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install/remove BGP rules, allocate/revoke scrub resources) to re-

duce the operational cost (e.g., energy cost, BGP routing space cost,

network footprint [14, 30]), one must also consider the łswitch-

ingž cost for changing decisions. Speciically, installing new BGP

rules causes propagation traic and convergence delay before the

system enters a consistent state [18]; allocating additional scrub

resources incurs start-up time, system oscillation, reliability risk,

and/or hardware wear and tear [22]. Dynamically balancing the

operational cost and the switching cost is non-trivial, because the

decision made in any time slot afects the switching cost between

itself and the decision for the next time slot, while the latter has

not been made until the next time slot actually arrives.

One critical new challenge that makes existing online algorithms

that address switching costs [10, 20, 22, 26] not directly applicable

to our problem is as follows. In most existing online problems, al-

though future information is unavailable, the inputs to the current

time slot are at least known. In contrast, for our problem, when

making the decision for the current time slot, even the current

inputs are not completely known. In particular, when choosing an

SC for a minimal network footprint to scrub a suspicious traic

low, one does not know how much malicious traic is actually

carried in that suspicious low. Instead, this information is only

learnt after an SC is chosen and the traic is scrubbed. Further, one

may not even know the amount of the suspicious traic when allo-

cating scrubbing resources. This diference creates a fundamental

challenge as a suspicious low may turn out to contain all, some, or

no malicious traic, and thus a decision that has been made may

turn out inappropriate when the malicious traic is revealed. Simi-

larly, scrubbing resources allocated beforehand may turn out to be

insuicient when the amount of traic to be scrubbed is disclosed.

Intuitively, after the decision is made and executed online, one

can learn from the history of the past outcomes the best decision

that should have been made. This has some similarity to regret

minimization in the online learning settings [9, 11, 13]. However,

regret minimization problems often have no switching cost in the

objective. Further, they compare the online decisions to either the

static oline optimal decisions that stay unchanged over time [9],

or the best shifting/drifting oline optimums where the decision

changes are not free but constrained [11, 13]. Besides the switching

cost, our problem inherently has dynamic decisions, and it makes

more sense to compare to the dynamic oline optimal decisions, as

in competitive analysis. However, in most competitive analysis, all

inputs to each current time slot are known [10, 26], which is not

true in our case. Thus, we would refer to the problem that we study

as a competitive online learning problem, which can be regarded as

a combination of regret minimization and competitive analysis.

To the best of our knowledge, this paper is the irst formal study

of scheduling traic diversion and scrubbing resource management

to mitigate DDoS in a dynamic online setting. Existing eforts on

DDoS defense using clouds/SCs either do not consider redirection

costs, switching costs, and algorithms with performance guaran-

tees [14, 28, 30], or focus on empirical systems without theoreti-

cal/algorithmic insights [23, 27]. Meanwhile, existing research on

online cloud resource allocation with switching costs [15, 20, 22, 29]

often cannot capture all the factors in our scenario, such as discrete-

decision control and partially unknown inputs. From the algorith-

mic perspective, this is also the irst treatment using competitive

online algorithms for problems with unknown, nonlinear costs and

integer decision variables in each current time slot. See Section 7

for more discussions. We make three contributions:

First, we model and formulate this problem as a nonlinear inte-

ger program that minimizes the long-term total cost, consisting of

the operational cost of the diversion rules and the scrub resources,

the switching cost of changing diversion and resource allocation

decisions, and the network footprint of suspicious and legitimate

traic. Our models grasp the essential elements of the scenario

based on rather mild and general assumptions and can capture

arbitrary network topologies, low patterns, volume variations, at-

tack heterogeneities, malicious/legitimate traic combinations, and

resource price dynamics. To explore possible further cost reduction,

in this paper, we additionally allow dynamically switching on/of

entire SCs to save SC-level costs such as those of cooling, lighting,

and power provisioning, which is intriguing for small SCs that often

have inferior Power Usage Efectiveness (PUE) [16].

Second, we propose and design a key set of novel algorithms for

solving our problem online with provable competitive guarantees.

To overcome the diiculty that the current inputs of the amount

of the malicious traic are not known, we approximate the online

learning component in our problem, and transform the problem

into another diferent but related online fractional problem that

only involves the known inputs. Afterwards, we develop an online

algorithm to decouple this new problem into a series of one-shot

convex programs with carefully-designed logarithmic terms replac-

ing the nonlinear switching cost in the objective [10], which can

be solved in each individual time slot only by observing the inputs

that are available in each time slot and taking the solution obtained

from the previous time slot. Furthermore, we devise a progressive

rounding algorithm to convert the factional decisions into integers

in batches via invoking our third algorithm which iteratively se-

lects and rounds two fractions together, rather than separately, to

compensate each other without violating any constraints of the

problem [8]. Having all the three component algorithms, we prove

the overall competitive ratio of our online algorithm framework,

i.e., the maximum ratio of the total cost incurred by the online

approach with partially unknown current inputs over the total cost

incurred by the oline optimal approach that knows all the inputs

in advance.We also provide guidelines for extending our algorithms

and analysis to the situation where both the suspicious and the

malicious traic contained are unknown in each time slot.

Third, we conduct evaluations based on about 250-GB real-world

dynamic DDoS traces from Booter in 2013 [25]. We let the DDoS

traic from the 5822 US sources travel over real-world Autonomous

System (AS) topologies [5] to attack up to 48 US targets [1], with

diferent amounts of legitimate traic. Having 11 SCs to scrub all

such traic at real-world locations [3, 4] with real-world operational

costs [6, 7] and switching costs [22], we obtain several promising

results: (i) our approach saves up to 50%, 58%, and 25% total cost

compared to today’s industrial practice, a greedy algorithm, and a

state-of-the-art algorithm, respectively; (ii) it achieves even better

performance, i.e., 62% lower total cost, as the legitimate traic

volume grows; (iii) for small-scale SCs, switching on/of entire

SCs via our approach can reduce 20%∼26% total cost by reducing

non-IT energy consumption; (iv) our approach scales well and its

execution time grows only mildly as the problem size increases.
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2 MODELING AND FORMULATION

Networks and Scrubbing Centers. We use I to refer to the set

of all SCs, possibly connected to diferent ISP networks or ASes,

and the integer Ui , ∀i ∈ I to refer to the SC i’s capacity in terms

of the total amount of resources, such as the total number of Vir-

tual Machines (VMs). We consider a horizon of time slots T =

{1, 2, 3, ...,T }, corresponding to the frequency of making decisions.

Traic Flows and Routing. We consider łlowž as the basic

traic management unit. We denote the set of all lows in the sys-

tem by J , where each low corresponds to a pair of a source IP

address range and a destination IP address range. We deine a bi-

nary indicator λjt ∈ {0, 1}, ∀j ∈ J , ∀t ∈ T , and set it to 1 if the

low j appears and is suspicious in the time slot t and set it to 0 if it

does not appear or is not suspicious in the time slot t . We make no

assumption on how λjt varies with j and t , in order to capture the

arbitrary dynamics of all the lows and their routing over time. We

only consider łsingle-path routingž, i.e., a low always takes one

path and cannot travel through multiple paths simultaneously.

Cost of Traic Diversion.We install and remove BGP rules (or

routes) dynamically in the networks. We use ei jt , ∀i ∈ I, ∀j ∈ J ,

∀t ∈ T to denote the cost of hosting the BGP rule in the networks

to divert the low j to the SC i in the time slot t , and use fi j , ∀i ∈ I,

∀j ∈ J to denote the cost of installing this BGP rule in the networks.

ei jt can capture the expense, such as that incurred by the rule

occupying the router space; fi j can capture the performance impact,

such as BGP rules’ propagation traic and convergence delay.

Cost of Scrubbing. We allocate and revoke resources such as

VMs dynamically, with their installed automation software such

as intrusion detection systems, to inspect and scrub the traic. As

diferent suspicious lows may contain diferent types of malicious

traic, each suspicious low often requires a diferent type of VMs,

such as a VM with a speciied set of scrub software installed, which

cannot be shared across diferent lows. For simplicity, we further

assume every VM consumes the same amount of physical resources.

We use ci jt to denote the operational cost to run a VM for the low

j at the SC i in the time slot t , and use di j to denote the switching

cost of turning on one VM. ci jt can capture the electricity price, the

VMmonetary cost, the software maintenance expense, for example;

di j can capture the resource preparation delay, reliability risk, and

hardware wear and tear. We also use Vj to denote the amount of

suspicious traic that is inspected by a single VM for the low j.

Moreover, in this paper, we allow switching on/of the entire

SCs for further cost saving, due to the following reasons. First,

there may be no suspicious traic for an SC to scrub at certain

times. Second, shutting down SCs can save the non-IT (e.g., cooling,

lighting, power provisioning) energy cost, which is particularly

useful for small and micro data centers that consume considerable

non-IT energy compared to their IT energy. We use ait to represent

the unit operational cost to run the SC i in the time slot t , and use

bi to represent the switching cost to switch on the SC i . ait and bi
capture the SC-level cost. For example, ait can represent the non-IT

energy cost of an SC, or the SC facility management cost; bi can

represent the hardware wear and tear of all the shared, SC-level

non-IT resources and infrastructural facilities.

Network Footprint. łNetwork footprintž is important in traic

scrubbing [14, 30], and captures the network resource consumption

outside the SCs. The network footprint of a low can be deined as

the product of the volume of the low times the length of the path

the low travels through. The path length can be in terms of the

number of hops, the network latency, etc. We use дi j to denote the

length of the path via which the low j travels from its source to the

SC i , and use hi j to denote the length of the path via which the low

j travels from the SC i to its destination. We use σjt to denote the

volume of the suspicious low j before it reaches any SC, and use

δjt+1, where δjt+1 ≤ σjt , to denote the volume of the legitimate

low j after dropping the malicious traic at any SC. We highlight

that, when making the scheduling decisions at t , we know σjt , but

we only know δjt+1 after making the decisions. To capture this,

without loss of generality, we write the time subscript in δjt+1 as

t + 1 instead of t [11].

Scheduling Decisions. We have three categories of decision

variables. xit ∈ {0, 1} denotes whether we activate the SC i in the

time slot t . yi jt ∈ {0, 1, 2, 3, ...} denotes the number of VMs we

allocate for the low j at the SC i in the time slot t . zi jt ∈ {0, 1}

denotes whether we divert the low j to the SC i in the time slot t .

We assume all parameters and variables equal zero for all t < T .

Problem Formulation.We formulate the problem P:

min P =
∑
t
∑
i aitxit +

∑
t
∑
i bi (xit − xit−1)

+

+

∑
t
∑
i
∑
j ci jtyi jt +

∑
t
∑
i
∑
j di j

(
yi jt − yi jt−1

)
+

+

∑
t
∑
i
∑
j ei jtzi jt +

∑
t
∑
i
∑
j fi j

(
zi jt − zi jt−1

)
+

+

∑
t
∑
i
∑
j

(
σjtдi j + δjt+1hi j

)
zi jt

s. t. Uixit ≥
∑
j yi jt , ∀i,∀t , (1a)

Vjyi jt ≥ σjtzi jt , ∀i,∀j,∀t , (1b)∑
i zi jt ≥ λjt , ∀j,∀t , (1c)

xit ∈ {0, 1}, ∀i,∀t , (1d)

yi jt ∈ {0, 1, 2, 3, ...}, zi jt ∈ {0, 1},∀i,∀j,∀t . (1e)

The objective minimizes the total cost of operating and switch-

ing on/of SCs and the resources inside SCs, the total cost of hosting

and installing/removing BGP rules in the networks, plus the to-

tal network footprint over time. Diferent types of costs can have

weights associated to them; we omit all the weights for the ease

of presentation. Constraint (1a) ensures that the resources are allo-

cated within the capacities of the SCs. Constraint (1b) ensures that

suicient resources are allocated for scrubbing the suspicious traic.

Constraint (1c), with Constraint (1e), ensures that every suspicious

low is diverted to only one SC. Constraints (1d) and (1e) ensure

that all decisions are integers. In the objective, the special function

(·)+ ≜ max{·, 0} captures the switching cost. If turning on/of SCs

are out of the interest and all SCs are always on, one can remove the

terms involving xit from the objective, remove xit from (1a), and

remove the entire (1d). The problem will not become easier without

xit ; our algorithms and analysis can be adjusted accordingly.

Problem Challenges.We need to overcome two challenges to

design an online algorithm with any performance guarantee. The

irst challenge is online learning. We need to make decisions on

the ly in each time slot without knowing all the future inputs,

while expecting such decisions to have a guaranteed performance

gap towards the (even unknown) oline optimum. For most other

studies, when making decisions online in one time slot, the entire

inputs to that time slot are often known; in contrast, in our problem

we can only observe the partial inputs for a time slot, and learn the
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rest of the inputs for that time slot after making the decisions. The

second challenge is the intractability. We make discrete decisions.

Even in the oline setting and even without the switching cost, our

problem is amore complex version of the covering problems, known

to be NP-hard [10]. Although there are existing approximation

algorithms with performance guarantees for covering problems,

the online nature, plus the covering constraints that chain multiple

variables, makes existing algorithms hard to be applied here while

maintaining or adapting their performance guarantees.

3 ALGORITHM DESIGN

Our algorithm framework consists of the online fractional algo-

rithm, Algorithm 1, and the progressive rounding algorithm, Algo-

rithm 2 which iteratively invokes Algorithm 3. In every time slot in

an online manner, we relax the integral constraints and obtain the

fractional solutions, and then round such fractions into integers.

Algorithm 1: Online Fractional Algorithm, ∀t

Solve the problem P̃t below and get the solution {x̃t, ỹt, z̃t }:

min P̃t =
∑
i ait xit +

∑
i

∑
j ci jtyi jt

+

∑
i

∑
j (ei jt + σjtдi j + δjthi j )zi jt

+

∑
i
bi
η

(
(xit + ε ) ln

xit +ε
x̃it−1+ε

− xit

)

+

∑
i

∑
j
di j
ηi

( (
yi jt + ε

)
ln

yi jt +ε

ỹi jt−1+ε
− yi jt

)

+

∑
i

∑
j
fi j+2δjt maxi hi j

η

( (
zi jt + ε

)
ln

zi jt +ε

z̃i jt−1+ε
−zi jt

)

s. t. (1a), (1b), (1c), without ł∀t ž,

xit ≤ 1, zi jt ≥ 0, ∀i, ∀j,

where ε > 0, η = ln
(
1 + 1

ε

)
, ηi = ln

(
1 +

Ui
ε

)
, ∀i .

Algorithm 1, inspired by the regularization technique [10], in-

vokes a standard convex solver to solve the convex program P̃t in

each time slot t , and uses the solution solved from the problem P̃t
as the solution to our original problem P in t . We construct P̃t by (i)

extracting the one-shot slice of P, (ii) relaxing integral constraints

to continuous domains, (iii) replacing the switching cost terms

in the objective by our carefully-designed logarithmic terms, i.e.,

łregularizationž, and (iv) changing δjt+1 to δjt , ∀j and adding the

new terms 2δjt maxi hi j to fi j , ∀i , ∀j.

Our core ideas here lie in (iii) and (iv) mentioned as above.

The regularization process substitutes the function (∆t − ∆t−1)
+

by the regularizer (∆t + ε) ln
∆t+ε
∆t−1+ε

− ∆t , with ε > 0. This convex,

diferentiable, logarithmic-based term enables us to decouple the

problem and solve P̃t by taking the solution of the previous time

slot, i.e., the solution to P̃t−1, as input, while guaranteeing the gap

towards the oline optimal decisions, as shown in Section 4.1. To

overcome the diiculty of online learning, we additionally modify

δjt+1 and add 2δjt maxi hi j , which is a new step on top of regular-

ization and enables us to approximate the online learning term by

using the inputs at t without worrying about not seeing the inputs

that only come at t + 1, as shown in Section 4.3. Essentially, we

bound the unknown inputs at t + 1 by the known inputs at t , which

is our key to address online learning.

Algorithm 2 progressively and respectively rounds the solutions

x̃t, ỹ
∗
t , and z̃

∗∗
t into integers by invoking Algorithm 3 as a subroutine

Algorithm 2: Progressive Rounding Algorithm, ∀t

Take x̃t from Algorithm 1;

Invoke Algorithm 3 on x̃t to get the integral x̄t;

Fix x̄t in P̃t , solve P̃t to get its partial fractional solution ỹ∗t and z̃∗t ;

Invoke Algorithm 3 on ỹ∗t to get the integral ȳt;

Fix x̄t and ȳt in P̃t , solve P̃t to get its partial fractional solution z̃∗∗t ;

Invoke Algorithm 3 on z̃∗∗t to get the integral z̄t.

Algorithm 3: Weighted Pairwise Rounding Algorithm

1 For x̃t, set M = {∅}, N = I, Cn = Un
maxj Vj
minj σjt

, ∀n ∈ N;

2 For ỹ∗t, set M = I, N = J, Cn =
Vn
σnt

, ∀n ∈ N;

3 For z̃∗∗t , set M = J, N = I, Cn = 1, ∀n ∈ N;

4 Denote x̃t, or ỹ
∗
t , or z̃

∗∗
t , by Amn , ∀m ∈ M, ∀n ∈ N;

5 Denote x̄t, or ȳt, or z̄t, by Ā
m
n , ∀m ∈ M, ∀n ∈ N;

6 form ∈ M do

7 Bn
def
= Amn −

⌊
Amn

⌋
, ∀n ∈ N;

8 N′ def
= N \ {n | Bn ∈ {0, 1}};

9 while |N′ | > 1 do

10 Select n1, n2 ∈ N′, where n1 , n2;

11 Set D1 = min{Cn1 (1 − Bn1 ), Cn2Bn2 };

12 Set D2 = min{Cn1Bn1, Cn2 (1 − Bn2 )};

13 Set En1 = Bn1 +
D1
Cn1

, En2 = Bn2 −
D1
Cn2

,

14 F = P̃t(
⌊
Amn1

⌋
+ En1,

⌊
Amn2

⌋
+ En2 );

15 Set E′
n1
= Bn1 −

D2
Cn1

, E′
n2
= Bn2 +

D2
Cn2

,

16 F ′
= P̃t(

⌊
Amn1

⌋
+ E′

n1
,
⌊
Amn2

⌋
+ E′

n2
);

17 if F ≤ F ′ then Set B′
n1
= En1, B

′
n2
= En2 ;

18 else Set B′
n1
= E′

n1
, B′

n2
= E′

n2
;

19 if B′
n1

∈ {0, 1} then Set Āmn1 =
⌊
Amn1

⌋
+B′

n1
,N′
=N′\{n1 };

20 else Set Bn1 = B
′
n1
;

21 if B′
n2

∈ {0, 1} then Set Āmn2 =
⌊
Amn2

⌋
+B′

n2
,N′
=N′\{n2 };

22 else Set Bn2 = B
′
n2
;

23 end

24 if |N′ | = 1 then Set Āmn =
⌈
Amn

⌉
for the only n ∈ N′ ;

25 end

at every t . After rounding x̃t, it re-solves the problem to get ỹ∗t and

z̃∗t ; then, after rounding ỹ
∗
t , it re-solves the problem to get z̃∗∗t ; inally,

it rounds z̃∗∗t . Following Constraints (1a) and (1b), we round from

the łouterž variables to the łinnerž variables along the łcoveringž

chains, so that every time when ixing the rounded variables, P̃t is

still feasible and can be re-solved. More discussion is in Section 4.2.

Algorithm 3, inspired by the dependent rounding technique [8],

chooses a pair of fractions for rounding in each iteration until a

single fraction may be left. The algorithm has two properties: (i)

at least one of two fractions is rounded into an integer in each

iteration; (ii) the weighted sum of the two fractions remains un-

changed before and after rounding. To verify (i), for Line 13, we

have En1 = 1 and En2 ≥ 0, if D1 =Cn1 (1 − Bn1 ); we have En2 = 0

and En1 ≤ 1, if D1 =Cn2Bn2 . We also naturally have En2 ≤ 1 and

En1 ≥ 0. We have analogous observations for Line 15. If a single

fraction is left, as in Line 24, we round it up without violating the

constraints of our problem. To verify (ii), no matter we execute

Line 17 or 18, we always have Cn1B
′
n1
+Cn2B

′
n2
=Cn1Bn1+Cn2Bn2 .
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We choose between Lines 17 and 18 according to the objective

function value of the rounded variables (i.e., all other variables not

rounded yet stay unchanged) in Lines 14 and 16. The algorithm

lets two fractions compensate each other so that all constraints are

obeyed, while intuitively rounding each variable separately can

violate the constraints. We adopt some new notations, such as M

and N , to provide a uniform formal treatment for x̃t, ỹ
∗
t , and z̃∗∗t .

4 PERFORMANCE ANALYSIS

This section focuses on the łcompetitive analysisž for our algorithm

framework. That is, we prove that the total cost over time incurred

by the integer decisions produced by our online algorithms, i.e.,

P({x̄t, ȳt, z̄t,∀t}), is upper-bounded by a constant times the oline

optimum, i.e., rPopt :

P({x̄t, ȳt, z̄t,∀t}) (2a)

≤ P′({x̄t, ȳt, z̄t,∀t}) (2b)

≤ r2P
′({x̃t, ỹt, z̃t,∀t}) (2c)

≤ r1r2P
′
opt (2d)

≤ r1r2r3Popt , (2e)

where the constant r = r1r2r3 is the łcompetitive ratiož. To connect

(2a) to (2e), we construct an auxiliary problem P′ as the bridge, and

in P′ the online learning part is łhandledž, as described previously.

• Section 4.1: From (2c) to (2d), we connect P′ evaluated with

online fractional solutions to its oline optimum, and so we

show the performance of our online fractional solutions.

• Section 4.2: From (2b) to (2c), we connect P′ evaluated with

online integer solutions to P′ evaluatedwith online fractional

solutions, and so we show the performance of rounding.

• Section 4.3: From (2a) to (2b), we connect our original prob-

lem P to the problem P′, evaluated with the same online

integer solutions; from (2d) to (2e), we connect the oline op-

timum of P′ to that of P. They jointly show the performance

of our approximation of online learning.

4.1 Performance of Online Fractions

We prove P′({x̃t, ỹt, z̃t,∀t}) ≤ r1P
′
opt and show r1 in this section.

Step 1: Formulating Problem P′ . We construct and formulate

the problem P′ below, which is derived from our original problem

P. Note the diferences between the formulation of P and that of P′

in both the objective and the constraints:

min P′ =
∑
t
∑
i aitxit +

∑
t
∑
i biuit

+

∑
t
∑
i
∑
j ci jtyi jt +

∑
t
∑
i
∑
j di jvi jt

+

∑
t
∑
i
∑
j (ei jt + σjtдi j + δjthi j )zi jt

+

∑
t
∑
i
∑
j (fi j + 2δjt maxi hi j )wi jt

s. t. (1a), (1b), (1c),

uit ≥ xit − xit−1, ∀i,∀t , (3a)

vi jt ≥ yi jt − yi jt−1, ∀i,∀j,∀t , (3b)

wi jt ≥ zi jt − zi jt−1, ∀i,∀j,∀t , (3c)

xit ≤ 1, ∀i,∀t , (3d)

uit ≥ 0,vi jt ≥ 0,wi jt ≥ 0, zi jt ≥ 0,∀i,∀j,∀t . (3e)

Step 2: Formulating Problem D .We derive the Lagrange dual

problem, i.e., D, of P′, where we use αit , βi jt , γjt , µit , ρi jt , ϕi jt ,

and τit to denote the dual variables for (1a) through (1c), and (3a)

through (3d), respectively.

max D =
∑
t
∑
j λjtγjt +

∑
t
∑
i

(∑
j λjt − σ ′

it

)
τit

s. t. ait −Uiαit + µit − µit+1 + σ
′
itτit − σ ′

it

∑
i τit = 0,

∀i,∀t ,

ci jt + αit −Vjβi jt + ρi jt − ρi jt+1 = 0, ∀i,∀j,∀t ,

e ′i jt + σjt βi jt − γjt + ϕi jt − ϕi jt+1 ≥ 0,∀i,∀j,∀t ,

bi − µit ≥ 0, ∀i,∀t ,

di j − ρi jt ≥ 0, ∀i,∀j,∀t ,

f ′i jt − ϕi jt ≥ 0, ∀i,∀j,∀t ,

all dual variables ≥ 0,

where σ ′
it =Uimaxj Vj/minj σjt , e

′
i jt =ei jt + σjtдi j + δjthi j , f

′
i jt =

fi j + 2δjt maxi hi j .
1

Step 3: Composing Solution of D .We construct the function

M which converts {x̃t, ỹt, z̃t,∀t}, with P̃t ’s dual variables α̃it , β̃i jt ,

γ̃jt , τ̃it and ω̃i jt , into the solution of D. In the rest of this paper, we

write łDž to refer to the speciic value of the function D evaluated

with the speciically constructed solution as in Lemma 1.

Lemma 1. The following constructed solution is feasible for D:

αit = α̃it , βi jt = β̃i jt ,γjt = γ̃jt ,τit = τ̃it , µit =
bi
η ln 1+ε

x̃it−1+ε
,

ρi jt =
di j
ηi

ln Ui+ε
ỹi jt−1+ε

,ϕi jt =
f ′i jt
η ln 1+ε

z̃i jt−1+ε
,∀i,∀j,∀t .

Proof. See Appendix A.1. The proof is by exhibiting that the

constructed solution satisies D’s constraints, via the Karush-Kuhn-

Tucker (KKT) conditions of P̃t which is deined in Algorithm 1. □

Step 4: Bounding.Having the above, now we are ready to prove

P′({x̃t, ỹt, z̃t,∀t}) ≤ r1D({M(̃xt, ỹt, z̃t),∀t}). Note that, due to weak

duality, D({M(̃xt, ỹt, z̃t),∀t}) ≤ P′opt holds automatically. Thus,

showing the following theorem is suicient for deriving r1.

Theorem 1. The non-switching cost in P′({x̃t, ỹt, z̃t,∀t}) can be

upper-bounded as follows:
∑
t
∑
i ait x̃it +

∑
t
∑
i
∑
j ci jt ỹi jt +

∑
t
∑
i
∑
j e

′
i jt z̃i jt ≤ D.

The switching cost in P′({x̃t, ỹt, z̃t,∀t}) can be upper-bounded as

follows, respectively:

∑
t
∑
i bi (x̃it − x̃it−1)

+ ≤
(
(1 + ε) ln

(
1 + 1

ε

)
maxj Vj

∑
i Ui

)
D,

∑
t
∑
i
∑
j di j (ỹi jt − ỹi jt−1)

+ ≤(
maxi

{
(Ui + ε) ln

(
1 + Ui

ε

)}
maxj Vj |I |

)
D,

∑
t
∑
i
∑
j f

′
i jt (̃zi jt − z̃i jt−1)

+ ≤
(
(1 + ε) ln

(
1 + 1

ε

)
|I |

)
D.

Joining all the above, we have r1 = 1+(1+ε) ln
(
1 + 1

ε

)
maxj Vj

∑
i Ui+

maxi
{
(Ui + ε) ln

(
1 + Ui

ε

) }
maxj Vj |I | + (1 + ε) ln

(
1 + 1

ε

)
|I |.

Proof. See Appendix A.2. The proof is by using the KKT condi-

tions of P̃t which is deined in Algorithm 1. □

1When deriving the dual problem, we make equivalent transformations for (3d) to
facilitate our analysis. First, we change it to σ ′

it xit ≤ σ ′
it , ∀i , ∀t . Afterwards, we

replace it by a number of constraints [12], such as
∑
i σ

′
it xit −σ

′
it xit ≥

∑
j λjt −σ

′
it ,

∀i , ∀t , derived by (1a), (1b), and (1c). We do not write all such constraints; writing all
of them is rather a mechanical process and we omit those details to save space.
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4.2 Performance of Online Rounding

We prove P′({x̄t, ȳt, z̄t,∀t}) ≤ r2P
′({x̃t, ỹt, z̃t,∀t}) and show r2 in

this section. We consider each term in P′({x̄t, ȳt, z̄t,∀t}) individu-

ally, and bound it by a corresponding constant times
∑
t
∑
i ait x̃it

which is part of P′({x̃t, ỹt, z̃t,∀t}). We have the following theorem.

Theorem 2. The non-switching cost in P′({x̄t, ȳt, z̄t,∀t}) can be

upper-bounded as follows, respectively:
∑
t
∑
i ait x̄it ≤ maxi,t

ait
σ ′
it
r ′2

∑
t
∑
i ait x̃it ,∑

t
∑
i
∑
j ci jt ȳi jt ≤ maxi, j,t

ci jtσjt
Vj

r ′2
∑
t
∑
i ait x̃it ,∑

t
∑
i
∑
j e

′
i jt z̄i jt ≤ maxi, j,t e

′
i jt r

′
2

∑
t
∑
i ait x̃it .

The switching cost in P′({x̄t, ȳt, z̄t,∀t}) can be upper-bounded as

follows, respectively:
∑
t
∑
i bi (x̄it − x̄it−1)

+ ≤ maxi,t
bi
σ ′
it
r ′2

∑
t
∑
i ait x̃it ,

∑
t
∑
i
∑
j di j (ȳi jt − ȳi jt−1)

+ ≤ maxi, j,t
di jσjt
Vj

r ′2
∑
t
∑
i ait x̃it ,∑

t
∑
i
∑
j f

′
i jt (z̄i jt − z̄i jt−1)

+ ≤ maxi, j,t f
′
i jt r

′
2

∑
t
∑
i ait x̃it .

Joining all the above, we have r2 = r
′
2

(
maxi,t ait +maxi, j,t ci jtUi +

maxi, j,t e
′
i jt + maxi bi + maxi, j di jUi + maxi, j,t f

′
i jt

)
, where r ′2 =(

1 +maxi,t
σ ′
it∑
j λjt

)
maxi,t

σ ′
it

ait
, and σ ′

it = Ui
maxj Vj
minj σjt

.

Proof. See Appendix A.3. The proof is by following the design

of Algorithm 3 and the deinition of P. □

4.3 Performance of Learning Approximation

We prove P({x̄t, ȳt, z̄t,∀t})≤P′({x̄t, ȳt, z̄t,∀t}) and P′opt ≤ r3Popt ,

and show r3 in this section. We have the following two theorems.

Theorem 3. P is upper-bounded by P′, due to the following fact:
∑
t
∑
i
∑
j δjt+1hi j z̄i jt ≤

∑
t
∑
i
∑
j δjthi j z̄i jt

+

∑
t
∑
j

(
2
(
δjt maxi hi j

) ∑
i

(
z̄i jt − z̄i jt−1

)
+

)
.

Proof. See Appendix A.4. The proof is by following the design

of Algorithm 3, and the deinitions of P and P′. □

Theorem 4. Wehave r3 =
(
1 + 3

(
mini, j VjUi

) (
maxi, j

maxi hi j
fi j

))
.

Proof. See Appendix A.5. The proof is by following the deini-

tions of P and P′. □

5 EXTENSION

We can extend our algorithms and analysis to address the situation

where, besides the clean traic, the suspicious traic for each time

slot is also unknown before making the decision in each time slot.

To capture such uncertainty, we formulate a new problem P#:

min P# = P +
∑
t
∑
i
∑
j hi j

(
σjt+1zi jt −Vjyi jt

)
+

+

∑
t
∑
j pj

(
λjt+1 −

∑
i zi jt

)
+

s. t. (1a), (1d), (1e),

where in Pwe redeine σ ′
i jt+1 = σjt+1дi j +δjt+1hi j , ∀i,∀j,∀t , with-

out changing everything else; we also have the new input pj , ∀j

denote the penalty of not diverting the low j. Here, note that both

σjt+1 and δjt+1 are with the time subscript t + 1, rather than t ,

to relect the fact of irstly making the decision and afterwards

seeing the traic to be iltered. Making decisions beforehand may

miss some lows and/or provide insuicient resources for scrubbing,

and therefore we introduce
∑
t
∑
i
∑
j hi j

(
σjt+1zi jt −Vjyi jt

)
+
and∑

t
∑
j pj

(
λjt+1 −

∑
i zi jt

)
+
into the objective while removing the

corresponding constraints. The latter means that the missed lows,

if any, incur penalty, such as the SC provider’s revenue loss. The

former means that the uniltered traic, if any, travels to the desti-

nations as well and incurs network footprint (note that, for each

suspicious low j , δjt+1 only refers to the clean traic identiied and

produced by the SC; it does not necessarily refer to all the actual

clean traic contained in σjt+1, because the SC may not be able to

identify all the clean traic in σjt+1).

To make our online algorithms and analysis applicable to P#, we

make a few key reformulations as follows. Having

(
σjt+1zi jt −Vjyi jt

)
+
≤ σjt+1zi jt ,(

λjt+1 −
∑
i zi jt

)
+
≤

(
λjt+1 −

∑
i zi jt+1

)
+
+

(∑
i zi jt+1 −

∑
i zi jt

)
+
,

we deine the problem P⋄, where P# ≤ P⋄:

min P⋄ = P +
∑
t
∑
i
∑
j hi jσjt+1zi jt +

∑
t
∑
j pjw jt

+

∑
t
∑
j pj

(∑
i zi jt −

∑
i zi jt−1

)
+

s. t. (1a), (1d), (1e),

w jt +
∑
i zi jt ≥ λjt ,∀j ,∀t , (4a)

w jt ≥ 0, ∀j ,∀t . (4b)

In P⋄, we introduce the auxiliary variablew jt and the auxiliary con-

straints (4a) and (4b) so that, except P and
∑
t
∑
i
∑
j hi jσjt+1zi jt ,

the decisions are in the same time slot as the corresponding inputs.

We observe that if we treat P⋄ as P, then all our proposed algorithms

and analysis apply, with straightforward adaptions. Just note that,

in the analysis now, we also need to connect P⋄opt and P#opt . In

fact, analogous to the proof of Theorem 4, we can achieve it using(
λjt+1 −

∑
i zi jt+1

)
+
≤

(
λjt+1 −

∑
i zi jt

)
+
+

(∑
i zi jt −

∑
i zi jt+1

)
+
.

6 EXPERIMENTAL STUDY

6.1 Data and Settings

DDoS Traic. We use the Booter traces that record more than 250

GB of real-world, UDP-based DDoS packets during 2 consecutive

days in August 2013 [25]. The traic rate varies dynamically, up to

5.48 Gbps.We consider 5minutes as a single time slot, and aggregate

the traic rates accordingly. While in this dataset the attack sources

from all over the world attack one target in the Netherlands, to limit

our scope, we only consider the 5822 US attack sources (around

33% of all attack sources), and envisage 48 targets in the capital

cites of the lower 48 states in the continental US, respectively.

Legitimate Traic. For each DDoS low in each time slot, we

synthesize a legitimate low so that they together constitute a sus-

picious low. The legitimate low originates from an IP address with

the same preix and thus from the same AS as the attack source. We

control and vary a percentage, and set the volume of the legitimate

low as this percentage times the volume of the DDoS low.

Traic Paths.We map the IP addresses of the attack/legitimate

sources and the targets to ASes [1]. Afterwards, leveraging the 2016

CAIDA dataset of the AS relationships with geographic annota-

tions [5], we ind the shortest AS path between each attack/legitimate
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tion time

source and each target, which we assume is the path of the traf-

ic, and get the geo-locations of the involved AS links between

the directly-connected ASes (as the dataset does not contain the

geo-locations of the ASes themselves).

Scrubbing Centers.We use Level 3 [4] and Incapsula [3] which

have 5 and 9 scrubbing centers, respectively, in the US at 11 unique

locations all covered by the AS links [5]. For simplicity and without

loss of generality, we assume 11 SCs with equal capacities at such

locations; we assume one VM is suicient to scrub one low, and

the total capacity of all SCs equals 1.2 times the number of lows.

Scrub Resource Price and Diversion Rule Price. Regarding

the scrub resource price, we adopt the dynamic, hourly wholesale

electricity prices from diferent Regional Transmission Organiza-

tions (RTOs) in the US [6]. We know the geo-coordinates of each

SC via its co-located AS link [5], and thus we can map each SC to

its geographically closest RTO and use the corresponding prices.

Regarding the diversion rule price, we ind that it is comparable to

the wholesale electricity price per time slot [7].

Unit Switching Costs. Regarding the unit switching costs of the

scrub resources and the diversion rules, we consider the VM start-

up time and the BGP convergence time, respectively, both of which

can range from seconds to minutes today [18, 22]. This captures the

SCs’ performance degradation or even service unavailability. Rather

than using diferent metrics, in addition to the start-up/convergence

time, as the switching costs, we vary the weights associated to the

switching costs to mimic a variety of metrics.

Algorithms. We compare 5 algorithms: łclosestž refers to to-

day’s industrial practice [4] that diverts suspicious traic to the SC

that is the closest along the AS path to each customer; łcheapestž

refers to the method that diverts suspicious traic to the SC that has

the cheapest resources; łgreedyž refers to the method that solves

the one-shot slice of our original problem at every time slot while

ignoring the switching cost; łlcpž refers to the state-of-the-art łlazy

capacity provisioningž algorithm for solving online convex opti-

mization problems with the switching cost [22]; łoursž refers to

our own approach. All algorithms are online; we have no oline op-

timum to show, as it takes an unacceptably long time to solve even

a relatively small-scale instance of our original integer program by

today’s most advanced solvers (e.g.,gurobi [2]).

6.2 Evaluation Results

Fig. 2 compares the long-term total cost of the algorithms when

the weight associated to the switching cost varies. As the weight

grows, the total (weighted) cost increases. ours achieves the best

result, up to 50%, 58%, 53%, and 26% less total cost than closest,

cheapest, greedy, and lcp, respectively. Except ours and lcp, the

other algorithms neglect the switching cost and thus behave worse.

greedy takes care of all types of operational costs while closest and

cheapest only consider part of them. Thus, greedy is often better.

Note that closest gradually becomes the best of the three, as the

weight goes greater; this is because closest does not change SCs for

the lows and incurs no switching cost of diversion rules.

Fig. 3 demonstrates the total cost over time as the amount of

the legitimate traic increases, until it equals the volume of the

malicious traic. ours remains the best, up to 62% better than all the

rest, since it is the only one that considers the network footprint of

the legitimate traic when making online decisions. greedy is better

than closest and cheapest, as explained above; closest is always the

worst, because as the legitimate traic grows, the total suspicious

traic also increases, and always using the SC closest to customers

can incur large network footprint before the traic is scrubbed.

Fig. 4 visualizes the beneit of allowing switching of entire SCs

to save the non-IT energy. The total cost in this igure also includes

the operational cost and the switching cost of SCs, besides the cost

of the scrub resources inside SCs. We choose PUEs in the range of

1.1∼1.5 to capture the worse power eiciency of small data centers;

the larger the PUE is, the more non-IT energy it can save if we shut

the SC down. Compared to always having entire SCs on, ours saves

20% ∼ 26% total cost due to the non-IT energy reduction.

Fig. 5 illustrates the execution time of the algorithms in a single

time slot, as we increase the number of attack targets. We exclude

closest and cheapest as their execution time is trivial. greedy in-

vokes the gurobi solver to solve our integer program at each time

slot, and the execution time grows very fast as the problem be-

comes larger. Solving the fractional problem and then rounding the

solutions, like lcp and ours, is more scalable, which takes up to 5

seconds. The execution time of rounding grows mildly itself.

7 RELATED WORK

We summarize existing research in three categories, and highlight

their insuiciency compared to our work in this paper.

Clouds and Data Centers for DDoS Mitigation. Yu et al. [28]

dynamically allocated resources in a single cloud to ilter DDoS

traic. Fayaz et al. [14] used network functions to scrub DDoS traic

by solving the data center, server, and VM allocation problems.

Zilberman et al. [30] compared diferent strategies for placing SCs

across the Internet in terms of network footprint, link load, and

network latency. Liu et al. [23] enabled victims to redirect the DDoS

traic to clouds with victim-chosen bandwidth allocation policies.

Somani et al. [27] found cloud’s ability of absorbing DDoS could be
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compromised by the heavy resource usage of clients under attack,

and recruited clients’ resources during attack for attack mitigation.

Online Cloud Resource Allocation with Switching Cost. Lin

et al. [22] designed the łlazy capacity provisioningž online algo-

rithm for allocating servers with switching costs in data centers.

Jiao et al. [19, 20] developed regularization-based online algorithms

for the joint control of edge clouds and internal servers, and for

the en route resource allocation in hierarchical clouds, respectively,

both with switching costs. Pu et al. [24] used regularization as part

of the study of resource allocation, content caching, and request

distribution in an online manner in cloud radio access networks.

Zhang et al. [29] and Fei et al. [15] predicted the demand via online

gradient decent and łfollowing the regularized leaderž, respectively,

and with such predictions, used łski rentalž based algorithms, bin

packing, and primal-dual algorithms for VM/traic management.

CompetitiveAnalysis andOnlineConvexOptimization.The

theory/algorithm community has studied the online optimization

problemwith switching costs as well. Buchbinder et al. were the irst

to embed regularization into competitive analysis for the covering

problem [10], and designed a primal-dual-based online algorithm

against the drifting oline optimum (i.e., decision changes were

constrained) for online learning [11]. Andrew et al. [9] identiied

the incompatibility between the sublinear regret in online learning

and the constant competitive ratio in competitive analysis. Shi et

al. [26] proposed algorithms to achieve the optimal competitive

ratios for problems with aine policies. Chen et al. [13] focused on

the high-dimension decision space and proposed online balanced

decent to improve both the competitive ratio and the regret.

Previous research has never investigated the problem studied

in this paper, and previous solution techniques are insuicient for

addressing our problem. [28], [14], and [30] seem the closest to our

work in terms of the problem space; however, they either consider a

single cloud only, or neglect the redirection rules and the switching

costs, with no performance guarantees for their algorithms. [23]

and [27] focus on the system aspects of a similar scenario, and lack

theoretical/algorithmic insights. [22] and [20] consider problems

simpler than ours, because they (i) only allocate resources without

making decisions for workload or low distribution, (ii) only con-

sider fractional decisions, and (iii) assume all inputs in each time

slot are observable, without learning. [19] and [24] rely on random-

ized rounding algorithms, and do not address online learning. [29]

and [15] adopt online learning to predict their inputs, and solve

the online problem based on the predictions. Our approach follows

a diferent philosophy compared to theirs: (i) we do not rely on

predictions, but directly approximate the learning component in

our problem; (ii) we do not use łregretž and compare to the oline

optimum under the best static predictions of inputs, but instead

we compare to the oline optimum under the actual, real inputs.

Regarding the algorithmic literatures, all of them mentioned above

do not accommodate integer variables. Beisdes, [10] and [26] do not

consider learning; [11] can handle the dynamic resource price in the

objective, but not the luctuating demand in the constraints; [11]

and [13] are against drifting oline optimums, and [9] is against

the static regret, which makes less sense in our case. In contrast,

we propose the combination of an online algorithm and two deter-

ministic rounding algorithms to solve an integer program, against

the oline optimum in terms of the competitive ratio.

8 CONCLUSION

In this paper, we investigate the online optimization of the joint

scheduling of the traic diversion rules in the networks and the

scrubbing resources in the clouds to inspect unpredictable time-

varying traicwhich are only partially observable whenmaking the

scheduling decisions in each time slot. We design an online algorith-

mic framework inspired by the fusion of three techniques: online

learning approximation, regularization, and dependent rounding.

We formally prove the competitive ratio of our approach, and also

conduct extensive evaluations to exhibit its practical advantages.
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A PROOFS

A.1 Proof of Lemma 1

Wewrite the Karush-Kuhn-Tucker (KKT) conditions of P̃t , ∀t below,

which are suicient and necessary to characterize {x̃t, ỹt, z̃t,∀t}

and the dual variables of P̃t . Note that these KKT conditions are

for P̃t (which is deined in Algorithm 1), not for P or P′.

ait −Ui α̃it +
bi
η ln x̃it+ε

x̃it−1+ε
+σ ′

it τ̃it −σ
′
it

∑
i τ̃it =0,∀i, (5a)

ci jt + α̃it −Vj β̃i jt +
di j
ηi

ln
ỹi jt+ε

ỹi jt−1+ε
= 0,∀i,∀j, (5b)

e ′i jt +σjt β̃i jt −γ̃jt +
f ′i jt
η ln

z̃i jt+ε

z̃i jt−1+ε
−ω̃i jt = 0,∀i,∀j, (5c)

α̃it (Ui x̃it −
∑
j ỹi jt ) = 0,∀i, (5d)

β̃i jt (Vjỹi jt − σjt z̃i jt ) = 0,∀i,∀j, (5e)

γ̃jt (
∑
i z̃i jt − λjt ) = 0,∀j, (5f)

τ̃it

(∑
i σ

′
itxit − σ ′

itxit −
(∑

j λjt − σ ′
it

))
= 0,∀i, (5g)

ω̃i jt z̃i jt = 0,∀i,∀j, (5h)

all primal and dual variables ≥ 0. (5i)

By (5a), (5b), (5c), and (5i), it can be veriied that the solution

constructed in Lemma 1 satisies all the constraints of the problem

D. These KKT conditions are used in other proofs as well.

A.2 Proof of Theorem 1

First, we bound the non-switching cost.
∑
t
∑
i ait x̃it +

∑
t
∑
i
∑
j ci jt ỹi jt +

∑
t
∑
i
∑
j e

′
i jt z̃i jt

=

∑
t
∑
i

(
Ui α̃it + σ

′
it

∑
i τ̃it − σ ′

it τ̃it −
bi
η ln x̃it+ε

x̃it−1+ε

)
x̃it

+

∑
t
∑
i
∑
j (Vj β̃i jt − α̃it −

di j
ηi

ln
ỹi jt+ε

ỹi jt−1+ε
)ỹi jt

+

∑
t
∑
i
∑
j (̃γjt + ω̃i jt − σjt β̃i jt −

f ′i jt
η ln

z̃i jt+ε

z̃i jt−1+ε
)̃zi jt (6a)

=

∑
t
∑
j λjt γ̃jt +

∑
t
∑
i

(∑
j λjt − σ ′

it

)
τ̃it

−
∑
t
∑
i x̃it

bi
η ln x̃it+ε

x̃it−1+ε
−
∑
t
∑
i
∑
j ỹi jt

di j
ηi

ln
ỹi jt+ε

ỹi jt−1+ε

−
∑
t
∑
i
∑
j z̃i jt

f ′i jt
η ln

z̃i jt+ε

z̃i jt−1+ε
(6b)

≤ D. (6c)

We reach (6a) by following (5a)∼(5c). Then, we reach (6b) by fol-

lowing (5d)∼(5h). Finally, we have (6c) due to
∑
t x̃it

bi
η ln x̃it+ε

x̃it−1+ε
≥

0, ∀i; and
∑
t ỹi jt

di j
ηi

ln
ỹi jt+ε

ỹi jt−1+ε
≥ 0,

∑
t z̃i jt

f ′i jt
η ln

z̃i jt+ε

z̃i jt−1+ε
≥ 0, ∀i ,

∀j. As an example, we show the following, and the others can be

shown analogously:

∑
t x̃it

bi
η ln x̃it+ε

x̃it−1+ε

=

∑
t (x̃it + ε)

bi
η ln x̃it+ε

x̃it−1+ε
−

∑
t ε

bi
η ln x̃it+ε

x̃it−1+ε

≥ (
∑
t (x̃it + ε)) ln

∑
t (x̃it+ε )∑
t (x̃it−1+ε )

+ (x̃i0 + ε) ln
x̃i0+ε
x̃iT +ε

(7a)

≥
∑
t (x̃it + ε) −

∑
t (x̃it−1 + ε) + x̃i0 − x̃iT (7b)

= 0,

where (7a) follows from (8a), and (7b) follows from (8b). We also

use x̃it = 0, ∀i , ∀t ≤ 0 by deinition. (8a) and (8b) are two facts:

(
∑
n pn ) ln

∑
n pn∑
n qn

≤
∑
n pn ln

pn
qn
,∀p,q > 0 , (8a)

p − q ≤ p ln
p
q ,∀p,q > 0 . (8b)

Second, we bound the switching cost. Particularly, we bound∑
t
∑
i bi (x̃it−x̃it−1)

+ as an example, and omit the details for bound-

ing
∑
t
∑
i
∑
j di j (ỹi jt − ỹi jt−1)

+ and
∑
t
∑
i
∑
j f

′
i jt (̃zi jt − z̃i jt−1)

+.

In P′ we have the term
∑
t
∑
i biuit ; with (3a) and (3e), we know

the optimal value of uit is ũit = (x̃it − x̃it−1)
+,∀i ,∀t .

∑
t
∑
i bi (x̃it − x̃it−1)

+

=

∑
t
∑
i ∈It bi (x̃it − x̃it−1) (9a)

=

∑
t
∑
i ∈It bi ((x̃it + ε) − (x̃it−1 + ε)) (9b)

≤
∑
t
∑
i ∈It bi (x̃it + ε) ln

x̃it+ε
x̃it−1+ε

(9c)

≤ η(1 + ε)
∑
t
∑
i ∈It

bi
η ln x̃it+ε

x̃it−1+ε
(9d)

≤ η(1 + ε)
∑
t
∑
i ∈It

(
Ui α̃it + σ

′
it

∑
i τ̃it

)
(9e)

≤ η(1 + ε)
∑
t
∑
i ∈I′

t

(
UiVj β̃i jt −Ui

di j
ηi

ln
ỹi jt+ε

ỹi jt−1+ε

+σ ′
it

∑
i τ̃it

)
(9f)

≤ η(1 + ε)
∑
t
∑
i ∈I′

t

(
UiVj β̃i jt + σ

′
it

∑
i τ̃it

)
(9g)

≤ η(1 + ε)
∑
t
∑
i ∈I′′

t

(
UiVj
σjt

(
γ̃jt −

f ′i jt
η ln

z̃i jt+ε

z̃i jt−1+ε
+ ω̃i jt

)

+σ ′
it

∑
i τ̃it

)
(9h)

≤ η(1 + ε)
∑
t
∑
i ∈I′′

t

(
σ ′
it γ̃jt + σ

′
it

∑
i τ̃it

)
(9i)

≤ η(1 + ε)
∑
t
∑
i ∈I′′

t

(
σ ′
itλjt γ̃jt +σ

′
it

∑
i

(∑
j λjt −σ

′
it

)
τ̃it

)
(9j)

≤
(
(1 + ε) ln

(
1 + 1

ε

)
maxj Vj

∑
i Ui

)
D. (9k)

We get (9a) as we change the index set to It = {i |x̃it > x̃it−1}.

We have (9b) and (9c) by following (8b). We reach (9d) as x̃it ≤ 1,

∀i , ∀t . (9e) follows from (5a). Considering the index set I ′
t =

It ∩ {i |α̃it > α̃it−1}, we follow (5b) to get (9f). We next reach
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(9g) because
∑
t Ui

di j
ηi

ln
ỹi jt+ε

ỹi jt−1+ε
= Ui

di j
ηi

ln
(
1 +

ỹi jT
ε

)
≥ 0. Con-

sidering the index set I ′′
t = I ′

t ∩ {i |β̃i jt > β̃i jt−1}, we follow

(5c) to get (9h). Then, note that we have
∑
t
f ′i jt
η ln

z̃i jt+ε

z̃i jt−1+ε
≥

mint f
′
i jt

η ln
(
1 +

z̃i jT
ε

)
≥ 0, and w̃i jt = 0. The latter is further due

to the following. With (5d), α̃it > α̃it−1 ≥ 0, and x̃it > x̃it−1 ≥ 0,

we have at least one j such that ỹi jt > 0, because otherwise we

would have
∑
j ỹi jt = 0, contradicting

∑
j ỹi jt = Ui x̃it > 0; with

(5e) and β̃i jt > β̃i jt−1 ≥ 0, we have z̃i jt =
Vj
σjt

ỹi jt > 0; with

(5h), we inally have ω̃i jt = 0. Based on this, we reach (9i). Fi-

nally, we reach (9j) because λjt and
∑
j λjt − σ ′

it are integers (note

σ ′
it = Ui

maxj Vj
minj σjt

= Ui maxj Vj , whereUi , Vj , and σjt are integers).

If both of them are no less than 1, then (9j) naturally holds; if either

of them is no greater than 0, then note that D will also change

accordingly and as a result, (9j) still holds.

A.3 Proof of Theorem 2

First, we bound the non-switching cost. We have the following:
∑
t
∑
i ait x̄it

≤ maxi,t
ait
σ ′
it

∑
t
∑
i σ

′
it x̄it

≤ max
i,t

ait
σ ′
it

(∑
t
∑
i ∈I\{i′ } σ

′
it x̃it +

∑
t σ

′
i′t ⌈x̃i′t ⌉

)
(10a)

≤ max
i,t

ait
σ ′
it

(∑
t
∑
i σ

′
it x̃it +max

i,t

σ ′
it∑
j λjt

∑
t
∑
j λjt

)
(10b)

≤ max
i,t

ait
σ ′
it

(∑
t
∑
i σ

′
it x̃it +max

i,t

σ ′
it∑
j λjt

∑
t
∑
i σ

′
it x̃it

)
(10c)

≤ maxi,t
ait
σ ′
it
r ′2

∑
t
∑
i ait x̃it . (10d)

∑
t
∑
i
∑
j ci jt ȳi jt

≤ maxi, j,t
ci jtσjt
Vj

∑
t
∑
i
∑
j
Vj
σjt

ȳi jt

≤ max
i, j,t

ci jtσjt
Vj

∑
t
∑
i

(
maxj Vj
minj σjt

(
∑

j ∈J\{j′ }
ỹ∗i jt +

⌈
ỹ∗i j′t

⌉))
(11a)

≤ maxi, j,t
ci jtσjt
Vj

∑
t
∑
i σ

′
it x̄it (11b)

≤ maxi, j,t
ci jtσjt
Vj

r ′2
∑
t
∑
i ait x̃it . (11c)

∑
t
∑
i
∑
j e

′
i jt z̄i jt

≤ maxi, j,t e
′
i jt

∑
t
∑
i
∑
j z̄i jt

≤ maxi, j,t e
′
i jt

∑
t
∑
j

(∑
i ∈I\{i′ } z̃

∗∗
i jt +

⌈
z̃∗∗i′jt

⌉)
(12a)

≤ maxi, j,t e
′
i jt

∑
t
∑
i
∑
j
Vj
σjt

ȳi jt (12b)

≤ maxi, j,t e
′
i jt

∑
t
∑
i σ

′
it x̄i jt (12c)

≤ maxi, j,t e
′
i jt r

′
2

∑
t
∑
i ait x̃it . (12d)

(10a), (11a), and (12a) follow from Lines 13, 15, and 24 of Algo-

rithm 3. All values are rounded into integers using either Line 13

or 15, except i ′ or j ′ that indexes the last single value rounded up in

Line 24. Note if no single value is left, then (10d), (11c), and (12d) still

hold. (10b) introduces λjt , so that (10c) follows from Constraints

(1a), (1b), and (1c). (11b) follows from Constraint (1a), given Ui and

x̄it are integers. (12b) follows from Constraint (1b), given σjt ≤ Vj ,

z̃∗∗i jt ≤ 1, and the integral ȳi jt ; (12c) follows from Constraint (1a).

Finally, (10d) constructs our target term
∑
t
∑
i ait x̃it ; (11c) and

(12d) follow from the entire (10a) through (10d).

Second, we bound the switching cost. Particularly, we bound∑
t
∑
i bi (x̄it − x̄it−1)

+ in (13a), using (10a) ∼ (10d):
∑
t
∑
i bi (x̄it − x̄it−1)

+

≤
∑
t
∑
i bi x̄it

≤ maxi,t
bi
σ ′
it

∑
t
∑
i σ

′
it x̄it

≤ maxi,t
bi
σ ′
it
r ′2

∑
t
∑
i ait x̃it . (13a)

We can bound
∑
t
∑
i
∑
j di j (ȳi jt−ȳi jt−1)

+ and
∑
t
∑
i
∑
j f

′
i jt (z̄i jt−

z̄i jt−1)
+ analogously, and we omit the details.

A.4 Proof of Theorem 3
∑
t
∑
i
∑
j δjt+1hi j z̄i jt

=

∑
t
∑
i
∑
j δjthi j z̄i jt−1 (14a)

≤
∑
t
∑
i
∑
j δjthi j z̄i jt

+

∑
t
∑
i
∑
j δjthi j

��z̄i jt − z̄i jt−1
�� (14b)

≤
∑
t
∑
i
∑
j δjthi j z̄i jt

+

∑
t
∑
j

( (
δjt maxi hi j

) ∑
i

��z̄i jt − z̄i jt−1
��) (14c)

≤
∑
t
∑
i
∑
j δjthi j z̄i jt

+

∑
t
∑
j

(
2
(
δjt maxi hi j

) ∑
i

(
z̄i jt − z̄i jt−1

)
+

)
. (14d)

We have (14a) because by deinition we have δjT+1 = 0 and

z̄i j0 = 0. We introduce the absolute value in (14b), and change it to

(14c). We reach (14d) because for every j , there is one and only one

i where z̄i jt = 1 at every t , according to Line 24 of Algorithm 3 (if

no variable is left, one can choose an arbitrary variable to set to 1);

as such i may be diferent for t − 1 and t , the coeicient becomes 2.

A.5 Proof of Theorem 4

We simplify the notations a bit. Let us rewrite P and P′:

P = Q+
∑
t
∑
i
∑
jδjt+1hi jzi jt +

∑
t
∑
i
∑
j fi j (zi jt − zi jt )

+
,

P′=Q+
∑
t
∑
i
∑
jδjthi jzi jt +

∑
t
∑
i
∑
j f

′
i jt (zi jt − zi jt )

+
,

where f ′i jt = fi j + 2δjt maxi hi j , and Q is the rest term which

involves the variables {xt, yt, zt,∀t} and appears in both P and P′.

Assuming {x̄∗t , ȳ
∗
t , z̄

∗
t ,∀t} are oline optimal solutions to P, we get

P′opt ≤ Q({x̄∗t , ȳ
∗
t , z̄

∗
t ,∀t}) +

∑
t
∑
i
∑
j δjthi j z̄

∗
i jt

+

∑
t
∑
i
∑
j f

′
i jt (z̄

∗
i jt − z̄∗i jt−1)

+ (15a)

≤ Q({x̄∗t , ȳ
∗
t , z̄

∗
t ,∀t}) +

∑
t
∑
i
∑
j δjthi j z̄

∗
i jt−1

+

∑
t
∑
i
∑
j (f

′
i jt + δjthi j )(z̄

∗
i jt − z̄∗i jt−1)

+ (15b)

= Q({x̄∗t , ȳ
∗
t , z̄

∗
t ,∀t}) +

∑
t
∑
i
∑
j δjt+1hi j z̄

∗
i jt

+

∑
t
∑
i
∑
j (f

′
i jt + δjthi j )(z̄

∗
i jt − z̄∗i jt−1)

+ (15c)

≤
(
1 + 3maxi, j,t

δjt maxi hi j
fi j

)
Popt . (15d)

≤
(
1 + 3

(
mini, j VjUi

) (
maxi, j

maxi hi j
fi j

))
Popt . (15e)

We reach (15a), because {x̄∗t , ȳ
∗
t , z̄

∗
t ,∀t} are not necessarily the

optimal solution for P′. We further have (15b) as we introduce∑
t
∑
i
∑
j δjthi j z̄

∗
i jt−1. We reach (15c) because by deinition we

have δjT+1 = 0 and z̄∗i j0 = 0. We reach (15d) when we replace

f ′i jt + δjthi j by fi j so that we can construct Popt . We eventually

reach (15e) by the deinition of P.
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