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A B S T R A C T

Metallic nanoparticles can act as efficient photocatalysts thanks to the surface plasmons that they support, which
are capable of harvesting light and generating hot carriers. Recently, titanium nitride (TiN) nanostructures have
emerged as promising candidates for this application due to their much lower cost, and therefore greater sus-
tainability, than structures made of noble metals, as well as their expected long-term thermal stability. In this
work, we demonstrate that, under solar illumination, TiN nanoparticles, in combination with titanium dioxide
(TiO2) nanostructures, can significantly increase the photocatalytic production of formate through the si-
multaneous photoreduction of bicarbonate and oxidation of glycerol. Importantly, we also show that TiN na-
noparticles alone can provide an enhancement of the photocatalytic efficiently when compared to TiO2 nano-
catalysts. Furthermore, by characterizing the morphology and material properties of the TiN nanoparticles after
the reaction, we confirm that they remain stable under reaction conditions for extended periods of solar light
exposure (8 hours). The results of this work advance our understanding of TiN nanoparticles as efficient pho-
tocatalysts and their use for the production of valuable chemicals.

1. Introduction

Metallic nanostructures have gained a great deal of attention for
their potential as efficient photocatalysts [1–7]. These nanostructures
support strong charge oscillations, commonly referred to as plasmons,
when illuminated with light in the visible and near infrared part of the
spectrum. Surface plasmons interact strongly with light and confine it
into small volumes, thus leading to a significant enhancement of the
electromagnetic field in their vicinity [8]. After excitation, plasmons
decay following two possible paths: (i) radiating their energy away
from the nanostructure in the form of scattered photons, and (ii) gen-
erating a nonthermal population of electrons and holes [6,9,10]. These
hot carriers can then thermalize, releasing their energy to the nano-
particle and its surroundings as heat [11,12], or they can be transferred
to neighboring systems, such as adsorbed reactant molecules or na-
nostructures [5,13,14]. Since the energy of the plasmon-induced hot
carriers is usually well above the Fermi level of the nanostructure, these
excitations can drive chemical reactions, which would otherwise

require a large energy supply [6]. This effect has already been de-
monstrated for a large variety of chemical reactions, including water
splitting [15–22], hydrogen and oxygen dissociation [23–25], and the
generation of hydrogen from ethanol [26], to name a few. Additionally,
the hot carriers can be transferred to the conduction band of neigh-
boring semiconductor photocatalysts, such as titanium dioxide (TiO2)
[27]. This has a twofold purpose: on one hand it helps to increase the
carrier lifetime, thus facilitating its transfer to reactant molecules
[5,28], and, on the other hand, it improves the photocatalytic perfor-
mance of the semiconductor by allowing the use of photons with en-
ergies below its bandgap [29,30].

The majority of the research efforts on plasmonic photocatalysis
have been focused on the use of noble metals such as gold and silver
[5,6,31–34]. These traditional plasmonic materials are chosen because
they support strong plasmonic resonances in the visible range of the
spectrum [35]. However, due to their scarcity, and consequently high
cost, the use of these materials lacks the sustainability required for
large-scale industrial applications. Furthermore, these materials usually
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show poor long-term stability in the type of environments found in
many industrial settings [36]. This is particularly true in oxidative (for
silver) or high temperature (for gold and silver) environments, where
the particles are likely to reshape, leading to a change in the plasmon
resonance frequency, or to oxidize away entirely.

These limitations have prompted a global search for alternative
plasmonic materials. Recent works have shown, for instance, that alu-
minum nanoparticles under laser illumination can be used to dissociate
hydrogen [37]. Other interesting candidates that have been proposed
are metal nitrides such as TiN and ZrN [38–47]. In particular, TiN
nanostructures have been shown to support strong surface plasmons,
with broad resonances overlapping most of the visible spectrum
[39,48]. Furthermore, for the same dimensions, TiN nanostructures
show larger integrated absorption cross sections than gold or silver
particles, allowing for significantly higher solar photocatalytic effi-
ciencies [38,49,50]. TiN also has its Fermi energy aligned with that of
the commonly used photocatalytic semiconductor TiO2 [42]. Therefore,
unlike gold and silver, which form Schottky interfaces with TiO2, TiN
forms an Ohmic interface, thus facilitating the transfer of hot electrons
[45,51]. In addition to its plasmonic properties, TiN also has a much
higher melting temperature than silver and gold, which results in a
better long-term stability, and enables its use in applications requiring
high temperature environments [52–55]. TiN is also significantly
cheaper than gold and silver, which makes it more sustainable than
traditional plasmonic materials [39,40]. For all of these reasons, TiN
nanostructures are being investigated with the objective of using them
to enhance a number of photocatalytic reactions [45,46,56–60].

One reaction of particular interest that can benefit from this en-
hancement is the production of formic acid [61]. This chemical is in
high demand for its use in hydrogen storage [62] and as a preservative
in a significant number of industries [61]. In addition to this, formic
acid is a commonly used intermediate species for the synthesis of many
valuable chemicals, such as methanol [61,63]. Unfortunately, the high
reduction potential required in the production of these chemicals makes
necessary the use of semiconductor photocatalysts with large bandgap,
such as TiO2, ZnO, and ZnS [64,65]. However, these materials are only
capable of absorbing photons in the UV/near-UV range, which hinders
the possibility of efficiently utilizing solar light to drive these reactions,
since much of the solar spectrum lies below the bandgap [39,41].
Previous work has shown that, by incorporating traditional plasmonic
materials, such as gold, into the TiO2 photocatalyst, a significant en-
hancement of the reduction rate of bicarbonate to formate, the anion
derived from formic acid, can be achieved [33]. However, as discussed
previously, due to the limitations of those materials, it is important to
explore alternative plasmonic photocatalysts, such as TiN, that could
enhance this reaction.

In this study, we investigate the use of TiN nanostructures for the
enhancement of the photocatalytic reduction of bicarbonate into for-
mate. We show that the formate production rate achieved using TiO2

nanostructures, under solar light, is enhanced by six times with the
addition of TiN nanoparticles. Importantly, we find that even TiN na-
noparticles alone, i.e., without the TiO2 nanostructures, also achieve a
significant enhancement of the production rate. Additionally, we in-
vestigate the chemical stability of TiN for this experiment, showing that
the nanoparticles do not show appreciable degradation during the re-
action. Our results shed light into the use of TiN nanoparticles for
plasmon-enhanced photocatalysis.

2. Materials and Methods

2.1. Photocatalysts

The TiO2 photocatalyst was purchased from Sigma-Aldrich
(Aeroxide ® P25). According to the manufacturer's data, the TiO2 na-
noparticles have a specific surface area of 35–65m2/g (BET) and a
mean diameter of 21 nm. TiN nanoparticles were purchased from US

Research Nanomaterials, Inc. The morphology and material properties
of all of the nanoparticles were characterized using transmission elec-
tron microscopy (TEM), high-resolution TEM (HRTEM), and energy-
dispersive X-ray spectroscopy (EDX), all performed using a JEOL-2010
transmission electron microscope. Furthermore, we also employed
UV–Vis spectroscopy on a Thermo Scientific Evolution 260 Bio UV–Vis
spectrophotometer with integrating sphere, X-ray powder diffraction
(XRD) on a X'Pert Pro XRD instrument, and Raman spectroscopy on a
HORIBA Jobin-Yvon LabRAM Aramis micro-Raman system (see the
Supporting Information).

2.2. Photocatalytic reactions

The starting reactant for the bicarbonate to formate reaction con-
sisted of a buffer made of 0.3 M NaHCO3, with 2M hole scavenger
glycerol, and Milli-Q water. The photocatalytic reaction occurred on a
Petri dish. We studied three different photocatalysts, namely P25 TiO2

nanoparticles, 20 nm TiN nanoparticles, and an even mixture of the
two. All of them were spin coated onto the Petri dishes, using a catalyst
solution with a concentration of 10mg/mL, and characterized using
scanning electron microscopy (SEM) in a Hitachi S-4100 scanning
electron microscope.

Using this setup, we performed two types of catalytic experiments.
In the first case, the reactions were conducted under solar simulated
light, using an ABET Technologies SunLite™ with AM 1.5 (or AM 0)
filter and a 1000W xenon arc lamp producing 1000W/m2, and kept at
isothermal conditions at room temperature (22∘ C) using a fan. In the
second case, the experiment was conducted in the dark under iso-
thermal conditions at 40∘ C using a hot plate. In all cases, aliquots were
collected every 2 hours, and we used ion chromatography to quantify
the concentration of formate. The ion chromatography (IC) was per-
formed using a Dionex AS50 IC with a Dionex IonPac ICE-AS6 ion ex-
clusion column, and a Thermo Scientific Dionex AMMS-ICE 300 sup-
pressor. The IC instrument was equipped with a Dionex CD25
conductivity detector. The reagents used were 0.4 mM hepta-
fluorobutyric acid as the eluent, at a flow rate of 1.2mL/min, and 5mM
tetrabutylammonium hydroxide as the regenerate. The reaction pro-
ducts on the photocatalysts were also characterized using Fourier-
transform infrared spectroscopy (FTIR) performed in a Thermo
Scientific Nicolet IS50 FTIR spectrometer with integrating sphere.

In order to analyze the stability of the TiN photocatalysts, we re-
covered them from the reactor after 8 hours of reaction, washed them to
eliminate the other reaction components, and characterized their
morphology and material properties using HRTEM and XRD. The re-
sults were compared with similar analysis of pristine TiN photo-
catalysts.

2.3. Theoretical modeling

The absorption cross sections of the different photocatalysts were
calculated by solving Maxwell's equations using Mie theory [66] for
spherical multishell structures, and a commercially available Finite
Element Method (FEM) Solver, COMSOL Multiphysics, for elliptical
multishell nanoparticles. In all cases, we performed an average over all
possible incidence directions and polarizations. The dielectric functions
of TiN and TiO2 were modeled using tabulated data from Refs. [38,67],
respectively, while for Au and Ag we used data from Ref. [68].

For the absorbed power calculations, we used the AM 1.5 Global tilt
solar intensity spectrum [69], which was multiplied with the absorption
cross sections to obtain the absorbed power per wavelength. The total
absorbed power was calculated by integrating these results.

3. Results and discussion

The photocatalytic process under investigation is depicted in Fig. 1
(a). Simulated solar light is used to excite surface plasmons in the TiN

A. Beierle, et al. Solar Energy Materials and Solar Cells 200 (2019) 109967

2



nanoparticles, which, upon decaying, produce hot carriers that are
transferred to the conduction band of the TiO2 nanoparticles. This
transfer is facilitated by the Ohmic interface formed between TiN and
TiO2, which is illustrated in Fig. 1(b), and has been experimentally
characterized in previous works [45] (see also Fig. S5 and the corre-
sponding discussion in the Supporting Information). This Ohmic inter-
face also enables the use of the carriers generated through direct photon
absorption from interband transitions in TiN [41,45], as well as those
generated from transitions between the valence and conduction bands
of TiO2 by photons in the UV part of solar spectrum that have energies
above the TiO2 band gap.

The hot carriers in the conduction band of TiO2 are then injected
into the reactants to accomplish the reduction of bicarbonate to for-
mate. This is aided by the approximate alignment of the conduction
band of TiO2 with the reduction energy level of bicarbonate [70–72], as
well as by the presence of glycerol, which acts as an efficient hole
scavenger and produces the protons required for the bicarbonate re-
duction. The use of a hole scavenger is crucial to ensure the nano-
particles remain electrically neutral, thus allowing for a continuous
flow of electrons from the photocatalyst to the bicarbonate. The effi-
ciency of glycerol as a hole scavenger for the photoreduction of bi-
carbonate to formic acid on TiO2, which has been demonstrated in the
past [64], is related to the fact that it contains one secondary and two
primary alcohol groups, all of which constitute potential sites for oxi-
dation that enhance their hole scavenging activity. This is consistent
with density functional theory-based theoretical calculations that have
also established glycerol as a more efficient hole scavenger for TiO2

than other organic solvents like tert-butanol, 2-propanol, methanol, and
formic acid [73]. It is worth noting that efficient hole scavenging from
both TiO2 and TiN is also important for preventing charge recombina-
tion.

The primary reactions of the photochemical process under study are
as follows [72]:

+ + → + +
− − + −TiO (2e ) HCO 2H TiO HCO H O,2 3 2 2 2 (1)

+ → + +
+ +TiO (h ) C H O TiO Oxidized products H ,2 3 8 3 2 (2)

while two important secondary reactions are:

+ → + +
+ +TiO (h ) H O TiO H OH,2 2 2

• (3)

+ → +
− −HCO O H CO H O.3

• •
3 2 (4)

In reaction (1), the bicarbonate (HCO3
−) is reduced to formate

(HCO2
−) and water by the electrons in the conduction band of TiO2. At

the same time, in reaction (2), glycerol (C3H8O3) scavenges the holes
from the valence band of TiO2 to produce different oxidized products
and the protons necessary for reaction (1). Upon oxidation, glycerol is
likely first dehydrogenated to glyceraldehyde and 1,3-

dihydroxyacetone, which, subsequently, can be further oxidized by hot
holes with water to produce hydroacetic and formic acid through C–C
bond cleavage [74,75]. It is important to note that the contribution of
formate arising from glycerol oxidation is usually negligible in com-
parison to the bicarbonate reduction reaction [33]. Happening in par-
allel to the primary reactions, there are two important secondary re-
actions. In (3), water reacts with any hot holes left in the photocatalyst,
producing protons and hydroxyl radicals. The latter can lead to reaction
(4), in which bicarbonate reacts with hydroxyl radicals, and therefore
competes with the primary reaction (1). In the absence of hole sca-
vengers, the amount of hydroxyl radicals from the photooxidation of
water is directly proportional to the concentration of bicarbonate in
solution [72]. However, thanks to the use of glycerol, which eliminates
the holes and hydroxyl radicals, we can limit this competing reaction,
thus improving the production of formate.

In order to investigate the enhancement of the photocatalytic pro-
duction of formate provided by TiN nanoparticles, we perform experi-
ments for three different nanocatalysts: (i) TiO2 nanoparticles, (ii) TiN
nanoparticles, and (iii) an even mixture of TiN/TiO2 nanoparticles.
TEM images of each of these composites are shown in Fig. 1(c)-(e),
respectively. The TiO2 and TiN nanoparticles have average diameters of
21 and 20 nm, respectively, with the TiN structures displaying a 1–2 nm
amorphous TiO2 shell (see Fig. 5). The TiO2 particles are made mostly
of anatase phase (80%) with the rest being rutile phase (20%) (see the
Supporting Information). As explained in the Materials and Methods
section, for the photocatalysis experiments, the TiO2 and TiN nano-
particles are deposited onto a glass Petri dish by spin coating a catalyst
solution of concentration of 10mg/mL. After deposition, the particles
tend to aggregate and form conglomerates with sizes between 50 and a
few hundreds nanometers, as can be seen in the TEM images shown in
Fig. 1(c)-(e).

The photocatalytic reaction is driven by the absorption of solar
light, which is dominated by the TiN nanoparticles because TiO2 only
absorbs photons with energies above its bandgap (≈3.2 eV). Therefore,
it is important to analyze the absorption characteristics of the TiN na-
nostructures. To that end, we measure the absorbance of these nanos-
tructures in solution using UV–Vis spectroscopy, and compare those
results to theoretical calculations shown in Fig. 2(a). The black dashed
curve represents the experimentally measured absorbance, while the
black solid curve corresponds to the calculations for a spherical TiN
nanoparticle with a total diameter of 20 nm, including a 2 nm TiO2

shell. The results of these calculations are in reasonable agreement with
the experimental measurements. In particular, both spectra display an
absorption band centered around 750 nm that extends over a significant
portion of the visible spectrum, thus making these structures ideal for
harvesting solar light. As expected, the nanoparticle also display a
strong absorption below 450 nm, which is associated with interband

Fig. 1. (a) Schematic for the photocatalytic reduction of bicarbonate (HCO3
−) into formate (HCO2

−). (b) Energy level diagrams for hot electron transfer in the
reaction of interest. (c)–(e) TEM images of the TiN, TiO2, and TiN/TiO2 composite photocatalysts.
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transitions.
That said, we observe that the experimental spectrum has a much

broader absorption band than the theoretical calculations, and, at large
wavelengths, it displays a second absorption peak. We attribute these
differences to the dispersion in the morphology of the nanoparticles
measured in the experiment [76,77]. To confirm our hypothesis, we
perform calculations for four different ellipsoidal core-shell nanos-
tructures, all of them with the same core volume of TiN as the spherical
nanoparticle analyzed above and a 2 nm TiO2 shell. The geometry of
these nanostructures is characterized by the parameter η, which re-
presents the ratio between the vertical and the horizontal diameters.
Therefore systems with >η 1 are prolate ellipsoids, while those with
<η 1 are oblate. Examining these results, we observe that for the

prolate particles (yellow and red curves), the absorption band decreases
in strength and becomes broader. On the other hand, for the oblate
particles (green and blue curves), there is an overall redshift, which for
=η 0.4 results in a resonance that lines up with the secondary peak seen

in the experimental absorbance. This analysis shows that changes in the
particle morphology lead to modifications in the absorption spectra that

can explain the differences found between the experimental and the
theoretical results.

It is very illustrative to compare the absorption performance of the
TiN nanoparticles with that of similar nanostructures made of con-
ventional plasmonic materials, such as gold and silver. To that end, in
Fig. 2(b), we plot the absorbed power spectrum for spherical nano-
particles with 20 nm diameter made of silver (black curve), gold (red
curve), and TiN (green curve), placed in water, when illuminated with
the standard AM 1.5 solar spectrum (see the Materials and Methods
section). In this case, to ensure a fair comparison, we do not consider a
TiO2 shell on the TiN nanoparticles. Examining these results, we ob-
serve that the absorption peak, associated with the plasmon resonance,
of gold, and especially silver, nanoparticles is significantly stronger
than that of the TiN nanoparticle. However, these resonances are much
narrower and therefore they may lead to a smaller integrated absorp-
tion. This is confirmed in the inset, where we plot the absorbed power
integrated over the wavelength range from 320 to 900 nm. Despite
having significantly smaller peak absorption than either silver or gold,
the broad response of TiN leads to a larger overall absorption efficiency,
which is crucial for any application utilizing solar light.

In order to analyze the production of formate for each of the three
photocatalysts under investigation (TiO2, TiN, and TiN/TiO2 compo-
sites), we submerse the reactors loaded with the photocatalysts in a
buffer solution containing 3M glycerol and 0.2M bicarbonate prepared
with ultrapure water. The particle concentration on the reactor is ap-
proximately 200 particles/μm2. The photocatalytic reaction is run for a
period of 8 hours under isothermal conditions at 22∘C. For the light
source, we use an AM 1.5 solar simulator. The concentration of formate
in solution is measured using ion chromatography. The corresponding
results throughout the 8 hours of reaction time are shown in Fig. 3(a)
for the three photocatalyst under investigation. Clearly, the largest
formate production is obtained for the TiN/TiO2 composite, while the
minimum corresponds to the TiO2 nanoparticles alone. The formate
production rate is plotted in panel (b). We find that TiO2 nanoparticles
alone have a productivity of approximate 1035mmol/hr per gram of
photocatalyst, while for the TiN/TiO2 nanocomposite we obtain ap-
proximate 3080mmol/hr/g. These values correspond to an absolute
productivity of ×

−0.834 10 2 mmol/hr and ×
−2.609 10 2 mmol/hr, re-

spectively. However, we need to remark that for the TiN/TiO2 com-
posite, the total particle loading is the same as for the TiO2 nano-
particles alone, meaning that the amount of TiN and TiO2 in the
composite photocatalyst is exactly half. Therefore, we conclude that the
addition of TiN nanoparticles enhances the formate production rate of
TiO2 nanoparticles alone by a factor of ≈6. Importantly, TiN nano-
particles alone also enhance the formate production, resulting in a rate
≈2 times higher than that of TiO2 nanoparticles alone. This could be
facilitated by the 1–2 nm thick layer of TiO2 present on the surface of
the TiN nanoparticles [78]. It should be noted as well that the pro-
ductivity of TiN/TiO2 composite is more than the simple average of the
productivity of TiN and TiO2.

To complete the characterization of the performance of the different
photocatalysts, we measure the formate production for TiN/TiO2

composites with different mix ratios of TiN to TiO2. Analyzing the
corresponding results, which are shown in Fig. S6 of the Supporting
Information, we find that mix ratio has an impact on the production of
formate, with the 1:1 mix resulting in the largest formate production.

The experimental results confirm that the TiN nanoparticles en-
hance the efficiency of the photocatalytic production of formate.
However, it is crucial to determine if this enhancement is produced by
the hot carriers provided by the TiN nanoparticles, or if it is caused just
by an increase of their temperature. As previously discussed, TiN na-
noparticles exhibit a large absorption under solar light, and, despite the
solution being kept under isothermal conditions, it is possible that the
nanoparticles are at a higher temperature than the solution. Indeed,
previous works have shown that thermal energy from optically excited
plasmons can be used to drive reactions [6,43,45]. In our particular

Fig. 2. (a) Experimentally measured (dashed curve) and theoretically calcu-
lated absorption spectra for different TiN nanoparticles in water (solid curves).
The black curve stands for the results obtained for a spherical TiN nanoparticle
with 20 nm diameter, including a 2 nm TiO2 shell. To account for the dispersion
of sizes and shapes in the experiment, we model four different ellipsoidal core-
shell nanostructures, as indicated in the legend. All of these structures have the
same core volume of TiN as the spherical particle with a 2 nm TiO2 shell, and
their geometry is characterized by the parameter η, which represents the ratio
between the diameters along the vertical and horizontal axes. (b) Absorbed
power spectrum calculated for spherical nanoparticles with 20 nm diameter
made of silver (black curve), gold (red curve), and TiN (green curve), placed in
water, when illuminated with the AM 1.5 solar spectrum (see Materials and
Methods section). The inset shows the integrated power absorbed for each
nanoparticle over the wavelength range from 320 to 900 nm. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
Web version of this article.)
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case, we estimate the temperature of the nanoparticle following the
approach of [11], from the balance between the integrated power that
it absorbs, which is calculated in Fig. 2(b), and the energy transfer to
water through contact. We obtain a negligible temperature increase,
mainly because the relatively small power of the solar illumination
(≈1 kW/m2), as well as the large thermal conductivity of water.

To confirm that thermal effects do not cause the enhancement of the
reaction, we perform a control experiment in the dark with the solution
kept at a temperature of 40∘C. The results of this experiment, which is
done for all three photocatalysts, are shown in Fig. 3(c). We find that,
under these conditions, the production of formate when TiN nano-
particles are present is an order of magnitude smaller than under solar
irradiance.

In order to obtain a complete picture of the photocatalytic reaction
occurring on the different photocatalysts under investigation, we per-
form Fourier transform infrared spectroscopy (FTIR) before and after
the reaction. The gray curve of Fig. 4 shows the results measured before
reaction for the fresh reactant solution, while the other curves corre-
spond to the FTIR spectra of the reactants adsorbed on the TiO2 (black
curve), TiN (green curve), and TiN/TiO2 composite (red curve) photo-
catalysts, measured after 8 hours of isothermal photocatalytic reaction
at 22∘ C, under solar illumination. Examining the FTIR spectra, we ob-
serve a broad peak at 3250 cm−1, which arises from the alcohol groups
of glycerol [79]. This peak is present for the fresh reactant solution, as
well as for all of the different photocatalysts after reaction. However, as
expected, its intensity decreases after the reaction, due to the oxidation
of glycerol. This is further supported by the appearance, after the re-
action, of a peak at 2830 cm−1, corresponding to aldehyde, probably

Fig. 3. (a) Formate production measured as a function of time for the TiO2, TiN,
and TiN/TiO2 composite photocatalysts, under simulated solar light at constant
22∘C temperature. (b) Formate productivity per hour for each photocatalyst. (c)
Formate production as a function of time in the dark at 40∘C.

Fig. 4. Comparison of the FTIR spectrum of the fresh reactant solution (gray
curve), with the corresponding spectra of the reaction products adsorbed on the
TiO2 (black curve), TiN (green curve), and TiN/TiO2 composite (red curve)
photocatalysts, measured after 8 hours of isothermal photocatalytic reaction at
22∘ C. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 5. (a,b) HRTEM images of a TiN photocatalyst before (a) and after (b)
8 hours of isothermal photocatalytic reaction at 22∘ C, under simulated solar
light. In both cases, the red curve indicates the approximate interface between
the TiN core and the TiO2 shell. (c) X-ray diffractogram of a TiN photocatalyst
before and after reaction. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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due to the formation of glyceraldehyde, which is an oxidation product
of glycerol [79]. Similarly, the peak at 1050 cm−1 is characteristic of
alcohol and is likely due to the formation of 1,3-propanediol, another
oxidation product of glycerol [79]. On the other hand, the peaks ap-
pearing between 1290 and 1400 cm−1 can be attributed to the CO and
COO stretching modes, respectively [80]. These peaks, which increase
after the reaction, are indicative of the presence of formic acid and
formate [80]. Therefore, the FTIR data confirms the reduction of bi-
carbonate to formate. Furthermore, it also corroborates the oxidation of
glycerol, thus supporting its role as hole scavenger, even for the TiN
photocatalyst, and highlighting its importance for the efficient extrac-
tion of hot electrons from these plasmonic nanostructures.

Any large-scale use of the enhancement of the photocatalytic pro-
duction of formate provided by TiN nanoparticles would require these
nanostructures to remain stable after the reaction. In principle, it is well
known that TiN has a high melting temperature, well above that of gold
and silver. However, it is also important to confirm that the nano-
particles remain oxidatively stable during the reaction, since any in-
crease in the native oxide layer thickness would lead to a decrease in
the size of the TiN core, and therefore to a redshift in the plasmon
resonance as well as a decrease in the overall absorption. To check the
stability of the TiN photocatalysts, we recovered them from the reactor
after 8 hours of isothermal photocatalytic reaction at 22∘ C, under solar
light, and washed them to get rid of the reaction components. Then, we
examined the morphology of the oxide layer on the surface of the TiN
nanoparticles using HRTEM images of the nanoparticles taken before
and after the reaction, which are shown in Fig. 5(a) and (b), respec-
tively. These images confirm that the oxide layer remains of the same
thickness. Furthermore, we compared the X-ray diffractogram of the
nanoparticles before and after being used. As can be seen from the
corresponding results plotted in Fig. 5(c), the TiN mostly shows the
rock-salt crystal structure of osbornite, thus confirming that its struc-
ture remains stable under reaction conditions. It is worth noting, as
well, that we do not observe any decrease in the photocatalytic per-
formance of the nanostructures over the course of the reaction in any of
the experiments performed, which further supports the stability of the
TiN nanostructures.

4. Conclusions

In summary, we have shown that TiN nanoparticles can serve as an
efficient photocatalyst for the reduction of bicarbonate into formate
under solar illumination. The main reasons behind this enhancement
are (i) the broad plasmonic resonances that TiN nanoparticles support,
which allows for an efficient utilization of the whole solar spectrum,
and (ii) the Ohmic interface they form with the commonly used pho-
tocatalyst TiO2, which allows for an efficient transfer of the plasmon-
induced hot carriers to the reactants. Indeed, our results suggest that
TiN could be also used to improve the performance of other semi-
conductor photocatalysts such as ZnO, CdS, or Fe2O3. In addition, we
have shown that the TiN nanoparticles remain stable during the pho-
tocatalytic reaction. The results of this work improve our understanding
of the photocatalytic properties of TiN nanoparticles arising from their
plasmonic response, and therefore serve to pave the way to develop
efficient and sustainable photocatalysts for real-world applications.
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