)
→∞, and thus the leading error term of both temporal schemes would be approaching∞. On the other hand,

when ω̂ → 1, it is easy to check that
δ(ω̂;p)

ε(ω̂;p)
→∞ as well. Hence, both time schemes will give large dispersion error

at ω̂ = 1 and ω̂ =
√
εs/ε∞, which are the two endpoints of the medium absorption band. In addition, when W � 1,

if ω̂ ∈ (1,
√
εs/ε∞), i.e. for values in the interior of the medium absorption band, we can prove that

δ(ω̂;p)

ε(ω̂;p)
< −1,

which leads to the relation
∣∣∣∣δ(ω̂;p)

ε(ω̂;p)
− 1

2

∣∣∣∣ ≥ ∣∣∣∣δ(ω̂;p)

ε(ω̂;p)
+ 1

∣∣∣∣. This means the leap-frog scheme has a larger relative

phase error than the trapezoidal scheme in the interior of the medium absorption band. For other values of ω̂ outside

the medium absorption band we obtain ε(ω̂;p) > 0 and
∣∣∣∣δ(ω̂;p)

ε(ω̂;p)
− 1

2

∣∣∣∣ ≤ ∣∣∣∣δ(ω̂;p)

ε(ω̂;p)
+ 1

∣∣∣∣. Hence, the leap-frog scheme

would give a small relative phase error outside the absorption band. For low-loss Lorentz medium, i.e., when γ̂ � 1,
we believe that these conclusions are still valid with a slight change in two peak positions (see Figure 4.1).

Now we choose the following set of parameters, which are the same as in [17], representing a low-loss Lorentz
medium:

εs = 5.25, ε∞ = 2.25, γ̂ = 0.01. (4.16)

Taking W1 as {π/15, π/30, π/60}, the relative phase errors are plotted against ω̂ ∈ [0, 3] in Figure 4.1. We can
observe that the phase errors always have two peaks around ω̂ = 1 and ω̂ =

√
εs/ε∞ ≈ 1.527. The relative phase

errors in the two temporal schemes are basically the same for small ω̂. As ω̂ is increased towards 1, we see that
the error in the leap-frog scheme is slightly smaller than that in the trapezoidal scheme. When ω̂ is between 1 and
1.527, the leap-frog scheme presents larger error than the trapezoidal method. Beyond 1.527, the trapezoidal scheme
generates larger error than the leap-frog scheme. There is no obvious difference between the dispersion errors of two
time discretizations at the peaks. Therefore, in the last graph of Figure 4.1, we only plot the errors of the leap-frog
time schemes at the peaks. We verify the second order accuracy of the method when the mesh size is varied. These
observations are consistent with our analysis.
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FIG. 4.1. The relative phase error of leap-frog (LF) and trapezoidal (TP) time discretizations. In the first three plots we fix W1 ∈
{π/15, π/30, π/60}, respectively, while we vary ω̂ ∈ [0, 3]. In the fourth plot, we fix ω̂ = 1 or ω̂ =

√
εs/ε∞ and consider three different

values of W corresponding to W1 ∈ {π/15, π/30, π/60}, with leap-frog time discretization.

5. Spatial Discretization: High Order Staggered Finite Difference Methods. In this section, we consider
semi-discrete in space staggered finite difference schemes for (2.5). The spatial discretizations that we consider here
for system (2.5) combined with a nonlinear instantaneous Kerr response and a Raman retarded nonlinear response
have been recently developed in [7]. The electric and magnetic fields are staggered in space and the discrete spatial
operators have arbitrary even order, 2M,M ∈ N, accuracy in space. Below, we describe the semi-discrete spatial
schemes, denoted as the FD2M scheme, and then we obtain and discuss dispersion relations of these schemes.

As in [7], we define two staggered grids on R with spatial step size h, the primal grid Gp, and the dual grid Gd,
defined respectively, as

Gp = {jh | j ∈ Z}, and Gd = {(j +
1

2
)h | j ∈ Z}. (5.1)

The discrete magnetic field will be approximated at spatial nodes on the dual grid. These approximations are
denoted by Hj+1/2, termed as degrees of freedom (DoF) of H . All the other discrete fields will have their DoF at
spatial nodes on the primal grid. For a continuous field variable V , Vh denotes its corresponding grid function, defined
as the set of all DoF on its respective grid. The semi-discrete scheme is given as follows:

∂Hj+1/2

∂t
=
(
D(2M)
h Eh

)
j+ 1

2

, (5.2a)

∂Dj

∂t
=
(
D̃(2M)
h Hh

)
j
, (5.2b)

∂Pj
∂t

= Jj , (5.2c)

∂Jj
∂t

= −2γJj − ω2
1Pj + ω2

pEj , (5.2d)

Dj = ε∞Ej + Pj , (5.2e)

whereD(2M)
h and D̃(2M)

h are the 2M -th order finite difference approximations (withM ∈ N) of the spatial differential
operator ∂x, on the primal and dual grids, respectively. These approximations are defined as(

D(2M)
h Eh

)
j+1/2

=
1

h

M∑
p=1

λ2M
2p−1

(2p− 1)
(Ej+p − Ej−p+1) , (5.3a)

(
D̃(2M)
h Hh

)
j

=
1

h

M∑
p=1

λ2M
2p−1

(2p− 1)

(
Hj+p− 1

2
−Hj−p+ 1

2

)
, (5.3b)
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and λ2M
2p−1, is given as [7]

λ2M
2p−1 =

2(−1)p−1[(2M − 1)!!]2

(2M + 2p− 2)!!(2M − 2p)!!(2p− 1)
, (5.4)

with the double factorial n!! defined as

n!! =


n · (n− 2) · (n− 4) . . . 5 · 3 · 1 n > 0, odd
n · (n− 2) · (n− 4) . . . 6 · 4 · 2 n > 0, even
1, n = −1, 0.

(5.5)

5.1. Semi-discrete in space dispersion analysis. In this section we analyze the spatial semi-discrete system
(5.2), i.e., the FD2M scheme. We assume that the semi-discrete system (5.2) has plane wave solutions of the form

Xj(t) ≡ X0e
i(kFD,2M jh−ωt), (5.6)

where kFD,2M represents the numerical wave number of the semi-discrete FD2M scheme. By substituting (5.6) in
(5.2) we obtain the linear system

AFD,2MUFD = 0, (5.7)

where the vector UFD = [H0, E0, P0, J0]T , and the matrix AFD,2M is given by

AFD,2M =


ω Λ2M 0 0

Λ2M ε∞ω ω 0
0 0 iω 1
0 ω2

p −ω2
1 iω − 2γ

 with Λ2M =
2

h

M∑
p=1

λ2M
2p−1

(2p− 1)
sin

[(
p− 1

2

)
kFD,2Mh

]
. (5.8)

The numerical dispersion relation of the FD2M method is obtained by solving the characteristic equation of matrix
AFD,2M and is given as

Λ2M = ±ω
√
ε(ω̂;p) = ±ω

√
ε∞

(
1− εd/ε∞

ω̂2 + 2i γ̂ ω̂ − 1

)
= ±kex. (5.9)

Using results from [7], we can rewrite this numerical dispersion relation as

1

2
hΛ2M =

M∑
p=1

[(2p− 3)!!]2

(2p− 1)!
sin2p−1

(
kFD,2Mh

2

)
= ±1

2
K, (5.10)

with K := kexh. In general, for any M ≥ 1, we will have (4M −2) discrete wave numbers kFD,2M that satisfy (5.10).
In particular, when M = 1, i.e. for the FD2 scheme, the numerical dispersion relation (5.10) is

sin

(
kFD,2h

2

)
= ±1

2
K. (5.11)

Thus, considering K � 1, and performing a Taylor expansion of (5.11) we obtain

kFD,2 = ±kex
(

1 +
1

24
K2 +

3

640
K4 +O(K6)

)
, (5.12)

which indicates that the numerical dispersion error of the FD2 scheme is second order accurate in space.
For the case M = 2, i.e. for the FD4 scheme, the numerical dispersion relation (5.10) becomes

1

6
sin3

(
kFD,4h

2

)
+ sin

(
kFD,4h

2

)
= ±1

2
K. (5.13)

The Taylor expansions of all roots in equation (5.13) are given by

kFD phys,4 = ±kex
(

1 +
3

640
K4 − 1

3584
K6 +O(K8)

)
, (5.14a)

kFD spur1,4 = ±kex

(
i
arcsinh(2

√
42)

K
− 1

2
√

7
+ i

9

1568

√
42K +O(K2)

)
, (5.14b)

kFD spur2,4 = ±kex

(
−iarcsinh(2

√
42)

K
− 1

2
√

7
− i 9

1568

√
42K +O(K2)

)
, (5.14c)
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where kFD phys,4 and kFD spur1,4, kFD spur2,4 are wave numbers corresponding to the physical modes and spurious modes,
respectively, of the FD4 scheme. The physical modes indicate a fourth order accurate numerical dispersion error,
while the leading terms in the spurious modes of k are proportional to O(1/h), indicating an exponential increase or
damping corresponding to the opposite sign in front.

The existence of spurious, parasitic or non-physical modes for a variety of problems and their discretizations has
been extensively discussed in the literature, see for example e.g., [4, 13, 14, 35, 49]. In [35], the author analyzes
spurious modes in finite element discretizations of the wave eqution and shows that the spurious modes have a contri-
bution to the numerical error that behaves in a reasonable manner, so that higher-order elements can be more accurate
than lower-order elements. In [49], the author considers spurious modes in high order finite difference methods that
can occur due to spectral or non-spectral pollution. Here the author shows the dependence of the spurious modes on
boundary approximations and closures. In [13], the author analyzes dispersion error, in particular, errors in the discrete
group velocities in terms of a numerical angular frequency, for a variety of high order finite difference schemes for the
second order wave equation. Here the author identifies spurious modes (parasitic waves) in high order fully discrete
approximations of the wave equation. For a symmetric fully fourth order method the author notes that the parasitic
wave has a velocity that tends to infinity as the time step goes to zero, and remarks that such waves have an amplitude
decreasing with the time step. We would like to note, that to the best of the authors’ knowledge, the existence of
spurious modes for high order FD discretizations for the Maxwell Lorentz model has not been analytically identified
in the literature. Equations (5.14b) and (5.14c) provide explicit formulas for the spurious modes for discretizations of
the Maxwell-Lorentz system that we have not found in the literature.

Below, we focus on the physical modes, and prove that for the FD scheme of order 2M (FD2M), the dispersion
error is of 2M -th order. Thus, the dispersion error is of the same order as the local truncation error for the finite
difference schemes.

THEOREM 5.1. The physical modes of the dispersion relation (5.10), for the spatial semi-discrete finite difference
method FD2M, result in the dispersion error identity

kFD phys,2M = ±kex (1 + ς
2M

) , (5.15)

for any M ≥ 1, where

ς
2M

=
[(2M − 1)!!]2

22M (2M + 1)!
K2M +O(K2M+2). (5.16)

In other words, the dispersion error of the FD2M scheme (5.2) is of order 2M .

Proof. Here, we only consider kFD phys,2M with plus sign in front. Define ς
2M

:=
kFD phys,2M − kex

kex . Then, substi-
tuting from (5.9) for kex, rearranging, and (using results from [7]) we obtain the identity

kexς
2M

= kFD phys,2M −
2

h

M∑
p=1

λ2M
2p−1

(2p− 1)
sin

[(
p− 1

2

)
kFD phys,2Mh

]
,

i.e, kFD phys,2M satisfies (5.15) for ς
2M

as defined in (5.16). Next, we prove the identity (5.16). Because we only consider
the physical modes here, it is reasonable to assume that kFD phys,2M = kex (1 +O(Kτ )) for some τ > 0. Hence, when
kFD phys,2Mh = K (1 +O(Kτ )) is small enough, performing a Taylor expansion with respect to kFD phys,2Mh we get

kexς
2M

= kFD phys,2M −
2

h

M∑
p=1

λ2M
2p−1

(2p− 1)

∞∑
`=0

(−1)`

(2`+ 1)!

[
1

2
(2p− 1) kFD phys,2Mh

]2`+1

= kFD phys,2M −
2

h

∞∑
`=0

M∑
p=1

λ2M
2p−1

(2p− 1)

(−1)`

(2`+ 1)!

[
1

2
(2p− 1) kFD phys,2Mh

]2`+1

= kFD phys,2M − kFD phys,2M

∞∑
`=0

[
M∑
p=1

λ2M
2p−1(2p− 1)2`

]
(−1)`

22`(2`+ 1)!

(
kFD phys,2Mh

)2`
.
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Based on the derivation of λ2M
2p−1 as discussed in [7], we have the following identities

M∑
p=1

λ2M
2p−1 = 1,

M∑
p=1

λ2M
2p−1(2p− 1)2` = 0, for ` = 1, 2, ..,M − 1,

M∑
p=1

λ2M
2p−1(2p− 1)2M = (−1)M+1 [(2M − 1)!!]

2
.

Therefore,

kexς
2M

= kFD phys,2M − kFD phys,2M

[
1− 1

22M

[(2M − 1)!!]2

(2M + 1)!

(
kFD phys,2Mh

)2M
+O

((
kFD phys,2Mh

)2M+2
)]

= −kFD phys,2M

[
− 1

22M

[(2M − 1)!!]2

(2M + 1)!
(K)

2M
+O

(
K2M+τ +K2M+2

)]
= −kex

[
− 1

22M

[(2M − 1)!!]2

(2M + 1)!
(K)

2M
+O

(
K2M+τ +K2M+2

)]
, (5.17)

which proves (5.16). Hence, with the assumption kFD phys,2M = kex (1 +O(Kτ )) and τ > 0, we can deduce that
kFD phys,2M = kex

(
1 +O(K2M )

)
.

From equation (5.10) and using results in [8], we can show that K is bounded by

K ≤ 2

M∑
p=1

[(2p− 3)!!]2

(2p− 1)!
≤ 2 · π

2
= π. (5.18)

We define
K̃FD,2M =

kFD,2Mh

2
and K̃ =

1

2
K,

so equation (5.10) in terms of K̃FD,2M and K̃ becomes
M∑
p=1

[(2p− 3)!!]2

(2p− 1)!
sin2p−1

(
K̃FD,2M

)
= K̃. (5.19)

To understand the behavior of high order schemes (largeM ) as the wave number (parameterK) increases, we consider
the following two cases.

Case 1: We first analyze the relative error between the exact and numerical wave numbers as a function of the order
M of the scheme, for different values of the exact wave number. Using the numerical dispersion relation (5.19), we
define the relative error in the numerical wave number with respect to the exact value of K̃ as a function of M ,

Relative ErrorK̃(M) :=

∣∣∣∣∣K̃FD,2M (M, K̃)

K̃
− 1

∣∣∣∣∣ . (5.20)

In Figure 5.1, we numerically plot the relative error (5.20) for several fixed values of K̃. One can observe that when
K̃ is within the bound given in (5.18), the relative error decreases as M increases. However, the decrease in the er-
ror becomes less significant as K̃ increases. Thus, the greatest benefit of high order FD2M is seen in small values of K̃.

Case 2: Next, we analyze the relative error between the exact and numerical wave numbers as a function of the
exact wave number, for different orders M of the FD2M scheme.
We now define the relative error in the numerical wave number, K̃FD,2M for fixed values of M in a similar way as

Relative ErrorM (K̃) :=

∣∣∣∣∣K̃FD,2M (M, K̃)

K̃
− 1

∣∣∣∣∣ . (5.21)
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FIG. 5.1. The relative error, Relative Error
K̃
(M), with respect to the order of scheme, M .

In Figure 5.2, we plot the error (5.21) as a function of the parameter K̃. In this plot, we can see that the relative error

FIG. 5.2. The relative error, Relative ErrorM (K̃), with respect to the parameter K̃.

decreases as M increases. However, again the decrease in the error is most significant for small K̃. The figure also
shows that the error is reasonable when K̃ ≤ π/2, yet it increases and approaches 1 when K̃ further increases.

Next, we illustrate the relative phase errors of the FD2M scheme for (5.2), M = 1, . . . , 5, with the parameter set
p fixed at values given in (4.16). The numerical wave number kFD,2M is obtained by solving (5.10) exactly or with the
help of a Newton solver (we set the tolerance at 10−18). Since

kexh = ω̂
√
ε(ω̂;p)ω1h,
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then kFD,2Mh depends on ω̂, p, ω1h, and M , and so does the relative phase error

ΨFD,2M (ω̂) :=

∣∣∣∣kFD,2M (ω̂)− kex(ω̂)

kex(ω̂)

∣∣∣∣ =

∣∣∣∣kFD,2M (ω̂)h− kex(ω̂)h

kex(ω̂)h

∣∣∣∣ . (5.22)

First, we fix ω1h = π/30, and present the relative phase errors as functions of ω̂ ∈ [0, 3] in Figure 5.3. Because
the leading error term in the numerical wave number for the FD2M scheme is proportional to K2M , we expect 2M
order accuracy of the relative phase error with respect to K at a fixed angular frequency. We observe that all schemes
have significantly larger error around ω̂ = 1, while the error fades out near ω̂ =

√
εs/ε∞, where K is close to zero.

As expected from analysis, higher order spatial accuracy does result in reduced relative phase errors. We present the
relative phase errors at ω̂ = 1 with ω1h = π/30 in the left plot in Figure 5.3, while in the right plot we depict the 2M
order convergence of relative phase errors with respect to K for fixed ω̂ = 1. The slopes of phase errors in this plot
are shown to be the same as those of reference lines with slope 2M , indicating the 2M th order of accuracy for each
FD2M scheme, which agrees with the results in Theorem 5.1. We note the presence of just one peak in these plots
as compared to the presence of two peaks in analogous plots of phase errors for temporal discretizations presented in
Section 4.

FIG. 5.3. The relative phase error of physical modes for the spatial discretization FD2M. Left: fix ω1h = π/30 with ω̂ ∈ [0, 3]; right: fix
ω̂ = 1 with different ω1h ∈ {π/30, π/60, π/120, π/240}.

6. Fully discrete FDTD Methods. In this section, we consider the high order staggered spatial discretizatons
(5.2) combined with either the leap-frog scheme in time (4.1) or the trapezoidal scheme in time (4.2) presented in
Section 4. These fully discrete methods are second order accurate in time and 2M -th order accurate in space, thus
we denote them as (2, 2M) leap-frog FDTD schemes or (2, 2M) trapezoidal FDTD methods. In particular, the (2, 2)
leap-frog method is the extension of the standard Yee FDTD method to Lorentz dispersive media. Finally, comparisons
will be made among all finite difference schemes under considerations.

We first compute the dispersion relation for the fully discrete (2, 2M ) schemes. To do so, we assume the plane
wave solutions

Xn
j ≡ X0e

i(k∗FD,2M jh−ωn∆t), (6.1)

where ∗ is either LF or TP. Substituting (6.1) into the appropriate (2, 2M) FDTD method (which we have not explicitly
written out here for brevity), we obtain the linear system

A*
FD,2MU*

FD = 0, (6.2)

where the coefficient matrix for the two schemes will be discussed in the next two sections.

6.1. Fully discrete dispersion analysis: (2, 2M) leap-frog-FDTD schemes. We first consider the (2, 2M)
leap-frog FDTD scheme. For the leap-frog temporal discretization the coefficient matrix in the linear system (6.2) is
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given as

ALF
FD,2M =


sin
(
W
2

)
ΛLF

2M 0 0

ΛLF
2M ε∞ sin

(
W
2

)
sin
(
W
2

)
0

0 0 i sin
(
W
2

)
∆t
2 cos

(
W
2

)
0 ∆t

2 ω
2
p cos

(
W
2

)
−∆t

2 ω
2
1 cos

(
W
2

)
i sin

(
W
2

)
− γ∆t cos

(
W
2

)

 , (6.3)

with

ΛLF
2M =

∆t

h

M∑
p=1

λ2M
2p−1

(2p− 1)
sin

[(
p− 1

2

)
kLF

FD,2Mh

]
.

Based on previous discussions, we can derive the identity
M∑
p=1

[(2p− 3)!!]2

(2p− 1)!
sin2p−1

(
kLF

FD,2Mh

2

)
=

1

2
kLFh. (6.4)

For both the fully discrete methods, we focus our discussions on the physical modes. For the case of W � 1 and
K � 1, we analyze the Taylor expansion of the physical modes for the fully discrete leap-frog FDTD schemes and
observe the following pattern:

kLF
FD phys,2M = ±kex

(
1 +

1

12

(
δ(ω̂; p)

ε(ω̂; p)
− 1

2

)
W 2 +

[(2M − 1)!!]2

22M (2M + 1)!
K2M +O(K2M+2 +K2MW 2 +W 4)

)
, M ≥ 1.

(6.5)

Furthermore, with the relation K =

√
ε(ω̂;p)

ν
√
ε∞

W , we can treat kLF
FD phys,2M

as a function of W and ν =
∆t

h
√
ε∞

, the

CFL (Courant-Friedrich-Lewy) number subject to the stability constraint for the (2, 2M) leap-frog FDTD scheme.
Assuming ν = O(1), we have

kLF
FD phys,2M =


±kex

(
1 +

1

12

(
δ(ω̂; p)

ε(ω̂; p)
− 1

2
+
ε(ω̂; p)

2ε∞ν2

)
W 2 +O(W 4)

)
, M = 1,

±kex
(

1 +
1

12

(
δ(ω̂; p)

ε(ω̂; p)
− 1

2

)
W 2 +O(W 4)

)
, M ≥ 2.

(6.6)

We can see that due to the second order time discretizations employed, the fully discrete scheme always results in
a second order dispersion error. Particularly for all M ≥ 2, the leading term in the dispersion error is identical, and
independent of ν which comes solely from the temporal discretization. To compare the performance of the scheme for
M = 1 and M ≥ 2, we will focus on comparison of the coefficients of leading error terms in (6.6).

We first consider γ̂ = 0. We can make the following conclusions.
• For ω̂ in the medium absorption band, i.e. ω̂ ∈ (1,

√
εs/ε∞), it is easy to check that∣∣∣∣δ(ω̂;p)

ε(ω̂;p)
− 1

2
+
ε(ω̂;p)

2ε∞ν2

∣∣∣∣ ≥ ∣∣∣∣δ(ω̂;p)

ε(ω̂;p)
− 1

2

∣∣∣∣
based on the inequalities

δ(ω̂;p)

ε(ω̂;p)
≤ −1 and

ε(ω̂;p)

2ε∞ν2
≤ 0, which implies that the high order schemes reduce

the dispersion error as one would expect. This is true independent of other parameter choices.
• For other ω̂ values, the outcome will depend on the parameters. We can show that the general condition for

the higher order scheme (M ≥ 2) to be more accurate in its dispersion error is equivalent to the inequality(
εd
ε∞

)2

+ (1− 2ν2)(ω̂2 − 1)2 − 2

(
εd
ε∞

)(
ω̂2 − 1 + ν2(1− 3ω̂2)

)
≥ 0. (6.7)

This is a quadratic inequality in ω̂2.We can conclude that with the CFL condition ν ≤ 1,which is a necessary
condition to ensure the fully discrete (2, 2M) leap-frog-FDTD scheme is stable for any M ≥ 1 [8, 7], we
have
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– if 0 < ν ≤ 1√
2

, the condition (6.7) always holds for all ω̂ ≥ 0.
– if 1√

2
< ν < 1 and

∗ if 0 < εd/ε∞ ≤ 2ν2 − 1, then the condition (6.7) holds on

ω̂L ≤ ω̂ ≤ ω̂R,
∗ if εd/ε∞ ≥ 2ν2 − 1, then the condition (6.7) holds on

0 ≤ ω̂ ≤ ω̂R,
where

ω̂L =

√
−1− εd/ε∞ + 2ν2 + 3εd/ε∞ν2 − ν

√
−4εd/ε∞ − 4(εd/ε∞)2 + 8εd/ε∞ν2 + 9(εdν/ε∞)2

2ν2 − 1
,

ω̂R =

√
−1− εd/ε∞ + 2ν2 + 3εd/ε∞ν2 + ν

√
−4εd/ε∞ − 4(εd/ε∞)2 + 8εd/ε∞ν2 + 9(εdν/ε∞)2

2ν2 − 1
.

The case of γ̂ > 0 is even more complicated. For low loss materials, in general we expect similar conclusions as
in the lossless case. We now perform a numerical study, and compare the leading error terms in (6.6) with ν = 0.6
(which is small enough to guarantee that the scheme is stable for arbitrary M (see next section and [7]). The absolute
values of coefficients of leading error terms are plotted in Figure 6.1, with ε∞ = 2.25, εs = 5.25 and various γ̂
values. It is observed that we can not determine which method performs better for the general case. From Figure
6.1, it’s clear that higher order schemes have smaller dispersion error for γ̂ = 0, 0.01 in the range ω̂ ∈ [0, 3]. This
is no longer true for γ̂ = 0.1, 1. The discussion here reveals an interesting fact. For some parameter values, we can
have counterintuitive results that the lower order scheme performs better than higher order scheme when numerical
dispersion is present.
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FIG. 6.1. Absolute value of coefficients of leading error terms in (6.6) (denoted by C) for the (2, 2M) leap-frog FDTD scheme.

6.2. Fully discrete dispersion analysis: (2, 2M) trapezoidal-FDTD schemes. We repeat the analysis done
in the previous section for the fully discrete (2, 2M) trapezoidal FDTD schemes. We obtain the numerical dispersion
relation for these schemes by setting the determinant of the matrix

ATP
FD,2M =


sin
(
W
2

)
ΛTP

2M 0 0

ΛTP
2M ε∞ sin

(
W
2

)
sin
(
W
2

)
0

0 0 i sin
(
W
2

)
∆t
2 cos

(
W
2

)
0 ∆t

2 ω
2
p cos

(
W
2

)
−∆t

2 ω
2
1 cos

(
W
2

)
i sin

(
W
2

)
− γ∆t cos

(
W
2

)

 (6.8)
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to zero. In the above, we have

ΛTP
2M =

∆t

h

M∑
p=1

λ2M
2p−1

(2p− 1)
sin

[(
p− 1

2

)
kTP

FD,2Mh

]
cos

(
W

2

)
.

The numerical dispersion is given by
M∑
p=1

[(2p− 3)!!]2

(2p− 1)!
sin2p−1

(
kTP

FD,2Mh

2

)
=

1

2
kTPh. (6.9)

By requiring W � 1 and K � 1, we can obtain the physical modes in the form

kTP
FD phys,2M = ±kex

(
1 +

1

12

(
δ(ω̂; p)

ε(ω̂; p)
+ 1

)
W 2 +

[(2M − 1)!!]2

22M (2M + 1)!
K2M +O(K2M+2 +K2MW 2 +W 4)

)
, M ≥ 1.

(6.10)

For W � 1 with ν = O(1), Taylor expansion gives us

kTP
FD phys,2M =


±kex

(
1 +

1

12

(
δ(ω̂; p)

ε(ω̂; p)
+ 1 +

ε(ω̂; p)

2ε∞ν2

)
W 2 +O(W 4)

)
, M = 1,

±kex
(

1 +
1

12

(
δ(ω̂; p)

ε(ω̂; p)
+ 1

)
W 2 +O(W 4)

)
, M ≥ 2.

(6.11)

This shows second order dispersion error in all cases. When γ̂ = 0, it is easy to check that
∣∣∣∣δ(ω̂;p)

ε(ω̂;p)
+ 1 +

ε(ω̂;p)

2ε∞ν2

∣∣∣∣ ≥∣∣∣∣δ(ω̂;p)

ε(ω̂;p)
+ 1

∣∣∣∣ for any ω̂ ≥ 0 and ν > 0. Hence, the high order FDTD schemes with M ≥ 2 always have smaller

dispersion error than the (2, 2) FDTD scheme. On the other hand, numerical tests comparing the coefficients of lead-
ing order error terms in the trapezoidal FDTD schemes are provided in Figure 6.2, with various γ̂ values and the same
parameters as used in Figure 6.1. The plots indicate that it is again difficult to determine which coefficient (for M = 1
or M ≥ 2) is larger when γ̂ is large.
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FIG. 6.2. Absolute value of coefficients of leading error terms in (6.11) (denoted by C) for the (2, 2M) trapezoidal FDTD scheme.

6.3. Comparison among fully discrete FDTD schemes. Here, we will present comparisons of the relative
phase error for both the leap-frog and trapezoidal FDTD schemes using the parameters values fixed as in (4.16). For
the fully discrete schemes, ω1∆t and ω1h are needed to determine k∗FD,2M . As shown in [6, 7], the schemes based on
the trapezoidal rule are unconditionally stable, while the leap-frog schemes are conditionally stable, with the stability
condition as ν ≤ ν2M

max, with ν2M
max defined as the largest CFL number of the (2, 2M) leap-frog-FD scheme, given by
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the formula [7, 8]

ν2M
max =

1
M∑
p=1

[(2p− 3)!!]2

(2p− 1)!

. (6.12)

We note that as M increases, ν2M
max decreases but is bounded from below by ν∞max = 2/π, i.e. in the limiting case

(M →∞), ν2M
max approaches 2/π [8].

First, we will consider the schemes with a normalized CFL number ν/ν2M
max = 0.7 for both types of temporal

discretizations. Relative phase errors are plotted in the range ω̂ ∈ [0, 3]. In Figure 6.3, we show errors of LF(2, 2M)
and TP(2, 2M) with W1 = π/30. The fully discrete schemes do give two peaks near ω̂ = 1 and ω̂ =

√
εs/ε∞. As

seen in Section 4, the phase errors for schemes based on semi-discretizations in time have two peaks in this range,
while only one peak in observed for the semi-discrete spatial schemes as seen in Section 5.1. Thus, it is reasonable to
believe that the second peak results from time discretization, while the first one is associated with both space and time
discretization. Comparing FDTD schemes with the same time discretization, phase error for the scheme with M = 2
is smaller than that of the second order scheme for M = 1. However, there is no significant difference among the
phase errors with M ≥ 2 indicating that dispersion errors are dominated by time discretizations when M ≥ 2. These
observations are consistent with our analysis. On the other hand, difference in phase error plots between LF(2, 2M)
and TP(2, 2M) is similar to the results obtained for the semi-discrete in time schemes as seen in the second plot of
Figure 4.1.

FIG. 6.3. The relative phase error of fully discrete FDTD schemes for the physical modes with ν/ν2Mmax = 0.7 and W1 = π/30. Left: the
leap-frog scheme; right: the trapezoidal scheme.

In the second experiment, we will consider the fully discrete trapezoidal FDTD scheme with various CFL num-
bers. We give the contour plots of the dispersion error at ω̂ = 1 in Figure 6.4, with W1 ∈ [0.05, 0.3] and ω1h ∈
[0.01, 0.1]. Here, the vertical coordinate is W = ω̂ W1 and the horizontal coordinate is |K| = |ω̂

√
ε(ω̂;p)ω1h|. In

this coordinate system, for the range of values considered, the dispersion error of TP(2,2) can be improved by both
taking smaller time steps and/or refining the spatial grid. With fixed time step and spatial grid, we can also reduce
the phase error by increasing the scheme to fourth order. The contour lines in Figure 6.4 of higher order (M = 2, 3)
schemes are horizontal, and the contours for TP(2,4) and TP(2,6) have no visible difference. Neither decreasing space
mesh size nor increasing spatial order can reduce the phase error, which also illustrates the dominant role of temporal
errors.

Both our analysis and figures demonstrate that FDTD schemes with M ≥ 3 do not improve the phase error of
fully discrete schemes significantly beyond that achieved for M = 2. Hence, LF(2, 4) and TP(2, 4) seem to be the
“best” schemes to work with from this perspective for most parameter choices (except for materials with large loss, or
low-loss materials with certain range of frequencies as shown in Figures 6.1 and 6.2).

7. Spatial Discretization: Discontinuous Galerkin Schemes. In this section and next one, similar to Section
5 and Section 6, we perform semi-discrete and fully discrete analysis when the spatial variable is discretized by
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FIG. 6.4. The contour plots of relative phase error of fully discrete FD schemes for the physical modes with trapezoidal scheme. ω̂ = 1.

DG schemes. Here, we define the grid as xj+1/2 = (j + 1/2)h, j ∈ Z, with uniform mesh size h. Let Ij =

[xj−1/2, xj+1/2] be a mesh element, with xj = 1
2 (xj− 1

2
+ xj+ 1

2
) as its center. We now define a finite dimensional

discrete space,
V ph = {v : v|Ij ∈ P p(Ij), j ∈ Z}, (7.1)

which consists of piecewise polynomials of degree up to p with respect to the mesh. For any v ∈ V ph , let v+
j+ 1

2

(resp.

v−
j+ 1

2

) denote the limit value of v at xj+ 1
2

from the element Ij+1 (resp. Ij), [v]j+ 1
2

= v+
j+ 1

2

− v−
j+ 1

2

denote its jump,

and {v}j+ 1
2

= 1
2 (v+

j+ 1
2

+ v−
j+ 1

2

) be its average, again at xj+ 1
2

.

The semi-discrete DG method for the system (2.5) is formulated as follows: find Hh(t, ·), Dh(t, ·), Eh(t, ·),
Ph(t, ·), Jh(t, ·) ∈ V ph , such that ∀j,∫

Ij

∂tHhφdx+

∫
Ij

Eh∂xφdx− (Êhφ
−)j+1/2 + (Êhφ

+)j−1/2 = 0, ∀φ ∈ V ph , (7.2a)∫
Ij

∂tDhφdx+

∫
Ij

Hh∂xφdx− (H̃hφ
−)j+1/2 + (H̃hφ

+)j−1/2 = 0, ∀φ ∈ V ph , (7.2b)

∂tPh = Jh, (7.2c)

∂tJh = −2γJh − ω2
1Ph + ω2

pEh, (7.2d)

Dh = ε∞Eh + Ph. (7.2e)

Both the terms Êh and H̃h are numerical fluxes, and they are single-valued functions defined on the cell interfaces and
should be designed to ensure numerical stability and accuracy. In the present work, we consider the following general
form of numerical fluxes similar to the ones introduced in [10],

Êh = {Eh}+ α[Eh] + β1[Hh], (7.3a)

H̃h = {Hh} − α[Hh] + β2[Eh]. (7.3b)

Here, α, β1 and β2 are constants that are taken to be O(1), with β1 and β2 being non-negative for stability. For
example, if we take α = β1 = β2 = 0, we have the central flux

Êh = {Eh}, H̃h = {Hh}; (7.4)

if α = ±1/2 and β1 = β2 = 0, we have the alternating flux

Êh = E−h , H̃h = H+
h ; or Êh = E+

h , H̃h = H−h ; (7.5)

and if α = 0, β1 = 1/(2
√
ε∞), and β2 =

√
ε∞/2, we have the “upwind” flux for the Maxwell’s equations neglecting

Lorentz dispersion

Êh = {Eh}+
1

2
√
ε∞

[Hh], H̃h = {Hh}+

√
ε∞
2

[Eh]. (7.6)

In particular, when using the alternating flux with p = 0, it is easy to check that the DG scheme is equivalent to
18



FD2 discretization.

7.1. Semi-discrete in space dispersion analysis. In order to carry out the dispersion analysis for piecewise
P p polynomials, we assume that the semi-discrete system has plane wave solutions of the form

Xh(x, t)|Ij = ei(kDG,pjh−ωt)X0 (2(x− xj)/h) , (7.7)

where X0(·) ∈ P p[−1, 1], and kDG,p representing the numerical wave number of the semi-discrete DG scheme. To
find kDG,p

for any p ≥ 0, we will following the idea given in [1, 4, 3], in which the system will be simplified by using
Jacobi polynomials as the basis functions of P p.

In our analysis, we will transform the interval Ij to the reference interval [−1, 1] with s = 2(x− xj)/h. An inner
product is defined on [-1,1] as

< f, g >=

∫ 1

−1

f(s)g(s)ds.

Then, (7.2) leads to the following system for any φ ∈ P p([−1, 1]):

− 1

2
iωh < H0, φ > − < ∂ξE0, φ >

+

((
α− 1

2

)(
eikDG,phE0(−1)− E0(1)

)
+ β1

(
eikDG,phH0(−1)−H0(1)

))
φ(1)

−
((

α+
1

2

)(
E0(−1)− e−ikDG,phE0(1)

)
+ β1

(
H0(−1)− e−ikDG,phH0(1)

))
φ(−1) = 0, (7.8a)

− 1

2
iωh < D0, φ > − < ∂ξH0, φ >

+

((
α− 1

2

)(
eikDG,phH0(−1) +H0(1)

)
+ β2

(
eikDG,phE0(−1)− E0(1)

))
φ(1)

−
((

α+
1

2

)(
H0(−1) + e−ikDG,phH0(1)

)
+ β2

(
E0(−1)− e−ikDG,phE0(1)

))
φ(−1) = 0, (7.8b)

− iωh < P0, φ >=< J0, φ >, (7.8c)

− iωh < J0, φ >= −2γ < J0, φ > −ω2
1 < P0, φ > +ω2

p < E0, φ >, (7.8d)

< D0, φ >= ε∞ < E0, φ > + < P0, φ > . (7.8e)

Note that (7.8c)-(7.8e) give us that

< D0, φ >=

(
ε∞ −

ω2
p

ω2 − 2iγω + ω2
1

)
< E0, φ >= ε < E0, φ >, (7.9)

with ε = ε(ω̂;p) given in (3.4). Hence, we can have a system only in the variables E0, H0 and φ by plugging (7.9)
into (7.8a) and (7.8b). Furthermore, define two polynomials in P p([−1, 1])

u1 =
√
εE0 +H0, and u2 =

√
εE0 −H0,

Then, u1 and u2 satisfy the following system,

< L−ε u1, φ > +R−(u1, u2, φ;α, β1, β2, ε, e
ikDG,ph) = 0, (7.10a)

< L+
ε u2, φ > +R+(u1, u2, φ;α, β1, β2, ε, e

ikDG,ph) = 0, (7.10b)

with the differential operators depending on ε

L±ε v = ∓(
1

2
i
√
ε ωh) v + ∂ξv = ∓1

2
iKv + ∂ξv, K = kexh. (7.11)

And the second termsR± are given as

R−(u1, u2, φ;α, β1, β2, ε, e
ikDG,ph)

=
1

2
φ(1)

{(
1 + β1

√
ε+

β2√
ε

)(
eikDG,phu1(−1)− u1(1)

)
+

(
2α− β1

√
ε+

β2√
ε

)(
eikDG,phu2(−1)− u2(1)

)}
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−1

2
φ(−1)

{(
−1 + β1

√
ε+

β2√
ε

)(
u1(−1)− e−ikDG,phu1(1)

)
+

(
2α− β1

√
ε+

β2√
ε

)(
u2(−1)− e−ikDG,phu2(1)

)}
,

(7.12a)

R+(u1, u2, φ;α, β1, β2, ε, e
ikDG,ph)

=
1

2
φ(1)

{(
2α+ β1

√
ε− β2√

ε

)(
eikDG,phu1(−1)− u1(1)

)
+

(
1− β1

√
ε− β2√

ε

)(
eikDG,phu2(−1)− u2(1)

)}
−1

2
φ(−1)

{(
2α+ β1

√
ε− β2√

ε

)(
u1(−1)− e−ikDG,phu1(1)

)
+

(
−1− β1

√
ε− β2√

ε

)(
u2(−1)− e−ikDG,phu2(1)

)}
.

(7.12b)

In particular, if the test function vanishes at the two endpoints, i.e., φ(−1) = φ(1) = 0, the second terms R± = 0.
Next, we will look at the system (7.10) instead of (7.8).

When p = 0, u1 and u2 are constant. Taking the test function φ = 1, (7.10) gives us

0 =iKu1 +
1

2

(
λ− λ−1 + (β1

√
ε+

β2√
ε
)(λ− 2 + λ−1)

)
u1 +

1

2

(
2α− β1

√
ε+

β2√
ε

)
(λ− 2 + λ−1)u2,

0 =− iKu2 +
1

2

(
2α+ β1

√
ε− β2√

ε

)
(λ− 2 + λ−1)u1 +

1

2

(
λ− λ−1 − (β1

√
ε+

β2√
ε
)(λ− 2 + λ−1)

)
u2.

with λ = eikDG,ph. This system has non-trivial solutions u1 and u2 if and only if

Det

iK +
1

2

(
λ− λ−1 + (β1

√
ε+

β2√
ε
)(λ− 2 + λ−1)

)
1

2

(
2α− β1

√
ε+

β2√
ε

)
(λ− 2 + λ−1)

1

2

(
2α+ β1

√
ε− β2√

ε

)
(λ− 2 + λ−1) −iK +

1

2

(
λ− λ−1 − (β1

√
ε+

β2√
ε
)(λ− 2 + λ−1)

)
 = 0.

For general p ≥ 1, use the fact that

< L−ε u1, φ >=< L+
ε u2, φ >= 0, ∀φ = (1− s)(1 + s)w(s), with w(s) ∈ P p−2[−1, 1],

we obtain that
L−ε u1 = ã−P (0,1)

p + b̃−P (1,0)
p , L+

ε u1 = ã+P (0,1)
p + b̃+P (1,0)

p ,

where P (m,n)
p denotes the Jacobi polynomial of type (m,n) and degree p. Moreover, recall the following polynomials

of degree p from [1],

Φ1,±
p (s) =

p∑
m=0

(±iK)m
(2p+ 1−m)!

(2p+ 1)!
P (p−m,p−m+1)
m (s), (7.13a)

Φ2,±
p (s) =

p∑
m=0

(±iK)m
(2p+ 1−m)!

(2p+ 1)!
P (p−m+1,p−m)
m (s). (7.13b)

And they have the property that

L−ε Φ1,−
p (s) = − (−iK)p+1

2

(p+ 1)!

(2p+ 1)!
P (0,1)
p (s),

L−ε Φ2,−
p (s) = − (−iK)p+1

2

(p+ 1)!

(2p+ 1)!
P (1,0)
p (s),

L+
ε Φ1,+

p (s) = − (iK)p+1

2

(p+ 1)!

(2p+ 1)!
P (0,1)
p (s),

L+
ε Φ2,+

p (s) = − (iK)p+1

2

(p+ 1)!

(2p+ 1)!
P (0,1)
p (s).

Therefore,
u1 = a−Φ1,−

p + b−Φ2,−
p , u2 = a+Φ1,+

p + b+Φ2,+
p ,

Then, the coefficients a± and b± satisfy four algebraic equations corresponding to choosing test function in (7.10)
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with test function φ = 1± s. This leads a 4× 4 system

M · (a+, a−, b+, b−)T = 0, (7.14)

with the matrix M given as the following

(1 + β1

√
ε+

β2√
ε
)λ (−1)p(−1 + β1

√
ε+

β2√
ε
) −(−1)p(2α− β1

√
ε+

β2√
ε
)λ −(2α− β1

√
ε+

β2√
ε
)

(2α+ β1

√
ε− β2√

ε
)λ (−1)p(2α+ β1

√
ε− β2√

ε
) −(−1)p(1− β1

√
ε− β2√

ε
)λ (1 + β1

√
ε+

β2√
ε
)

λF+
p+1 − F−p λF+

p − F−p+1 0 0

0 0 λF−p+1 − F+
p λF−p − F+

p+1


and

F±p =
∞∑
m=0

(−p)m
(−2p− 1)m

(±iK)m

m!
, F±p+1 =

∞∑
m=0

(−p− 1)m
(−2p− 1)m

(±iK)m

m!
,

where (a)0 = 1 and (a)m = a(a + 1) · · · (a + m − 1).Then, the numerical dispersion relation can be obtained by
solving Det(M) = 0.

In summary, we have the following theorem which characterizes the dispersion relation satisfied by kDG,p.
THEOREM 7.1. Consider the DG scheme (7.2) with V ph as the discrete space. Then, kDG,p satisfies the following

equation for any p ≥ 0,

ap
(
eikDG,ph + e−ikDG,ph

)2
+ bp

(
eikDG,ph + e−ikDG,ph

)
+ cp = 0. (7.15)

Here, for p = 0,

a0 =1− 4(α2 + β1β2),

b0 =16(α2 + β1β2)− 4iK

(
β1

√
ε+

β2√
ε

)
c0 =− 4

(
1 + 4(α2 + β1β2)

)
+ 8iK

(
β1

√
ε+

β2√
ε

)
+ 4K2.

While for p ≥ 1,

ap =(−1)p
(
1− 4(α2 + β1β2)

)
F+
p F
−
p ,

bp =− (−1)p
(
1− 4(α2 + β1β2)

) (
F+
p F

+
p+1 + F−p F

−
p+1

)
+
(
1 + 4(α2 + β1β2)

) (
F+
p F
−
p+1 + F−p F

+
p+1

)
+ 2

(
β1

√
ε+

β2√
ε

)(
F+
p F
−
p+1 − F−p F

+
p+1

)
,

cp =2(−1)p
(
1− 4(α2 + β1β2)

) (
F+
p+1F

−
p+1 − F+

p F
−
p

)
−
(
1− 4(α2 + β1β2)

) (
(F+
p )2 + (F−p )2 + (F+

p+1)2 + (F−p+1)2
)

− 2

(
β1

√
ε+

β2√
ε

)(
(F+
p )2 − (F−p )2 − (F+

p+1)2 + (F−p+1)2
)
.

In particular, kDG,p are the roots of a quartic polynomial equation in terms of λ = eikDG,ph if α2 + β1β2 6= 1/4, and
kDG,p are the roots of a quadratic polynomial equation in terms of λ = eikDG,ph when α2 + β1β2 = 1/4.

By Theorem 7.1, we can see that the dispersion relation is more complicated than that of the FD scheme, caused
by the dependence on the flux parameters α, β1, β2, and the coupling of the local degrees of freedom. For the DG
scheme (7.2) employing the central flux (7.4) (α = β1 = β2 = 0), there are four discrete wave numbers kDG,p,
corresponding to two physical modes and two spurious modes. While for the alternating fluxes (7.5) and the upwind
flux (7.6) (α2 + β1β2 = 1/4), there are only two discrete wave numbers kDG,p, corresponding to the physical modes.
This conclusion holds for arbitrary p.Unlike the FD scheme, when we increase the order of the accuracy of the scheme,
the number of modes won’t change when the dispersion relation is expressed by representing the discrete wavenumber
as a function of the angular frequency.

Next, with the help of Theorem 7.1, we can obtain the analytical dispersion relation formula for general p ≥ 0
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based on the small wave number limit K → 0. In the following, we write

b = ω (β1 ε(ω̂;p) + β2) , and B = b h = K

(
β1

√
ε+

β2√
ε

)
. (7.16)

Note that, b(ω) = 0 if and only if β1 = β2 = 0. And we assume B/K = b/kex = O(1), which means B � 1 as
well. The results are given as follows.

THEOREM 7.2. For the spatial semi-discrete DG method with V p as the discrete space.
• When α = β1 = β2 = 0, there are four discrete wave numbers. Two of them correspond to the physical

kDGphys,p =


±kex

(
1 +

p+ 1

2(2p+ 3)

(
p!

(2p+ 1)!

)2

K2p+2 +O
(
K2p+4

))
, p ≥ 0 and even,

±kex

(
1− 2p+ 1

2(p+ 1)

(
p!

(2p+ 1)!

)2

K2p +O
(
K2p+2

))
, p ≥ 0 and odd.

(7.17)

• When α2 + β1β2 = 1/4, we have two physical modes

kDGphys,p =



±kex
(

1 +
1

2
iB +

1

24

(
K2 − 9B2

)
+O(iK2B + iB3 +K4)

)
, p = 0,

±kex

(
1 +

1

2

(
p!

(2p+ 1)!

)2

iK2pB +
1

2(2p+ 1)(2p+ 3)(
p!

(2p+ 1)!

)2 (
K2p+2 − (2p+ 3)K2pB2

)
+O

(
iK2p+2B + iK2pB3 +K2p+4

))
, p ≥ 1.

(7.18)

Proof. The results of α = β1 = β2 = 0 are special cases of the general results of Theorem in [1]. So we only
consider the second results with α2 + β1β2 = 1/4 here. In this case, (7.15) gives us

0 = bp(e
ikDG,ph + e−ikDG,ph) + cp = 2bp cos(kDG,ph) + cp.

When p = 0, this reduces to

cos(kDG,ph) =
8− 8iB − 4K2

8− 8iB
= 1− 1

2
K2 − 1

2
i

(
B

K

)
K3 +

1

2

(
B

K

)2

K4 +O(K5).

Furthermore, take cos−1 on both sides and we can obtain

kDG,ph =±

(
K +

1

2
i

(
B

K

)
K2 +

1

24

(
1− 9

(
B

K

)2
)
K3 +O

(
i

(
B

K

)
K4 + i

(
B

K

)3

K4 +K5

))

=± kexh
(

1 +
1

2
iB +

1

24

(
K2 − 9B2

)
+O(iBK3 + iB3 +K4)

)
.

In the following, we will look at the general p ≥ 1. Denote

Π±p = (F∓p )2e±iK , and Θ±p =
e±iK − [p+ 1/p]e±iK

e±iK
,

with [p+ 1/p]e±iK =
F±p+1

F∓p
being the [p+ 1/p]-Padé approximation of e±iK . Then

cos(kDG,ph) =−
−2

(
Π+
p

(
1− B

K

)(
e−iK + eiK(1−Θ+

p )2
)

+ Π−p

(
1 +

B

K

)(
eiK + e−iK(1−Θ−p )2

))
2× 2

(
Π+
p

(
1− B

K

)(
1−Θ+

p

)
+ Π−p

(
1 +

B

K

)(
1−Θ−p

))

= cos(K)− i1
2

sin(K)

(Θ+
p −Θ−p

)
+
(
Θ+
p + Θ−p

) −Π+
p

(
1− B

K

)
Θ+
p + Π−p

(
1 +

B

K

)
Θ−p

Π+
p

(
1− B

K

)
Θ+
p + Π−p

(
1 +

B

K

)
Θ−p


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+O
(
(Θ+

p )2 + (Θ−p )2 + Θ+
p Θ−p

)
.

Next, we will estimate the second term of the right hand side in the case where K � 1. Corollary 1 in [1] showed that

Θ±p = −1

2
K2p+2

(
p!

(2p+ 1)!

)2(
1− ±iK(2p+ 2)

(2p+ 1)(2p+ 2)
+O(K2)

)
.

Therefore,

Θ+
p + Θ−p = −K2p+2

(
p!

(2p+ 1)!

)2

+O(K2p+4), (7.19a)

Θ+
p −Θ−p = iK2p+3

(
p!

(2p+ 1)!

)2
(2p+ 2)

(2p+ 1)(2p+ 2)
+O(iK2p+5). (7.19b)

Note that B/K = O(1). Then, we can obtain the Taylor series expansions in K

−Π+
p

(
1− B

K

)
Θ+
p + Π−p

(
1 +

B

K

)
Θ−p

Π+
p

(
1− B

K

)
Θ+
p + Π−p

(
1 +

B

K

)
Θ−p

=−
(
B

K

)
+ i

(
1−

(
B

K

)2
)

K

2p+ 1
−
(
B

K

)(
1−

(
B

K

)2
)

K2

(2p+ 1)2

+ i

(
1−

(
B

K

)2
)(

p

2p+ 1
−
(
B

K

)2
)

K2

(2p+ 1)3
+O(K4).

(7.20)

Combing series (7.19), (7.20) and the fact that sinK = K − 1
6K

3 +O(K5), we have

cos(kDG,ph) = cos(K)− iC1K
2p+3 − C2K

2p+4 +O
(
iBK2p+4 + iB3K2p+2 +K2p+6

)
, (7.21)

with

C1 = i
1

2

(
B

K

)(
p!

(2p+ 1)!

)2

, C2 =
1

2(2p+ 1)(2p+ 3)

(
p!

(2p+ 1)!

)2
(

1− (2p+ 3)

(
B

K

)2
)
.

Finally, take cos−1 on both sides

kDG,ph = ±
(
K + C1K

2p+2 + C2K
2p+3 +O

(
iBK2p+3 + iB3K2p+1 +K2p+5

))
,

and the result is proved.
REMARK 7.1. These formulas show that, when using the central flux ( α = β1 = β2 = 0 ), the physical modes

have a dispersion error with order {
2p+ 2, if p is even,
2p, if p is odd. (7.22)

When using the alternating fluxes ( α2 +β1β2 = 1/4 andB = 0 ), the scheme has a dispersion error of order (2p+2).
In particular, the dispersion errors for α = 1/2 and α = −1/2 are the same. For the upwind flux ( α2 + β1β2 = 1/4
and B 6= 0 ), we can observe a (2p+ 1)-th order dispersion error, which is related to K and B at the same time.

It is clear that the order of dispersion error for DG scheme is higher than that of the L2 convergence. This is an
advantage of DG schemes, and differs from FD schemes significantly.

To verify the results above, in Figure 7.1, we study the relative phase error of the physical modes of the semi-
discrete DG scheme (7.2) for p = 0, 1, 2, 3, with parameters in (4.16) using the alternating flux (DG-AL) (only the
result of one version of the alternating fluxes is shown, because they are identical to each other), the central flux (DG-
CE) and the upwind flux (DG-UP). The numerical wave number kDG,p is obtained by solving (7.15) exactly. First, we
fix ω1h = π/30, and plot the dependence of relative phase error as a function of ω̂, see the first row of Figure 7.1.
It is clear that DG-AL always gives smallest error when the same discrete space is used. This can also be verified by
comparing the orders and coefficients in (7.17) and (7.18). All schemes have significant larger errors around ω̂ = 1.
For DG-AL and DG-CE, the phase errors approach zero near ω̂ =

√
εs/ε∞ where K is close to zero. For DG-UP

with p = 0, the error is dominated by B (see equation (7.18)). Therefore, the “zero” point would shift to the “zero”
point of B, which is about

√
1 + εd/(2ε∞) ≈ 1.291. Comparing FD2 ( Figure 5.3) and DG-AL with P 0, they have

the same performance. However, once we increase the order to p = 1, DG-AL has significantly smaller error than
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FD4, resulting from the smaller coefficients in leading error terms, see (5.12), (5.14a) and (7.18). In the second row
of Figure 7.1, we present the errors at ω̂1 = 1 with mesh refinement. Slopes indicate the order of accuracy for each
scheme, which agree with our analysis in (7.17) and (7.18).
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FIG. 7.1. The relative phase error of semi-discrete DG scheme for the physical modes. First row: fix ω1h = π/30 with ω̂1 ∈ [0, 3]; second
row: fix ω̂1 = 1 with different ω1h ∈ { π30 ,

π
60
, π
120

, π
240
}.

8. Fully discrete Discontinuous Galerkin Methods. Here, we consider the DG scheme (7.2) coupled with
the leap-frog time discretization (4.1) and the trapezoidal time discretization (4.2). To analyze dispersion relation for
those fully discrete schemes, we assume numerical solutions in the form of

Xn
h (x)|Ij = ei(k

∗
DG,ph−ωn∆t)X0(2(x− xj)/h),

where, ∗ can be LF and TP.

8.1. Fully discrete dispersion analysis: leap-frog-DG schemes. Here, we define

u1 =
√
εLFE0 +

2

W
sin

(
W

2

)
H0, u2 =

√
εLFE0 −

2

W
sin

(
W

2

)
H0,

with εLF = ε(ω̂LF;pLF) given in (4.6). Then, the fully discrete leap-frog-DG schemes reduce to the following
problem:

< L−
εLFu1, φ > +R−(u1, u2, φ;α, β1

W/2

tan(W/2)
, β2

sin(W/2) cos(W/2)

W/2
, εLF, eik

LF
DG,ph) = 0 (8.1a)

< L+
εLFu2, φ > +R+(u1, u2, φ;α, β1

W/2

tan(W/2)
, β2

sin(W/2) cos(W/2)

W/2
, εLF, eik

LF
DG,ph) = 0 (8.1b)
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Note that (8.1) and (7.10) are given in the same form with different parameters. Hence, (7.15) is still valid for the fully
discrete leap-frog DG scheme, with parameters modified as the following:

ε→ εLF, K →
√
εLFωh, β1 → β1

W/2

tan(W/2)
, β2 → β2

sin(W/2) cos(W/2)

W/2
.

In this case
ap = (−1)p

(
1− 4(α2 + β1β2 cos2(W/2))

)
.

Therefore, if α = ± 1
2 and β1 = β2 = 0, then kLF

DG,p are the roots of a quadratic polynomial equation in terms of

λ = eik
LF
DG,ph. Otherwise, kLF

DG,p are the roots of a quartic polynomial equation in terms of λ = eik
LF
DG,ph.

We can see that for the upwind flux, there are four discrete wave numbers kLF
DG,p corresponding to two physical

modes and two spurious modes, which differs from the semi-discrete results in Theorem 7.1.

Below, we analyze numerical dispersion property of the physical modes when W � 1. The formulas can be ob-

tained by repeating the proof of Theorem 7.2, and details would not be given here. Note thatB = bh =
b/ω
√
ε∞ ν

W � 1

with a fixed CFL number ν, with B given in (7.16).

• When using the central flux, i.e. α = β1 = β2 = 0, we have four solutions, and two of them correspond to
the physical modes,

kLF
DG phys,p =



±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2

)
W 2 +

1

6
K2 +O

(
W 4 +W 2K2 +K4

))
, p = 0,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2

)
W 2 − 1

48
K2 +O

(
W 4 +W 2K2 +K4

))
, p = 1,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2

)
W 2 +O

(
W 4 +K2p+2

))
, p ≥ 2, even,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2

)
W 2 +O

(
W 4 +K2p

))
, p ≥ 2, odd,

(8.2)

in the case of K � 1 and W � 1. They can be further written as

kLF
DG phys,p =



±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2
+

2ε(ω̂;p)

ε∞ν2

)
W 2 +O

(
W 4
))

, p = 0,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2
− ε(ω̂;p)

4ε∞ν2

)
W 2 +O

(
W 4
))

, p = 1,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2

)
W 2 +O

(
W 4
))

, p ≥ 2,

(8.3)

with W � 1 and a fixed CFL number ν.
• When using the alternating flux, i.e. α = ±1/2 and β1 = β2 = 0, there are only two solutions, corresponding

to the physical modes,

kLF
DG phys,p =


±kex

(
1 +

1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2

)
W 2 +

1

24
K2 +O

(
W 4 +W 2K2 +K4

))
, p = 0,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2

)
W 2 +O

(
W 4 +K2p+2

))
, p ≥ 1,

(8.4)

in the case of K � 1 and W � 1, or

kLF
DG phys,p =


±kex

(
1 +

1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2
+
ε(ω̂;p)

2ε∞ν2

)
W 2 +O

(
W 4
))

, p = 0,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2

)
W 2 +O

(
W 4
))

, p ≥ 1.

(8.5)

with W � 1 and a fixed CFL number ν.
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• When using the upwind flux, i.e. α = 0, β1 =
1

2
√
ε∞

and β2 =

√
ε∞
2

, there are four solutions. The two

physical modes are

kLF
DG phys,p =


±kex

(
1 +

1

2
iB +O

(
W 2 +K2

))
, p = 0,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2

)
W 2 +O

(
W 4 + iK2pB

))
, p ≥ 1,

(8.6)

which can also be written as

kLF
DG phys,p =



±kex
(

1 + i
b/ω

2
√
ε∞ ν

W +O
(
W 2
))

, p = 0,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2

)
W 2 +O

(
iW 3

))
, p = 1,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
− 1

2

)
W 2 +O

(
W 4
))

, p ≥ 2,

(8.7)

with W � 1 and a fixed CFL number ν.

The formulations above demonstrate that all fully discrete schemes are second order accurate in numerical disper-
sion, except for the upwind flux with P 0, for which the error is of first order. Comparing the leading error terms with
the same flux but with different p values, we can see that the temporal error would be dominant when p ≥ 2 by upwind
flux or central flux and p ≥ 1 by alternating fluxes. Moreover, it is observed that the leading error terms for high order
schemes, when the temporal error dominates, are the same with the FD schemes (6.5) and (6.6), which come from the
time discretization (4.8). In particular, the leading terms of DG scheme with alternating flux are the same as those of
FD scheme. Hence, we can also have counterintuitive results that the lower order scheme performs better than higher
order scheme when numerical dispersion is concerned for some given dispersive media and discretization parameters.
Similar results are observed for other numerical fluxes as well as for the trapzoidal-DG schemes in next section.

8.2. Fully discrete dispersion analysis: trapezoidal-DG schemes. We define

u1 =
√
εTPE0 +

2

W
tan

(
W

2

)
H0, u2 =

√
εTPE0 −

2

W
tan

(
W

2

)
H0,

with εTP = ε(ω̂TP;pTP) given in (4.12). And we can turn the problem in the similar form of (7.10):

< L−
εTPu1, φ > +R−(u1, u2, φ;α, β1

W/2

tan(W/2)
, β2

tan(W/2)

W/2
, εTP, eik

TP
DG,ph) = 0 (8.8a)

< L+
εTPu2, φ > +R+(u1, u2, φ;α, β1

W/2

tan(W/2)
, β2

tan(W/2)

W/2
, εTP, eik

TP
DG,ph) = 0 (8.8b)

Again, (7.15) is still valid for the fully discrete trapezoidal-DG scheme, with parameters as the following:

ε→ εTP, K →
√
εTPωh, β1 → β1

W/2

tan(W/2)
, β2 → β2

tan(W/2)

W/2
.

In this case
ap = (−1)p

(
1− 4(α2 + β1β2)

)
which is the same as that for semi-discrete scheme. Therefore, kTP

DG,p are the roots of a quartic polynomial equation

in terms of λ = eik
TP
DG,ph if α2 + β1β2 6= 1/4, and kDG,p are the roots of a quadratic polynomial equation in terms of

λ = eik
TP
DG,ph when α2 + β1β2 = 1/4. This is the same as semi-discrete results.

Below, we list the physical modes kTP
DG,p for p ≥ 0, and perform an asymptotic analysis whenW � 1 andK � 1.

• When using the central flux, i.e. α = β1 = β2 = 0, we have four solutions, and two of them correspond to
26



the physical modes. When W � 1 and K � 1, the physical solutions have the form as

kTP
DG phys,p =



±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1

)
W 2 +

1

6
K2 +O

(
W 4 +W 2K2 +K4

))
, p = 0,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1

)
W 2 − 1

48
K2 +O

(
W 4 +W 2K2 +K4

))
, p = 1,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1

)
W 2 +O

(
W 4 +K2p+2

))
, p ≥ 2, even,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1

)
W 2 +O

(
W 4 +K2p

))
, p ≥ 2, odd,

(8.9)

and can be further rewritten into

kTP
DG phys,p =



±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1 +

2ε(ω̂;p)

ε∞ν2

)
W 2 +O

(
W 4
))

, p = 0,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1− ε(ω̂;p)

4ε∞ν2

)
W 2 +O

(
W 4
))

, p = 1,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1

)
W 2 +O

(
W 4
))

, p ≥ 2.

(8.10)

in the case of W � 1 and with a fixed CFL number ν.
• When using the alternating flux, i.e. α = ±1/2 and β1 = β2 = 0, there are only two solutions corresponding

to the physical modes,

kTP
DG phys,p =


±kex

(
1 +

1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1

)
W 2 +

1

24
K2 +O

(
W 4 +W 2K2 +K4

))
, p = 0,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1

)
W 2 +O

(
W 4 +K2p+2

))
, p ≥ 1,

(8.11)

in the case of W � 1 and K � 1, or

kTP
DG phys,p =


±kex

(
1 +

1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1 +

ε(ω̂;p)

2ε∞ν2

)
W 2 +O

(
W 4
))

, p = 0,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1

)
W 2 +O

(
W 4
))

, p ≥ 1.

(8.12)

in the case of W � 1 and with a fixed CFL number ν.
• When using the upwind flux, i.e. α = 0, β1 = 1

2
√
ε∞

and β2 =
√
ε∞
2 , there are only two solutions corre-

sponding to the physical modes,

kTP
DG phys,p =


±kex

(
1 +

1

2
iB +O

(
W 2 +K2

))
, p = 0,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1

)
W 2 +O

(
W 4 + iK2pB

))
, p ≥ 1,

(8.13)

which can be rewritten as

kTP
DG phys,p =



±kex
(

1 + i
b/ω

2
√
ε∞ν

W +O
(
W 2
))

, p = 0,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1

)
W 2 +O

(
iW 3

))
, p = 1,

±kex
(

1 +
1

12

(
δ(ω̂;p)

ε(ω̂;p)
+ 1

)
W 2 +O

(
W 4
))

, p ≥ 2,

(8.14)

in the case of W � 1 and with a fixed CFL number ν.

We have similar conclusions as those for the fully discrete leap-frog DG schemes, except that the leading error
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terms for high order schemes come from the fully implicit time discretization (4.14).

8.3. Comparison among fully discrete DG schemes. In our previous work [6], we have proved that the fully
discrete DG schemes based on the trapezoidal rule is unconditionally stable and the leap-frog schemes are conditionally
stable. Following the proof in [6], we can find νpmax such that under the condition ν ≤ νpmax, the leap-frog schemes
using P p space are stable . Those νpmax values for p = 0, . . . , 3,∞ are listed in Table 6.1. For comparison, we also
list the CFL condition for FD scheme for various M values in the same table. We can see that the CFL number for DG
scheme is much smaller than that for FD scheme, particularly for high order case.

TABLE 8.1
νpmax for DG scheme and ν2Mmax for FD scheme.

p = 0 p = 1 p = 2 p = 3 p→∞

DG-CE 1 0.211325 0.101287 0.0605268 0

DG-AL 1 0.192450 0.089115 0.0521629 0

DG-UP 1 0.211325 0.101287 0.0605268 0

M = 1 M = 2 M = 3 M = 4 M = 5 M →∞

FD 1 0.857143 0.805369 0.777418 0.759479 0.636620

In Figure 8.1, we plot the relative phase errors of fully discrete DG schemes with leap-frog discretization for
W1 = π/30, π/300 using material parameters (4.16). We can observe that the overall behavior of the plot with
W1 = π/30 is quite different from the FD plots and the plots obtained with W1 = π/300, and the magnitude of

the errors is very large. This phenomenon results from ω1h =
1

√
ε∞ ν

W1 and the tiny CFL numbers restricted by

the stability condition which makes the mesh size h extra large. We conclude that the small CFL number is one
disadvantage of high order DG schemes. When comparing the figures obtained with W1 = π/300 using the three
numerical fluxes, it is clear that the alternating flux has the smallest error, while the error obtained by the upwind flux
is the largest. The overall dependence of the error on ω̂ is very similar to those from the FD schemes.

Next, we consider the unconditionally stable DG scheme with trapezoidal rule and varying CFL numbers. Figure
8.2 shows the contour plots of the dispersion error at ω̂ = 1 with (W1, ω1h) ∈ [0.05, 0.3]× [0.01, 0.1]. It is observed
that DG-AL with p ≥ 1 have horizontal contour lines, indicating dispersion errors are dominated by temporal ones. In
comparison, DG-UP and DG-CE have horizontal contour lines when p ≥ 2. The values of numerical dispersion errors
obtained by high order DG schemes are very similar, which also illustrates the dominant role of temporal errors. This
observation is consistent with our theoretical analysis.

9. Benchmark on Physical Quantities. In this section, we will verify the performance of the finite difference
and discontinuous Galerkin methods by plotting quantities that are important for wave propagation such as the nor-
malized ratio between the numerical and exact phase velocity (also refractive index); normalized attenuation constant;
normalized energy velocity; and normalized group velocity, to validate the performance of the numerical methods (see
[17]). The model parameters in (4.16) are used in computing all the quantities and plots below.

We first define ψ, given as

ψ =
k

ω
=
√
ε(ω̂;p). (9.1)

We note that ψ is the complex index of refraction of the medium, whose real part is the real refractive index of the
medium, whereas the imaginary part is related to the absorption or extinction coefficient [36]. We use < and = to
denote the real and the imaginary parts of a complex number. Let the superscripts E and N denote the value of
a quantity related to the exact solution of system (2.5) and a numerical approximation, respectively. We have the
following definitions (see [17]):

• Normalized Phase Velocity: We consider the ratio between the real parts of the exact and numerical phase
velocities, with the phase velocity, vp, defined as vp = ω/k = 1/ψ. We define

Normalized Phase Velocity =
<(vNp )

<(vEp )
. (9.2)
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FIG. 8.1. The relative phase error in physical modes of the fully discrete DG schemes with leap-frog time discretization, using ν/νpmax = 0.7.
First row: W1 = π/30 ; second row: W1 = π/300.

• Normalized Attenuation Constant: We consider the ratio between the imaginary parts of the exact and
numerical ψ, which is also the ratio between the imaginary parts of the exact and numerical indices of
refraction. We define

Normalized Attenuation Constant =
=
(
ψN
)

= (ψE)
. (9.3)

• Normalized Energy Velocity: The velocity of energy transport of a (monochromatic) plane-wave field is an
important concept of wave propagation in a dispersive medium. In [36] this velocity is defined as a ratio of
the time-average value of the Poynting vector to the total time-average electromagnetic energy density stored
in both the field and the medium. The normalized energy velocity is a quantity that is defined (see [17, 36])
as a function of the real and imaginary parts of the quantity ψ given as

Energy Velocity =

[
<(ψ) +

(
<
(
ψ2
)
− εs

) (
<
(
ψ2
)
− ε∞

)
+ (=

(
ψ2
)
)2

(εs − ε∞)< (ψ)

]−1

.

Based on the definition of the energy transport velocity, we define the ratio between the exact and numerical
energy transport velocity to be the normalized energy velocity as

Normalized Energy Velocity =
Energy VelocityN

Energy VelocityE
. (9.4)

• Normalized Group Velocity: We define the normalized group velocity to be the real part of the ratio of
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FIG. 8.2. The contour plot of relative phase error of fully discrete DG schemes for the physical modes with trapezoid rule. ω̂ = 1. First row:
DG-AL; second row: DG-CE; third row: DG-UP.

group velocities of the exact and numerical solutions. We have

Normalized Group Velocity = <

(
vNg
vEg

)
, (9.5)

where the group velocity is defined by vg =
∂ω

∂k
. Here, both vEg and vNg are obtained numerically by

(vg)
−1 =

∂k

∂ω̂

∂ω̂

∂ω
≈ k(ω̂ + 0.001)− k(ω̂)

0.001

∂ω̂

∂ω
.

In Figures 9.1 and 9.2, we plot the four physical quantities defined in (9.2)-(9.5) for the leap-frog and trapezoidal
FD schemes in various ranges of values for ω̂: below resonance (ω̂ < 1), near resonance (ω̂ ≈ 1), at the upper edge of
the medium absorption band (ω̂ ≈ 1.527), and far above resonance (ω̂ > 3). Figure 9.1 offers excellent agreement with
the plots in [17] for the (2,2) Yee scheme (leap-frog FDTD scheme with M = 1) and a (2,4) leap-frog FDTD scheme
(M = 2). Both schemes have large errors at the resonance frequency and the upper edge of the medium absorption
band ω̂ =

√
εs/ε∞. Higher order schemes have values for the physical quantities that are closer to 1, which indicates

smaller dispersion error with increase in the spatial order of the scheme. We note that, while the increase in spatial
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order reduces the four physical quantities near resonance for both the leap-frog and trapezoidal FDTD methods, there
is virtually no change with spatial order at the upper edge of the medium absorption band. This is also true for the
DG schemes. A comparison between Figures 9.1 and 9.2 suggests that the main differences between the two temporal
discretizations can be observed for frequencies below and far beyond resonance. For ω̂ < 1, the plots obtained by the
trapezoidal FDTD schemes are monotone. This is not the case for the leap-frog FDTD method as shown in Figure
9.1. The results can be understood by comparing equations (4.8) with (4.14). The leading error coefficients in the
two time schemes are different, with one being monotone on ω̂ and the other not. For high frequencies, the leap-frog
FDTD scheme can no longer resolve frequencies beyond 14.8, when the fields start to decay exponentially and have
an increasing phase velocity. This number changes to around 10 for the trapezoidal scheme, which shows different
resolution offered by the two temporal schemes.

In Figure 9.3, we plot the four physical quantities defined in (9.2)-(9.5), obtained by DG-AL scheme using trape-
zoidal time discretization with a fixed CFL number ν = 0.7. This choice is made based on previous observations that
the DG-AL performs the best among all three fluxes. The overall behaviors of the physical quantities for FD and DG
schemes are very similar when comparing Figure 9.2 with Figure 9.3. The main difference lies in the last column for
high frequencies. The increasing resolution in the higher order DG scheme is evident, while increasing order does not
impact this much for FD schemes. Thus, high order DG schemes in space can have a better performance in resolving
high frequencies when compared with the FD scheme using the same mesh size. Similar conclusion holds with leap
frog time discretization, and the plots are omitted for brevity.

10. Conclusions. In this paper, we studied the exact and numerical dispersion relations of a one-dimensional
Maxwell’s equations in a linear dispersive material characterized by a single pole Lorentz model for electronic polar-
ization with low loss (i.e. when γ̂ is small). We consider two different high order spatial discretizations, the FD and
DG methods, each coupled with two different second order temporal discretizations, leap-frog and trapezoidal integra-
tors, to construct both semi-discrete and fully discrete schemes. In addition, for the DG schemes we have considered
three different types of fluxes: central, upwind and alternating fluxes. Comparisons based on dispersion analysis are
made of the FD and DG methods and the leap-frog and trapezoidal time discretizations.

It is well known that the FD and DG (which are a class of finite element methods) schemes, both being very pop-
ular discretizations, differ quite a lot in how they simulate wave phenomenon in their discrete grids. For example, DG
schemes work well for multi-dimensional problems and can be constructed on unstructured meshes for complicated
geometries. The FD schemes are simpler to code, and are mostly defined on structured meshes. The extension of the
FD methods to non-uniform and unstructured meshes are cumbersome.

Both types of spatial discretizations can be designed with high spatial order accuracy. The FD scheme achieves
this by extending the stencil of the discretization, while higher order polynomials are needed for the DG construction.
When we express the dispersion relation for the discrete wavenumber as a function of the angular frequency ω, the
number of spurious modes will increase with M (the accuracy order) of the FD scheme, while for DG schemes, the
number of spurious modes is independent of p (the polynomial order). However, as shown in the Appendix of the
FD scheme, using an alternative description of phase error, when the discrete angular frequency ω is expressed as a
function of the wave number k the conclusions are reversed. Namely, there are no spurious modes for FD schemes,
while more spurious modes will be present for higher order DG schemes, see [10] for relevant discussions in free
space.

When comparing the order of numerical errors, the FD schemes manifest the same order of accuracy of the
dispersion error and point-wise convergence error, while the DG schemes have higher order of accuracy in dispersion
error than in the L2 errors [13, 14] (superconvergence in dispersion error). The CFL numbers for the two methods
when coupled with an explicit time stepping are also different. It is known that the CFL number will approach a
constant other than zero when M →∞ for the FD scheme, but the CFL number will go to zero when p→∞ for the
DG scheme. Therefore, high order DG schemes require much smaller time steps than high order FD schemes.

Based on the numerical dispersion results in this paper, we observe that the physical dispersion of the material
plays an important role in the numerical dispersion errors. For the low-loss materials considered, we can observe that
the error is largest near the resonance frequency. This is no longer true for materials with high loss (i.e. when γ̂ is
not small). An interesting finding is that for some materials and discretization parameters, we observe counterintuitive
results that the dispersion error of a low order scheme can be potentially smaller than that of high order schemes (see
for example Figure 6.1). This demonstrates that the dispersion analysis conducted for free space may not be revealing
for general dispersive media.

We find that the second order accuracy of the temporal discretizations limits the accuracy of the numerical dis-
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FIG. 9.1. Results for the leap-frog time discretization and FD2M with CFL number ν/ν2Mmax = 0.7. First row: Normalized phase velocity;
Second row: normalized attenuation constants; Third row: normalized energy velocity; Fourth row: normalized group velocity.
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FIG. 9.2. Results for the trapezoidal time discretization and FD2M with CFL number ν/ν2Mmax = 0.7. First row: Normalized phase velocity;
Second row: normalized attenuation constants; Third row: normalized energy velocity; Fourth row: normalized group velocity.
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FIG. 9.3. Results for the trapezoidal time discretization and DG-AL with CFL number ν = 0.7. First row: Normalized phase velocity;
Second row: normalized attenuation constants; Third row: normalized energy velocity; Fourth row: normalized group velocity.
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persion errors, and is a good motivator for considering high order temporal discretizations, which are non-trivial to
construct for the case of dispersive Maxwell models [48]. This limiting behavior in the medium absorption band is
made clear by the difference in errors in the semi-discrete schemes versus the fully discrete schemes. In our future
work we will investigate higher order temporal discretizations.

Appendix A. An Alternative Dispersion Analysis for Semi-Discrete Finite Difference Schemes.
In this appendix, we provide an alternative method of analyzing the dispersion error of the semi-discrete in

space high order FD schemes (FD2M). We express the discrete angular frequency ω as a function of the continu-
ous wavenumber k ∈ R, and measure the relative errors that result for different M,M ∈ N, with 2M being the spatial
accuracy of the schemes.

We introduce the following definitions

k̂ := kh, F2M (k̂) := 2
M∑
p=1

[(2p− 3)!!]2

(2p− 1)!
sin2p−1

(
k̂

2

)
. (A.1)

For the exact dispersion relation of Maxwell’s equations in a one spatial dimensional Lorentz dielectric, by solving
det(A) = 0 with A given by (3.3), we get the following quartic equation for the continuous angular frequency
ω̂ex = ωex/ω1,

(ω̂ex)4 + 2i γ̂ (ω̂ex)3 − 1

ε∞

(
εs +

k̂
2

(ω1h)2

)
(ω̂ex)2 − 2i

ε∞
γ̂

k̂
2

(ω1h)2
ω̂ex +

1

ε∞

k̂
2

(ω1h)2
= 0. (A.2)

Similarly, considering the dispersion relation of semi-discrete FD2M scheme (5.10), we have

(ω̂FD,2M )4 + 2i γ̂ (ω̂FD,2M )3 − 1

ε∞

(
εs +

F2M (k̂)2

(ω1h)2

)
(ω̂FD,2M )3 − 2i

ε∞
γ̂
F2M (k̂)2

(ω1h)2
ω̂FD,2M +

1

ε∞

F2M (k̂)2

(ω1h)2
= 0.

(A.3)

Clearly, both (A.2) and (A.3) have four (complex) roots each. Therefore, the FD scheme has no spurious modes
for the discrete angular frequency. To better understand the errors, similar to previous sections, we first consider the
lossless material (γ̂ = 0) as an example. In this case, only even order terms appear in (A.2) and (A.3), and we can get

ω̂ex
1,2(k̂) = ± 1√

2

 εs
ε∞

+
k̂

2

ε∞(ω1h)2
−

√√√√( εs
ε∞

+
k̂

2

ε∞(ω1h)2

)2

− 4k̂
2

ε∞(ω1h)2


1/2

, (A.4a)

ω̂ex
3,4(k̂) = ± 1√

2

 εs
ε∞

+
k̂

2

ε∞(ω1h)2
+

√√√√( εs
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+
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2

ε∞(ω1h)2

)2

− 4k̂
2

ε∞(ω1h)2


1/2

, (A.4b)

and ω̂FD,2M
1,2 (k̂) = ω̂ex

1,2(F2M (k̂)), ω̂FD,2M
3,4 (k̂) = ω̂ex

3,4(F2M (k̂)).

In Figure A.1, we present the relative dispersion errors with k̂ ∈ [0, 2π] and the parameter values

εs = 5.25, ε∞ = 2.25, ω1h =
π

30
.

In this figure, we can observe the decrease of error when M (order of the scheme) increases. The numerical error in
the first and second solutions of the discrete angular frequency, are smaller than that of the third and fourth solution,
which can be understood if we consider the small wavenumber limit. In this case, we can derive expressions for the
relative phase error as

Ψ̂FD,2M (k̂) :=

∣∣∣∣∣ ω̂ex
i (k̂)− ω̂FD,2M

i (k̂)

ω̂ex
i (k̂)

∣∣∣∣∣ =


[(2M − 1)!!]2

22M (2M + 1)!
k̂

2M
+O(k̂

2M+2
), i = 1, 2,

[(2M − 1)!!]2

22M (2M + 1)!

εd
ε2s

k2

ω2
1

k̂
2M

+O(k̂
2M+2

), i = 3, 4,

(A.5)

which indicates a dispersion error of order 2M and is consistent to our previous conclusion (see Theorem 5.1). By
comparing the coefficients, we verify that, for the parameters we consider, the leading error coefficient corresponding
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to ω̂FD,2M
3,4 (k̂) is indeed much larger than that for ω̂FD,2M

1,2 (k̂).

FIG. A.1. Relative phase error (A.5) for the spatial discretization FD2M with γ̂ = 0. k̂ ∈ [0, 2π]. Left: i = 1, 2; The inset in the left plot
displays a zoomed-in region of the relative phase error for low values of k̂; Right: i = 3, 4.

For low-loss material, e.g. γ̂ = 0.01, the conclusions are very similar. The error plots show no visible difference
from the no loss case, and are thus omitted.
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