
Noname manuscript No.
(will be inserted by the editor)

A Case Study of a Shared/Buy-in Computing Ecosystem

Christopher Liao and Yonatan Klausner, David Starobinski, Eran Simhon,
and Azer Bestavros

the date of receipt and acceptance should be inserted later

Abstract Many research institutions are deploying com-
puting clusters based on a shared/buy-in paradigm.
Such clusters combine shared computers, which are free

to be used by all users, and buy-in computers, which are
computers purchased by users for semi-exclusive use.
The purpose of this paper is to characterize the typical
behavior and performance of a shared/buy-in comput-

ing cluster, using data traces from the Shared Comput-
ing Cluster (SCC) at Boston University that runs under
this paradigm as a case study. Among our main find-

ings, we show that the semi-exclusive policy, which al-
lows any SCC user to use idle buy-in resources for a lim-
ited time, increases the utilization of buy-in resources
by 17.4%, thus significantly improving the performance

of the system as a whole. We find that jobs allowed to
run on idle buy-in resources arrive more frequently and
run for a shorter time than other jobs. Finally, we iden-

tify the run time limit (i.e., the maximum time during
which a job is allowed to use resources) and the type of
parallel environment as two factors that have a signif-
icant impact on the different performance experienced
by shared and buy-in jobs.

1 Introduction

The Shared Computing Cluster (SCC) at Boston Uni-
versity (BU) [21] implements a shared/buy-in system.
Shared users access the cluster for free, while buy-in
users pay a fee for priority usage of a set of resources.
In addition, the SCC allows any user to utilize buy-
in resources when they are idle (also known as pub-

lic queues), which greatly increases the system’s uti-

Boston University, Boston, MA
E-mail: cliao25@ bu.edu, yklausner@gmail.com,
staro@bu.edu, simhon@bu.edu, best@bu.edu

lization. BU’s adoption of the shared/buy-in architec-
ture is an instance of an increasingly popular two-tiered
service model in research computing clusters. Other

instances of shared/buy-in systems include University
of Wisconsin-Madison’s High Performance Computing
(HPC) Cluster [15] and University of Arizona’s HPC
Cluster [19]. As the purpose of the SCC is similar to

other university computing clusters in that they sup-
port research in a large university environment, we use
the SCC as a representative case study to gain insight

into the benefits of its shared/buy-in architecture in
large research university computing clusters.

The object of this paper is to better understand the
behavior of shared/buy-in ecosystems, through mea-
surements performed on the SCC. Specifically, we aim

(i) to investigate the differences in job characteristics
between shared and buy-in resources, (ii) to determine
how public queues benefit the system, and (iii) to quan-
tify the delay that shared users are willing to tolerate.
Our study combines analysis of exogenous parameters,
such as the running time and interarrival time, together
with analysis of endogenous parameters, such as the

waiting time and utilization.

Toward goals (i) and (ii), we compare the utiliza-
tion, demand and workload characteristics of shared
and buy-in resources. Through this analysis, we show
that implementation of public queues benefits shared/buy-
in systems by significantly improving the utilization of
buy-in resources. This aspect improves the Quality of
Service (QoS) in general, since it makes more resources
available to all users. We define the QoS as the degree of
satisfaction for users of the SCC as measured by wait-
ing time. We also show that, compared to shared and

buy-in jobs, jobs scheduled to public queues tend to
arrive more frequently and run for shorter time.



2 Christopher Liao and Yonatan Klausner, David Starobinski, Eran Simhon, and Azer Bestavros

Toward goal (iii), we examine in detail how the run
time limit and the parallel environment affect the wait-
ing time for various jobs. Our analytical methodology
provides insight into the QoS experienced by users in
shared/buy-in clusters and helps in identifying policy
changes that could lead to better waiting time perfor-
mance. The main contribution of this study is a compre-
hensive comparison of workload characteristics between
the shared and buy-in parts of the SCC, which should
inform future computing clusters considering a similar
policy.

In the following, we first discuss previous workload
characterization studies involving other computing clus-
ters. We next provide an overview of the SCC’s ar-
chitecture, including both physical and logical aspects.
Then, we present a statistical characterization of the
SCC. This section begins by characterizing exogenous
parameters and concludes with a performance evalua-
tion of the SCC based on utilization and waiting time.
We end with concluding remarks and suggestions for
policy changes that might benefit shared/buy-in sys-

tems.

2 Background and Related Work

Before discussing related work, we introduce general
terminology that applies to the SCC:

– The number of slots is the number of Central Pro-
cessing Units (CPU) required for a job to run.

– A node is an independent computer with multiple
slots.

– A waiting list is the list of jobs waiting for execution
at any point in time.

– A queue is a logical abstraction that aggregates a

set of slots across one or more nodes [16]. A queue
has certain configurations that define which jobs it
accepts. A queue is different from a waiting list.

– A project is a group consisting of one or more users.
– The run time limit (RTL) is the maximum amount

of time a job can run before it is killed.

We will further elaborate on these terms throughout
the paper.

Our work relates to the workload characterization
of computing clusters [1]. Such clusters are generally
grouped into two main categories: grids, heterogeneous
clusters generally used in scientific and academic set-
tings, and clouds, large homogeneous clusters generally

used in commercial settings [5]. The Grid Workloads
Archive (GWA) [20] and Parallel Workloads Archive
(PWA) [7] contain workload traces of grid clusters. In
relation to other clusters, the SCC should be viewed as
a grid-like computing cluster.

The study in [9] shows that usage of real workload
traces in grid computing research has become increas-
ingly popular in the past decade and summarizes the
workload traces publicly available via the GWA and
the PWA. Works that use data traces from the GWA
and PWA generally have one of three focuses: exoge-
nous parameter modeling, performance evaluation, or
scheduling optimization. Only the first two focuses are
relevant to our study.

Parameter modeling studies include [9,8,14]. These
studies fit distributions to essential parameters such as
interarrival time and running time of traces taken from
the GWA and PWA with the goal of creating a syn-
thetic workload trace and improving performance by
optimizing system policy. Performance evaluation stud-
ies include [11,13]. Specifically, [11] plots the relation-
ship between performance metrics and the load of the
system using heat maps, while [13] attempts to predict
the waiting time by using stochastic processes and ma-
chine learning to identify ”quick starters.” In our study,

we combine the above two focuses.

Our study is one of the first to focus specifically on
a shared/buy-in system, though there are a few studies

that include similar multi-tiered concepts. As a practi-
cal example, the Linux cluster at Lawrence Livermore
National Lab (LLNL) is divided into two sub-clusters:

Atlas, for large parallel computing tasks, and Thunder,
for more frequent small jobs [7]. This two-tiered archi-
tecture, although different from the SCC in policy has
similarities as will be briefly explored in Section 4.7.

Refs. [12] and [23] conduct theoretical studies that deal
with multi-tiered service concepts. Ref. [12] suggests
and analyzes a service-oriented architecture approach
to HPC clusters. Ref. [23] proposes dividing resources
into two groups, one that handles peak workload and
one that handles regular workload. While these two

studies are theoretical investigations of multi-tiered ser-
vice architectures, our study is a statistical analysis of
the performance of shared/buy-in architecture.

While the scheduler by itself is not the focus of
this paper, scheduling software does have a direct ef-
fect on workload characteristics. Much of the recent re-
search in scheduling algorithms focus on the capability
to efficiently schedule highly parallel jobs along smaller
jobs. Ref. [2] gives a survey of state-of-the-art schedul-
ing algorithms with parallel-job support, with a focus

on those designed around task graphs. The authors in
[2] assert high autonomy, scalability, and heterogene-
ity as benchmarks for a good scheduler. Ref. [6] pro-
poses SEParAT, an efficient scheduler for mixed par-
allel workloads. Ref. [17] compares four popular sched-
ulers, including Sun Grid Engine (SGE), an older ver-

sion of Open Grid Scheduler, the scheduler used by the



A Case Study of a Shared/Buy-in Computing Ecosystem 3

Fig. 1 SCC Architecture. There are 4 login nodes and 467
compute nodes. [21]

SCC (see Section 3.2). Multiple performance parame-
ters are investigated, and the authors found that SGE
performed well when given parallel workloads and small
jobs. A brief analysis of the parallel workload in the
SCC is given in Section 4.4.2.

An abbreviated version of this paper is published in
the 2016 IEEE MIT Undergraduate Research Technol-

ogy Conference Proceedings [10].

3 Cluster Architecture

A user logs on to the SCC by accessing one of the 4 login

nodes through a secure shell. Login nodes are used for
transferring files to and from the SCC, program compi-
lation, text editing, and light debugging. These nodes

are not included in our analysis. Instead, we analyze the
467 compute nodes. Compute nodes allow users to sub-
mit computationally intensive jobs that generally run
for a longer amount of time and require more resources.

Fig. 1 shows the relationship between the login nodes,
compute nodes, and file storage in the SCC.

3.1 System Overview

As mentioned in Section 1, the SCC at BU implements
a shared/buy-in system. In order to become a buy-in
project, a project owner purchases new nodes for the
SCC in exchange for priority access to these nodes.
Buy-in projects benefit because they experience shorter
waiting times on their own nodes as seen in Section 4.6.
Additionally, all projects benefit since buy-in resources
are reclaimed when they are not utilized by their owners
as is explained next.

Compute nodes are divided into two categories: shared
and buy-in. Any job can run on the shared nodes. Any
job can run on a buy-in node as long as no users of that
buy-in project are running a job on that node. Since

buy-in projects receive priority for their own resources,
shared users can only run jobs on buy-in nodes if the

Table 1 General overview of SCC from 1/1/15 to 7/10/15.
The statistics on number of jobs and unique users are totaled
over the entire period. The statistics on nodes and cores refer
to the end of the period.

System Shared Buy-in Public
Total
Jobs

17,420,081 6,477,145 3,352,421 7,590,515

Unique
Users

1,055 995 470 549

Nodes 471 169 298
Cores
(CPUs)

6,312 2,536 3,776

Table 2 List and description of variables for Section 3.2

Notation Description
pi Priority of a job.
f i Number of tickets given to job.
pt Adjusted number of tickets.
ui Function of recent usage.
pu Urgency factor.
pp User Assigned Priority.
n Normalization function.

run time limit is 12 hours or less without exception.
Buy-in users are able to run jobs on the shared nodes
like shared users.

In general, each buy-in node has two queues: a buy-
in queue and a public queue. The buy-in queue only
accepts jobs from a user of that specific buy-in project.

The public queue accepts jobs from any user as long
as the run time limit is 12 hours or less. The public
queue for a node is automatically disabled when a buy-
in user of that specific node submits a job on the SCC

for that project. When disabled, the queue stops ac-
cepting jobs from users outside of the buy-in project.
Any job already running when a buy-in user submits a

job is completed before the buy-in user receives access
to his/her resources. This policy prevents buy-in users
from waiting for a long time for their own resources,
but allows their resources to be utilized when idle. The
benefits of this aspect is further discussed in Section
4.5.2.

Upon submitting a job, users are able to specify cer-

tain attributes for their jobs such as the run time limit,
the number of slots, and the parallel environment. In
Section 4.6, we investigate how some of these attributes
affect the waiting time. Table 1 gives a general overview
of the SCC. Note that buy-in and public jobs share the
same physical resources.

3.2 Scheduler

The SCC operates using the Open Grid Scheduler, an
open-source scheduling software [16]. A scheduling round
occurs every 15 seconds by default, but is also triggered



4 Christopher Liao and Yonatan Klausner, David Starobinski, Eran Simhon, and Azer Bestavros

by events such as job submissions and job completions.
This means that priority is recalculated at least every
15 seconds. During each scheduling round, the prior-
ity of waiting jobs may change slightly, as jobs enter-
ing and leaving the waiting list have an effect on the
number of tickets and the normalization functions dis-
cussed below. During every scheduling round n, where
n = 1, 2, 3, ...N and N is the total number of schedul-
ing rounds, (for simplicity, the index is dropped for the
remainder of this section) the following occurs:

– Priority (as explained below) is assigned to each
waiting job and all waiting jobs are sorted accord-
ingly. Let the set of jobs in the waiting list be de-
noted by i = 1, 2, 3, ...m, where m is the total num-
ber of jobs waiting. The priority of job i is denoted
by pi.

– Available resources are allocated to jobs with the
highest priorities.

Three factors are used to calculate the priority pi of
job i: pit, p

i
u, and pip, as explained below:

1. The number of tickets pit is the most complicated
part of the final priority assigned to a job. The

scheduler starts with 104 tickets and distributes tick-
ets to the jobs in the waiting list using a share tree
policy. The share tree policy first distributes tickets

to projects based on proportions specified by the
administrator. The tickets of each project are then
distributed equally to its users. The goal of the share

tree policy is to ensure that all users and projects
on the SCC receive their respective target share of
resources over time. Let fi be the number of tickets
a job is given, then the adjusted number of tickets

pit is approximated by:

pit =
fi

ui
, (1)

where ui is a function of the recent usage of the
user submitting the jobs and the recent usage of the
project. This leads to the following:

– If the user’s recent usage has been high, the job
will have a lower priority than a job submitted
by a user whose recent usage has been low.

– If the project’s recent usage has been high, the
project’s job will have a lower priority than a

job submitted by a project that has a low recent
usage.

2. The urgency factor piu is equal to the number of
requested slots. This factor causes jobs that request

more slots to have a slightly higher priority. Since
larger parallel jobs are harder to schedule, putting

them at the front of the waiting list prevents them
from being starved of resources.

3. The user assigned priority pip is the priority given
to job i by the user. If the user submits multiple
jobs at once, the user may want a certain job to
be completed before another. A user is only able to
decrease a job’s priority. This feature is rarely used.

A normalization function is used to ensure that all
three parts of the priority are on the same scale. The
normalization function n(p, S) is defined in terms of
the value to be normalized p and the set S to which p
belongs:

n(p, S) =
max(S)− p

max(S)−min(S)
, ∀p ∈ S, (2)

The following equation is used to evaluate the pri-
ority of a job on the SCC:

pi = 0.2× n(pip, Sp) + 0.02× n(piu, Su) + n(pit, St), (3a)

where

Sp = {p1p, p2p, p3p...pmp }, (3b)

Su = {p1u, p2u, p3u...pmp }, (3c)

St = {p1t , p2t , p3t ...pmt }. (3d)

After sorting by priority, the scheduler assigns each

job to an available queue. Each queue is configured with
a list of parallel environments that it accepts. Other
user requests such as the run time limit, CPU architec-

ture, and available memory also directly affect which
queues can accept a particular job. In the case where
multiple queues can accept a job, the job is assigned to

a queue using an algorithm which takes into account
the load and the sequence number of a queue.

4 Performance Analysis

4.1 Method

The SCC has been completely operational since July
2013. We analyze a 4.2 GB data trace collected from
January 1, 2015 through July 20, 2016 using R and
Python. This workload trace represents jobs from a va-
riety of departments across all of BU, including Medicine,
Engineering, Physics, Biology and Chemistry. There-
fore, the data trace used should sufficiently generalize
the workload of a large research university.



A Case Study of a Shared/Buy-in Computing Ecosystem 5

Table 3 Exogenous Parameter Comparison. Demand refers to typical request only.

System Shared Buy-in Public
Mean Median SD Mean Median SD Mean Median SD Mean Median SD

Interarrival time (s) 2.81 0.64 17.32 7.55 1.31 50.00 14.59 3.25 62.98 6.45 0.92 61.89
Waiting time (hr) 5.32 0.87 18.03 6.21 1.21 20.90 4.99 0.56 18.27 4.71 0.76 15.00
Running time (hr) 0.95 0.03 8.68 1.51 0.06 11.96 1.13 0.02 10.48 0.40 0.02 1.23
Slots 2.52 1.00 4.99 2.20 1.00 5.58 3.25 1.00 5.67 2.46 1.00 4.02
Workload (slot-hr) 2.64 0.05 50.54 3.75 0.09 54.67 4.24 0.04 85.93 0.99 0.03 6.72
Demand of Typical
Request (thousand
requests/ 12 hrs)

11.11 5.64 17.64 3.64 1.40 6.82 1.75 0.46 5.32 6.30 2.97 11.70

Note that the SCC supports submission of array
jobs, a group of individual tasks that require identical
resources. While the series of tasks are assigned one
job number, they are scheduled separately. Therefore,
in our analysis, these individual tasks are considered as
separate jobs. Consequently, the workload characteri-
zation which follows exhibits shorter interarrival times
and shorter running times than it would if array jobs

were considered a single job. Thus, appropriate consid-
erations have to be made when comparing the analysis
presented below with other workload characterization
studies.

In our analysis, shared jobs are defined as jobs that
run on a shared node excluding jobs that run on a pub-
lic queue. Buy-in jobs are defined as jobs that users of

buy-in projects run on their own buy-in nodes, and pub-
lic jobs are defined as jobs that run on public queues
on buy-in resources.

In the sections that follow, we perform a compre-
hensive statistical analysis of the SCC, starting with
exogenous characteristics and concluding with endoge-
nous characteristics. Table 3 summarizes the statistics

on exogenous parameters.
In addition to comparing the distributions of the

parameters between shared and buy-in jobs, we also
present the distribution fittings for these parameters.
We fit the empirical data with common distributions
and use the distribution that best fits the empirical data
to formulate a random variable. This random variable
is helpful to:

– Inform theoretical models with parameters taken
from an actual system.

– Predict future usage.
– Experiment with new policies without changing the

policy in the real system.

Four distributions were considered: Weibull, log-
normal, gamma, and exponential. A skewness-kurtosis
plot determined that Weibull and log-normal distribu-
tions best fit each of the parameter distributions given
in the following sections. Skewness and kurtosis to-

gether give a quantitative description of the shape of
a distribution. The studies in [3,22] both considered

the Weibull distribution when modeling similar param-
eters such as interarrival time when investigating Bag
of Tasks (BoT) workloads. Ref. [22] also considers the
log-normal, exponential and gamma distributions. In
our study, the distribution fitting process is carried out
with the fitdistrplus package [4]. Then, we use the
one-sample Kolmogorov-Smirnov test (the test used in
[22]), a test which uses the vertical distance between
two CDFs to determine goodness-of-fit, to compare the

three distribution fits for each parameter (see ks.test
function in R [18]). Only the distribution with the best
fit is given in this paper.

4.2 Arrival Pattern

The interarrival time is the time elapsing between job
submissions. This parameter is calculated by count-
ing the number of job arrivals an during each hour
n = 1, 2, 3, ..., N , where N is the total number of hours

in the trace analyzed. The interarrival time during each
hour n is then given by tn = 3.6× 103/an. Table 3
shows that the mean interarrival time is 7.55 seconds for
shared jobs, 14.59 seconds for buy-in jobs, and 6.45 sec-
onds for public jobs. Public jobs arrive most frequently,
while buy-in jobs arrive least frequently. We present the
interarrival times separately for each of the three types

of jobs to highlight the difference in workload charac-
teristics. However, it is not appropriate to describe the
workload with three separate arrival processes, as the
three groups of jobs overlap in physical resources and
user populations.

The interarrival time T is best modeled by a log-
normal distribution, i.e.

P (T ≤ t) =
1

2
+

1

2
erf[

ln t− µ
√

2σ
], σ = 1.30, µ = −0.22,

(4a)

where

erf(x) =
2
√
π

∫ x

0

e−τ
2

dτ. (4b)



6 Christopher Liao and Yonatan Klausner, David Starobinski, Eran Simhon, and Azer Bestavros

Table 4 Distribution of Jobs over Parallel Environments by Quantity and Workload

Number of Jobs Workload
System Shared Buy-in Public System Shared Buy-in Public

Single-slot 84.5% 87.0% 76.9% 85.7% 31.0% 35.5% 21.5% 34.3%
OMP 15.2% 12.5% 22.6% 14.3% 45.0% 37.3% 47.2% 65.8%
MPI 0.28% 0.48% 0.52% 0.010% 24.0% 27.1% 31.4% 0.85%

The demand is directly related to the interarrival
time, as both are measures of how frequently jobs are
submitted. The demand is measured by counting the
number of requests per 12 hours. Here, we examine
the demand for typical requests, that is, single-slot jobs
with a run time limit of 12 hours or less. This type of
request accounts for 79% of all jobs, so considering the
demand of these jobs independently from the rest of
the trace is a key component to a complete workload
characterization. Table 3 gives the mean, median and
standard deviation of the demand of the typical request.
These statistics show that the average demand of the
typical request is 3.64× 103, 1.75× 103, and 6.30× 103

requests per 12 hours for shared, buy-in and public jobs

respectively. Consistent with interarrival time, these ob-
servations show that public jobs arrive more frequently
than shared jobs, which in turn arrive more frequently

than buy-in jobs.
We model the demand of the typical request with

a random variable Z defined in terms of the Weibull
distribution, i.e.

P (Z ≤ z) = 1− e(−z/λ)
k

, λ = 9.0× 103, k = 0.73.

(5)

While this demand model accounts for 79% of the
requests, it only accounts for 14% of the workload. It is
indeed difficult to capture a large portion of the work-

load with few request types, as detailed in Section 4.4.

4.3 Running Time

The running time is the time elapsing between the start
time and the end time of a job. The default run time
limit is 12 hours, and the maximum run time limit is 30

days. Table 3 shows that the average running times are
1.51, 1.13, and 0.40 hours for shared, buy-in and pub-
lic jobs, respectively. Therefore, while on average shared
jobs only run 22.8 minutes longer than buy-in jobs, pub-
lic jobs are on average 64.6% shorter than buy-in jobs

and 73.5% shorter than shared jobs. The running time
distribution of public jobs also has the lightest tail, with
a standard deviation of 1.23 hours. This special charac-
teristic is a result of the 12 hour run time limit policy
for all public queue jobs as explained in section 3.1. We
also note that 97.7% of shared jobs and 98.3% of buy-in
jobs run for under 12 hours, while only 72.8% of shared
jobs and 75.7% for buy-in jobs have a run time limit of
12 hours or under. This means that users tend to over-
estimate their resource needs by requesting a run time
limit longer than the actual running time of their jobs.

The running time R is best modeled by a log-normal

distribution , i.e.

P (R ≤ r) =
1

2
+

1

2
erf [

ln r − µ
√

2σ
], σ = 2.60, µ = 5.04.

(6)

4.4 Workload

We define the workload as the product of the number of
slots used by a job and the job running time (in hours).
The workload distribution has the heaviest tail of all
distributions examined in this paper, i.e. the standard

deviation is the largest when compared to the mean, as
seen in Table 3.

4.4.1 Slots

Table 4 shows that 87.0% of shared jobs, 76.9% of buy-

in jobs, and 85.7% of public jobs use a single slot. Table
3 shows that shared, buy-in and public jobs use aver-
ages of 2.20, 3.25, and 2.46 slots, respectively. It is clear
from these numbers that a greater percentage of buy-in
jobs are parallel jobs. There are two types of parallel
jobs in the SCC: Open Multi-Processing (OMP) run on
one node while Message Passing Interface (MPI) jobs
run on multiple nodes. Table 4 shows that 98.5% of
parallel jobs are OMP jobs.



A Case Study of a Shared/Buy-in Computing Ecosystem 7

Table 5 Utilization Analysis of SCC

Shared Buy-in Public
Actual Workload (slot-hr) 24,314,786 14,207,485 7,512,121
Workload Capacity (slot-hr) 34,509,888 43,184,064 43,184,064
Utilization (%) 70.46 32.90 17.40

4.4.2 Parallel Environment

Table 4 shows that OMP jobs account for 45% of the
workload of the SCC which is more than MPI or sin-
gle slot jobs. Although there is no explicit connection
between the number of slots and the parallel environ-
ment, 16 slots can be considered the boundary case be-
tween OMP and MPI jobs. i.e. 99.0% of MPI jobs use
16 slots or more and 99.97% of OMP jobs use 16 slots
or less. Table 4 shows that MPI jobs account for 0.48%
of shared jobs, 0.52% of buy-in jobs, and 0.01% of pub-
lic jobs. However, they account for 27.1% of the shared
workload, 31.4% of the buy-in workload, and 0.08% of

the public workload. These statistics show that while it
is tempting to ignore MPI jobs when creating a model
of the SCC, they still constitute 20% of the workload.

4.4.3 Shared/Buy-in Comparison

Table 3 shows that the difference between the workload
distributions of shared jobs and buy-in jobs is small,
with means of 3.75 and 4.24 hours for shared and buy-

in jobs, respectively and standard deviations of 54.67
and 85.93 for shared and buy-in, respectively. A more
dramatic difference in workload distribution is observed
in the distribution of public jobs. The standard devia-

tion of public workload is 6.72 slot-hours, only 13.3%
of the system workload deviation; the mean is 0.99
slots-hours, 37.5% of the system mean. According to
these statistics, the workload of public jobs, similar to
the running time has a much lighter tail than other
jobs. This observation in addition to the difference in
the other exogenous parameters, reveal that in general,

public jobs are submitted more frequently, but take up
less temporal and physical resources.

4.5 Utilization

In this section, we analyze the utilization of different

parts of the system and the distribution of workload
among parts of the system. The workload capacity is the
workload achieved if all nodes are completely utilized,

and the actual workload is the sum of the workload of
all jobs that actually ran. The utilization is the frac-
tion of the workload capacity taken up by the actual
workload over a period of time.

4.5.1 System View

Table 5 compares the workload capacity of different
types of resources with their actual workloads. This ta-
ble shows that the workload capacity of shared nodes
over the period is 79.9% of buy-in nodes, while their
actual workload is 111.9% of buy-in nodes. Thus, work-
load is distributed more heavily to shared nodes than

to buy-in nodes.

4.5.2 Public Queue

Fig. 2 shows the monthly mean utilization trend. It

clearly illustrates the benefits of implementing public
queues on buy-in nodes. According to Table 5, without
public queues, buy-in nodes would only have an average

utilization of 32.9%. Public queues reclaim 17.4% of the
workload capacity of buy-in nodes, resulting in an av-
erage utilization of 50.3% on buy-in nodes. By utilizing
buy-in nodes when they are idle, public queues pre-

vent demand for shared resources from exceeding their
capacity and balance out the workload more evenly be-
tween shared and buy-in nodes.

4.5.3 Pattern

Fig. 3 shows the weekly pattern of utilization. This
graph is obtained by splitting the 2015 - 2016 utiliza-
tion data into a recurring weekly pattern. The pattern
is achieved by using the Seasonal Decomposition algo-
rithm in R. This algorithm derives a weekly pattern

by removing high frequency and low frequency fluctua-
tions in the utilization time series (see stl function in
R [18]). It shows that the system’s utilization is lowest
over the weekend and that the daily utilization peaks
in the late afternoon. Shared and buy-in utilization ex-
hibit the same weekly pattern.



8 Christopher Liao and Yonatan Klausner, David Starobinski, Eran Simhon, and Azer Bestavros

Table 6 Factors Affecting Waiting time (hours)

Shared Buy-in Public
Mean Median SD Mean Median SD Mean Median SD

Overall 6.21 1.21 20.90 4.99 0.56 18.27 4.71 0.76 15.00
OMP 6.53 0.74 18.90 5.28 0.12 21.81 14.80 1.93 33.70
MPI 15.62 0.58 53.70 20.33 0.02 72.85 — — —
Single-slot 6.12 1.28 20.83 4.80 0.79 16.03 3.02 0.68 7.27
RTL >12 hrs 10.60 1.71 36.18 4.67 0.60 18.07 — — —
RTL ≤ 12 hrs 4.58 1.08 10.07 4.40 0.73 13.94 4.71 0.76 15.00

Table 7 Percent of Jobs in the Tail of Waiting Time Distribution

Shared Buy-in Public
>12 hr >1 week >12 hr >1 week >12 hr >1 week

Overall 12.0% 0.30% 8.8% 0.27% 8.1% 0.058%
OMP 12.2% 0.13% 8.2% 0.34% 23.5% 0.40%
MPI 22.4% 1.9% 18.1% 3.5% — —
Single-slot 11.9% 0.31% 8.9% 0.22% 5.6% 0%
RTL >12 hrs 16.6% 1.1% 10.8% 0.67% — —
RTL ≤ 12 hrs 10.3% 0.003% 8.2% 0.14% 8.1% 0.058%

Fig. 2 The average monthly utilization trend comparison be-
tween shared and buy-in resources.

Fig. 3 Weekly utilization pattern.

4.6 Waiting Time

The waiting time of a job is the time elapsing from

its submission till its start. Table 6 shows that shared
jobs tend to wait more than buy-in jobs, as the me-
dian waiting time for shared jobs is 73 minutes, while
the median waiting time for buy-in jobs is 34 minutes.

Additionally, Table 7 shows that for shared jobs, 12.0%
of jobs wait more than 12 hours and 3.0% of jobs wait
more than one week, while for buy-in jobs, 8.8% of jobs

wait more than 12 hours and 2.7% of jobs wait more
than one week. Thus, the waiting time distribution of
shared jobs has a heavier tail than that of buy-in jobs.

The mean waiting time for public jobs is close to

the mean waiting time for buy-in jobs, but its standard
deviation is shorter, at 15 hours, compared to 20.9 and
18.3 hours for shared and buy-in jobs, respectively. Ta-
ble 8 shows that 8.1% of public jobs wait more than 12
hours and 0.058% wait more than a week. The waiting
time is mainly affected by the run time limit and the

parallel environment as discussed below. The waiting
time W is best modeled with a Weibull distribution,
i.e.

P (W ≤ w) = 1− e(−w/λ)
k

, λ = 6.2× 103, k = 0.42.

(7)



A Case Study of a Shared/Buy-in Computing Ecosystem 9

Fig. 4 Comparison of interarrival time and running time averages among three sections of the SCC and 15 other grids from the PWA
[7] and GWA [20].

4.6.1 Run Time Limit (RTL)

As mentioned in Section 3.1, users set the RTL when
submitting a job. Table 6 shows that when the RTL of
a buy-in job exceeds 12 hours, this has negligible effect

on the median and mean waiting time but increases the
standard deviation from 13.9 to 18.1 hours. However,
if the RTL of a shared job exceeds 12 hours, then the

median waiting time increases from 1.1 to 1.7 hours,
the mean from 4.6 to 10.6 hours, and the standard de-
viation from 10.1 to 36.2 hours. Hence the difference in

performance between shared and buy-in jobs is more
significant once the RTL exceeds 12 hours.

Fig. 5 Comparison of waiting time distribution between jobs
that request a run time limit (RTL) of more than 12 hours and
jobs that request a run time limit (RTL) of less than 12 hours.

Fig. 6 Waiting time distribution for OMP, MPI, and single-slot
requests.

Table 7 shows that for shared jobs, requesting an

RTL greater than 12 hours gives a 16.6% chance of wait-
ing more than 12 hours and a 1.1% chance of waiting
more than one week, while jobs with RTL of 12 hours or
less have a 10.3% chance of waiting more than 12 hours

and a 0.003% chance of waiting more than one week.
Fig. 4 illustrates this large difference in the tails of the
waiting time distributions, which is most likely because
more resources are available to jobs with RTL less than
or equal to 12 hours via the public queues, resulting in
shorter waiting times (recall that jobs with less than
12 hours RTL can be scheduled to shared resources or
public resources).

4.6.2 Parallel Environment

Table 6 shows that the difference in the median waiting
time among single-slot, OMP, and MPI jobs is within
one hour for both shared and buy-in jobs. However, the
waiting time standard deviation of single-slot jobs is



10 Christopher Liao and Yonatan Klausner, David Starobinski, Eran Simhon, and Azer Bestavros

20.8 hours for shared jobs and 16.0 hours for buy-in
jobs, while the standard deviation of MPI jobs is 53.7
hours for shared jobs and 72.9 hours for buy-in jobs.
Hence, submitting an MPI job increases the probabil-
ity of waiting for a long time, especially for buy-in jobs.
This may cause some users to submit a longer single-
slot job, which should experience a shorter waiting time,
rather than a shorter MPI job, which is prone to longer
waiting times.

Table 6 and 7 also show a drastic difference in wait-
ing time performance between single-slot and OMP jobs
running on public queues. Public single-slot jobs have
an average wait time of 3.02 hours, half that of shared
single-slot jobs. On the contrary, public OMP jobs wait
an average of 14.8 hours with a standard deviation of
33.7 hours, 80% more than the waiting time standard
deviation of shared OMP jobs. Public OMP jobs also
have a 23.5% chance of waiting more than 12 hours, a
higher chance than other types of jobs listed in Table

7. The difference in the tail of the waiting time distri-
butions is illustrated in Fig. 5.

Fig. 7 The mean waiting time of a user’s job vs. his/her total
usage of the SCC.

4.6.3 User Usage

Fig. 6 shows a positive correlation between a user’s
mean waiting time and the user’s total usage of the
SCC. The correlation coefficient is 0.39. We hypothe-
size that this correlation is due to the priority assigned
by the scheduler. As alluded in Section 3.2, the pri-

ority of a job is lowered if the user’s recent usage is
high, resulting in a longer waiting time. Therefore, if a
user uses the SCC more frequently, his or her average
waiting time would increase, which would also be an
incentive to become a buy-in user.

4.6.4 Limitations

We conclude this section by noting the following ex-
perimental limitations that may skew the waiting time
data trace:

– If a user submits multiple jobs at once, the user may
wait for his/her own jobs due to the 512 slot limit
for users on shared resources.

– Users have the option of holding their own jobs af-
ter submitting them. There is no way to extract the
time that a user holds his/her own jobs from the
waiting time.

– Users are able to submit jobs which depend on the
output of other jobs. This dependency is not explic-
itly recorded in the data trace. Consequently, the
time a job spends waiting for other jobs to complete
is included in the waiting time.

Also note that the factors affecting waiting time pre-

sented in this section are not exhaustive. Requesting
resources such as additional memory or GPUs may in-
crease the waiting time. However, only 3.6% of jobs re-
quest more than the default 3 GB of memory and only

0.09% request GPUs.

4.7 Comparison with Other Clusters

From the comparison of the interarrival time, typical

demand and running time in this section, we can con-
clude that public jobs arrive more frequently and run
for a shorter time than other jobs. As a result, while
public jobs constitute 44% of the jobs, they make up

only 16% of the workload. This uniqueness in job char-
acteristic is highlighted in Fig. 7. Public jobs on the
SCC have the shortest interarrival time of all the clus-
ters displayed except for Intel NetBatch, a large pro-
duction grid, and one of the shortest average running
time. Fig. 7 shows that in relation to other grids, the
SCC as a whole tends to have a relatively short in-
terarrival time and relatively low running times. Note
a similar difference in workload characteristic between
LLNL-Atlas and LLNL-Thunder, mentioned in Section

2. Relative to each other, Thunder’s trace consists of
small frequent jobs while Atlas’s trace consists of long
infrequent jobs, similar to our observations about pub-
lic jobs in the SCC.

5 Conclusion

Many prior studies have focused on characterizing the
workload of computing clusters, (e.g., using real work-

load traces from the GWA and PWA). However, to



A Case Study of a Shared/Buy-in Computing Ecosystem 11

the best of our knowledge, no previous work focuses
on shared/buy-in systems such as the SCC. Our study
focuses on investigating differences in job characteris-
tics between shared and buy-in resources, identifying
requests with high waiting times, and quantifying the
advantages of public queues.

We show that public jobs arrive more frequently
than shared and buy-in jobs, but are smaller when mea-
sured by running time or workload. Particularly, when
considered independently, public jobs have the short-
est interarrival time of 14 clusters taken from the PWA
and GWA. Implementation of public queues increases
the performance of the SCC by increasing utilization
of buy-in nodes and preventing shared nodes from ex-
ceeding their capacity. Public queues also increase the
QoS for shared users by granting them access to por-
tions of buy-in resources that would otherwise be idle.
Additionally, we identify RTL and parallel environment
as the two main factors affecting waiting time. For re-
quests exceeding 12 hours, the mean waiting time of
shared jobs is more than twice that of buy-in jobs. Par-

allel jobs, especially MPI jobs, have longer mean wait-
ing times than one-slot jobs for all job types. These
results should provide useful guidelines to users as to

whether to purchase buy-in resources or not. Specifi-
cally, users should consider buying-in if they need to
submit many MPI jobs or jobs that run for over 12

hours.
Our analysis of utilization and waiting time can

help the SCC in implementing policies that maximize
the system’s utilization and minimize waiting time for

users. For example, our analysis of waiting time factors
shows that a large amount of resources needs to be ded-
icated to parallel jobs, which experience longer waiting

times. Furthermore, since waiting times are longer over
periods of high utilization, users could be encouraged
to run their jobs during periods of low utilization (late
night and weekends). Possible approaches include relax-
ing the limit on the number of slots used by a user over
low utilization periods or decreasing the charge when
using a slot over these periods. The evaluation and im-
plementation of such policies represent interesting areas
for future work.

Acknowledgment

This research was supported in part by the NSF un-
der grants 1717858, 1012798, 1117160, 1414119, and

1430145, and by the Hariri Institute for Computing at
BU. The authors would also like to acknowledge the
Research Computing Services group at Boston Univer-
sity, including Glenn Bresnahan, Mike Dugan, and Ka-
tia Oleinik, for their guidance and technical support.

References

1. Calzarossa, M., Massari, L., Tessera, D.: Workload charac-
terization issues and methodologies. In: Performance Evalu-
ation: Origins and Directions, pp. 459–482. Springer (2000)

2. Cao, J., Chan, A.T.S., Sun, Y., Das, S.K., Guo, M.: A
taxonomy of application scheduling tools for high per-
formance cluster computing. Cluster Computing 9(3),
355–371 (2006). DOI 10.1007/s10586-006-9747-2. URL
https://doi.org/10.1007/s10586-006-9747-2

3. Delamare, S., Fedak, G., Kondo, D., Lodygensky, O.:
Spequlos: a qos service for hybrid and elastic com-
puting infrastructures. Cluster Computing 17(1), 79–
100 (2014). DOI 10.1007/s10586-013-0283-6. URL
https://doi.org/10.1007/s10586-013-0283-6

4. Delignette-Muller, M.L., Dutang, C., Pouillot, R., Denis,
J.B., Delignette-Muller, M.M.L.: Package ‘fitdistrplus’ (2015)

5. Di, S., Kondo, D., Cirne, W.: Characterization and compar-
ison of cloud versus grid workloads. In: Cluster Computing
(CLUSTER), 2012 IEEE International Conference on, pp.
230–238. IEEE (2012)

6. Dümmler, J., Kunis, R., Rünger, G.: Separat: scheduling sup-
port environment for parallel application task graphs. Clus-
ter Computing 15(3), 223–238 (2012). DOI 10.1007/s10586-
012-0211-1. URL https://doi.org/10.1007/s10586-012-0211-1

7. Feitelson, D.: Parallel workloads archive (2005). URL
http://www.cs.huji.ac.il/labs/parallel/workload/

8. Feitelson, D.G., Tsafrir, D., Krakov, D.: Experience with us-
ing the parallel workloads archive. Journal of Parallel and
Distributed Computing 74(10), 2967–2982 (2014)

9. Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C.,
Wolters, L., Epema, D.H.: The grid workloads archive. Fu-
ture Generation Computer Systems 24(7), 672–686 (2008)

10. Klausner, Y., Liao, C., Starobinski, D., Simhon, E.,
Bestavros, A.: Workload characterization of the shared/buy-
in computing cluster at boston university. In: 2016 IEEE
MIT Undergraduate Research Technology Conference. IEEE
(2016)

11. Krakov, D., Feitelson, D.G.: Comparing performance
heatmaps. In: Workshop on Job Scheduling Strategies for
Parallel Processing, pp. 42–61. Springer (2013)

12. Kübert, R., Wesner, S.: High performance computing as a
service with service level agreements. In: Services Comput-
ing (SCC), 2012 IEEE Ninth International Conference on,
pp. 578–585. IEEE (2012)

13. Kumar, R., Vadhiyar, S.: Identifying quick starters: towards
an integrated framework for efficient predictions of queue
waiting times of batch parallel jobs. In: Workshop on Job
Scheduling Strategies for Parallel Processing, pp. 196–215.
Springer (2012)

14. Li, H., Groep, D., Wolters, L.: Workload characteristics of a
multi-cluster supercomputer. In: Workshop on Job Schedul-
ing Strategies for Parallel Processing, pp. 176–193. Springer
(2004)

15. Livny, M.: Hpc cluster buy in options - cen-
ter for high throughput computing (2016). URL
http://chtc.cs.wisc.edu/hpc-buy-in.shtml

16. Oracle-Corporation: Beginner’s guide to
oracle grid engine 6.2 (2010). URL
http://www.oracle.com/technetwork/oem/host-server-
mgmt/twp-gridengine-beginner-167116.pdf

17. Qureshi, K., Shah, S.M.H., Manuel, P.: Empiri-
cal performance evaluation of schedulers for cluster
of workstations. Cluster Computing 14(2), 101–
113 (2011). DOI 10.1007/s10586-010-0128-5. URL
https://doi.org/10.1007/s10586-010-0128-5

18. R Core Team: R: A Language and Environment for Statis-
tical Computing. R Foundation for Statistical Computing,
Vienna, Austria (2016). URL https://www.R-project.org/

19. Russell, J.: Buy-in — university of arizona research comput-
ing (2016). URL http://rc.arizona.edu/buy-in



12 Christopher Liao and Yonatan Klausner, David Starobinski, Eran Simhon, and Azer Bestavros

20. Shanny Anoep Catalin Dumitrescu, D.E.A.I.M.J.H.L.L.W.:
Grid workloads archive (2016). URL
http://gwa.ewi.tudelft.nl/datasets/

21. and Technology, B.U.I.S.: Research computing support. URL
http://www.bu.edu/tech/support/research/

22. Tran, N.M., Wolters, L.: Towards a profound analy-
sis of bags-of-tasks in parallel systems and their per-
formance impact. In: Proceedings of the 20th Inter-

national Symposium on High Performance Distributed
Computing, HPDC ’11, pp. 111–122. ACM, New York,
NY, USA (2011). DOI 10.1145/1996130.1996148. URL
http://doi.acm.org/10.1145/1996130.1996148

23. Zhang, H., Jiang, G., Yoshihira, K., Chen, H., Saxena, A.:
Intelligent workload factoring for a hybrid cloud computing
model. In: Services-I, 2009 World Conference on, pp. 701–
708. IEEE (2009)


