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ABSTRACT

Operating distributed Scrubbing Centers (SCs) to mitigate massive
Distributed Denial of Service (DDoS) traffic in large-scale networks
faces critical challenges. The operator needs to determine the diver-
sion rule installation and elimination in the networks, as well as the
scrubbing resource activation and revocation in the SCs, while min-
imizing the long-term cost and the cumulative decision-switching
penalty without knowing the exact amount of the malicious traf-
fic. We model and formulate this problem as an online nonlinear
integer program. In contrast to many other online problems where
future inputs are unknown but at least current inputs are known, a
key new challenge here is that even part of the current inputs are
unknown when decisions are made. To “learn” the best decisions on-
line, we transform our problem via a gap-preserving approximation
into an online optimization problem with only the known inputs,
which is further relaxed and decoupled into a series of one-shot
convex programs solvable in individual time slots. To overcome
the intractability, we design a progressive rounding algorithm to
convert fractional decisions into integral ones without violating the
constraints. We characterize the competitive ratio of our approach
as a function of the key parameters of our problem. We conduct
evaluations using real-world data and confirm our algorithms’ su-
periority over de facto practices and state-of-the-art methods.
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1 INTRODUCTION

Recently, there has been increasing interest in moving the defense
of Distributed Denial of Service (DDoS) attacks to the cloud. In-
ternet Service Providers (ISPs) (e.g., AT&T) and DDoS protection
service providers (e.g., Cloudflare) can set up the so-called Scrub-
bing Centers (SCs) to “scrub” the suspicious traffic and route only
the legitimate traffic to their customers [21]. This service architec-
ture can be visualized in Fig. 1, where the blue and the green solid
lines represent the suspicious traffic (i.e., the traffic that potentially
contains both the malicious traffic and the legitimate traffic), and
the dashed lines represent the corresponding legitimate traffic. In
the SCs, the suspicious traffic is inspected so that the malicious traf-
fic, if any, is filtered out, and only the legitimate traffic is re-injected
into the network and travels to the destinations.

cgitimate User

Scrubbing Center

Figure 1: Filtering malicious traffic via scrubbing centers

In this paper, we consider the operation of a large-scale system
of geographically distributed SCs that scrub a massive amount of
traffic for many customers simultaneously. To divert suspicious traf-
fic to appropriate SCs, the provider usually installs Border Gateway
Protocol (BGP) rules in the routers [17]. Although one may also
use Domain Name Systems [23] for traffic diversion, this approach
can only be applied to application-level DDoS. Hence, we focus on
using BGP rules in order to target a wider range of DDoS traffic.

Unfortunately, optimally operating such a distributed system is a
highly challenging problem. There exists significant uncertainty in
the inputs, as suspicious traffic often appears and disappears in the
system unpredictably with time-varying volumes. As a result, this
problem is intrinsically an “online” problem, where multiple inter-
twined decisions (e.g., routing, resource allocation) need to be made
jointly, dynamically, and irrevocably on the fly, without knowing
future inputs. While it is desirable to adapt decisions over time (e.g.,
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install/remove BGP rules, allocate/revoke scrub resources) to re-
duce the operational cost (e.g., energy cost, BGP routing space cost,
network footprint [14, 30]), one must also consider the “switch-
ing” cost for changing decisions. Specifically, installing new BGP
rules causes propagation traffic and convergence delay before the
system enters a consistent state [18]; allocating additional scrub
resources incurs start-up time, system oscillation, reliability risk,
and/or hardware wear and tear [22]. Dynamically balancing the
operational cost and the switching cost is non-trivial, because the
decision made in any time slot affects the switching cost between
itself and the decision for the next time slot, while the latter has
not been made until the next time slot actually arrives.

One critical new challenge that makes existing online algorithms
that address switching costs [10, 20, 22, 26] not directly applicable
to our problem is as follows. In most existing online problems, al-
though future information is unavailable, the inputs to the current
time slot are at least known. In contrast, for our problem, when
making the decision for the current time slot, even the current
inputs are not completely known. In particular, when choosing an
SC for a minimal network footprint to scrub a suspicious traffic
flow, one does not know how much malicious traffic is actually
carried in that suspicious flow. Instead, this information is only
learnt after an SC is chosen and the traffic is scrubbed. Further, one
may not even know the amount of the suspicious traffic when allo-
cating scrubbing resources. This difference creates a fundamental
challenge as a suspicious flow may turn out to contain all, some, or
no malicious traffic, and thus a decision that has been made may
turn out inappropriate when the malicious traffic is revealed. Simi-
larly, scrubbing resources allocated beforehand may turn out to be
insufficient when the amount of traffic to be scrubbed is disclosed.

Intuitively, after the decision is made and executed online, one
can learn from the history of the past outcomes the best decision
that should have been made. This has some similarity to regret
minimization in the online learning settings [9, 11, 13]. However,
regret minimization problems often have no switching cost in the
objective. Further, they compare the online decisions to either the
static offline optimal decisions that stay unchanged over time [9],
or the best shifting/drifting offline optimums where the decision
changes are not free but constrained [11, 13]. Besides the switching
cost, our problem inherently has dynamic decisions, and it makes
more sense to compare to the dynamic offline optimal decisions, as
in competitive analysis. However, in most competitive analysis, all
inputs to each current time slot are known [10, 26], which is not
true in our case. Thus, we would refer to the problem that we study
as a competitive online learning problem, which can be regarded as
a combination of regret minimization and competitive analysis.

To the best of our knowledge, this paper is the first formal study
of scheduling traffic diversion and scrubbing resource management
to mitigate DDoS in a dynamic online setting. Existing efforts on
DDoS defense using clouds/SCs either do not consider redirection
costs, switching costs, and algorithms with performance guaran-
tees [14, 28, 30], or focus on empirical systems without theoreti-
cal/algorithmic insights [23, 27]. Meanwhile, existing research on
online cloud resource allocation with switching costs [15, 20, 22, 29]
often cannot capture all the factors in our scenario, such as discrete-
decision control and partially unknown inputs. From the algorith-
mic perspective, this is also the first treatment using competitive
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online algorithms for problems with unknown, nonlinear costs and
integer decision variables in each current time slot. See Section 7
for more discussions. We make three contributions:

First, we model and formulate this problem as a nonlinear inte-
ger program that minimizes the long-term total cost, consisting of
the operational cost of the diversion rules and the scrub resources,
the switching cost of changing diversion and resource allocation
decisions, and the network footprint of suspicious and legitimate
traffic. Our models grasp the essential elements of the scenario
based on rather mild and general assumptions and can capture
arbitrary network topologies, flow patterns, volume variations, at-
tack heterogeneities, malicious/legitimate traffic combinations, and
resource price dynamics. To explore possible further cost reduction,
in this paper, we additionally allow dynamically switching on/off
entire SCs to save SC-level costs such as those of cooling, lighting,
and power provisioning, which is intriguing for small SCs that often
have inferior Power Usage Effectiveness (PUE) [16].

Second, we propose and design a key set of novel algorithms for
solving our problem online with provable competitive guarantees.
To overcome the difficulty that the current inputs of the amount
of the malicious traffic are not known, we approximate the online
learning component in our problem, and transform the problem
into another different but related online fractional problem that
only involves the known inputs. Afterwards, we develop an online
algorithm to decouple this new problem into a series of one-shot
convex programs with carefully-designed logarithmic terms replac-
ing the nonlinear switching cost in the objective [10], which can
be solved in each individual time slot only by observing the inputs
that are available in each time slot and taking the solution obtained
from the previous time slot. Furthermore, we devise a progressive
rounding algorithm to convert the factional decisions into integers
in batches via invoking our third algorithm which iteratively se-
lects and rounds two fractions together, rather than separately, to
compensate each other without violating any constraints of the
problem [8]. Having all the three component algorithms, we prove
the overall competitive ratio of our online algorithm framework,
i.e., the maximum ratio of the total cost incurred by the online
approach with partially unknown current inputs over the total cost
incurred by the offline optimal approach that knows all the inputs
in advance. We also provide guidelines for extending our algorithms
and analysis to the situation where both the suspicious and the
malicious traffic contained are unknown in each time slot.

Third, we conduct evaluations based on about 250-GB real-world
dynamic DDoS traces from Booter in 2013 [25]. We let the DDoS
traffic from the 5822 US sources travel over real-world Autonomous
System (AS) topologies [5] to attack up to 48 US targets [1], with
different amounts of legitimate traffic. Having 11 SCs to scrub all
such traffic at real-world locations [3, 4] with real-world operational
costs [6, 7] and switching costs [22], we obtain several promising
results: (1) our approach saves up to 50%, 58%, and 25% total cost
compared to today’s industrial practice, a greedy algorithm, and a
state-of-the-art algorithm, respectively; (ii) it achieves even better
performance, i.e., 62% lower total cost, as the legitimate traffic
volume grows; (iii) for small-scale SCs, switching on/off entire
SCs via our approach can reduce 20% ~ 26% total cost by reducing
non-IT energy consumption; (iv) our approach scales well and its
execution time grows only mildly as the problem size increases.



2 MODELING AND FORMULATION

Networks and Scrubbing Centers. We use I to refer to the set
of all SCs, possibly connected to different ISP networks or ASes,
and the integer U, Vi € I to refer to the SC i’s capacity in terms
of the total amount of resources, such as the total number of Vir-
tual Machines (VMs). We consider a horizon of time slots 7~ =
{1,2,3,..., T}, corresponding to the frequency of making decisions.
Traffic Flows and Routing. We consider “flow” as the basic
traffic management unit. We denote the set of all flows in the sys-
tem by 7, where each flow corresponds to a pair of a source IP
address range and a destination IP address range. We define a bi-
nary indicator Aj; € {0,1},Vj € J,Vt € 7, and set it to 1 if the
flow j appears and is suspicious in the time slot ¢ and set it to 0 if it
does not appear or is not suspicious in the time slot t. We make no
assumption on how A;; varies with j and ¢, in order to capture the
arbitrary dynamics of all the flows and their routing over time. We
only consider “single-path routing”, i.e., a flow always takes one
path and cannot travel through multiple paths simultaneously.
Cost of Traffic Diversion. We install and remove BGP rules (or
routes) dynamically in the networks. We use e;j;, Vi € I, Vj € 7,
Vt € 7 to denote the cost of hosting the BGP rule in the networks
to divert the flow j to the SC i in the time slot ¢, and use fi;, Vi € I,
Vj € J to denote the cost of installing this BGP rule in the networks.
ejj¢ can capture the expense, such as that incurred by the rule
occupying the router space; fi; can capture the performance impact,
such as BGP rules’ propagation traffic and convergence delay.
Cost of Scrubbing. We allocate and revoke resources such as
VMs dynamically, with their installed automation software such
as intrusion detection systems, to inspect and scrub the traffic. As
different suspicious flows may contain different types of malicious
traffic, each suspicious flow often requires a different type of VMs,
such as a VM with a specified set of scrub software installed, which
cannot be shared across different flows. For simplicity, we further
assume every VM consumes the same amount of physical resources.
We use c;j; to denote the operational cost to run a VM for the flow
j at the SC i in the time slot ¢, and use d;; to denote the switching
cost of turning on one VM. ¢;; can capture the electricity price, the
VM monetary cost, the software maintenance expense, for example;
d;j can capture the resource preparation delay, reliability risk, and
hardware wear and tear. We also use V; to denote the amount of
suspicious traffic that is inspected by a single VM for the flow j.
Moreover, in this paper, we allow switching on/off the entire
SCs for further cost saving, due to the following reasons. First,
there may be no suspicious traffic for an SC to scrub at certain
times. Second, shutting down SCs can save the non-IT (e.g., cooling,
lighting, power provisioning) energy cost, which is particularly
useful for small and micro data centers that consume considerable
non-IT energy compared to their IT energy. We use a;; to represent
the unit operational cost to run the SC i in the time slot ¢, and use
b; to represent the switching cost to switch on the SC i. a;; and b;
capture the SC-level cost. For example, a;; can represent the non-IT
energy cost of an SC, or the SC facility management cost; b; can
represent the hardware wear and tear of all the shared, SC-level
non-IT resources and infrastructural facilities.
Network Footprint. “Network footprint” is important in traffic
scrubbing [14, 30], and captures the network resource consumption
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outside the SCs. The network footprint of a flow can be defined as
the product of the volume of the flow times the length of the path
the flow travels through. The path length can be in terms of the
number of hops, the network latency, etc. We use g;; to denote the
length of the path via which the flow j travels from its source to the
SC i, and use h;; to denote the length of the path via which the flow
J travels from the SC i to its destination. We use oj; to denote the
volume of the suspicious flow j before it reaches any SC, and use
djt+1, where dj:+1 < gy, to denote the volume of the legitimate
flow j after dropping the malicious traffic at any SC. We highlight
that, when making the scheduling decisions at ¢, we know oj;, but
we only know Jj;+1 after making the decisions. To capture this,
without loss of generality, we write the time subscript in §j;+1 as
t + 1 instead of ¢ [11].

Scheduling Decisions. We have three categories of decision
variables. x;j; € {0, 1} denotes whether we activate the SC i in the
time slot ¢. y;jr € {0,1,2,3,...} denotes the number of VMs we
allocate for the flow j at the SC i in the time slot . z;j; € {0,1}
denotes whether we divert the flow j to the SC i in the time slot ¢.
We assume all parameters and variables equal zero for all t ¢ 7.

Problem Formulation. We formulate the problem P:

min P =3, Y;airxir + X 2 bi (cir — xie—1)"
+ 3¢ X1 Xy cijeyije + 2o L 2y dij (Yije — yije1)”
+ 2 X N eijezije + X0 L0 X fij (2ijt — zije-1)”
+ 24 25 2 (9jegij + Sjre1hij) zije

s.t. Uixit > Zj Yijts Vi, Vt, (1a)
Vivijt = ojizij, Vi, Vj, Vt, (1b)
i Zijr = Ajt, Vj, Vt, (1¢)
xir € {0,1}, Vi, Vt, (1d)
Yijt € {0,1,2,3, ---}yzijt € {0,1},Vi,Vj, Vt. (1e)

The objective minimizes the total cost of operating and switch-
ing on/off SCs and the resources inside SCs, the total cost of hosting
and installing/removing BGP rules in the networks, plus the to-
tal network footprint over time. Different types of costs can have
weights associated to them; we omit all the weights for the ease
of presentation. Constraint (1a) ensures that the resources are allo-
cated within the capacities of the SCs. Constraint (1b) ensures that
sufficient resources are allocated for scrubbing the suspicious traffic.
Constraint (1c), with Constraint (1e), ensures that every suspicious
flow is diverted to only one SC. Constraints (1d) and (1e) ensure
that all decisions are integers. In the objective, the special function
()" £ max{-, 0} captures the switching cost. If turning on/off SCs
are out of the interest and all SCs are always on, one can remove the
terms involving x;; from the objective, remove x;; from (1a), and
remove the entire (1d). The problem will not become easier without
Xir; our algorithms and analysis can be adjusted accordingly.

Problem Challenges. We need to overcome two challenges to
design an online algorithm with any performance guarantee. The
first challenge is online learning. We need to make decisions on
the fly in each time slot without knowing all the future inputs,
while expecting such decisions to have a guaranteed performance
gap towards the (even unknown) offline optimum. For most other
studies, when making decisions online in one time slot, the entire
inputs to that time slot are often known; in contrast, in our problem
we can only observe the partial inputs for a time slot, and learn the



Mobihoc ’19, July 2-5, 2019, Catania, Italy

rest of the inputs for that time slot after making the decisions. The
second challenge is the intractability. We make discrete decisions.
Even in the offline setting and even without the switching cost, our
problem is a more complex version of the covering problems, known
to be NP-hard [10]. Although there are existing approximation
algorithms with performance guarantees for covering problems,
the online nature, plus the covering constraints that chain multiple
variables, makes existing algorithms hard to be applied here while
maintaining or adapting their performance guarantees.

3 ALGORITHM DESIGN

Our algorithm framework consists of the online fractional algo-
rithm, Algorithm 1, and the progressive rounding algorithm, Algo-
rithm 2 which iteratively invokes Algorithm 3. In every time slot in
an online manner, we relax the integral constraints and obtain the
fractional solutions, and then round such fractions into integers.

Algorithm 1: Online Fractional Algorithm, V¢

Solve the problem P; below and get the solution {Xt, ¥, z¢ }:
min P =20 QitXir + X 2j CijeYijie
+2; 2j(eijr + 0jegij + 8jrhij)zije

+2i % ((xit +e)ln S - xit)

Xir-1+€
dij Yijete
+ 2 25 5 ((ytjt +e)n g - yijt)
fij+28j; max; h;; Zjjr+e
+2i 2 % ((Zijt +¢)ln ?i;ji1+£ —zijt)
s. t. (1a), (1b), (1c), without “V¢”,

xit <1, zij¢ 20, Vi, V),

where £ > 0, 57 :ln(1+ é), ni =1In (1+ %),Vi,

Algorithm 1, inspired by the regularization technique [10], in-
vokes a standard convex solver to solve the convex program P; in
each time slot ¢, and uses the solution solved from the problem ﬁt
as the solution to our original problem P in t. We construct P; by (i)
extracting the one-shot slice of P, (ii) relaxing integral constraints
to continuous domains, (iii) replacing the switching cost terms
in the objective by our carefully-designed logarithmic terms, i.e.,
“regularization”, and (iv) changing &j;+1 to §j;, Vj and adding the
new terms 28;; max; h;j to fi;, Vi, Vj.

Our core ideas here lie in (1ii) and (iv) mentioned as above.
The regularization process substitutes the function (A; — A;—1)*
by the regularizer (A; + ¢) In AA,i :f -
differentiable, logarithmic-based term enables us to decouple the
problem and solve P; by taking the solution of the previous time
slot, i.e., the solution to P;_, as input, while guaranteeing the gap
towards the offline optimal decisions, as shown in Section 4.1. To
overcome the difficulty of online learning, we additionally modify
djt+1 and add 26;; max; h;j, which is a new step on top of regular-
ization and enables us to approximate the online learning term by
using the inputs at t without worrying about not seeing the inputs
that only come at t + 1, as shown in Section 4.3. Essentially, we
bound the unknown inputs at ¢ + 1 by the known inputs at ¢, which
is our key to address online learning.

Algorithm 2 progressively and respectively rounds the solutions
Xt, ¥y, and z; " into integers by invoking Algorithm 3 as a subroutine

— A4, with € > 0. This convex,
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Algorithm 2: Progressive Rounding Algorithm, V¢

Take Xt from Algorithm 1;

Invoke Algorithm 3 on X; to get the integral %y;

Fix %; in Py, solve P; to get its partial fractional solution y; and z;;
Invoke Algorithm 3 on yy to get the integral ¥i;

Fix ¢ and ¥ in P, solve P, to get its partial fractional solution z;™;
Invoke Algorithm 3 onZ™ to get the integral Z.

Algorithm 3: Weighted Pairwise Rounding Algorithm

max; V,

1 Forxy,set M={0}, N=1,C, = Unmij_Ji,Vn eN,;

2 Foryyset M=T,N=,Cn = g%, Vn e N;

3 Forzset M= J,N=1,C,=1,YneN;

4 Denote X, or yy, or ", by A7}, Vm € M,Vn € N;
5 Denote %, or ¥, or Z, by A, Vm € M,Vn € N;

¢ form € M do
def

7 B, = A'-|AT'|,Vn e N;
s N YN\ {n|Bne{0,1});
9 while |[N'| > 1do

10 Select ny, ny € N’, where ny # ny;
1 Set D; = min{Cp, (1 = Bp,), Cn,Bn, };
12 Set Dy = min{Cp, Bn,;, Cny(1 — Bny)};
D D
13 Set E~,11 =Bp, + C—nll, Ep, = Bp, — C—nlz,
14 F=Pu|AT | + Epn,, |A72 | + Eny )
15 Set Ej,, = Buy — o Epy = By +
16 F =P(|AR |+ E),, |ARL | + Ep, )
17 if F < F’ then Set B;ll =En,, B;lz = En,;
18 else Set B, =E}, , By, = E},,;
19 if B}, €{0, 1} then Set Anml = LA%J +B, JN'=N"\{n1};
20 else Set B, = B;llg
21 if B}, €{0, 1} then Set AZ; = LA%J + B, N'=N"\{n2};
22 else Set B, = B;12;
23 end

24 if [N’| = 1 then Set A7 = [A™] for the only n € N”;
25 end

at every t. After rounding X, it re-solves the problem to get y; and
Az‘t"; then, after rounding ﬁ‘ , it re-solves the problem to get?tk*; finally,
it rounds z;*. Following Constraints (1a) and (1b), we round from
the “outer” variables to the “inner” variables along the “covering”
chains, so that every time when fixing the rounded variables, ﬁt is
still feasible and can be re-solved. More discussion is in Section 4.2.

Algorithm 3, inspired by the dependent rounding technique [8],
chooses a pair of fractions for rounding in each iteration until a
single fraction may be left. The algorithm has two properties: (i)
at least one of two fractions is rounded into an integer in each
iteration; (1i) the weighted sum of the two fractions remains un-
changed before and after rounding. To verify (i), for Line 13, we
have E,, =1 and Ep, >0, if D1 = Cy,(1 — Bp,); we have Ep, =0
and Ey, <1, if D1 = Cp,Bp,. We also naturally have Ep, <1 and
Ep, > 0. We have analogous observations for Line 15. If a single
fraction is left, as in Line 24, we round it up without violating the
constraints of our problem. To verify (ii), no matter we execute
Line 17 or 18, we always have Cp, By, +Cn, By, =Cn, Bp, +Cn,Bp,.



We choose between Lines 17 and 18 according to the objective
function value of the rounded variables (i.e., all other variables not
rounded yet stay unchanged) in Lines 14 and 16. The algorithm
lets two fractions compensate each other so that all constraints are
obeyed, while intuitively rounding each variable separately can
violate the constraints. We adopt some new notations, such as M
and N, to provide a uniform formal treatment for X, ?:‘ ,and “z”tk*

4 PERFORMANCE ANALYSIS

This section focuses on the “competitive analysis” for our algorithm
framework. That is, we prove that the total cost over time incurred
by the integer decisions produced by our online algorithms, i.e.,
P({%t, ¥t, t, Yt}), is upper-bounded by a constant times the offline
optimum, i.e., rPop,:

P({Xt, ¥t, Zt, Vt}) (2a)
< P/({%e Jt, 2, V1)) (2b)
< P’ ({Xt, Y1, %t V1}) (2¢)
< rirePope (2d)
< r1rar3Popt, (2e)

where the constant r = ryryr3 is the “competitive ratio”. To connect
(2a) to (2e), we construct an auxiliary problem P’ as the bridge, and
in P’ the online learning part is “handled”, as described previously.

e Section 4.1: From (2c) to (2d), we connect P’ evaluated with
online fractional solutions to its offline optimum, and so we
show the performance of our online fractional solutions.

e Section 4.2: From (2b) to (2c), we connect P’ evaluated with
online integer solutions to P’ evaluated with online fractional
solutions, and so we show the performance of rounding.

e Section 4.3: From (2a) to (2b), we connect our original prob-
lem P to the problem P’, evaluated with the same online
integer solutions; from (2d) to (2e), we connect the offline op-
timum of P’ to that of P. They jointly show the performance
of our approximation of online learning.

4.1 Performance of Online Fractions

We prove P'({Xt, yt,Zt, Vt}) < r1P’ops and show rq in this section.
Step 1: Formulating Problem P’ . We construct and formulate

the problem P’ below, which is derived from our original problem

P. Note the differences between the formulation of P and that of P’

in both the objective and the constraints:

min  P' =3, ¥ aixir + X X bittir
+ 2 2 2 CijtYije + 2 i 2 dijvije
+ 2 2i njleije + ajegij + Sjehij)zije
+2 2 Z](_fl] + 25jt max; h,’j)wijt
s.t. (1a), (1b), (1¢),

ujr > Xjr — Xig-1, Vi, Vi, (3a)
Vijt 2 Yijr — Yije—1, Vi, V), Ve, (3b)
Wijt = Zijt — Ziji-1, Vi, V), Vi, (30
xit <1, Vi, Vt, (3d)

ujr 2 0,045 2 0,wijp 20,2450 2 0,Vi,Vj,Vt. (3e)

Step 2: Formulating Problem D . We derive the Lagrange dual
problem, i.e., D, of P/, where we use ai¢, Bijz, Vje. its Pije> Dijes
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and 7;; to denote the dual variables for (1a) through (1c), and (3a)
through (3d), respectively.

max D=3, 2 Ay + 2 2 (Zj Aje — G{t) Tit
st air = Uidir + pir = pirs1 + 05, Tie = 0], 3 7ir = 0,
Vi, Vt,
cije + @it = ViBijt + pije — pije+1 = 0, Vi, Vj, Vi,
ejir + TjtBije = Yje + Gije — bijer1 = 0, Vi, Vj, Ve,
bi — pir =0, Vi, Vt,
dij — pijt 2 0, Vi, Vj, Vt,
fiie = ije 20, Vi, Vj, Vt,
all dual variables > 0,
where ¢/, =U;max; V;/min; gj;, elfjt =ejj + 0j:gij + Ojrhij, fl’]t =
fij + 25]'; max; hij.l
Step 3: Composing Solution of D . We construct the function
M which converts {Xt, yt, z, Vt}, with P;’s dual variables a;;, fije,
Yjt> Tit and @;jy, into the solution of D. In the rest of this paper, we
write “D” to refer to the specific value of the function D evaluated
with the specifically constructed solution as in Lemma 1.

LEmMmA 1. The following constructed solution is feasible for D:

~ r3 = =~ bi 1+¢
Xit = aitaﬁijt = ﬁijt,)/jt =YjtsTit = Tit, Hit = 7‘111 Tiite’

_ dij Uj+e _ Jin 1+e s
pijt = 3 In gijt71+g,¢1]t =7 In Eijt71+8’vh Vj,Vt.

ProoF. See Appendix A.1. The proof is by exhibiting that the
constructed solution satisﬁeﬁ D’s constraints, via the Karush-Kuhn-
Tucker (KKT) conditions of P; which is defined in Algorithm 1. O

Step 4: Bounding. Having the above, now we are ready to prove
P’/ ({Xt, V1. Zt, Vt}) < riD{M(Xt, Vt, Zt), Vt}). Note that, due to weak
duality, D{M(xt, yt.Zt), Vt}) < P’ops holds automatically. Thus,
showing the following theorem is sufficient for deriving r;.

THEOREM 1. The non-switching cost in P’ ({X¢, Vt, zt, Vt}) can be
upper-bounded as follows:

¢ Xi@ieXie + Xy Xy Xjcijebije + Xy Xi Xj €5, Zije < D.

The switching cost in P'({Xt, yt, Zt, Vt}) can be upper-bounded as
follows, respectively:

3, 3 biFir — Rt < ((1 +6)ln (1 + g) max; V; 3; U,-) D,

X 2i 2jdijGije — Yije-1)" <

(max,— {(Ui +¢&)ln (1 + %)} max; VJ|I|) D,

S 51 55 5y Gige ~ B < (40 (14 1) 171) D
Joining all the above, we haver; = 1+(1+¢)In (1 + %) max; V; 3; Ui+
max; {(Ui +¢&)ln (1 + %) }man VilI|+(1+ 5)ln(1 + %) |7].

Proor. See Appendix A.2. The proof is by using the KKT condi-
tions of P; which is defined in Algorithm 1. O

!When deriving the dual problem, we make equivalent transformations for (3d) to
facilitate our analysis. First, we change it to o’lf[xit < o'{l, Vi, Yt. Afterwards, we
replace it by a number of constraints [12], suchas .; o7, xis — 0}, xir 2 2 Aje— Olps
Vi, Vt, derived by (1a), (1b), and (1c). We do not write all such constraints; writing all
of them is rather a mechanical process and we omit those details to save space.
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4.2 Performance of Online Rounding

We prove P’ ({¢, ¥t, Zt, Vt}) < raP’({Xt, yt, Zt, Vt}) and show r2 in
this section. We consider each term in P’({Zt, yt, Zt, Vt}) individu-
ally, and bound it by a corresponding constant times ); >.; a;isXir
which is part of P’({X¢, yt, Zt, Vt}). We have the following theorem.

THEOREM 2. The non-switching cost in P’({X¢, ¥, Zt, Yt }) can be
upper-bounded as follows, respectively:
i, a; ~
L Xi airXie < maxi,p gty Xy Xy aieXie,
L
_ CijtOjt —

2 Zi Xjcijtije S maxg jp —pery By X ditXits

2t 2i 2j e{jtil’jt < max; j,¢ elfjtrz’ 2t 2i QitXit-
The switching cost in P’({Xt, Jt, Zt, Yi}) can be upper-bounded as
follows, respectively:

_ _ b _
2t 2 bi(Xir — Xip—1)" < max; ¢ o-_'l[rz, X X GitXit,
13
_ _ diio; —
2o X X dij@ije = Gije-1)" < maxi jp =) Xy Xy aieXie,

e 20 Zj fGije = Zije-0)" < maxi o ff,r X X airXir

Joining all the above, we havery = rz’ ( max; ¢ ajs +max; j ¢ cjjt Ui +
maxi,j, ¢ e{jt + max; bi + maxj, j dijUi + max;i,j, ¢ fi,jt)’ where r2’ =
: max; V;

min; o’

o; o!
1 + max; i)\ max; ; -, and o/, = U;
( it ZjAjI it i’ it i

ProorF. See Appendix A.3. The proof is by following the design
of Algorithm 3 and the definition of P. O

4.3 Performance of Learning Approximation
We prove P({%t, yit, Zt, Vt}) < P’ ({%¢, ¥t, Zt, Vt}) and ngt < r3Popts
and show r3 in this section. We have the following two theorems.

THEOREM 3. P is upper-bounded by P’, due to the following fact:
2 i XjGjerhijZije < X X 2j OjehijZije
+2; Zj (2 (5jt max; hij) i (Zijt - 5ijt—1)+) .
ProOF. See Appendix A.4. The proof is by following the design
of Algorithm 3, and the definitions of P and P’. O

J

THEOREM 4. We havers = (1 + 3 (min; ; V;Uj) (maxi,j %‘h”))

Proor. See Appendix A.5. The proof is by following the defini-
tions of P and P’. ]

5 EXTENSION

We can extend our algorithms and analysis to address the situation

where, besides the clean traffic, the suspicious traffic for each time

slot is also unknown before making the decision in each time slot.
To capture such uncertainty, we formulate a new problem P*:

min PP =P+3, %% hij (gje412ijt = Vivije) "
+2 Zij (Ajt+1 -2 Zijt)+
s.t. (1a), (1d), (1e),
where in P we redefine O'{jHl = 0jt+19ij + 6jr+1hij, Vi, Vj, Vt, with-
out changing everything else; we also have the new input p;, Vj
denote the penalty of not diverting the flow j. Here, note that both

ojt+1 and &jr+1 are with the time subscript ¢ + 1, rather than ¢,
to reflect the fact of firstly making the decision and afterwards
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seeing the traffic to be filtered. Making decisions beforehand may
miss some flows and/or provide insufficient resources for scrubbing,
and therefore we introduce }; >; Zj hij (O'jt+1zijt - ijijt)+ and
>t Zj pj ()ljt+1 -2 zijt)+ into the objective while removing the
corresponding constraints. The latter means that the missed flows,
if any, incur penalty, such as the SC provider’s revenue loss. The
former means that the unfiltered traffic, if any, travels to the desti-
nations as well and incurs network footprint (note that, for each
suspicious flow j, §;z+1 only refers to the clean traffic identified and
produced by the SC; it does not necessarily refer to all the actual
clean traffic contained in oj;+1, because the SC may not be able to
identify all the clean traffic in gj+1).

To make our online algorithms and analysis applicable to P¥, we
make a few key reformulations as follows. Having

(ojtx12ijt — ijijt)+S Ojt+1Zijts
(Ajea1 = Dizije) < Ajer1 = Xi zijes1) + (D zije1 — X zije) s

we define the problem P°, where P¥ < P°:

min  P® =P+ 3, ¥; ¥jhijojerizije + X Xjpjwit
+

+ 21 X0y (Zi zije = i zije-1)
s. t. (1a), (1d), (1e),

wjr + X zijt = Ajr, Vj, Ve, (42)

wjr >0, Vj,Vt. (4b)
In P°, we introduce the auxiliary variable wj; and the auxiliary con-
straints (4a) and (4b) so that, except P and }; >}; Zj hijojt+1zijt,
the decisions are in the same time slot as the corresponding inputs.
We observe that if we treat P° as P, then all our proposed algorithms
and analysis apply, with straightforward adaptions. Just note that,

in the analysis now, we also need to connect ngt and P? .. In

opt*
fact, analogous to the proof of Theorem 4, we can achieve it using

(Ajes1 = X zijee1) < (Newr = Xy zije) + (24 zije = B zijes1)

6 EXPERIMENTAL STUDY

6.1 Data and Settings

DDoS Traffic. We use the Booter traces that record more than 250
GB of real-world, UDP-based DDoS packets during 2 consecutive
days in August 2013 [25]. The traffic rate varies dynamically, up to
5.48 Gbps. We consider 5 minutes as a single time slot, and aggregate
the traffic rates accordingly. While in this dataset the attack sources
from all over the world attack one target in the Netherlands, to limit
our scope, we only consider the 5822 US attack sources (around
33% of all attack sources), and envisage 48 targets in the capital
cites of the lower 48 states in the continental US, respectively.
Legitimate Traffic. For each DDoS flow in each time slot, we
synthesize a legitimate flow so that they together constitute a sus-
picious flow. The legitimate flow originates from an IP address with
the same prefix and thus from the same AS as the attack source. We
control and vary a percentage, and set the volume of the legitimate
flow as this percentage times the volume of the DDoS flow.
Traffic Paths. We map the IP addresses of the attack/legitimate
sources and the targets to ASes [1]. Afterwards, leveraging the 2016
CAIDA dataset of the AS relationships with geographic annota-
tions [5], we find the shortest AS path between each attack/legitimate
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Figure 2: Impact of switching Figure 3:Impact of flow composi-
cost tion

source and each target, which we assume is the path of the traf-
fic, and get the geo-locations of the involved AS links between
the directly-connected ASes (as the dataset does not contain the
geo-locations of the ASes themselves).

Scrubbing Centers. We use Level 3 [4] and Incapsula [3] which
have 5 and 9 scrubbing centers, respectively, in the US at 11 unique
locations all covered by the AS links [5]. For simplicity and without
loss of generality, we assume 11 SCs with equal capacities at such
locations; we assume one VM is sufficient to scrub one flow, and
the total capacity of all SCs equals 1.2 times the number of flows.

Scrub Resource Price and Diversion Rule Price. Regarding
the scrub resource price, we adopt the dynamic, hourly wholesale
electricity prices from different Regional Transmission Organiza-
tions (RTOs) in the US [6]. We know the geo-coordinates of each
SC via its co-located AS link [5], and thus we can map each SC to
its geographically closest RTO and use the corresponding prices.
Regarding the diversion rule price, we find that it is comparable to
the wholesale electricity price per time slot [7].

Unit Switching Costs. Regarding the unit switching costs of the
scrub resources and the diversion rules, we consider the VM start-
up time and the BGP convergence time, respectively, both of which
can range from seconds to minutes today [18, 22]. This captures the
SCs’ performance degradation or even service unavailability. Rather
than using different metrics, in addition to the start-up/convergence
time, as the switching costs, we vary the weights associated to the
switching costs to mimic a variety of metrics.

Algorithms. We compare 5 algorithms: “closest” refers to to-
day’s industrial practice [4] that diverts suspicious traffic to the SC
that is the closest along the AS path to each customer; “cheapest”
refers to the method that diverts suspicious traffic to the SC that has
the cheapest resources; “greedy” refers to the method that solves
the one-shot slice of our original problem at every time slot while
ignoring the switching cost; “lcp” refers to the state-of-the-art “lazy
capacity provisioning” algorithm for solving online convex opti-
mization problems with the switching cost [22]; “ours” refers to
our own approach. All algorithms are online; we have no offline op-
timum to show, as it takes an unacceptably long time to solve even
a relatively small-scale instance of our original integer program by
today’s most advanced solvers (e.g.,gurobi [2]).

6.2 Evaluation Results

Fig. 2 compares the long-term total cost of the algorithms when
the weight associated to the switching cost varies. As the weight
grows, the total (weighted) cost increases. ours achieves the best
result, up to 50%, 58%, 53%, and 26% less total cost than closest,

Figure 4: Benefit of turning off
SCs

PUE

number of attack targets

Figure 5: Comparison of execu-
tion time

cheapest, greedy, and lcp, respectively. Except ours and Ilcp, the
other algorithms neglect the switching cost and thus behave worse.
greedy takes care of all types of operational costs while closest and
cheapest only consider part of them. Thus, greedy is often better.
Note that closest gradually becomes the best of the three, as the
weight goes greater; this is because closest does not change SCs for
the flows and incurs no switching cost of diversion rules.

Fig. 3 demonstrates the total cost over time as the amount of
the legitimate traffic increases, until it equals the volume of the
malicious traffic. ours remains the best, up to 62% better than all the
rest, since it is the only one that considers the network footprint of
the legitimate traffic when making online decisions. greedy is better
than closest and cheapest, as explained above; closest is always the
worst, because as the legitimate traffic grows, the total suspicious
traffic also increases, and always using the SC closest to customers
can incur large network footprint before the traffic is scrubbed.

Fig. 4 visualizes the benefit of allowing switching off entire SCs
to save the non-IT energy. The total cost in this figure also includes
the operational cost and the switching cost of SCs, besides the cost
of the scrub resources inside SCs. We choose PUEs in the range of
1.1~ 1.5 to capture the worse power efficiency of small data centers;
the larger the PUE is, the more non-IT energy it can save if we shut
the SC down. Compared to always having entire SCs on, ours saves
20% ~ 26% total cost due to the non-IT energy reduction.

Fig. 5 illustrates the execution time of the algorithms in a single
time slot, as we increase the number of attack targets. We exclude
closest and cheapest as their execution time is trivial. greedy in-
vokes the gurobi solver to solve our integer program at each time
slot, and the execution time grows very fast as the problem be-
comes larger. Solving the fractional problem and then rounding the
solutions, like lcp and ours, is more scalable, which takes up to 5
seconds. The execution time of rounding grows mildly itself.

7 RELATED WORK

We summarize existing research in three categories, and highlight
their insufficiency compared to our work in this paper.

Clouds and Data Centers for DDoS Mitigation. Yu et al. [28]
dynamically allocated resources in a single cloud to filter DDoS
traffic. Fayaz et al. [14] used network functions to scrub DDoS traffic
by solving the data center, server, and VM allocation problems.
Zilberman et al. [30] compared different strategies for placing SCs
across the Internet in terms of network footprint, link load, and
network latency. Liu et al. [23] enabled victims to redirect the DDoS
traffic to clouds with victim-chosen bandwidth allocation policies.
Somani et al. [27] found cloud’s ability of absorbing DDoS could be
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compromised by the heavy resource usage of clients under attack,
and recruited clients’ resources during attack for attack mitigation.

Online Cloud Resource Allocation with Switching Cost. Lin
et al. [22] designed the “lazy capacity provisioning” online algo-
rithm for allocating servers with switching costs in data centers.
Jiao et al. [19, 20] developed regularization-based online algorithms
for the joint control of edge clouds and internal servers, and for
the en route resource allocation in hierarchical clouds, respectively,
both with switching costs. Pu et al. [24] used regularization as part
of the study of resource allocation, content caching, and request
distribution in an online manner in cloud radio access networks.
Zhang et al. [29] and Fei et al. [15] predicted the demand via online
gradient decent and “following the regularized leader”, respectively,
and with such predictions, used “ski rental” based algorithms, bin
packing, and primal-dual algorithms for VM/traffic management.

Competitive Analysis and Online Convex Optimization. The
theory/algorithm community has studied the online optimization
problem with switching costs as well. Buchbinder et al. were the first
to embed regularization into competitive analysis for the covering
problem [10], and designed a primal-dual-based online algorithm
against the drifting offline optimum (i.e., decision changes were
constrained) for online learning [11]. Andrew et al. [9] identified
the incompatibility between the sublinear regret in online learning
and the constant competitive ratio in competitive analysis. Shi et
al. [26] proposed algorithms to achieve the optimal competitive
ratios for problems with affine policies. Chen et al. [13] focused on
the high-dimension decision space and proposed online balanced
decent to improve both the competitive ratio and the regret.

Previous research has never investigated the problem studied
in this paper, and previous solution techniques are insufficient for
addressing our problem. [28], [14], and [30] seem the closest to our
work in terms of the problem space; however, they either consider a
single cloud only, or neglect the redirection rules and the switching
costs, with no performance guarantees for their algorithms. [23]
and [27] focus on the system aspects of a similar scenario, and lack
theoretical/algorithmic insights. [22] and [20] consider problems
simpler than ours, because they (i) only allocate resources without
making decisions for workload or flow distribution, (ii) only con-
sider fractional decisions, and (iii) assume all inputs in each time
slot are observable, without learning. [19] and [24] rely on random-
ized rounding algorithms, and do not address online learning. [29]
and [15] adopt online learning to predict their inputs, and solve
the online problem based on the predictions. Our approach follows
a different philosophy compared to theirs: (i) we do not rely on
predictions, but directly approximate the learning component in
our problem; (ii) we do not use “regret” and compare to the offline
optimum under the best static predictions of inputs, but instead
we compare to the offline optimum under the actual, real inputs.
Regarding the algorithmic literatures, all of them mentioned above
do not accommodate integer variables. Beisdes, [10] and [26] do not
consider learning; [11] can handle the dynamic resource price in the
objective, but not the fluctuating demand in the constraints; [11]
and [13] are against drifting offline optimums, and [9] is against
the static regret, which makes less sense in our case. In contrast,
we propose the combination of an online algorithm and two deter-
ministic rounding algorithms to solve an integer program, against
the offline optimum in terms of the competitive ratio.

Lei Jiao, Ruiting Zhou, Xiaojun Lin, and Xu Chen

8 CONCLUSION

In this paper, we investigate the online optimization of the joint
scheduling of the traffic diversion rules in the networks and the
scrubbing resources in the clouds to inspect unpredictable time-
varying traffic which are only partially observable when making the
scheduling decisions in each time slot. We design an online algorith-
mic framework inspired by the fusion of three techniques: online
learning approximation, regularization, and dependent rounding.
We formally prove the competitive ratio of our approach, and also
conduct extensive evaluations to exhibit its practical advantages.
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A PROOFS

A.1 Proof of Lemma 1

We write the Karush-Kuhn-Tucker (KKT) conditions of ﬁ;, Vt below,
which are sufficient and necessary to characterize {Xt, yt, zt, Vt}
and the dual variables of fP%. Note that these KKT conditions are
for P; (which is defined in Algorithm 1), not for P or P’.

ajy —Uiajy +— In % +0],Tit —0], X Tir =0,Vi,  (5a)
dij Yijite C
C,]t+ollt—V]ﬁUt+ i lnﬁ =0,Vl,\'/], (Sb)
Iy f, Zi‘ +& ~ . .

¢ +0-jtﬁijt Y]t +#1 ﬁ —Wjjr = 0, Vi, Vj, (SC)
a;t(UiXie — Xj Yije) = 0, Vi, (5d)
Bijt(Viyije — 0jezije) = 0, Vi, Vj, (5e)
Yit(Xi zije — Aje) = 0, Y, (5f)
Tit (Zi e T (Z] Ajt — )) =0, Vi, (5g)
wijtzije = 0,Vi,Vj, (5h)
all primal and dual variables > 0. (51)

By (5a), (5b), (5¢), and (5i), it can be verified that the solution
constructed in Lemma 1 satisfies all the constraints of the problem
D. These KKT conditions are used in other proofs as well.

A.2 Proof of Theorem 1
First, we bound the non-switching cost.
2t Xi@irXie + X Li Lj Cijelije + L Li Xj €], Zijt
~ = = bi Xirte =
=22 (Uiait +0], XiTit — Ul-/tTit -5 n ﬁ)xit
~ — iittE
+ 3¢ Zi 2j(ViPije — @ie = 5% In Jur

yt}t 1+€)yljt
£ Zijite
+ 2 2 Z](Y]t+0)1]t—ajtﬁljt— Ly U

FZ}jt,1+€

)zijt  (6a)
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=2 DjAjtYie + Xy 2i (Zj/lﬂ )f”
= % D i In 2 5 5 8 G In A

Xit-1+€ Yijeo1te
~ 54 5 5y Tl In 20 (6b)

<D. (6¢)
We reach (6a) by following (5a) ~(5¢). Then, we reach (6b) by fol-
lowing (5d)~(5h). Finally, we have (6¢) due to Z + th “Lln x’ft" 1+f€ >
0, Vi; andztyijtn—i'l yy’j“:g 0, thlﬁ— ng;—::fg >0, Vi,

Vj. As an example, we show the following, and the others can be
shown analogously:

Xit+e
Etxzt 7 ln—x, +e
=3, + g)— In xx,t—:—-fe -3, g—l In x";ffjg
: 2 (Xiete) Xio+e
> (ZtSﬁt +¢))In S Gt e) + (Xio + &) In o (7a)
> 2 (Xir + &) = Xy (Xir-1 + &) + Xio — XiT (7b)
=0,

where (7a) follows from (8a), and (7b) follows from (8b). We also
use Xj; = 0, Vi, V¢ < 0 by definition. (8a) and (8b) are two facts:

(Tnp)lng222 <5, puln b2 Vpg>0,  (8a)
p—g<plnk.vpg>o0. (8b)

Second, we bound the switching cost. Particularly, we bound

> 2 bi(Xir—Xit-1)" as an example, and omit the details for bound-
ing .y X; 2 dij(Uije = Yije-1)" and Xy X X £, Gije = Zije-1)"
In P’ we have the term }; }.; bju;;; with (3a) and (3e), we know

the optimal value of u;; is Ui = (Xjr — Xip—1)*, Vi, Vt.

2t X bixir = Xie-1)"

=Yt Yier, bilXir — Xiz-1) (9a)
=3 Dier, bil(Xir + &) = (Xir—1 + ¢)) (9b)
< Xt Zier, bixir +€)In x":g (9¢)
<p1+6) % Srer, 2 n 22 (9d)
<01+ &) B¢ Tier, (Uidln + of, 2 (%)
<01+ ) 5y Biery (ViViue - Ui In 22

‘o, z,.'f”) (9f)
<n(1+6) 2y Sier; (UViBige +a;t2,~?”) %)
<n(1+6) 2 Biery (L2 (y, Bt et +ai,-r)

+ol, 31 (9h)
<01+ &) Xy Tiery (01,7t + ofy ZiTor o)
<0+ ) 5y Siery (ot e +ofy (S5 A —op)r) - )
< ((1 +£)ln(1 + %)maxjvjin,») D. (9K)

We get (9a) as we change the index set to 7y = {i|xj; > Xjz—1}-
We have (9b) and (9¢) by following (8b). We reach (9d) as xj; < 1,
Vi, Vt. (9e) follows from (5a). Considering the index set 7, =
I n{ilaij; > ajt-1}, we follow (5b) to get (9f). We next reach
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9g) because ), Uih Hijere :Uiﬁln 1+y'i > 0. Con-
g t i

Yijt-1+€
sidering the index set 7,/ = 1/ N {z|ﬁ,jt > ﬁut 1}, we follow

(5¢) to get (9h). Then, note that we have ), ”t % >
ij

min

# In (1 + Z'%T) > 0, and w;j; = 0. The latter is further due

to the following. With (5d), @j; > @j;—1 = 0, and Xj; > Xj;—1 = 0,
we have at least one j such that y;j; > 0, because otherwise we
would have }; yijt = 0, contradicting 2j yijr = UiXj; > 0; with
(5¢) and Bijr > PBijr-1
(5h), we finally have @;j; = 0. Based on this, we reach (9i). Fi-
nally, we reach (9j) because 4;; and }}; Aj; — o, are integers (note
o!, = Ui ::E:j’ !’t = U; max; Vj, where U;, V}, and oj; are integers).
If both of them are no less than 1, then (9j) naturally holds; if either
of them is no greater than 0, then note that D will also change
accordingly and as a result, (9j) still holds.

— . .
> 0, we have z;j; = ;_’[yijt > 0; with

A.3 Proof of Theorem 2

First, we bound the non-switching cost. We have the following:

Xt Ziaitfcz't
< max;, t Zt Zlo’ltxtt
< ma
l

J_l/t (Zt Liern\(r }Gltxlt+zt O.lt|—xl t]) (10a)

IA
~5
qlm

pOAPN jt) (10b)

DN, O-ltxlt +max

IA
~E

Zt D O—ltxlt) (10c)

max; ¢ { 7'2 Zt Zzaltxlt- (10d)
O-zt

alt
1axX O' X, +max
it (Zt Zl jpXit 2]

I/\

2 Z'Zj CijtTijt
jtajt 2 Zi 2} o-tyzjt

l_]l’ Ojt manVj ~x ’r"* .|
< max 4yt 2t i (—minjgj, (jejz\:{j,}y,-jt + Vi, )) (11a)

< max; j

< max; j s cmajt 2t 2i 0F, %Kit (11b)
U
< maxj, j, ¢ Ut].]t ry Xt i GitXit. (11¢)
2 Xi Xj ey Zije
< maxijref;, X Xi LjZijt
< maxij.c el %0 5 (Siernv ) B+ [T ]) 022
Vi

S maxijr ey Xy Ni Xj 5o, Yije (12b)
< maxi,j,t el{jl‘ Zt Zi O'iltfijt (12C)
< max; j ¢ e{jtré D i GitXit- (12d)

(10a), (11a), and (12a) follow from Lines 13, 15, and 24 of Algo-
rithm 3. All values are rounded into integers using either Line 13
or 15, except i’ or j’ that indexes the last single value rounded up in
Line 24. Note if no single value is left, then (10d), (11c), and (12d) still
hold. (10b) introduces Aj;, so that (10c) follows from Constraints
(1a), (1b), and (1c). (11b) follows from Constraint (1a), given U; and
Xi¢ are integers. (12b) follows from Constraint (1b), given oj; < Vj,

.*J*t < 1, and the integral §;;;; (12c) follows from Constraint (1a).

Lei Jiao, Ruiting Zhou, Xiaojun Lin, and Xu Chen

Finally, (10d) constructs our target term ,; >.; aisXis; (11c) and
(12d) follow from the entire (10a) through (10d).

Second, we bound the switching cost. Particularly, we bound
> 2 bi(%ir — %iz—1)T in (13a), using (10a) ~ (10d):

Y Xibi®ir = Xip—1)t

< th'bifz’t
< maxi o Zt Zlo-ltxlt
< maxi; - r o 2t i AitXit. (13a)

We canbound }; 3; 3 dij(yijt—yijt—l) and ¥, 3; X 1 (Zije—
Zi jt_1)+ analogously, and we omit the details.

A.4 Proof of Theorem 3

2t 2i 2j Oje+1hijZije
=2 i 2 OjehijZije-1 (14a)
< 2t Xi 2jOjehijzije

+ X Xi B Sjchij |Zije — Zije| (14b)
< 2 2i 2j Ojehijzije

+2; 2 ((6r max; hij) X; |Zijt — Zije-1]) (14c)

< 2 Xi 2j Ojehijzije
+2 Z] ( ( j+ Max; hij) > (iijt—iijt_l)"')_ (14d)
We have (14a) because by definition we have §;74+; = 0 and
Zijo = 0. We introduce the absolute value in (14b), and change it to
(14c). We reach (14d) because for every j, there is one and only one
i where z;j; = 1 at every ¢, according to Line 24 of Algorithm 3 (if

no variable is left, one can choose an arbitrary variable to set to 1);
as such i may be different for ¢ — 1 and ¢, the coefficient becomes 2.

A.5 Proof of Theorem 4
We simplify the notations a bit. Let us rewrite P and P’:
P=Q+X; X Xibjrr1hijzije+ 2 Xi 2 fii(zije — zije)™,
=Q+X, X Xjdjehijzije+ X Xi Xjf}; zije — zijo)",
where fl;t = fij + 26j; max; h;j, and Q is the rest term which
involves the variables {xt, yt, zt, Yt} and appears in both P and P’.

Assuming {X;, ¥y, %, Vt} are offline optimal solutions to P, we get
Popr < QUEL. 3120, Vi) + Xy X4 X 0jehijz;,

T (159
< QUEY ¥y 2, Vi) + X 24 2 6jehijZ,

+ 20 2i 2 + 0jehij)(Z;, - ijt—1)+ (15b)
= QUL ¥7- 2, Vi + X0 X4 X 8jea1hijZ,

+ X Zi Zj(f, + 0jehij)(Z;, — ljt_1)+ (15¢)
< (1 +3max; j s dje masi hyj miz(' ”) Popt- (15d)
< (1 + 3 (min; j V;U;) (maxi‘j ma}i’j i )) Popt- (15e)

We reach (15a), because {xz‘, }'If, it ,Vt} are not necessarily the
optimal solution for P’. We further have (15b) as we introduce
2t 2iXj jthijzl*ﬂ 1- We reach (15c) because by definition we

have 8741 = 0 and Z};; = 0. We reach (15d) when we replace

ijo
Ut + 6jthij by fij so that we can construct Pyps. We eventually
reach (15e) by the definition of P.
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