

1 Article

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

23

24

25

26

2 Production of cyanotoxins by Microcystis aeruginosa

mediates interactions with the mixotrophic flagellate

4 Cryptomonas

Abstract: Eutrophication of inland waters is expected to increase the frequency and severity of harmful algal blooms (HABs). Toxin-production associated with HABs has negative effects on human-health and aquatic ecosystem functioning. Despite evidence that flagellates can ingest toxin-producing cyanobacteria, interactions between members of the microbial loop are underestimated in our understanding of the food web and algal bloom dynamics. Physical and allelopathic interactions between a mixotrophic flagellate (Cryptomonas sp.) and two strains of a cyanobacteria (Microcystis aeruginosa) were investigated in a full-factorial experiment in culture. Maximum population growth rate of the mixotroph (0.25 day-1) occurred during incubation with filtrate from toxic M. aeruginosa. Cryptomonas was able to ingest toxic and non-toxic M. aeruginosa, at maximal rates of 0.5 and 0.3 cells day⁻¹, respectively. Results establish that although Cryptomonas does not derive benefits from co-incubation with M. aeruginosa, it may obtain nutritional supplement from filtrate. We also provide evidence that Cryptomonas is able to biodegrade microcystin-LR (MC-LR), as intracellular toxin concentration was reduced by 90% in the presence of the flagellate. Our work has implications for "trophic upgrading" within the microbial food web, where cyanobacterivory by nanoflagellates may improve food quality for higher trophic levels and detoxify secondary compounds.

Keywords: microcystin; mixotrophy; phytoplankton; cyanobacterial blooms; *Microcystis*; trophic
 interactions

Key Contribution: The mixotrophic flagellate, *Cryptomonas*, is able to reduce population growth rate of toxin-producing *Microcystis aeruginosa* under low concentrations of nitrogen and phosphorus in culture. Incubation with *Cryptomonas* also led to a significant reduction in intracellular microcystin-LR (MC-LR), suggesting that the mixotroph can act to detoxify the cyanotoxin

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

1. Introduction

Freshwater ecosystems world-wide face threats of deterioration through proliferation of toxin-producing cyanobacteria [1, 2]. Increased occurrence of cyanobacteria blooms is evident in eutrophic waters that receive significant nutrient inputs from surrounding watersheds [3,4]. Although it remains difficult to predict the causes of harmful algal bloom (HAB) formation, many studies point to nutrient concentration as a primary driving force in inland waters [5-7]. Analyses of the 2012 EPA National Lakes Assessment (NLA) revealed that distribution of potentially toxigenic cyanobacterial taxa was related to regional water quality trends, particularly total phosphorus [8]. However, the importance of nitrogen as a predictor of cyanobacterial biomass cannot be disregarded [1]. Consequences of nutrient pollution are compounded by changes in global climate, as many species of cyanobacteria favor warm surface waters and sustained periods of stratification [9-11].

Cyanobacteria can produce a suite of compounds, many of which are toxic to aquatic biota and humans [12]. Loftin *et al.* identified potential microcystin-producing taxa in 95% of samples taken from 1,161 lakes and reservoirs across the contiguous United States [13]. *Microcystis*, a potent

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

microcystin-producer, was the most commonly detected cyanobacteria genus. Cyanobacteria blooms typically contain a mixed community of cyanobacteria that can include toxic and non-toxic strains of the same species [5]. It remains a challenge to predict triggers of toxin production across species and system because it is not always associated with biovolume [14-15], although exceptions have been documented [16-17].

In addition to nutrient concentrations, multiple trophic interactions within the aquatic community govern the formation and degradation of cyanobacteria blooms, particularly interactions with zooplankton [18-20], filter-feeding fish [21], and mollusks (e.g., zebra mussels, [22]). Cyanobacteria can evade grazing through toxin production, colony formation, and reduced food quality [18, 23-24]. Similar inducible defenses have been documented after exposure to protozoans [25-26]. Several studies have also demonstrated that heterotrophic protists can maintain high growth rates when grazing on toxic or non-toxic cyanobacteria [27-29]. In conjunction with heterotrophic forms, it has been suggested that phagotrophic phytoplankton that utilize mixed nutrition (mixotrophy) also can be effective grazers of cyanobacteria.

Mixotrophy, a combination of photosynthesis with ingestion of particulate organic matter, has been recognized within a range of taxonomic groups [30]. Field studies reveal that mixotrophic protists are often numerically dominant in freshwater ecosystems and can exhibit a greater grazing impact on the bacterial community than heterotrophic forms [31-33]. Mixotrophic nutrition is remarkably plastic, allowing organisms to change their relative reliance on ingestion or photosynthesis based on environmental conditions or biotic pressures [34-35]. Consequently, mixotrophic protists are generally separated into categories along a nutritional gradient [36-37]. For example, species of Dinobryon (a genus of Chrysophyceae or golden algae) are facultative phagotrophs that supplement growth with particulate prey under oligotrophic conditions [35, 38]. On the other hand, species of Ochromonas and Poteriochromonas (Chrysophyceae) exhibit a reduced dependence on photosynthesis except when prey concentration is limiting [39-40]. Several mixotrophic chrysophytes are able to feed directly on toxic, bloom-forming cyanobacteria [41-44]. Notably, species of mixotrophic flagellates that have been identified to ingest Microcystis, including Ochromonas and Poteriochromonas, are predominantly phagotrophic, with reduced contributions of phototrophy to overall metabolism [45-46]. Though work has been done to assess feeding by mixotrophs on Microcystis, many studies are limited to the heterotrophic-extreme of the nutritional gradient. Further, although it is well known that heterotrophic and mixotrophic protists take an intermediary role between zooplankton production and the microbial community, few studies have explored this trophic link (see Figure 1).

The purpose of this work was to examine biotic relationships between a mixotrophic flagellate (Cryptomonas sp., hereafter Cryptomonas) and two strains of bloom-forming cyanobacteria (toxic and non-toxic Microcystis aeruginosa, hereafter tox-Microcystis and nt-Microcystis). We also investigated the ability of Cryptomonas to ingest both Microcystis forms through disappearance of fluorescently-labeled prey. Cryptomonas and Microcystis were chosen because both are common in lakes and ponds at the same times of year and most likely have some competitive interactions in nature. The Cryptophyceae are a common group of photosynthetic flagellates that serve as a high-quality food source for crustacean grazers [47-48]. Reports of bacterivory by species of Cryptomonas are varied, but most studies suggest that the mixotroph is a facultative phagotroph that derives its nutrition primarily from photosynthesis [49-50]. Physical and allelopathic relationships were investigated under varying macronutrient conditions (nitrogen and phosphorus) in a full-factorial design with Cryptomonas and tox- or nt-Microcystis grown as a monoculture, in direct co-culture, and with the addition of reciprocal filtrate. The goals were to determine (1) if Cryptomonas is able to ingest and supplement growth with either tox- or nt-Microcystis, (2) if production of microcystin-LR (hereafter MC-LR) by tox-Microcystis is influenced by presence of Cryptomonas. Through work in culture, we demonstrate that Cryptomonas does not derive growth benefits from incubation with either strain of Microcystis, and maintains low grazing rates that vary with toxicity of prey and background nutrient concentrations. However, incubation with Cryptomonas or its filtrate led to a significant decline in population growth of tox-Microcystis.

99

100

101

102

103

104 105

106

107

108

109

110

111

112

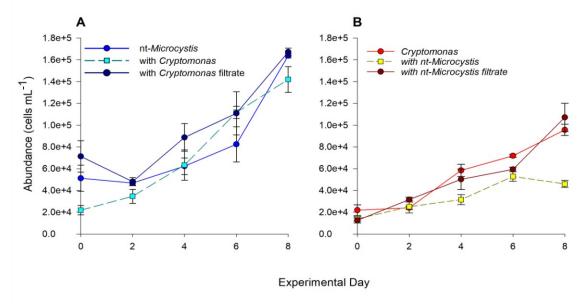
113

114

115

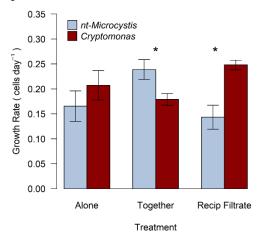
116

117


Figure 1. Conceptual diagram of an aquatic food web that that includes and emphasizes the role of flagellates such as *Cryptomonas*. Flagellates are represented by autotrophic, heterotrophic, and mixotrophic forms. Phytoplankton refer to non-flagellated organisms.

2. Results

2.1. Biotic interactions between Cryptomonas and nt-Microcystis


Cell abundance of *Cryptomonas* increased during the experimental period (eight days) when grown alone, in the presence of, and with filtrate from nt-*Microcystis* (Figure 2B). There was a significant effect of treatment ($F_{2,30} = 22$, p <0.001), day ($F_{4,30} = 73$, p <0.001), and interaction ($F_{8,30} = 6$, p <0.001) on *Cryptomonas* cell abundance. After eight days of incubation alone or with filtrate from nt-*Microcystis*, the populations of *Cryptomonas* increased by 77% and 88%, reaching average final cell density of 9.6 x 10^4 and 1.1×10^5 cells ml⁻¹, respectively. However, in direct co-culture with nt-*Microcystis*, abundance of *Cryptomonas* increased by only 37%, reaching an average cell density of 4.6×10^4 cells ml⁻¹ (Figure 2B). Cell abundance of *Cryptomonas* on the final day of experimentation in the co-culture treatment was significantly lower than that when grown alone or with filtrate from nt-*Microcystis* (p_{alone}, together < 0.001, p_{filt}, together < 0.001).

Cell abundance of nt-*Microcystis* also increased when cultured with *Cryptomonas* (Figure 2A). There was a significant effect of treatment ($F_{2,30} = 6.4$, p = 0.005) and day ($F_{4,30} = 64$, p < 0.001) but no interactive effect ($F_{8,30} = 1.7$, p = 0.146) on nt-*Microcystis* cell abundance over the 8-day experimental period. On the final day of incubation, there was no significant difference in cell abundance of nt-*Microcystis* among treatments ($p_{filt, together} = 0.21$, $p_{filt, alone} = 0.97$, $p_{alone, together} = 0.30$), at an average of 1.6×10^5 cells ml⁻¹ ($\pm 7.9 \times 10^3$).

Figure 2. Changes in cell abundance of (a) nt-*Microcystis* and (b) *Cryptomonas* over the experimental period (eight days) when grown alone in monoculture, co-culture, or with reciprocal filtrate. Error bars represent standard error of the mean from three replicate samples.

Population growth rate (cells day⁻¹) of *Cryptomonas* over the eight-day period was 0.20 day⁻¹, 0.18 day⁻¹, and 0.25 day⁻¹ when grown alone, in co-culture with nt-*Microcystis*, and with reciprocal filtrate, respectively (Figure 3). Growth rate in co-culture or with filtrate from nt-*Microcystis* was not different from when *Crytomonas* was grown alone (ptogether, alone = 0.53, pfilt, alone = 0.29). However, population growth rate of the mixotroph was significantly higher when cultured with filtrate from nt-*Microcystis* than in direct, co-culture with the cyanobacteria (ptogether, filt = 0.05). Population growth rate (cells day⁻¹) of nt-*Microcystis* grown alone, in co-culture with *Cryptomonas*, and in the presence of reciprocal filtrate was 0.18 day⁻¹, 0.25 day⁻¹, and 0.19 day⁻¹, respectively (Figure 3). nt-*Microcystis* exhibited the highest population growth rate in the physical presence of *Cryptomonas* (ptogether, alone = 0.04, pfilt, together = 0.09, pfilt, alone = 0.86). The population growth rates of nt-*Microcystis* and *Cryptomonas* were not significantly different from one another when either were grown in monoculture (p=0.28). However, nt-*Microcystis* exhibited a significantly higher population growth rate than *Cryptomonas* in the co-culture treatment (p=0.02).

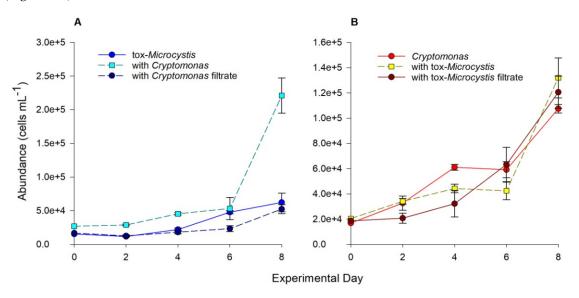
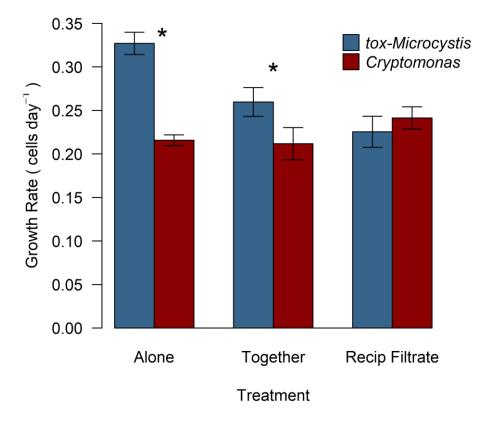


Figure 3. Population growth rate (cells day-1) of nt-*Microcystis* and *Cryptomonas* when grown alone in monoculture, incubated in co-culture, and with reciprocal filtrate. Growth rate was determined by slope of the linear regression of ln-transformed cell abundance values plotted over time (days). Asterisks indicate statistically significant differences between species within the same treatment (p < 0.05). Errors bars represent standard error of the mean from three replicate samples.

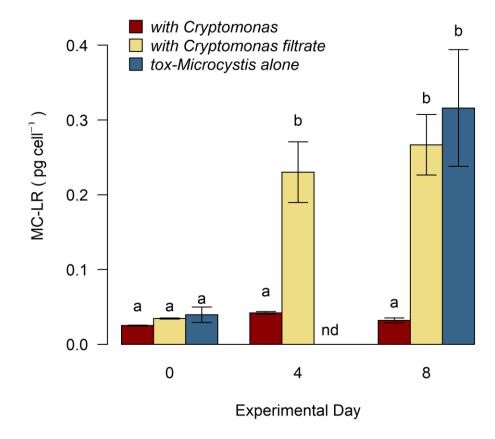
2.2. Biotic interactions between Cryptomonas and tox-Microcystis


Cryptomonas exhibited positive trends in cell abundance within all treatment combinations with tox-*Microcystis*. When grown alone, in co-culture, or with filtrate from tox-*Microcystis*, *Cryptomonas* reached a final cell abundance of 1.2×10^5 cells ml⁻¹ ($\pm 7.1 \times 10^3$), increasing by 85% (Figure 4B). There was a significant effect of day (ANOVA, F_{4,30} = 80.6, p <0.001), but not treatment, on cell abundance of *Cryptomonas* over the experimental period. On the final day of incubation, cell abundance of *Cryptomonas* was not significantly different among treatments (p_{filt, together} = 0.55, p_{filt, alone} = 0.46, p_{alone, together} = 0.08).

At the end of the incubation period, cell abundance of tox-*Microcystis* was significantly higher when grown in co-culture with *Cryptomonas* (ptogether, filt = 0.001, ptogether, alone = 0.001), reaching 2.2 x 10^5 cells ml⁻¹ (Figure 4A). There was a significant effect of day (ANOVA, F_{4,30} = 55, p <0.001), treatment (ANOVA, F_{2,30} = 44, p < 0.001), and interaction (ANOVA, F_{8,30} = 18, p <0.001) on cell abundance of tox-*Microcystis*. In treatments with *Cryptomonas* filtrate or in monoculture, tox-*Microcystis* reached maximum abundances of 5.2×10^4 cells ml⁻¹ and 6.2×10^4 cells ml⁻¹, respectively (p = 0.73). However, a final cell abundance of 2.21×10^5 cells ml⁻¹ was reached after direct co-culture with *Cryptomonas* (Figure 4A).

Figure 4. Changes in cell abundance of (a) tox-*Microcystis* and (b) *Cryptomonas* over the experimental period (8 days) when grown alone in monoculture, co-culture, or with reciprocal filtrate. Error bars represent standard error of the mean between three replicate samples. Note change in scale between panels.

Population growth rate (cells day⁻¹) of *Cryptomonas* was 0.22 day^{-1} , 0.21 day^{-1} , and 0.24 day^{-1} when grown alone, in co-culture with tox-*Microcystis*, and with reciprocal filtrate, respectively (Figure 5). Population growth rate of *Cryptomonas* in monoculture did not differ between experiments with varying macronutrient concentration, despite a reduction in nitrogen and phosphorus in the second series (T-Test, t = 0.36, p = 0.75). The toxic strain of *Microcystis* exhibited population growth rates of 0.33 day^{-1} , 0.26 day^{-1} , and 0.23 day^{-1} when grown alone, in co-culture with *Cryptomonas*, and with reciprocal filtrate, respectively (Figure 5). Relative to population growth rate alone in monoculture, tox-*Microcystis* exhibited significantly lower rates in co-culture (p palone, together = 0.02) or with reciprocal filtrate from *Cryptomonas* (p palone, filt = 0.001). tox-*Microcystis* exhibited a higher population growth rate than *Cryptomonas* when both were grown alone in monoculture (p=0.001) and in direct co-culture (p=0.04).


Figure 5. Population growth rate (cells day⁻¹) of tox-*Microcystis* and *Cryptomonas* when grown alone in monoculture, incubated in co-culture, and with reciprocal filtrate. Growth rate determined by slope of the linear regression of ln-transformed cell abundance values plotted over time (days). Asterisks indicate statistically significant differences between species within the same treatment (p < 0.05). Errors bars represent standard error of the mean from three replicate samples.

2.3. Toxicity of Microcystis in response to Cryptomonas

Intracellular and dissolved fractions of nt-Microcystis did not contain detectable microcystin-LR (MC-LR). The toxic strain of Microcystis was confirmed to contain intracellular MC-LR values of 0.06 pg cell-1 or 347 ng ml-1 during the exponential phase of growth alone in nutrient enriched media. MC-LR was not detectable in the dissolved fraction of tox-Microcystis in unialgal culture nor experimental treatments. This was expected because microcystins are generally contained intracellularly until cell lysis [12]. Description of MC-LR results will hereafter refer to intracellular toxin concentrations.

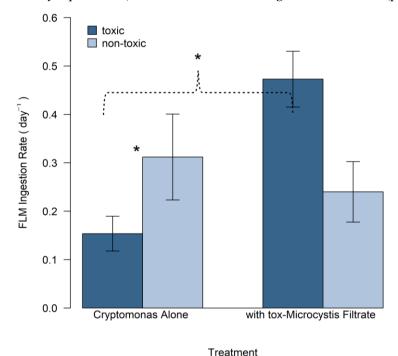
There was a significant increase in concentration of MC-LR (cell-1) over time when tox-Microcystis was grown in monoculture, reaching a maximum of 0.32 pg cell-1 on day eight (Table 1, Figure 6). However, when tox-Microcystis was grown in co-culture with Cryptomonas, a peak of only 0.04 pg cell-1 MC-LR was reached on the fourth day of experimentation. In the presence of filtrate derived from Cryptomonas, MC-LR cell-1 in tox-Microcystis also increased over the eight-day experimental period, reaching a maximum of 0.27 pg cell-1 on the final day.

On the initial day of incubation, there was no significant difference in intracellular MC-LR cell-1 between the treatments (0.03 pg cell-1 ± 0.004 , Kruskal-Wallis p = 0.06, Figure 6). After eight days, MC-LR cell-1 was approximately 89% greater in cells grown in the presence of Cryptomonas filtrate or alone in monoculture (palone, together = 0.02, palone, filt = 0.78, pfilt, together = 0.04), compared with cells grown in co-culture with the mixotroph.

Figure 6. Intracellular concentration of microcystin-LR (MC-LR) in tox-*Microcystis* after incubation with *Cryptomonas*, filtrate from the mixotroph, or alone in monoculture. Letters above bars indicate results of non-parametric ANOVA (Kruskal-Wallis) performed on MC-LR cell-1 within each treatment day. Note that MC-LR was not measured in tox-*Microcystis* monoculture on day 4 (nd = no data).

Table 1. Results of one-way analysis of variance of intracellular MC-LR concentration (MC-LR cell⁻¹) in tox-*Microcystis* either grown alone, with *Cryptomonas*, or with addition of filtrate derived from *Cryptomonas*. Asterisk indicates failure of normality test, and subsequent use of ANOVA on ranks.

Treatment	Variable	df	F	р
Microcystis alone	day	1	12.309	0.025
Microcystis + Cryptomonas	day	2	14.888	0.005
Microcystis + Cryptomonas _{filt}	day	2	14.222	0.005
Day of Experiment		df	F	р
0		2	5.600*	0.061
4		1	21.400	0.010
8		2	8.919	0.016


2.4. Ability of mixotrophic Cryptomonas to ingest tox- and nt-Microcystis

Measurements of MC-LR within the intracellular portion of fluorescently-labeled tox-*Microcystis* (tox-FLM) were below the detection limit. Values of 4.62 ng ml⁻¹ were measured in the dissolved portion of tox-FLM, indicating that preparation of labeled cells may have caused the cyanobacteria to release intracellular toxins. Upon view via microscopy, cellular membranes appeared intact. It is assumed that *Cryptomonas* was exposed to MC-LR during incubation with tox-FLM because both filtrate and whole cells were provided.

222

214

There was no evidence of uptake of non-toxic fluorescently labeled Microcystis (nt-FLM) by Cryptomonas over a period of two hours after incubation in monoculture, in co-culture with nt-Microcystis, nor with filtrate from the cyanobacteria. However, abundance of tox-FLM and nt-FLM declined significantly after incubation with Cryptomonas that was grown either alone in monoculture or incubated with filtrate from tox-Microcystis (Figure 7, Table 2). When incubated alone in monoculture, ingestion rates of tox-FLM and nt-FLM by Cryptomonas were 0.15 and 0.31 cells day-1, respectively (Figure 7). Therefore, ingestion rate was greater on nt-Microcystis. Incubation of Cryptomonas with filtrate from tox-Microcystis led to a significant increase in ingestion of tox- FLM (0.5 cell day-1, p < 0.0001), but did not influence ingestion of nt-FLM (p = 0.19).

223

224

225 226 227

228

229

230

231

Figure 7. Ingestion rate (cells day⁻¹) of toxic and non-toxic fluorescently labeled Microcystis (as measured by disappearance) in treatments with either Cryptomonas alone or cultured with filtrate from tox-Microcystis. Error bars represent standard error of the mean from three replicate samples. Asterisks indicate statistically significant differences (p < 0.05).

Table 2. Results of one-way analysis of covariance (ANCOVA) for the equal slopes model of ingestion of fluorescently labeled Microcystis (FLM) by Cryptomonas with pairwise multiple comparisons (Holm-Sidak method). Tox = toxic FLM, nt = non-toxic FLM. Filtrate refers to tox-FLM filtrate.

Variable	df	F	p
Treatment	3	19.350	< 0.001
Time	1	62.539	< 0.001
Residual	31		
Treatment	FLM type		p
Cryptomonas alone	tox-nt		< 0.001
Cryptomonas + filtrate	tox-nt		0.240
alone-filtrate	Tox		< 0.001
alone-filtrate	nt		0.190

In all mixed culture experiments, the physical effect of both tox- and nt-Microcystis on population growth rate of Cryptomonas were insignificant, indicating that growth of the mixotroph was not enhanced by the presence of a potential cyanobacterial food source. Although population growth rate of Cryptomonas was reduced in co-culture with both strains of Microcystis, it was not significantly different relative to that alone. In each set of experiments, the highest growth rate of Cryptomonas occurred in the presence of cyanobacterial filtrate, suggesting that allelopathic compounds from Microcystis provide nutritional value to the mixotroph. Facilitative effects of toxic cyanobacterial filtrate, especially at low concentrations, have been shown to support growth of Cyptomonas ovata [51]. Alternatively, filtrate from Microcystis may have fueled growth of heterotrophic bacteria that can be grazed by Cryptomonas. Studies in natural systems that have identified members of the Cryptophyta can be responsible for 70% of total bacterivory [52].

Interactions between cyanobacteria and heterotrophic bacteria often have been described in context of the phycosphere, the nutrient-rich microenvironment on the periphery of cyanobacterial cells [53-54]. Cyanobacterial filtrate has been shown to support bacterial growth and production [55-56]. For example, Shen et al. (2011) showed significantly higher population growth of heterotrophic bacteria when grown in the presence of *Microcystis aeruginosa* [57]. Both quantity and quality of filtrate, as well as physiological state of the cyanobacterial cells, are expected to influence associated bacteria. Though we did not fully characterize the filtrate from both strains of *Microcystis*, there were no significant differences in dissolved organic carbon (DOC) concentration between filtrates (Figure S1). Further, filtrate derived from tox-*Microcystis* did not contain detectable MC-LR. Therefore, DOC nor absence of cyanotoxin does not likely drive the advantages afforded by exposure to nt-*Microcystis* filtrate.

Although it is difficult to disentangle the effects of nutrient availability and toxicity, our results suggest that the physical presence of *Cryptomonas* had contrasting impacts on growth of two strains of *Microcystis* that varied in toxicity. Whereas population growth rate of nt-*Microcystis* was greatest in co-culture with *Cryptomonas*, that of tox-*Microcystis* was significantly reduced in the physical presence of the mixotroph (relative to monoculture). There was also a reduction in growth rate of tox-*Microcystis* when incubated with filtrate from *Cryptomonas*, suggesting a negative effect of compounds released by the mixotroph. Therefore, the negative effect of *Cryptomonas* on tox-*Microcystis*, at least under low nutrient conditions, is likely through a combination of grazing and allelopathy. This contradicts work by Wilken et al. (2010), where *Ochromonas* filtrate did not influence abundance of toxic nor non-toxic *M. aeruginosa* [44]. Experimental differences between our work and others allude to the role of the mixotrophic gradient in predicting interactions between flagellates and cyanobacteria.

We expected that population growth of nt-*Microcystis* would be reduced in the presence of *Cryptomonas*, either by competition or direct ingestion. However, population growth of nt-*Microcystis* was not inhibited by *Cryptomonas*, and overall growth rate was highest in co-culture with the mixotroph. In fact, nt-*Microcystis* reached approximately the same final cell abundance in all experimental treatments. Our results suggest that competitive interactions are not strong enough for *Cryptomonas* to provide top-down control of nt-*Microcystis*, particularly under high-nutrient conditions used in experimentation. It is well known that *Microcystis* is a superior competitor under high nutrient conditions, such as those provided by nutrient-replete media in the first series of experiments [5,58]. The mixotrophic Chrysophyte, *Ochromonas*, was able to suppress growth of toxic *Microcystis aeruginosa*, but only under reduced nitrogen concentrations (20 µmol L-1 NH₄CL) [39]. In our work, *Cryptomonas* was also able to suppress growth rate of tox-*Microcystis* under nutrient-deplete conditions. Both studies suggest that mixotrophic flagellates may be effective biological control agents only in oligotrophic systems where cyanobacterial blooms are less pervasive.

Ingestion rates of tox- and nt-*Microcystis* by *Cryptomonas* were lower than reported for other mixotrophs. *Ochromonas*, a mixotroph on the heterotrophic end of the nutritional gradient, has been documented to maintain high ingestion rates on toxic strains of *Microcystis* [42, 44]. For example, *Ochromonas* exhibited a maximum ingestion rate of 5.7 prey⁻¹ day⁻¹ and 2.1 prey⁻¹ day⁻¹ on toxic and

non-toxic strains of *M. aeruginosa*, respectively [44]. Flagellate grazing in the previously mentioned study was conducted with live cyanobacterial cells, whereas our work was done with heat-killed, fluorescently labeled prey. The use of fluorescent prey was chosen to separate the effects of competition and grazing. Differences in ingestion rates between this and other studies may have resulted from initial inoculation density of FLM, where during our work FLM were added at a lower, yet still ecologically relevant, concentration. Other work on ingestion of cyanobacteria by mixotrophic flagellates suggests an increase in flagellate growth and ingestion rate with cyanobacterial density up to 10⁶ cells ml⁻¹ [41,44]. Grazing rate depends not only on the abundance of prey, but also population density of the predator. For example, ingestion rate of *Ochromonas* was reduced at concentrations greater than 10⁵ cells ml⁻¹, when intraspecific interference was hypothesized to reduce grazing on toxic *M. aeruginosa* [39]. However, no study has examined feeding on toxic or non-toxic *Microcystis* by *Cryptomonas*, and feeding rates are likely variable among flagellates.

During incubation in monoculture under low-nutrient conditions, *Cryptomonas* exhibited a greater ingestion rate on nt-FLM. However, incubation with filtrate from tox-*Microcystis*, which did not contain MC-LR, led to a significant increase in ingestion of tox-FLM. Although tox-FLM did not contain detectable intracellular MC-LR, the surrounding filtrate contained levels above our limit of detection. Therefore, cyanobacterivory by *Cryptomonas* was not inhibited by presence of the cyanotoxin MC-LR. Other work using laboratory cultures has documented the ability of mixotrophic and heterotrophic flagellates to tolerate microcystins [42]. We suggest that filtrate derived from the toxic strain may have provided a source of nutritional supplement that supported increased grazing by *Cryptomonas*. Addition of cyanobacterial filtrate may have induced a shift in nutritional mode from photosynthesis to heterotrophy by supporting photosynthetic machinery.

Concentrations of intracellular MC-LR were significantly reduced in tox-*Microcystis* after co-incubation with *Cryptomonas*. A similar result has been observed for *Ochromonas* and *Poterioochromonas* [43,59]. We propose that the mixotrophic flagellate, *Cryptomonas*, is able to biodegrade MC-LR though ingestion of toxin-producing *Microcystis*. Ingestion of microcystin-producing cyanobacteria by mixotrophic flagellates may act to supply N-rich compounds. Further work is required to substantiate the biodegradation theory, as we did not discriminate between microcystins within mixotrophic or cyanobacterial cells. However, a similar study with *Poterioochromonas malhamensis* indicated that MC-LR does not accumulate within the cell of the predatory mixotroph [59]. Cyanotoxin concentrations were adjusted for cellular abundance of *Microcystis*, therefore results are not likely due to a depletion in the cyanobacteria population. However, similar trends in MC-LR ml-1 were observed without correction for cell abundance (Figure S1).

Competition, predation, and allelopathic interactions between cyanobacteria and mixotrophic flagellates are an underrepresented trophic link that may be important in structuring the microbial food web (see Figure 1). Metabolic coupling between cyanobacteria and mixotrophic flagellates may depend on their position on the nutritional gradient. Laboratory work in this and other studies support the theory that the presence of mixotrophic protists can have an impact on cyanobacteria, including reductions in population growth rate and production of cyanotoxins. Whereas mixotrophs on the heterotrophic extreme of the nutritional gradient seem to gain growth benefits from cyanobacterivory, population growth of *Cryptomonas*, a primary phototroph, was largely unaffected by the presence of toxic and non-toxic strains of *Microcystis*. Instead, *Cryptomonas* may use organic carbon supplied from cyanobacterial filtrate to maintain, but not enhance, its growth. The microbial loop has revealed that bacteria are a critical link between dissolved organic matter and higher trophic levels through ingestion by heterotrophic and mixotrophic flagellates. Cyanobacterivorous protists may also mediate nutrient remineralization though detoxification of secondary metabolites and provide a subsidy to the classic food web.

4. Materials and Methods

Cultures of Cryptomonas sp. and Microcystis aeruginosa were purchased from the Canadian Phycological Culture Centre (CPCC) at the University of Waterloo, Ontario, Canada. Microcystis aeruginosa (CPCC #300, referred to as tox-Microcystis) was indicated to produce microcystins up to 200 μg g⁻¹ of dry weight. The non-toxic strain of M. aeruginosa (CPCC #632, nt-Microcystis) originated from the University of Texas Culture Collection at University of Texas at Austin (UTEX LB 2061) and initially was isolated from Lake Mendota in Wisconsin, USA. Cultures were unialgal, but contained heterotrophic bacteria. All cultures were maintained in an enriched Bold's Basal Medium (BBM) at 20°C. Light was provided by cool-white fluorescent bulbs under a 12:12 light: dark cycle of 100 µmol photons m-2 s-1 in a Percival Intellus environmental controller (Percival Scientific, Perry, IA, USA).

4.1. Preparation and analysis of algal filtrate

Filtrate was prepared by passing unialgal culture through a sterile 0.2 µm filter unit (Nalgene, Nalge Nunc International Corp., Rochester, NY, USA). Filter size was chosen as to reduce the addition of heterotrophic bacteria from non-axenic cultures. Dissolved organic carbon was measured in replicate samples of filtrate from *Cryptomonas* and both tox- and nt-*Microcystis* via the heated persulfate wet oxidation technique on an Aurora 1030 TOC Analyzer with model 1088 Autosampler (OI Analytical, College Station, TX, USA).

4.2. Biotic interactions between a mixotrophic flagellate, Cryptomonas, and two strains of Microcystis aeruginosa

Aliquots of each species were allowed to acclimate over 10 days to a temperature of 22 °C under a 12:12 light: dark cycle of 30 µmol photons m⁻² s⁻¹. Both were grown and maintained in highly enriched BBM (38 mg L⁻¹ N, 63 mg L⁻¹ P). After acclimation, *Cryptomonas* and nt-*Microcystis* were incubated in triplicate 250-mL culture flasks according to the following treatments: individual species as a monoculture, mixed culture of both species, and each species grown with reciprocal filtrate. Each treatment was inoculated according to the ratio of algae: media recommended by the CPCC; 5:1 for *Microcystis* and 15:1 for *Cryptomonas*. Mean final concentration of inoculate was 3.2 x 10⁴ cells mL⁻¹. Treatments designated for addition of reciprocal filtrate received the same volume of filtrate represented by culture that was added to those in mixed treatments. Experimental manipulations between *Cryptomonas* and nt-*Microcystis* were maintained for 8 days after initial inoculation, with daily rotation, sub-sampling for cell abundance, and replenishment with an equal volume of BBM. Replicates with reciprocal filtrate were replenished with BBM or fresh filtrate on alternate days. Sub-samples for enumeration of cell abundance were fixed with 50% ice-cold glutaraldehyde and stored cold until analysis (< 1 week).

Cultures used in the second series of experiments between *Cryptomonas* and tox-*Microcystis* were maintained under similar light and temperature conditions as described. During the acclimation period, aliquots of *Cryptomonas* and tox-*Microcystis* were serially transferred to a nutrient-deplete BBM with 3.3 mg L⁻¹ TN and 0.3 mg L⁻¹ TP. After acclimation, the experiment progressed as previously described with an 8-day incubation of daily rotation and media or filtrate replenishment. Sub-sampling for cell enumeration occurred on alternate days.

4.3. Cyanobacterivory by Cryptomonas

Ability of *Cryptomonas* to ingest strains of *Microcystis* (i.e., cyanobacterivory) was assessed by either uptake or disappearance of heat-killed, fluorescently labeled *Microcystis* (FLM) prepared from culture stocks (Reiter 1997). Tox- and nt-*Microcystis* were labeled with the fluorescent protein stain 5-(4,6-dichlorotriazin-2-yl) amino fluorescein (DTAF, λ_{ex} 485 nm, λ_{em} 516 nm) according to [60-61]. Monocultures in exponential growth were concentrated via centrifugation at low speeds to avoid cell lysis. Pelletized culture was then resuspended in phosphate-buffered saline (pH 9) and incubated for 2 hours at 70°C with DTAF at 0.2 mg mL-1. After incubation, culture was concentrated by centrifugation, resuspended in 10 mL PBS, and unbound-DTAF was removed with three

additional concentration-rinse cycles. Heat-killed, fluorescently labeled preparations (hereafter tox-FLM and nt-FLM), were stored at 5 °C in darkness prior to use. Sonification was used prior to addition to grazing experiments to reduce clumping.

On the final day of experimentation (day eight), treatments of *Cryptomonas* alone, *Cryptomonas* with nt-*Microcystis*, and *Cryptomonas* with filtrate from nt-*Microcystis* received an addition of nt-FLM at tracer levels, equivalent to 7×10^4 cells ml $^{-1}$. Sub-samples were taken immediately after nt-FLM addition to account for background coincidence and again after 15, 30, 60, and 120 minutes. Samples were fixed with 2% ice-cold glutaraldehyde and stored in darkness prior to analysis.

Ability of *Cryptomonas* to ingest *Microcystis* also was evaluated through disappearance of toxand nt-FLM. On the final day the second series of culture experiments (day eight), tox- and nt-FLM were independently added to treatments of *Cryptomonas* alone and that grown with filtrate from tox-*Microcystis*. Inoculation density was on the order of 5×10^4 FLM ml⁻¹. Replicates were incubated under the same experimental conditions, with subsamples taken immediately after tox- and nt-FLM addition and again after 24, 48, and 72 hours. As a control, tox- and nt-FLM were incubated alone under the same conditions in tissue culture flasks. Samples were fixed with 2% ice-cold glutaraldehyde and stored in darkness.

4.4. Microcystin analysis and extraction

Intracellular and dissolved concentrations of microcystin (MC-LR) were determined by liquid chromatography/tandem mass spectrometry (LC-MS/MS) following modifications of EPA Method 544 [62]. Intracellular MC-LR was measured by passing a 10-mL aliquot from each replicate through a 0.45 µm polycarbonate membrane (25 mm in diameter, Whatman, Maidstone, United Kingdom), which was placed in a scintillation vial with 2 mL 80% methanol and immediately frozen. After 16 hours, filter was gently swirled and liquid was transferred to an additional sterile scintillation vial. Filter was rinsed three times with 80% methanol, for a final volume of 10 mL. Dissolved, extracellular MC-LR was determined from filtrate of original aliquot, which was stored at 5 °C until analysis (no more than 14 days). The same method was used to verify ambient concentration of intracellular and dissolved MC-LR in monocultures of both *Microcystis* strains grown at high cell densities and in tox-FLM used in cyanobacterivory experiments. Samples for MC-LR analysis during experimentation were taken on days 0 and 8 in tox-*Microcystis* grown alone, co-cultured with *Cryptomonas*, and grown with reciprocal filtrate. MC-LR was also quantified on day four in the co-culture and reciprocal filtrate treatments.

Samples for intracellular and dissolved microcystin were prepared by solid phase extraction by passing through a syringe-barrel cartridge with universal polymeric reversed phase sorbent (Oasis HLB 6cc, Waters Corp., Milford, MA, USA) on a vacuum manifold. Analytes were eluted from the column with a solution of methanol containing 5% distilled water with formic acid. Extracts were concentrated by evaporation with nitrogen gas, and adjusted to a final volume of 0.25 mL-1 with methanol. The LC-MS/MS system consisted of dual Varian ProStar (210) pumps interfaced to a Varian 1200L triple quadrupole mass spectrophotometer (Varian, Inc., Palo Alto, CA, USA). A standard curve was prepared from serial dilution of MC-LR stock in methanol (Beagle Bioproducts Inc., Columbus, OH, USA). Recovery of microcystin through sample matrix as determined by comparison of extracted and non-extracted standard was 91%. MC-LR concentration was standardized to cell abundance of *Microcystis* for analysis.

4.5. Cell enumeration and examination of bacterivory by fluorescence microscopy

Sub-samples were prepared for cell enumeration by filtration of 200 μ L onto a 25 mm, 0.2 μ m white polycarbonate membrane (Millipore Sigma, Burlington, MA, USA). Filters were mounted onto slides with Vectashield mounting media (Vector Laboratories, Burlingame, CA, USA) containing DAPI stain (4',6-diamidino-2-phenylindole) and enumerated using fluorescence microscopy with a Zeiss Axioplan at 400X magnification. *Microcystis* and *Cryptomonas* were first

- visualized by chlorophyll autofluorescence, and verified by identification of nucleic material under
- 432 UV excitation. Tox- and nt-FLM were enumerated under blue-light excitation.
- 4.6. Determination of population growth rate and ingestion rate
- 434 All statistical analyses were performed using SigmaPlot (Systat Software, San Jose, CA, USA)
- and R software package 'multcomp' [63]. Population growth rates (cells d-1) for each species were
- 436 calculated by determining the slope of the linear regression of ln-transformed cell abundance values
- 437 plotted over time. Growth rates of species across treatments were compared by two-way ANOVA,
- 438 followed by post hoc comparisons (Tukey HSD test). Normality and equal variance were verified
- 439 with Shapiro-Wilk and Brown-Forsythe tests, respectively. Rate of FLM disappearance, and
- therefore flagellate grazing rate, was determined by the slope of a linear regression through
- log-transformed FLM abundance over time. Comparison of rates of FLM disappearance in different
- treatments were performed with one-way ANCOVA after verification of normality (Shapiro-Wilk),
- equal variance (Levene), and equal slopes. Post hoc pairwise comparisons were made by the
- Holm-Sidak method. One-way ANOVA and subsequent Tukey Tests were used to compare
- intracellular MC-LR over treatments and days. In the event that assumptions of normality were not
- met (n=1), Kruskal-Wallis one-way analysis of variance on ranks was used.
- 447 Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: DOC
- 448 Content in Algal Cultures, Table S1: Concentration of MC-LR without Correction for Cell Abundance
- 449 **Conflicts of Interest:** The authors declare no conflict of interest.

450 References

- 451 1. Beaulieu, M.; Pick, F.; Gregory-Eaves, I. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. *Limnol. Oceanogr.* 2013, 58, 1736-1746, doi:10.4319/lo.2013.58.5.1736.
- 454 2. Taranu, Z.E.; Gregory-Eaves, I.; Leavitt, P.R.; Bunting, L.; Buchaca, T.; Catalan, J.; Domaizon, I.; 455 Guilizzoni, P.; Lami, A.; McGowan, S., et al. Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. *Ecol. Lett.* 2015, *18*, 375-384, doi:10.1111/ele.12420.
- 457 3. Beaver, J.R.; Manis, E.E.; Loftin, K.A.; Graham, J.L.; Pollard, A.I.; Mitchell, R.M. Land use patterns, 458 ecoregion, and microcystin relationships in US lakes and reservoirs: A preliminary evaluation. *Harmful* 459 *Algae* 2014, 36, 57-62, doi:10.1016/j.hal.2014.03.005.
- 4. Paerl, H.W. Mitigating Toxic Planktonic Cyanobacterial Blooms in Aquatic Ecosystems Facing Increasing Anthropogenic and Climatic Pressures. *Toxins* **2018**, *10*, doi:10.3390/toxins10020076.
- 5. Dolman, A.M.; Rucker, J.; Pick, F.R.; Fastner, J.; Rohrlack, T.; Mischke, U.; Wiedner, C. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus. *PLOS ONE* **2012**, 7, doi:10.1371/journal.pone.0038757.
- 465 6. Rigosi, A.; Carey, C.C.; Ibelings, B.W.; Brookes, J.D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. *Limnol. Oceanogr.* **2014**, *59*, 99-114, doi:10.4319/lo.2014.59.1.009.
- Marmen, S.; Aharonovich, D.; Grossowicz, M.; Blank, L.; Yacobi, Y.Z.; Sher, D.J. Distribution and Habitat
 Specificity of Potentially-Toxic Microcystis across Climate, Land, and Water Use Gradients. *Front. Microbiol.* 2016, 7, doi:10.3389/fmicb.2016.00271.
- 8. Beaver, J.R.; Tausz, C.E.; Scotese, K.C.; Pollard, A.I.; Mitchell, R.M. Environmental factors influencing the quantitative distribution of microcystin and common potentially toxigenic cyanobacteria in US lakes and reservoirs. *Harmful Algae* 2018, 78, 118-128, doi:10.1016/j.hal.2018.08.004.
- Wagner, C.; Adrian, R. Cyanobacteria dominance: Quantifying the effects of climate change. *Limnol.* Oceanogr. 2009, 54, 2460-2468, doi:10.4319/lo.2009.54.6_part_2.2460.
- 476 10. Carey, C.C.; Ibelings, B.W.; Hoffmann, E.P.; Hamilton, D.P.; Brookes, J.D. Eco-physiological adaptations 477 that favour freshwater cyanobacteria in a changing climate. *Water Res.* **2012**, *46*, 1394-1407, 478 doi:10.1016/j.watres.2011.12.016.

- 479 11. Wilkinson, A.A.; Hondzo, M.; Guala, M. Investigating abiotic drivers for vertical and temporal heterogeneities of cyanobacteria concentrations in lakes using a seasonal *in-situ* monitoring station. *Water Resour. Res.* 2018, doi:10.1029/2018WR024228.
- 482 12. Graham, J.L.; Loftin, K.A.; Meyer, M.T.; Ziegler, A.C. Cyanotoxin Mixtures and Taste-and-Odor Compounds in Cyanobacterial Blooms from the Midwestern United States. *Environ. Sci. Technol.* 2010, 484 44,7361-7368, doi:10.1021/es1008938.
- 485 13. Loftin, K.A.; Graham, J.L.; Hilborn, E.D.; Lehmann, S.C.; Meyer, M.T.; Dietze, J.E.; Griffith, C.B.
 486 Cyanotoxins in inland lakes of the United States: Occurrence and potential recreational health risks in the
 487 EPA Natural Lakes Assessment 2007
 488 Harmful Algae 2016, 56, 77-90, doi:10.1016/j.hal.2016.04.001.
- 489 14. Christoffersen, K. Ecological implications of cyanobacterial toxins in aquatic food webs. *Phycologia* **1996**, 490 35, 42-50.
- 491 15. Jacoby, J.M.; Collier, D.C.; Welch, E.B.; Hardy, F.J.; Crayton, M. Environmental factors associated with a toxic bloom of Microcystis aeruginosa. *Can. J. Fish. Aquat. Sci.* **2000**, *57*, 231-240, doi:10.1139/cjfas-57-1-231.
- 493 16. Davis, T.W.; Berry, D.L.; Boyer, G.L.; Gobler, C.J. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of *Microcystis* during cyanobacteria blooms. *Harmful Algae* 495 2009, 8, doi:10.1016/j.hal.2009.02.004.
- 496 17. Hayes, N.M.; Vanni, M.J. Microcystin concentrations can be predicted with phytoplankton biomass and watershed morphology. *Inland Waters* **2018**, doi:10.1080/20442041.2018.1446408.
- 498 18. Wilson, A.E.; Sarnelle, O.; Tillmanns, A.R. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: Meta-analyses of laboratory experiments. *Limnol. Oceanogr.* 2006, *51*, 1915-1924, doi:10.4319/lo.2006.51.4.1915.
- 501 19. Urrutia-Cordero, P.; Ekvall, M.K.; Hansson, L.A. Responses of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom? *Freshwater Biol.* **2015**, *60*, 960-972, doi:10.1111/fwb.12555.
- 503 20. Ger, K.A.; Otten, T.G.; DuMais, R.; Ignoffo, T.; Kimmerer, W. In situ ingestion of Microcystis is negatively 504 related to copepod abundance in the upper San Francisco Estuary. *Limnol. Oceanogr.* **2018**, *63*, 2394-2410, 505 doi:10.1002/lno.10946.
- Triest, L.; Stiers, I.; Van Onsem, S. Biomanipulation as a nature-based solution to reduce cyanobacterial blooms. *Aguat. Ecol.* **2016**, *50*, 461-483, doi:10.1007/s10452-015-9548-x.
- 508 22. Bierman, V.J.; Kaur, J.; DePinto, J.V.; Feist, T.J.; Dilks, D.W. Modeling the role of zebra mussels in the proliferation of blue-green algae in Saginaw Bay, Lake Huron. *J. Great Lakes Res.* 2005, 31, 32-55, doi:10.1016/s0380-1330(05)70236-7.
- 511 23. Fulton, R.S.; Paerl, H.W. effects of colonial morphology on zooplankton utilization of algal resources 512 during blue-green-algal (microcystis-aeruginosa) blooms. *Limnol. Oceanogr.* 1987, 32, 634-644, 513 doi:10.4319/lo.1987.32.3.0634.
- 514 24. Demott, W.R.; Moxter, F. Foraging on cyanobacteria by copepods responses to chemical defenses and resource abundance. *Ecology* **1991**, 72, 1820-1834, doi:10.2307/1940981.
- 516 25. Yang, Z.; Kong, F.X.; Shi, X.L.; Zhang, M.; Xing, P.; Cao, H.S. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during flagellate grazing. *J. Phycol.* 518 2008, 44, 716-720, doi:10.1111/j.1529-8817.2008.00502.x.
- 519 26. Yang, Z.; Kong, F.X. Formation of large colonies: a defense mechanism of Microcystis aeruginosa under 520 continuous grazing pressure by flagellate Ochromonas sp. *J. Limnol.* **2012**, *71*, 61-66, 521 doi:10.4081/jlimnol.2012.e5.
- Kim, B.R.; Nakano, S.; Kim, B.H.; Han, M.S. Grazing and growth of the heterotrophic flagellate Diphylleia rotans on the cyanobacterium Microcystis aeruginosa. *Aquat. Microb. Ecol.* 2006, 45, 163-170, doi:10.3354/ame045163.
- 525 28. Mohamed, *Z*; Alshehri, A. Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans. *Ecotox. Environ. Safe.* **2013**, *96*, 48-52, doi: 10.1016/j.ecoenv.2013.06.015.
- 528 29. Van Wichelen, J.; van Gremberghe, I.; Vanormelingen, P.; Debeer, A.E.; Leporcq, B.; Menzel, D.; Codd, G.A.; Descy, J.P.; Vyverman, W. Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). *Environ. Microbiol.* 2010, 12, 2797-2813, doi:10.1111/j.1462-2920.2010.02249.x.

- 532 30. Caron, D.A.; Countway, P.D.; Jones, A.C.; Kim, D.Y.; Schnetzer, A. Marine protistan diversity. *Ann. Rev. Mar. Sci.* 2012, *4*, 467-493, doi: 10.1146/annurev-marine-120709-142802.
- 534 31. Domaizon, I.; Viboud, S.; Fontvieille, D. Taxon-specific and seasonal variation in flagellates grazing on 535 heterotrophic bacteria in the oligotrophic Lake Annecy – importance of mixotrophy. *FEMS Microbiol. Ecol.* 536 2003, 46, 317-329, doi: 10.1016/S0168-6496(03)00248-4.
- 537 32. Oikonomou, A.; Filker, S.; Breiner, H.; Stoeck, T. Protistan diversity in a permanently stratified meromictic lake (Lake Alatsee, SW Germany). *Environ. Microbial.* **2015**, *17*, 2144-2157, doi: 10.1111/1462-2920.12666.
- 540 33. Princiotta, S.D.; Sanders, R.W. Heterotrophic and mixotrophic nanoflagellates in a mesotrophic lake: 541 abundance and grazing impacts across season and depth. *Limnol Oceanogr.* **2017**, *62*, 632-644, doi: 542 10.1002/lno.10450.
- 543 34. Wilken, S.; Huisman, J.; Naus-Wiezer, S.; Van Donk, E. Mixotrophic organisms become more heterotrophic with rising temperature. *Ecol. Lett.* **2013**, *16*, 225-233, doi: 10.10.1111/ele.12033.
- 545 35. Princiotta, S.D.; Smith, B.T.; Sanders, R.W. Temperature-dependent phagotrophy and phototrophy in a mixotrophic chrysophyte. *J. Phycol.* **2016**, *52*, 432-440, doi: 10.1111/jpy.12405.
- 547 36. Jones, H.L.J. A classification of mixotrophic protists based on their behavior. *Freshwater Biol.* **1997**, 37, 548 35-43.
- 37. Mitra, A.; Flynn, K.J.; Tillmann, U; Raven, J.A.; Caron, D.; Stoecker, D.K.; Not, F.; Hansen, P.J.; Hallegraeff, G.; Sanders, R.W.; Wilken, S.; McManus, G.; Johnson, M.; Pitta, P.; Vage, S.; Berge, T.; Calbet, A.; Thingstad, F.; Jeong, H.J.; Burkholder, J.; Glibert, P.M.; Graneli, E.; Lundgren, V. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: incorporation of diverse mixotrophic strategies. *Protist* 2016, 167, 106-120, doi: 10.1016/j.protis.2016.01.003.
- 554 38. Caron, D.A.; Sanders, R.W.; Lim, E.L.; Marrase, C.; Amaral, L.A.; Whitney, S.; Aoiki, R.B.; Porter, K.G. Light-dependent phagotrophy in the freshwater mixotrophic chrysophyte Dinobryon cylindricum.

 556 *Microb. Ecol.* 1993, 25, 93-111, doi: 10.1007/BF00182132.
- 557 39. Wilken, S.; Verspagen, J.M.H.; Naus-Wiezer, S.; Van Donk, E.; Huisman, J. Biological control of toxic cyanobacteria by mixotrophic predators: an experimental test of intraguild predation theory. *Ecological Applications* **2014**, 24, 1235-1249, doi:10.1890/13-0218.1.
- 560 40. Holen, D.A. Effects of prey abundance and light intensity on the mixotrophy chrysophyte Poterioochromonas malhamensis from a mesotrophic lake. *Freshw. Biol.* **1999**, 42, 445-455.
- 562 41. Zhang, X.; Hu, H.Y.; Hong, Y.; Yang, J. Isolation of a Poterioochromonas capable of feeding on Microcystis aeruginosa and degrading microcystin-LR. FEMS Microbiol. Lett. 2008, 288, 241-246, doi:10.1111/j.1574-6968.2008.01355.x.
- 565 42. Baek, S.H.; Hong, S.S.; Song, S.Y.; Lee, H.O.; Nakano, S.; Han, M.S. Grazing Effects on Toxic and Non-Toxic Microcystis aeruginosa by the Mixotrophic Flagellate Ochromonas sp. *Journal of Freshwater Ecology* **2009**, 24, 367-373, doi:10.1080/02705060.2009.9664308.
- Van Donk, E.; Cerbin, S.; Wilken, S.; Helmsing, N.R.; Ptacnik, R.; Verschoor, A.M. The effect of a mixotrophic chrysophyte on toxic and colony-forming cyanobacteria. *Freshwater Biol.* 2009, 54, 1843-1855, doi:10.1111/j.1365-2427.2009.02227.x.
- Wilken, S.; Wiezer, S.; Huisman, J.; Van Donk, E. Microcystins do not provide anti-herbivore defense
 against mixotrophic flagellates. *Aquat. Microb. Ecol.* 2010, 59, 207-216, doi:10.3354/ame01395.
- 573 45. Sanders, R.W.; Porter, K.G.; Caron, D.A. Relationship between phototrophy and phagotrophy in the mixotrophic chrysophyte Poterioochromonas malhamensis. *Microb. Ecol.* **1990**, *19*, 97-109.
- 46. Holen, D. The effects of heterotrophy on chlorophyll *a* and photosynthesis in a mixotrophic chrysophyte.
 Nova Hedwigia 2001, 122, 107-118.
- 47. 47. Brett, M.T.; Kainz, M.J.; Taipale, S.J.; Seshan, H. Phytoplankton, not allochthonous carbon, sustains
 herbivorous zooplankton production. *Proc. Natl. Acad. Sci.* 2009, 106, 21197-21201, doi:
 10.1073/pnas.0904129106
- 580 48. Hiltunen, M.; Honkanen, M.; Taipale, S.; Strandberg, U.; Kankaala, P. Trophic upgrading via the microbial food web may link terrestrial dissolved organic matter to Daphnia. *J. Plankton Res.* 2017, 39, 861-869, doi:10.1093/plankt/fbx050.
- 583 49. Tranvik, L.; Porter, K.G.; Sieburth, J.M. Occurance of bacterivory in Cryptomonas, a common freshwater phytoplankter. *Oecologia* **1989**, *78*, 473-476.

- 585 50. Urabe, J.; Gurung, T.B.; Yoshida, T.; Sekino, T.; Nakanishi, M.; Maruo, M.; Nakayama, E. Diel changes in phagotrophy by Cryptomonas in Lake Biwa. *Limnol. Oceanogr.* **2000**, *45*, 1558-1563, doi: 10.4319/lo.2000.45.7.1558.
- 51. B-Beres, V.; Grigorszky, I.; Vasas, G.; Borics, G.; Varbiro, G.; Nagy, S.A.; Borbely, G.; Bacsi, I. The effects of Microcystis aeruginosa (cyanobacterium) on Cryptomonas ovata (Cryptophyta) in laboratory cultures: why these organisms do not coexist in steady-state assemblages? *Hydrobiologia* **2012**, *691*, 97-107, doi:10.1007/s10750-012-1061-9.
- 592 52. Grujcic, V.; Nuy, J.K.; Salcher, M.M.; Shabarova, T.; Kasalicky, V.; Boenigk, J.; Jensen, M.; Simek, K. Cryptophyta as major bacterivores in freshwater summer plankton. *ISME J.* **2018**, *12*, 1668-1681, doi:10.1038/s41396-018-0057-5.
- 595 53. Worm, J.; Sondergaard, M. Dynamics of heterotrophic bacteria attached to Microcystis spp. (Cyanobacteria). *Aquat. Microb. Ecol.* **1998**, *14*, 19-28, doi:10.3354/ame014019.
- 597 54. Seymour, J.R.; Amin, S.A.; Raina, J.B.; Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. *Nat. Microbiol.* **2017**, 2, doi:10.1038/nmicrobiol.2017.65.
- 55. Kamjunke, N.; Boing, W.; Voigt, H. Bacterial and primary production under hypertrophic conditions. *Aquat. Microb. Ecol.* **1997**, *13*, 29-35, doi:10.3354/ame013029.
- Kirkwood, A.E.; Nalewajko, C.; Fulthorpe, R.R. The effects of cyanobacterial exudates on bacterial growth and biodegradation of organic contaminants. *Microb. Ecol.* **2006**, *51*, 4-12, doi:10.1007/s00248-004-0058-y.
- 57. Shen, H.; Niu, Y.; Xie, P.; Tao, M.; Yang, Xi. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. *Freshwater Biol.* **2011**, *56*, 1065-1080, doi: 10.1111/j.1365-2427.2010.02551.x.
- 606 58. Monchamp, M.E.; Pick, F.R.; Beisner, B.E.; Maranger, R. Nitrogen Forms Influence Microcystin 607 Concentration and Composition via Changes in Cyanobacterial Community Structure. *Plos One* **2014**, *9*, 608 doi:10.1371/journal.pone.0085573.
- 59. Ou, D.; Song, L.; Gan, N.; Chen, W. Effects of microcystins on and toxin degradation by Poterioochromonas sp. *Environ. Toxicol.* **2005**, *20*, 373-380, doi: 10.1002/tox.20114.
- 60. 60. Reiter, M.A. A simple fluorescent labeling technique for the marking of algae in mixed assemblages. *J. Freshwater Ecol.* **1997**, 12, 163-165, doi:10.1080/02705060.1997.9663519.
- 61. Sherr, B.F.; Sherr, E.B.; Fallon, R.D. Use of monodispersed, fluorescently labeled bacteria to estimate in-situ protozoan bacterivory. *Appl. Environ. Microbiol.* **1987**, *53*, 958-965.
- 615 62. Shoemaker, J.; Tettenhorst, D.; Delacruz, A. Method 544: Determination of microcystins and nodularin in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS). U.S. Environmental Protection Agency, Washington, DC, 2015
- 618 63. Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous interference in general parametric models. *Biom. J.* **2008**, 619 50, 346-363, doi: 10.1002/bimj.200810425.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).