
Cloud Strife: Mitigating the Security Risks of
Domain-Validated Certificates

Kevin Borgolte
UC Santa Barbara

kevinbo@cs.ucsb.edu

Tobias Fiebig
TU Delft

t.fiebig@tudelft.nl

Shuang Hao
UT Dallas

shao@utdallas.edu

Christopher Kruegel
UC Santa Barbara
chris@cs.ucsb.edu

Giovanni Vigna
UC Santa Barbara
vigna@cs.ucsb.edu

Abstract—Infrastructure-as-a-Service (IaaS), and more gener-
ally the “cloud,” like Amazon Web Services (AWS) or Microsoft
Azure, have changed the landscape of system operations on the
Internet. Their elasticity allows operators to rapidly allocate and
use resources as needed, from virtual machines, to storage, to
bandwidth, and even to IP addresses, which is what made them
popular and spurred innovation.

In this paper, we show that the dynamic component paired
with recent developments in trust-based ecosystems (e.g., SSL
certificates) creates so far unknown attack vectors. Specifically, we
discover a substantial number of stale DNS records that point to
available IP addresses in clouds, yet, are still actively attempted to
be accessed. Often, these records belong to discontinued services
that were previously hosted in the cloud. We demonstrate that it
is practical, and time and cost efficient for attackers to allocate
IP addresses to which stale DNS records point. Considering
the ubiquity of domain validation in trust ecosystems, like SSL
certificates, an attacker can impersonate the service using a
valid certificate trusted by all major operating systems and
browsers. The attacker can then also exploit residual trust in
the domain name for phishing, receiving and sending emails, or
possibly distribute code to clients that load remote code from the
domain (e.g., loading of native code by mobile apps, or JavaScript
libraries by websites).

Even worse, an aggressive attacker could execute the attack
in less than 70 seconds, well below common time-to-live (TTL) for
DNS records. In turn, it means an attacker could exploit normal
service migrations in the cloud to obtain a valid SSL certificate
for domains owned and managed by others, and, worse, that she
might not actually be bound by DNS records being (temporarily)
stale, but that she can exploit caching instead.

We introduce a new authentication method for trust-based do-
main validation that mitigates staleness issues without incurring
additional certificate requester effort by incorporating existing
trust of a name into the validation process. Furthermore, we
provide recommendations for domain name owners and cloud
operators to reduce their and their clients’ exposure to DNS
staleness issues and the resulting domain takeover attacks.

I. INTRODUCTION

Over the past ten years, cloud services have grown tremen-
dously. Generally, clouds are comprised of hundreds to thou-
sands of commodity servers, which make up pools of com-
puting resources that are shared by different users. One of
the main drivers behind the clouds’ rise in popularity is their
elasticity: users can acquire and use resources as needed, on

demand, and at scale, all while requiring almost no upfront
investment. In fact, Amazon Web Services (AWS), Amazon’s
public cloud, serves over one million active users world-
wide [1], Microsoft Azure is gaining 120,000 new customers
each month [2], and the global cloud IP traffic has reached
3.9 zettabytes (3.9 billion terabytes) in 2015 already [3].
Unfortunately, as the recent years have shown, the resource
pooling and increased popularity of cloud-based deployments
also pose severe security issues to the clouds’ tenants [4, 5].

With the clouds’ increase in popularity and their commodi-
tization, website operators have been empowered to deploy
their website themselves instead of relying on more tradi-
tional web hosting. At the same time, HTTPS has become
basically a requirement for any website operator, not only
for dynamic websites trying to protect login credentials, but
also for static websites. Unprotected websites are being ranked
lower by search engines [6], they are limited in browser
features that they can use [7], and they risk having content
and advertisements injected, e.g., by wireless access point
operators or Internet Service Providers [8, 9]. For HTTP/2, it
has become practically mandatory because all major browsers
support HTTP/2 over TLS only [10]. Website operators now
typically deploy SSL certificates for their domains and use
HTTPS to ensure integrity and confidentiality for any commu-
nication with their website. For certificates to be trusted by the
websites’ visitors’ browsers, however, they need to be issued
by trusted certificate authorities (CAs). Traditional verification
approaches involve identity documents, like verifying pass-
ports, which incurred high processing overhead. To cope with
the high-volume demand for digital certificates, CAs adopted
automated approaches to verify and issue certificates, and
now heavily rely on domain validation. Having launched only
in April 2016, Let’s Encrypt has since been dominating the
domain-validation part of the certificate authority ecosystem
through openly available and well-designed tooling that uses
the Automatic Certificate Management Environment protocol
(ACME) [11] to validate domain ownership and issue certifi-
cates almost transparently for users. Today, Let’s Encrypt has
issued over 100 million certificates in less than 15 months
and their certificates account for 80% of all publicly trusted
certificates [12, 13].

Unfortunately, combining the elasticity of cloud infrastruc-
ture and the automation of certificate issuance introduces new
security vulnerabilities. In this paper, we discover that stale
and abandoned DNS entries pointing to cloud IP addresses can
be exploited by attackers to deceive domain-based certificate
validation and obtain certificates for the victim domains. The
problem stems from the ephemeral nature of the cloud re-
sources. More specifically, if a user releases a cloud IP address,
but does not remove the corresponding DNS entry before

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23327
www.ndss-symposium.org

mailto:kevinbo@cs.ucsb.edu
mailto:t.fiebig@tudelft.nl
mailto:shao@utdallas.edu
mailto:chris@cs.ucsb.edu
mailto:vigna@cs.ucsb.edu

releasing the IP address, an attacker can allocate the same
IP address, impersonate ownership of the domain, and request
trusted certificates from a CA, like Let’s Encrypt. In this paper,
we call them IP address use-after-free vulnerabilities, which
can enable a variety of attacks and cause harm. Adversaries
can leverage the acquired valid certificates for man-in-the-
middle attacks, e.g., to intercept the HTTPS traffic to the victim
domain on a wireless network. Worse, if an attacker obtains a
wild-card certificate, her attack capabilities are significantly en-
hanced, possibly allowing her to impersonate any sub-domain,
including non-existing ones. The obtained certificates can be
abused for phishing attacks, by impersonating the legitimate
website, including SSL verification and its “trustworthy green
lock.” Attackers can deface the website, and they might even be
able to launch remote code execution attacks, e.g., if JavaScript
or native code is being loaded from the domain that was taken
over [14–16].

To better understand the prevalence of IP address use-
after-free vulnerabilities in the wild, we conduct a large-
scale analysis. From passive DNS traffic, we extract over 130
million domains that point to IP addresses of cloud networks.
On these domains, we perform regular liveness probes to
determine whether their cloud IP addresses are allocated and
in use. Our results indicate that over 700,000 domains point
to cloud IP addresses that are free, and which are susceptible
to domain takeover attacks due to use-after-free vulnerabilities.
We further investigate the feasibility of obtaining particularly
interesting target IP addresses from cloud services, and we
estimate that it would cost attackers less than $1 (USD) to
cycle through the necessary unique IP addresses, which renders
the attack economically viable for adversaries. Based on our
in-depth analysis, we propose to extend the ACME protocol
version 2 by including our new trust-based identifier validation
challenge, and we provide practical recommendations for do-
main owners and cloud operators to protect themselves from
domain takeover attacks.

In this paper, we make the following contributions:

• We conduct a comprehensive study of IP address use-after-
free vulnerabilities, and the domain takeover attacks that
these vulnerabilities enable. We show that the scale of
the vulnerabilities is considerable: over 700,000 unique
domains point to IP addresses that are free and can be
abused to take over the respective domains.

• We discover that even well maintained DNS zones can be
vulnerable to domain takeover attacks: after releasing cloud
IP address resources, an adversary might be able to exploit
now outdated zone information in DNS caches to launch
attacks.

• We examine the feasibility of launching domain takeover
attacks in the real world through cloud IP address re-use,
by analyzing their allocation cycles, and we show that it is
practical, time-efficient, and cost-efficient for an attacker to
launch such attacks.

• We propose a new domain-validation method for automated
certificate management environments (ACME) CAs that
leverages the existing trust of a name to mitigate domain
takeover attacks.

The remainder of this paper organized as follows: First, we
provide background detail on DNS, operation of Infrastructure-
as-a-Service clouds, and domain validation (see Section II).
Next, we analyze and evaluate to what degree IP address use-
after-free vulnerabilities pose a security threat (see Section III).
Then, we present our mitigation technique, which retains
almost all usability benefits of automated domain validation,
yet protects against IP address use-after-free (see Section IV).
Subsequently, we compare our mitigation to related work (see
Section V). Finally, we conclude (see Section VI).

II. BACKGROUND

We provide a basic introduction to the Domain Name Sys-
tem (DNS), to different operational models in cloud setups, and
to the use of domain validation for SSL certificate issuance.

A. Domain Name System and DNSSEC

The Domain Name System (DNS) is a core protocol of the
current Internet architecture. It facilitates to use easily identifi-
able hierarchically organized names instead of IP addresses to
access services online. Although the fundamental idea of DNS
is straightforward [17], we describe IPv4 and IPv6 resource
records (RRs) and DNSSEC as they are essential to our work.

Resolving names to IP addresses via DNS is done by
requesting an A RR to resolve a name to an IPv4 address, or an
AAAA RR to resolve to an IPv6 address. The information for a
RR is stored in the so-called parent zone. Each record is served
by (at least one) DNS server, which is authoritative for that
zone. There is, however, no automatic aspect within the DNS
ecosystem that guarantees that DNS entries remain “fresh,” i.e.,
a method that ensures that a given RR never becomes “stale,”
but that it always points to the correct IP address or that it is
removed if it should point nowhere.

DNS by itself does not provide authentication, which brings
security issues due to response spoofing, and spoofing can
allow domain takeover attacks. DNSSEC is one method to
provide integrity for the unencrypted DNS ecosystem. Authen-
ticating existing records is a straightforward extension of DNS
through a signature record type (RRSIG) for each original re-
source record set (RRset), which is signed with a zone-signing
key (ZSK). The public key portion of the ZSK is hosted in the
zone, while the parent zone provides a hash of the ZSK in a DS
RR. The problem of distributing public keys in a trustworthy
manner is solved through DNS’ hierarchical nature and its
existing chain of trust from the root zone to the queried zone.
Crucial is that DNSSEC discourages the use of online signing
to prevent denial of service attacks against the nameserver
and chosen-plaintext attacks against the zone-signing key, as
well as deploying the ZSK to (hidden) master nameservers
to automate signing of updated zone information online [18,
Section 5]. Instead, it strongly encourages to publish only zone
information that was signed offline in a secure manner, and
then deployed to (hidden) masters [19, Section 3.1, Section 9,
and Section 12][20, Section 3.4.3]. Furthermore, the current
state of the DNSSEC ecosystem shows significant deployment
issues, for example, not publishing all required records for
validation, incorrectly rolling-over keys, or not rolling keys
over in the first place, which indicates a lack of care or tooling
when deploying DNSSEC in practice [21].

2

B. Cloud Models

Cloud Computing has become a widely used concept
in Computer Science. Following, we employ the National
Institute of Standards and Technology’s (NIST) definition of
Cloud Computing [22].

Clouds are hardware and software bundles to provide
users with five basic characteristics: on-demand self-service,
broad network access, resource pooling, rapid elasticity, and,
measured services. Specifically, it means that a cloud must
provide services at its users’ demand, without requiring any
further manual interaction by the cloud operator, it must allow
customers to (ideally) automatically scale their resource usage
based on their needs, and all operations must be metered
precisely and billed accordingly.

Cloud infrastructures generally have different deployment
models, depending on their use case and users: public for the
general public, private for large operators or higher security
requirements (e.g., businesses or the government), or commu-
nity for private clouds shared among multiple organizations for
cost-savings or security. In this paper, we focus on IP address
re-use vulnerabilities in public clouds.

Ultimately, the most distinguishing technical difference for
clouds is their respective service model:

Software as a Service (SaaS).
The SaaS model is the most abstract setup. Customers
interface with software provided by the operator, either
via their web-browser or a standardized program interface
(API). Customers do not have access “the underlying cloud
infrastructure including network, servers, operating sys-
tems, storage, or even individual application capabilities
[...]” [22]. Examples include Microsoft Office 365 and the
SalesForce Platform.

Platform as a Service (PaaS).
For PaaS clouds, users deploy their own code and appli-
cations to run on the cloud. Although the executed code
is under the users’ control, access to the underlying cloud
infrastructure, like network and disk, is similarly restricted
as in the case of SaaS clouds. Examples include Heroku
and Google App Engine.

Infrastructure as a Service (IaaS).
IaaS clouds, on the other hand, give more control to cloud
users. Here, a user can freely request storage, network,
memory, processing, and other resources as needed. Com-
monly, these resources are provided to the user in form
of a virtual machine (VM), on which the user can install
any operating system and software. Popular examples of
IaaS clouds are Amazon Web Services (AWS) EC2 and
Microsoft Azure.

In this paper, we investigate IaaS clouds because they allow
us to freely and rapidly allocate IP addresses as part of their
resource pooling characteristic. Depending on the external
interfaces of PaaS clouds, they may also be vulnerable to re-
use attacks, which are related to the IP address use-after-free
vulnerabilities that we describe in this paper.

C. Domain-Validated Certificates

The HTTPS ecosystem is based on certificate authorities
(CAs), which are trusted by operating system and browser
vendors. These vendors include the CAs’ certificates in their
products, and certificates that are presented to clients have
to demonstrate a chain of signatures to a certificate of a
trusted CA. The job of a CA is to verify that the entity that
requests a certificate to be issued is authorized to obtain a
signed certificate for the specific domain(s) that the certificate
is supposed to be valid for.

Various methods to assert authority over a domain exist.
Classical and more expensive methods of identification require
a CA to verify that a requesting party conforms to the domain-
owning party by checking identity documents, e.g. passports,
or company incorporation forms. However, such processes
incur significant overhead.

Nowadays, more cost-effective methods of validating do-
main ownership, or rather establishing that the requesting
party is currently controlling the domain, exist, and they have
been adopted by all major CAs, mainly to combat operating
costs. These methods are generally referred to as issuance
of a domain-validated certificate, because only authority over
the domain is established. The three most common validation
methods are:

DNS Validation.
To validate ownership of a domain via DNS, the certificate
requester must set a nonce that she received from the CA
in a DNS record, usually a TXT record, which the CA will
attempt to query and validate. Requiring the requester to
change a DNS entry implies that she controls the domain’s
DNS zone, which is considered a strong indicator for
authority over a domain.

Email Validation.
Similarly, to validate a domain via email, the CA sends an
email to (a) one of the mail addresses listed in the domain’s
WHOIS data, or, (b) to one of the common administrative
email accounts, like “postmaster,” “webmaster,”, or “sslmas-
ter.” The email includes a unique token that must be send
to the CA, or a unique link that needs to be visited to verify
ownership of the email address, and, in turn, the domain.

Web-based Validation.
For web-based validation the certificate requester receives
a token from the CA that she must make available via
HTTP at a CA-specified path on the domain for which
the certificate was requested. Once made available, the CA
verifies that the token is accessible and contains the correct
value, and only then attests ownership of the domain and
issues certificate.

Traditionally, CAs were dominated by an enclosed and
business-oriented community. CAcert was among the earli-
est and most prominent approaches to introduce a commu-
nity driven CA effort [23]. Unfortunately, due to insufficient
support by browser and operating system vendors, it never
reached widespread adoption. Furthermore, the recent rise of
SSL related incidents, e.g., DigiNotar [24] and CAs issuing
illegitimate certificates [25], lead to two new developments

3

trying to disrupt the established CA ecosystem: the wide-
spread introduction and requirement of certificate transparency
and the Let’s Encrypt CA.

Certificate transparency is a framework that specifies that
a CA must publish to a tamper-proof, append-only log, which
can be audited by authorized parties [26, 27]. Its purpose is
to allow potentially affected parties, e.g., domain owners, to
verify that a CA has not issued a certificate for a given domain
to an unauthorized party. In an ideal world, all CAs would
participate in this scheme and publish certificate transparency
logs, but, unfortunately, not all CAs do currently participate.
However, some individual CAs have been forced to publish
transparency logs by browser vendors, most notably Google,
who threatened to void their trust in the CAs and to remove
the CAs’ certificate from their products if the CA does not
comply with Google’s request. Without a doubt, the removal
of a CA from a major browser, such as Google Chrome,
would have severe business and financial consequences for
a CA, as it might have to refund cost for already issued
certificates and it would likely have difficulty acquiring new
customers, which is what forces a CA into compliance and
why it is willing to participate in the certificate transparency
scheme. One example of such an occurrence is Symantec,
who has been required to publish certificate transparency logs
after they issued certificates for google.com without Google’s
authorization [25].

Let’s Encrypt, on the other hand, is an effort to make TLS
encryption more prevalent on the Internet. They practice a
leaner and completely automatic identity verification process,
and they only issue certificates with short lifetimes of 90
days, to limit the potential damage of key compromise and
mis-issuance, as well as to encourage automation [28]. Con-
trary to the most other CAs, Let’s Encrypt issues certificates
free of charge, and identity is verified exclusively via web-
based validation and through DNS validation. Thanks to a
combination of a browser-trusted certificate, being free of
charge, and software tooling openly available to reduce system
administrator effort, it has led to a significant increase in the
number of systems on the Internet which use validly signed
certificates, as well as it increased Let’s Encrypt’s popularity
and market share [29].

III. PROBLEM ANALYSIS

Mitigations to protect from security problems can be imple-
mented with varying degree of complexity, and for problems of
varying degree of complexity. However, in practice, these se-
curity measures bear performance overhead and have usability
drawbacks, which might not be acceptable. In turn, their actual
real-world deployment depends on security risk evaluations,
operational costs, and human costs. Therefore, before trying
to mitigate a non-issue, it is necessary to justify them with
supporting data instead of recommending absolutes.

Following, we first discuss the different security issues
in respect to use-after-free vulnerabilities for IP addresses in
respect to DNS-based domain validation. We then evaluate
to what degree those security issues are practical to exploit.
Finally, we estimate how many domains might be susceptible
to takeovers and whether protecting them is worthwhile.

For our problem analysis, we investigate and interact with
systems that are online and in-use by third parties. Naturally,
those systems are outside of our control. In turn, our analysis
poses ethical challenges to not affect or impact the legitimate
users of such systems in any way. We discuss the considera-
tions we undertook for an ethical and appropriate, yet realistic,
analysis separately for each experiment in their respective
sections.

A. Impact

Domain takeovers bear serious consequences, even tempo-
rary takeovers can provide ample opportunity for an attacker
(see Section I). Naturally, they way an attacker might cause
harm to the legitimate domain operator and domain users varies
from case to case and the space of attacks is vast, which is
why we only discuss a subset of possible attacks:

Malicious and Remote Code Loading.
Likely the most straight-forward way for an attacker to
turn a profit through a domain she took over is by serving
malicious code, serving advertisements, or including affili-
ate marketing [15, 16, 30]. Although considered easier to
launch for websites, the attack is not restricted to websites.
Instead, an attack could also be launched on mobile or
desktop applications, e.g., through remote code loading [31,
32]. Unfortunately, HTTPS and HSTS themselves do not
mitigate such an attack.

SSL Certificates.
Another way for an attacker to leverage a domain takeover
attack or to increase its success chance is by requesting
a SSL certificate that is trusted by operating systems and
browsers. Requesting a trusted SSL certificate has become
practically feasible because of domain-validated certificates,
such as Let’s Encrypt. Once she has obtained the certificate,
she has increased capabilities for remote code loading
attacks over HTTPS, even including HSTS.

Nameservers.
A domain might also point to a nameserver, where the
domain server can be for the same domain or different ones.
In practice, these cases occur because DNS demands multi-
ple nameservers for redundancy, and if a nameserver does
not respond, a client automatically and, transparent to the
user, retries queries with fail-over nameservers. Therefore, a
domain pointing to a free IP address for a nameserver only
incurs a latency penalty and is barely noticeable by the user.
However, an attacker could take over the entire domain and
even create additional domains. For a domain owner, taking
over a domain that is being used as nameserver equates
to the worst case scenario. Unfortunately, even entire top-
level domains have been vulnerable to nameserver domain
takeover attacks [33].

Email Servers.
Similarly, after gaining control over a domain, an attacker
might be able to send and receive emails. Importantly,
a DNS MX record is not required: if a domain has no
MX record set, then its respective A record is being used.
Acquiring the capability to send or receive email allows an
attacker to abuse a domain for spear-phishing and phishing
campaigns, such as CEO email scams, or to recruit victims
for fraudulent schemes [34, 35].

4

Sub-domain Attacks.
Finally, top-level domains are not the only worthwhile
takeover targets for an attacker. Sub-domains are at least
similarly interesting for attacks, even sub-domains that
might have never been used in production, as they could still
be abused for authentication bypass vulnerabilities, e.g., like
it recently happened to the ride-sharing company Uber [36].

Regarding SSL certificate related attacks, it is sufficient for an
attacker to request an ordinary certificate. She does not require
a wild-card certificate to launch successful attacks. However,
if an attacker can obtain a wild-card certificate, her capabilities
are significantly extended. For example, if she can receive
a wild-card certificate for “support.example.com,” she would
then be able to impersonate, intercept traffic to any sub-domain
of “support.example.com,” and even launch sub-domain related
attacks at the main domain “example.com” [36]. Although, cur-
rently, wild-card certificates are not supported by free domain-
validated certificate authorities, like Let’s Encrypt or StartCom,
at least Let’s Encrypt is planning to support them as early
as January 2018 [37]. Furthermore, wild-card certificates are
already supported by other mainstream CAs, such as Comodo.
While they charge a fee, they allow significantly longer validity
periods of up to 3 years, which can make attacks even more
disastrous.

B. Taxonomy

For a precise classification of how IP address use-after-free
vulnerabilities are being rendered possible, we distinguish four
different cases in which a domain points to a free IP address
(i.e., the domain is stale) through the following taxonomy:1

Early Migration.
A domain-IP mapping is migrating early if the domain is
in use by the operator, and the records at the authoritative
nameserver have been updated to point to the new IP
address before the old IP address is being released and
available for others to request and use.

Delayed Migration.
Similarly, a domain-IP mapping is migrating with delay if
the domain is in use by the operator, and the records at the
authoritative nameserver have not been updated yet, i.e.,
they point to a released IP address.

Auxiliary.
Differently, a domain-IP mapping is auxiliary if the domain
is used by the operator, and the domain has multiple records,
which point to both current and old IP address, possibly in a
way so that the old and free IP address would only be used
as in a fail-over scenario and has otherwise no practical
impact.

Abandoned.
We define a domain-IP mapping as abandoned if the domain
is not used legitimately anymore. For example, a company
might become defunct and is not operating the service
anymore that was previously offered at the domain, but it
retains ownership of the domain until its expiration.

1Our study focuses on SSL certificates, web servers, domain validation
through HTTP, and type A DNS records. However, our findings also apply to
other record types, e.g., MX or NS.

Depending on how the domain becomes stale, the length
of the window of opportunity differs. In case of an early
migration, an attacker has the shortest window of exploitation:
the cache lifetime of the domain IP mapping. Note, however,
that the time a domain IP mapping might be cached is not
strictly its time to live (TTL) as set by the authoritative
nameserver. The mapping can be purged from the cache before
its expiration, and a caching nameserver might ignore the TTL
entirely and cache entries longer, e.g., for performance reasons,
though in violation of the DNS RFC [38]. Theoretically,
early migration could prevent IP address use-after-free attacks
under the assumption that no intermediate nameservers cache
entries longer and that the IP address is released only after
the TTL has expired. Practically, unfortunately, human error
results in domains not always migrating early and intermediate
nameservers might ignore the TTL. Therefore, even those
domains migrating early can be at risk of temporary domain
takeovers.

From a security standpoint, the remaining three classes are
more worrisome. The easiest case to launch a successful attack
against is an abandoned domain: the attacker is not rushed by
the legitimate operator and she can wait until an opportunity
arises. Fortunately, it is also the least interesting case for an
attacker because users are not expected to contact the service
at the domain regularly anymore but only sporadically (e.g.,
through an outdated bookmark for a website), thus, the number
of potential victims is generally low.

For domains that migrate with delay, the window of op-
portunity to validate ownership of a domain is fixed in time
and often short. While an attacker could miss the window,
she can lurk and wait for a target domain migrating with
delay by repeatedly trying to allocate the target IP address,
which we later show is practical (see Section III-C). More
important, once the window of opportunity has passed, the
successfully validated domain is not useless to the attacker
even though she has no control over the host with the IP
address behind the domain-IP mapping anymore (it is now a
new IP address, which is not under the attacker’s control). For
example, in case of domain-validated SSL certificates, once
an attacker validated that she owns the domain, she can later
leverage the obtained certificate for man-in-the-middle attacks,
e.g., for a wireless network at a coffee shop, because the
certificate is trusted by major operating systems and browsers.
Here, the number of victims is larger than in the case of
abandoned domains, but seldom substantial. The core problem
with domain-IP mappings that are migrated with delay lies in
the long-term capabilities granted to the attacker.

Auxiliary domain-IP mappings are the most troublesome
case: they provide a constant window of opportunity and can
cause the most havoc. First, an attacker can remain stealthy
as a “fail-over” until a viable opportunity arises. During
normal operation, the attacker’s machine does not respond or
it redirects all traffic to a legitimate host. Second, an attacker
can force a fail-over to the IP address under his control
by launching a denial of service (DoS) attack against the
legitimate hosts. However, even without forcing a fail-over, an
attacker will see a subset of traffic due to implicit round-robin
in DNS, which occurs because DNS records have no implied
order. Upon forcing fail-over, the attacker forces a domain-
validation service to connect to the host under the control of

5

the attacker, as no other hosts are responsive. Correspondingly,
without forcing a fail-over, the attacker might need to try
multiple times until the domain-validation service connects
to the address under her control and, in turn, validates her
ownership of the domain. The attacker can verify ownership
of the domain successfully in both cases, e.g., to request a
certificate, and a significant number of users will connect to
the attacker’s machine (all or a subset due to DNS’ round-
robin). Overall, auxiliary domain-IP mappings can affect the
most victims and it can provide ample opportunity to cause
harm, e.g., to visitors of a website by injecting malicious code.

After we classified the reasons for why IP address use-
after-free vulnerabilities exist and what their impact can be,
the immediate next question becomes: can an attacker actually
exploit these vulnerabilities in practice, by allocating the same
IP address the victim has freed?

C. IP Address Churn

An attacker can successfully exploit an IP address use-after-
free vulnerability in practice if she can get a cloud provider
to assign the recently freed IP address to herself within the
window of opportunity. Following, we determine whether it
is practical for Amazon Web Services (AWS) and Microsoft
Azure, the two largest cloud providers today [39].

Specifically, we repeatedly allocate and free IP addresses
in succession. To prevent starvation, we are using a slow
allocation cycle to not interfere with the clouds’ operations:
We request 5 IP addresses per region, freeing them imme-
diately, and then sleeping for 10 seconds, i.e., effectively
allocating 1 IP address every 2 seconds. We performed our
IP address churn experiment from April 29, 2017 01:03 UTC
to June 6, 2017 23:27 UTC spanning all regions of the cloud
providers at the time for a total cost of $31.06 (USD). Over
the course of our measurements, we cycled through a total of
14,159,705 allocations of 1,613,082 unique IP addresses. As
we always first released addresses before allocating the next
batch, we cannot cause address starvation. This is highlighted
by us always receiving an IP address upon issuing an API
request.

The success of our technique depends on how fast we can
iterate through the pool of free IPv4 addresses for a given
availability zone. This depends on the overall size of the
pool, and its variance, i.e., how fast addresses are allocated
by other users. To illustrate these characteristics for each
availability zone, we investigate the churn (see Figure 2) and
time between allocation of the same address (see Figure 1).
We show only AWS specific plots in the pursuit of brevity
and comprehensibility, as Azure is not behaving significantly
different.

Using the churn plots in Figure 2, we get an overview
of change in the IaaS cloud’s IP pools. Figure 2 shows the
churn in allocated addresses for AWS, i.e., for each day
we allocated addresses we plot the fraction of addresses we
previously allocated and the fraction of addresses we did not
previously receive as an allocation. Dates without data relate
to dates where either the IaaS provider conducted maintenance
operations, or our measurement scripts were not yet running
for that zone.

The natural pattern we expect for the churn plots is an
initially high share of new addresses while the pool is being
initially explored. This pattern should then slowly approach a
stable socket, which corresponds to those addresses that are
handed back to the pool by other tenants. Indeed, we find this
pattern in our data. For example, Figure 2(a) and 2(g) show
this expected pattern. However, these zones have a relatively
large pool of addresses that is free at any given time. Zones
like eu-west-2 (see Figure 2(i)) are significantly smaller, hence
converge more quickly. This furthermore underlines that the
allocation algorithm must, in some form, iterate through the
whole pool of addresses, instead of just allocating the (same)
first free addresses.

In addition, we also find a couple of interesting events:
Zone ap-southeast-2 (see Figure 2(e)) started off similar to eu-
west-2. However, at the beginning of week 20 in 2017, a large
batch of free addresses was added to the pool, leading to a
“restart” of the churn pattern. In eu-west-1 (see Figure 2(i))
and us-east-1 (see Figure 2(k)) we see the effect if several
days of not iterating through the pool: As soon as we restart
our allocation script, we observe a slight rise in new addresses,
which have accumulated during the time we did not perform
measurements. We find the last notable pattern in us-west-2
(see Figure 2(n)). Here, a substantial amount of so far unseen
addresses is released to the pool in the middle of each week.

Next, we take a look on how long it takes to iterate through
the whole pool, i.e., how fast an attacker could obtain a specific
address. For this, we look at how much time passes on average,
until an address is allocated for the second time. Given our
earlier observation that we do indeed circle through the IP
pool, we expect the mean to correspond to the point where we
iterated through the IP address pool. This is summarized with
boxplots (without outliers) in Figure 1. We find that with our
ethically restricted approach most pools are exhausted within
under a day. Only the largest, like eu-west-1 and us-east-1
reach means significantly over a day.

Although we used a slow allocation cycle to not interfere
with the clouds’ operations, an attacker is not bound by the
same ethical standard. Practically, the attacker will be bound
only by the response time of the IP address allocation API
endpoint and her network latency to it. Therefore, an attacker
can cycle through available IP addresses much more rapidly.
In fact, considering the AWS API limit (10,000 requests per
second [40]) and the number of requests needed to exhaust
pools in our experiments, an attacker would only need between
two and 61 seconds to acquire a target IP once the victim has
freed it, using a rapid allocation cycle of 5,000 IP allocations
per second. In practice, this theoretical limit is not necessary
for an attacker to launch a successful attack. For example, DNS
cache times are almost always 5 minutes, and often much
longer with 60 minutes to multiple hours, thus, allowing an
attacker to be successful by exploiting caching effects with
rates of less than 50 IP address allocations per second.

D. Affected Domain Names

Considering the worrying high-rate of IP address churn
for major cloud providers and low opportunity cost for an
attacker to launch an attack, the only question that remains
unanswered before we can determine whether temporary stale

6

ap-northeast-1

ap-northeast-2

ap-south-1

ap-southeast-1

ap-southeast-2

ca-central-1

eu-central-1

eu-west-1

eu-west-2

sa-east-1

us-east-1

us-east-2

us-west-1

us-west-2

Availability Zone

10sec

1min

1hour

1day

1week
2weeks

Ti
m

e
B

et
w

ee
n

R
eo

cc
ur

en
ce

(S
ec

on
ds

) lo
g

Figure 1: Time passed between allocations of the same IP address to us.

domains pointing to readily available IP addresses are a
problem in practice is whether a significant number of domains
are affected?

For a better understanding of how many domains are
affected by IP address churn, we observe DNS traffic through
Farsight’s passive DNS measurements [41]. The Farsight pas-
sive DNS dataset is provided through a continuous datafeed.
For our collection and DNS data analysis, we follow es-
tablished best practices for collecting and handling Internet
measurement data [42], we anonymize all incoming data
immediately by removing any resolver information, and we
only retain successful DNS responses.

Specifically, we collect all DNS responses containing A
records pointing to the Amazon Web Services (AWS) EC2
cloud, the Microsoft Azure cloud, and the Digital Ocean cloud
spanning exactly 120 days from April 11, 2017 0:00 UTC
to August 9, 2017 0:00 UTC. Overall, we extract and ana-
lyze 130,274,722 unique domains with 767,108,850 unique
domain-IP mappings, counting also sub-domains. Including
sub-domains is important for completeness, however, it makes
an accurate comparison to top domain lists (e.g., Alexa), to
estimate the domains’ popularity, difficult, because they do not
include sub-domains. Matching at the second-level of a domain
is similarly problematic due to potentially over-estimating the
impact of ephemeral sub-domains and the loss of information
on sub-domains of special second-level domains, such as .ac.nz
or .co.uk. It remains for future work to evaluate the distribution
of DNS zone staleness in regard to domain popularity.

We perform our evaluation on a Kubernetes cluster com-
prised of 656 processor cores and 3,020 GiB memory, and
which is connected at a dedicated 10 Gbps Internet up-
link.2 For each domain, we test every six hours3 from June
10, 2017 0:00 UTC to August 9, 2017 0:00 UTC (60 days)
whether the IP address is still in use or if it might be freed
and available:

1) We resolve the domain and check if the IP address the
domain points belongs to a network of a cloud provider.4

2The cluster is on a network separated from the main network of the
institution at which the experiments are performed. The network traffic
generated for our evaluation is not subject to packet introspection, which would
have had a negative impact on our measurements.

3Some tests were up to twelve hours apart because of scheduling delay.
4We exclude networks of cloud providers that are used for services other

than cloud virtual machine instances, e.g., Load-Balancing-as-a-Service.

If the domain points to a cloud IP, we test if the IP address
is responsive and whether it might be free and available to
others. If it does not point to a cloud provider or does not
exist anymore, we do not perform any further tests.

2) We test if the IP address responds to ICMP ping requests,
or responds to any packet sent on 36 of the most frequently
used TCP and UDP ports (see Table I) [43] within a two
seconds timeout.5 If we receive a response to any of our
requests, we mark the IP address as online and allocated.
Correspondingly, if we receive no response until the timeout
is reached, we mark the IP address as offline and freed.

Naturally, ingress firewall rules could prevent our test from
succeeding and, thus, our estimation is an upper-bound. One
might expect it to be a gross over-approximation because cloud
virtual machines instances have traditionally received public IP
addresses. Nowadays, however, this is not necessarily the case:
cloud instances that do not need a public IP address can and
generally do live in cloud-only internal networks. Furthermore,
by default, many machines respond to ICMP ping requests
or allow for secure shell (SSH) access via TCP on port 22.
Additionally, a public IP address associated with an instance
is freed and can be reused by others if the instance is shutdown,
even if it is later powered on again (it receives a new IP
address at this point). In turn, it means that we only misclassify
machines as offline with heavy ingress filtering that do not
provide a service on the top 36 ports (see Table I), and which
have not been migrated to an internal network yet, which is
becoming scarcer. Therefore, although our estimate remains an
upper-bound, we are confident that it is a close estimate.

Over the course of our measurements, we classify 702,180
unique domains (0.539%) as pointing to available and freed IP
addresses. Therefore, these domains, most likely, have been
vulnerable to a (temporary) domain takeover attack at some
point in time. In fact, while the majority of domains migrated
delayed (80.31%), a non-negligible amount of domain-IP map-
pings are abandoned (17.24%) and, fortunately, only a small
number of domain-IP mappings are auxiliary (2.45%). Note
that we only determine that the domain could be taken over,
but its prior purpose remains unknown. Further investigation
by future work is required to determine how many of the
vulnerable domains have been actively used in the past and
what the impact of an attack on them would be, e.g., on a
website that is protected through HTTPS and requires a SSL
certificate, or a domain that is used to load remote code for a
mobile application (see Section III-A). Although the amount
of vulnerable domains appears small relatively speaking, in
absolute terms, the number of stale domains is quite large.
Additionally, due to the nature of our dataset, we only observe
domains that are actively being attempted to be accessed: the
estimated number of cases that might be vulnerable to domain
takeover attacks and could be abused for phishing or scams, but
which were not being accessed during our observation period,
might be significantly larger.

5We chose a two seconds timeout after we experimented with higher
timeouts of five to ten seconds and did not notice any difference in results. A
shorter timeouf of one second resulted in a high misclassification rate due to
network and system load. The cut-off for no misclassifications was close to
1.4 seconds in our tests. Out of carefulness, we chose a two second timeout.

7

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(a) ap-northeast-1

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(b) ap-northeast-2

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(c) ap-south-1

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(d) ap-southeast-1

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(e) ap-southeast-2

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(f) ca-central-1

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(g) eu-central-1

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(h) eu-west-1

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(i) eu-west-2

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(j) sa-east-1

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(k) us-east-1

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(l) us-east-2

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(m) us-west-1

Days

0
10

0
%

w18
w19

w20
w21

w22
w23

(n) us-west-2
20

17
-0

4-
29

20
17

-0
4-

30
20

17
-0

5-
01

20
17

-0
5-

02
20

17
-0

5-
03

20
17

-0
5-

04
20

17
-0

5-
05

20
17

-0
5-

06
20

17
-0

5-
07

20
17

-0
5-

08
20

17
-0

5-
09

20
17

-0
5-

10
20

17
-0

5-
11

20
17

-0
5-

12
20

17
-0

5-
13

20
17

-0
5-

14
20

17
-0

5-
15

20
17

-0
5-

16
20

17
-0

5-
17

20
17

-0
5-

18
20

17
-0

5-
19

20
17

-0
5-

20
20

17
-0

5-
21

20
17

-0
5-

22
20

17
-0

5-
23

20
17

-0
5-

24
20

17
-0

5-
25

20
17

-0
5-

26
20

17
-0

5-
27

20
17

-0
5-

28
20

17
-0

5-
29

20
17

-0
5-

30
20

17
-0

5-
31

20
17

-0
6-

01
20

17
-0

6-
02

20
17

-0
6-

03
20

17
-0

6-
04

20
17

-0
6-

05
20

17
-0

6-
06

Days (UTC)

0%

20%

40%

60%

80%

100%

C
hu

rn
(%

)

week 18 week 19 week 20 week 21 week 22 week 23

New Reoccurent No Data

Figure 2: IP address churn on the Amazon Web Services (AWS) EC2 cloud, i.e., share of newly-observed IP addresses per day per region.

Protocol (Common) TCP UDP Port(s) ▲
FTP 3 3 21
SSH 3 3 22, 2222, 22022
Telnet 3 3 23
SMTP 3 3 25, 587
WHOIS 3 43
DNS 3 3 53
HTTP 3 80, 8000, 8080
Kerberos 3 3 88
POP3 3 3 110
IMAP 3 3 143
LDAP 3 3 389
HTTP (Secure) 3 443, 8443
SMTP (Secure) 3 3 465
LDAP (Secure) 3 3 636
Telnet (Secure) 3 3 992
IMAP (Secure) 3 3 993
POP3 (Secure) 3 3 995
MS SQL 3 3 1433
CPanel 3 2082
CPanel (Secure) 3 2083
CPanel WHM 3 2086
CPanel WHM (Secure) 3 2087
MySQL 3 3 3306
2Wire RPC 3 3 3479
Virtuosso 3 4643
Postgres 3 3 5432
CWMP 3 3 7547
Plesk 3 8087
Webmin 3 10000
ENSIM 3 19638

Table I: Ports and protocols used for IP address liveness checking.

E. Proof of Concept Domain Takeover

Finally, we show the practicality of domain takeover attacks
through a proof of concept certificate request to Let’s Encrypt.
Certainly, we face the largest ethical challenges with this
experiment, as disrupting or having any impact on legitimate
users raises ethical concerns. For example, it is impossible
to guarantee that we do not interfere with any third party
operation that might rely on the domain, or that we do not
accidentally receive Personally Identifiable Information (PII)
or other confidential data. Therefore, we perform a domain
takeover attack for a domain under our control. After obtaining
the certificate from Let’s Encrypt and verifing that it has been

published to certificate transparency logs, we revoke it, and
publish the revocation to Let’s Encrypt. The time until these
actions appear in CT logs serves as an indication of the time
that passes before the legitimate owner would be able to notice
the attack by monitoring CT logs.

For our experiment, we gained temporary control over
the domain “cloudstrife.seclab.cs.ucsb.edu” by attempting to
re-allocate the IP address to which the domain points to
(34.215.255.68). Note, that the IP address is located in the
availability zone us-west-2, which has a high churn that
makes takeover attackers more difficult. While this may seem
contradictory, as a high churn means that an attacker can
allocate more addresses per time-unit, a high churn also
indicates a larger IP address pool. Ultimately, we were able
to successfully re-allocate the IP address within 27 minutes
and 55 seconds with a slow allocation cycle of 2 IP addresses
per second (see Section III-C). While anecdotal, it serves as
an estimate of the time needed to launch an attack successfully
under unfavorable conditions for an attacker (high churn, low
allocation rate). We requested a SSL certificate from Let’s
Encrypt, it appeared in different certificate transparency logs
between 34 minutes and 61 minutes later, and we revoked the
certificate immediately after certificate transparency log entries
had been propagated. Our certificate request was published at
the “crt” web-interface under id 250959196; it can be viewed at
https://crt.sh/?id=250959196. The certificate that we obtained
from Let’s Encrypt and a message signed by the respective
private key is contained in Appendix A.

Although the incorrect migration of domain-IP mappings
is comparatively small on a relative scale, we believe that the
absolute numbers speak volumes paired with the practicality
of takeovers. Together, they justify looking closer at mitigating
IP address use-after-free at its core, however, with a strong
requirement to incur as little additional overhead on usability
or performance as possible.

IV. MITIGATION

In this paper, we address the issue of IP re-use attacks abus-
ing stale DNS records, particular for IP addresses belonging
to cloud networks, a topic that has received little attention so

8

https://crt.sh/?id=250959196

far. To be more specific, we investigate IP address use-after-
free vulnerabilities, which can pose severe security threats, and
which can be made even more dangerous through domain-
validated SSL certificates (see Section III). Current automated
domain-validation-based certificate issuance systems are also
threatened to be exploited through man-in-the-middle attacks
discussed by Gavrichenkov et al. [44]. Existing defenses rely
on certificate revocation, which is severely fragmented and
cannot be relied on in practice [45, 46]. It became only recently
more tractable, e.g., through CRLite [47], but these solutions
have not been adopted yet. One core problem is that revocation
checks in browsers are not comprehensive: Chrome generally
does not verify revocations, its CRLSet is limited to emergency
revocations by design [48], and Mozilla’s Firefox similarly
limits revocation checks through OneCRL to CA intermediate
certificates [49]. Certificate revocations in other software and
libraries, which rely on the same certificate issuance processes
and would also be required to adopt the new revocation checks,
are rarely checked in practice [50]. Furthermore, revocations
are reactive by nature and they provide a window of oppor-
tunity to an attacker by design: the time until the revocation
has propagated plus the time until the attacker’s certificate has
been revoked by the issuing CA on request of the legitimate
party, the latter of which is generally a manual process as
additional verification is required. We believe that the first line
of defense should be with domain-validation-based CAs and
it should be preventive. Therefore, we propose an additional
layer of protection for domain-validation-based CAs, such as
Let’s Encrypt, that can efficiently and with negligible overhead
prevent these attacks. Our mitigation technique builds on the
ACME protocol version 2 [51] and it is complimentary to the
certificate transparency framework [26].

A. General Concept and Threat Model

The underlying problem of IP address re-use attacks is
that a domain-validated certificate can be requested as soon as
an attacker controls the IP address to which a domain points
to, and that requesting and receiving a trusted certificate is
fully automatic and only a matter of seconds nowadays. An
attacker might be able to obtain the IP address legitimately,
because the domain record was left stale. To obtain a certificate,
she might also be able to perform man-in-the-middle attacks
between the authenticating CA and the target system. A similar
issue occurs, if she can (temporarily) compromise the DNS
(delegation or authoritative servers) for a domain. Then, she
can simply change the IP address a record points to, as well as
potential CAA or DANE TLSA records [52, 53]. Technically,
attacks involving DNS-based attacks should be prevented by
DNSSEC [19]. However, if key signing is performed online
on the authoritative servers itself (against DNSSEC best prac-
tices) [54], and she compromises one of these servers, then
she regains full control over the domain. Although, domain
takeovers rarely tend to last for extended periods of time, SSL
certificate for the domain can later be used by the attacker
until the certificate’s expiration date, possibly involving other
man-in-the-middle attacks.

For all certificate requests that a CA receives, one of the
following four cases applies:

1) No certificate has been requested for this domain in the
past.

2) A certificate for the domain has been requested in the past,
and the domain still points to the same IP address.

3) A certificate for the domain has been requested in the past,
but the domain now points to a different IP address.

4) A certificate for the domain has been requested in the past,
but it was verified in a more strict manner, possibly using
extended validation (EV).

The first case is relatively frequent, and it is indistinguishable
from the legitimate first use of domain-validated certificate
issuance, which it is impossible to protect against without
extended validation, which is itself often deemed too costly
or impractical. We also acknowledge that an attacker who has
compromised the system to which this domain points to will,
in any case, be able to issue a new certificate for the domain,
or steal the existing one.6 Hence, a full system compromise
is outside of the scope of our work. What our mitigation
technique has to ensure is that a domain-validated certificate
is only issued if the CA can verify that there has been no
non-cooperative change of authority over either the system the
domain points to or DNS zone for the domain.

Concerning our threat model, the attacker does not control
a trusted CA, and she has average resources and skills, i.e.,
she is not a state-level actor and cannot expend significant
resources for a successful attack. Her overall objective is to
obtain a domain-validated SSL certificate for a target domain
that already uses a valid SSL certificate issued by a third
party CA. However, she has no administrative access to the
machine that the target domain currently points to, she cannot
steal the current certificate or factors its keys in a reasonable
amount of time, but, instead, she must request a new certificate.
Taken into account the current operational model for domain-
validating CAs, to achieve her goal, the attacker can: (a)
obtain access to an IP address to which a stale A record for
the domain points to, (b) perform a man-in-the-middle attack
somewhere on the path between the issuing CA and the system
to which the target domain points to, or, (c) illegitimately take
over authority over the DNS zone for some amount of time.

B. Pre-Signature Certificate Consistency Checks

To ensure that an attacker within our threat model cannot
request a new certificate, we must ensure that she cannot
show that there has been a cooperative change for: (a) the IP
address to which the domain points to, or (b) the DNS zone of
the domain. One way to accomplish this task is by requiring
each subsequent certificate request for a domain for which a
certificate has been issued in the past by trusted CA, or which
was covered by a similarly issued wild-card certificate, to be
signed with a pre-existing certificate.

1) Pre-Signed Domains: A challenge for a CA receiving a
domain-validation certificate request is to determine whether
a SSL certificate has been issued to this domain in the past,
either by itself, or possibly by another trusted CA.

Fortunately, two approaches to implement these requirements
exist that are viable:

6Certificate theft can be protected through hardware security modules and
may further become a commodity through methods like Intel SGX or ARM’s
TrustZone, which can be used to entrench certificate handling in a secured
enclave.

9

Federated Approach.
In case of the federated approach, each trusted CA is re-
quired to publish its issued certificates in multiple certificate
transparency logs, which do not need to be run by the CA
itself [26]. This approach has the strong advantage that it
utilizes established technology, meaning that the required
functionality is readily available and no additional service
needs to be deployed and managed. Although certificate
transparency logs are not yet required for every CA or
every certificate, and not all CAs are publishing certificate
logs, Google Chrome is already requiring CT logs to some
certificates: for all certificates issued by Symantec, WoSign,
and StartCom, as well as for all extended validation cer-
tificates (since January 2015). Furthermore, enforcing the
requirement for all trusted CAs is expected within the next
years [55]. Thus, expected development and policy changes
would further empower this approach.
From an algorithmic point of view, a naïve existence check
requires lookups for each trusted CA in an aggregated
database. Fortunately, by leveraging CAA records via DNS
combined with DNSSEC, one can limit lookups to a small
set of CAs, e.g., only one or two CAs. Specifically, it is
more likely that one of the authorized CAs has issued a
certificate for the domain in the past. Once a previously
issued certificate has been found that is still valid, then the
search can be terminated early, which reduces lookup time.
Additionally, CAA records have become mandatory to be
honored by CAs in September 2017 [56]. Therefore, due
to the increasing adoption and availability of CT and CAA,
we consider this approach the most practical and promising
one.

Centralized Approach.
Alternatively, a centralized approach is possible. Here, a
single authority, possibly IANA, would provide an oracle
service. The service would return a boolean answer when
queried, confirming whether any CA ever issued a certificate
for a specified domain. Before issuing a new certificate,
CAs would have to check if a certificate has been issued
in the past. Furthermore, they must notify the authority
of newly issued certificates. Unfortunately, the centralized
approach bears potential trust issues and poses a single point
of failure.

C. Domain Takeover Resistant Identifier Validation Challenge

Next, we develop a practical identifier validation challenge
that is resistant to domain takeover attacks. Specifically, we
target the ACME protocol, which is used by Let’s Encrypt and
others to automate the process of issuing certificates. To do so,
we introduce an additional challenge to the ACMEv2 RFC [51].
No other changes to the RFC are necessary. In turn, it allows
our validation challenge to be minimally invasive to the proto-
col and its subsequent implementations, yet, at the same time,
it significantly improves security by mitigating the attacks
that we present in this paper. The core idea of our proposed
challenge is to leverage existing certificates to form a chain of
trust. Implementing a solution that uses existing certificates to
sign responses to identification validation challenges triggers
various issues with the handling of key material. For example,
private keys should not be used outside of the context for
which their respective certificate has been issued, which would

happen if we naïvely sign a challenge response with a key, for
which the respective certificate was issued for handling TLS
server connections. Fortunately for us, retrieving the challenge
response through over HTTPS eliminates the problem, and
verifying the used certificate satisfies all requirements we put
forth in the previous sections.

Our challenge works as follows (see Figure 3):

Ê The client sends a certificate request for her domain, e.g.,
“example.com,” to a domain-validating ACME CA.

Ë The CA checks whether a certificate for the domain “exam-
ple.com” exists, i.e., that one has been issued by a trusted
CA in the past. The CA is free to include expired certificates
in the check or ignore them according to an agreed-on
policy (see Section IV-D).

Ì The CA issues a challenge to the client, which she needs
to fulfill to validate ownership of the domain. If a prior
certificate exists, the CA sends two challenges: first, our
challenge, which is similar to the original HTTP challenge,
and which includes a token to be hosted at a specified
path at the domain of the requested certificate, and, second,
a challenge that is considered more trustworthy than the
HTTP challenge, such as a whois-based challenge or a DNS-
based challenge. Following the ACMEv2 RFC, a client
needs to satisfy only one of the two challenges. If she
fails our challenge, which might happen in some cases
(see Section IV-D), the more trustworthy challenge must
be completed. For more details on how challenges are
implemented, we refer to Section 8 “Identifier Validation
Challenges”’of the ACME v2 RFC. Alternatively, if no prior
certificate exists, the CA is free to send any challenges as
defined by the RFC.

Í Once the client receives our challenge, she will host the
nonce from it at the URL specified by the challenge to
serve as the verification resource.

Î The CA will attempt to access the verification resource,
and, in turn, verify that the challenge has been completed
by the client. Verification requires that the nonce has been
placed at the resource, as well as that the HTTPS response
is signed with the private key for a certificate of the domain
that was previously issued by a trusted CA (see certificate
existence check; Ë).

D. Failure Cases

There exist some possible failure scenarios of our chal-
lenge, which must be handled gracefully to preserve security of
domain validation. However, the simple failure of the process
does not (yet) indicate an attack. Furthermore, as soon as a
failure has been resolved, the above process can be used to
regularly renew certificates automatically because the HTTPS
challenge will not fail again for the same reason.

1) Lost Access to Old Certificate or Private Key: Among
the most likely non-malicious scenarios for failure is the case
of an operator who has lost access to her prior certificate or
private key. Here, the HTTPS response cannot be signed and
the challenge will fail. From a security standpoint, this case
must be treated like a potential attack by the CA because it
is impossible to automatically distinguish between a legitimate

10

Client ACME
CA

1 Request certificate

3 Respond with challenge
CT

Logs

5
Verify challenge and

existing certificate
4 Host challenge

at https://example.com

2 Check for existing
certificates

example.com
Webserver

Figure 3: Certificate request process that mitigates domain takeover attacks.

lost key, and an attacker not having access to the key in the first
place. Instead, the operator should use a DNS-based challenge
or whois-based challenge. Note that no additional certificate
request is required, but the same certificate request will be used.
In fact, instead of issuing the certificate, first, a prompt that
additional verification is needed will be shown to the operator,
and once she passes the additional challenge (sent along with
the first challenge; Ì), only then the certificate will be issued.

2) Expired Certificate: Another common case in which the
HTTPS challenge might fail are expired certificates. Operators
may simply forget to renew their certificates in time, or a
service may be shut down for a longer period, preventing
certificate from being renewed. Whether expired certificates
should be accepted, and if so, whether their expiration should
be limited by a grace period, is a policy decision rather than
a technical decision. Basically, two options exist:

1) Accept an expired certificate.
2) Treat it like an attack.

Relaxing the requirement and allowing expired certificates
could increase the usability of our approach. However, relaxing
requirements for corner cases introduces additional sources for
potential errors, and thereby, security issues. Ultimately, we err
on the side of caution and default to strong security and treating
it as an attack, as also recommended by Fiebig et al. [57].

3) Legitimate Change of Authority: A third legitimate case
that might fail is a legitimate change of domain ownership,
possibly without the consent of the previous owner. Such cases
include but are not limited to seizures because of copyright
violations, or court orders, or a simple lapse in renewing
the domain itself. Again, such a change in ownership cannot
be recognized as legitimate by an automated system, simply
because an attack has exactly the same properties. Therefore,
similar to the lost private key access, the CA fails the HTTPS
challenge and it requests a second challenge to be completed
by the client, which any legitimate client can complete easily.

4) Possible Attacks: Following our earlier reasoning, at-
tacks are cases in which the requesting client cannot prove
a continuity in authority using previously issued valid cer-
tificates, which are considered rare, particular as you renew
certificates in the validity period of your current period, and

often automatically. Considering prior work (see Section V)
and the attacks that we present in this paper, a large portion
of attacks are time critical. Therefore, the first aspect in the
process of resolving a potential attack should be time. By
increasing the time requirement, we increase the likelihood of
the enabling attack to be detected. Nonetheless, potential for
stale DNS attacks remains. Yet, we can approach this issue
by designing an extended process for validating ownership
of a domain and the correct delegation to an IP address.
Unsurprisingly, CAs already commonly offer such extended
validation processes. In addition, this service could also be
offered by official institutions or NGOs with a sufficient trust
level and the resources to do this. The certificates issued in
this process would not even have to be valid for an extended
time period. In fact, they can be used as simple seeds to re-
initiate the continuous process of retrieving domain validated
certificates.

E. Transitioning Techniques

One of the biggest problems when introducing new tech-
nique is the transitioning phase. However, for the adoption of
our challenge, this is not an issue. The certificate ecosystem
already makes extensive use of validity periods, generally
certificates are set to expire within 1-3 years, and even as early
as 3 months in case of Let’s Encrypt. If our challenge would
be adopted, we can also make use of extensive CT logs, which
contain over hundreds of millions of domains already. For
domains for which no entry exist in CT logs, we realize that
our challenge is based upon “trust on first use” [58]. However,
this does not leave domains for which certificates are already
issued with less security than today, but it strictly increases
security. Furthermore, CAs may add domains for which they
previously signed certificates to certificate transparency logs
voluntarily. Therefore, we believe that our system provides a
robust and painless transition toward an increase of security
for domain-validated certificates within the diverse certificate
ecosystem.

F. Best Practices

Beyond directly addressing the root cause of the presented
problems in the certificate issuing process, we suggest that
cloud providers deploy mitigations as well. These mitigation

11

techniques aim to prevent attackers from allocating specific
addresses, e.g., by rate-limiting IP address allocation and
release operations, using disjoint sets of IP addresses for
different tenants to reduce attack surface, and perhaps even by
monitoring their networks for (non-scanning) inbound traffic
to unallocated addresses to warn previous users of those
addresses.7 Finally, for cloud tenants, we strongly suggest
keeping old addresses allocated when migrating IP addresses,
at least until the TTL of the record has expired out, preferably
until one can be reasonable sure that it is not cached anymore
(preferably from a day to a week). Furthermore, we can only
stress the importance of maintaining DNS zones properly and
to remove obsolete records as quickly as possible to not fall
victim to domain takeover attacks.

V. RELATED WORK

We discuss related work, specifically in the areas of cloud
security, DNS security and measurements, and the security of
domain-based certificate and trust validation.

A. DNS Security

DNS is a critical service in the Internet ecosystem and prior
work has studied DNS security extensively. Bell and Britton
hold a patent in which they describe how a host can be taken
over by assigning the same IP address to a virtual interface
on another system [59]. Yadav et al. report on domain-flux
practices in botnets, a technique in which a domain generation
algorithm is used to generate many domains, of which the
operator only needs to control one to remain in control of
her botnet [60]. However, to some degree as the dual of
exploiting stale DNS records, one can register a single or
multiple of those domains to take over a botnet, and it has suc-
cessfully been done by Stone et al. [61]. Liu et al. conducted
a study similar to our work [62]. However, methodological
challenges and limitations of their datasets lead them to an
under-estimation of the impact of stale DNS records in cloud
scenarios. Indeed, contrary to them, we find that the problem
of stale DNS records is amplified by multiple orders of
magnitude. We further systematically analyze the practicality
of acquiring the previously-used cloud IP addresses, discover
use-after-free attacks based on DNS caches, and we propose a
usable mitigation technique to automatically validate certificate
issuance.

Instead of relying on correct DNS responses, bit-squatting
exploits random bit-flips in DNS requests to lure clients to
malicious or phishing websites [63]. Different from our attack,
bit-squatting relies on integrity errors that occur at random
and thus is not as targeted as our attack. Furthermore, exploit-
ing integrity errors, it can be mitigated easily via hardware
and software, e.g., by adopting DNSSEC and leveraging its
integrity guarantees. Similar to our technique, typo squatting
can be used to lure clients on malicious websites [64–66].
It remains important to note that in a typo-squatting attack,
the attacker needs to register a new domain and hope that
users visit that domain. For our attack, although the window
of opportunity might be shorter, the attack is significantly more

7The noise-to-signal ratio might impractical for monitoring because of
Internet-wide scanning efforts, and filtering scanning traffic from other traffic
might be too costly for a supplemental warning service.

severe: it is impossible for users to tell whether they are in fact
being attacked, as domains and IP addresses have residual trust,
and any connection might be marked trusted by the browser
due to domain-validated SSL certificates. Indeed, Zdrnja et al.
demonstrated an approach to detect typo-squatting attacks from
mined DNS data [67]. Different from prior work, our study
focuses on the vulnerabilities of stale DNS records pointing to
cloud IP addresses, we conduct comprehensive measurements,
and we propose a mitigation to retain the convenience of
domain validation for certificate issuance.

B. IP Address Squatting

Taking over IP addresses has been a well-known problem in
security. The most common and well discussed attack method
aims to take over entire network prefixes using BGP, which
can be easily observed and will be scrutinized quickly [68].
Wählisch et al. demonstrated a method to detect such takeovers
using RPKI [69]. Ballani et al. conducted a study investigating
prefix hijacking in 2007 [70], while Zhang et al. developed
first defense methods against such attacks [71]. In 2015,
Gavrichenkov demonstrated that modern domain validated SSL
certificates (and thereby HTTPS in general) can be broken
using prefix hijacking [44]. Attackers with more powerful
capabilities on the network path between a client requesting
a certificate and a CA do not even have to perform prefix
hijacking, but instead can easily exploit IP address squatting,
as they are already on the path. Our work, on the other hand,
details a new attack vector to conduct IP address squatting,
which is practical, and time and cost efficient to launch.

C. Certificate Validation Security

The security threats we studied in this paper tie in with
modern, domain-based, certificate authorities and their sur-
rounding security challenges. Various efforts currently track
the adoption of Let’s Encrypt [72, 73]. In general, the se-
curity implications of domain-based certificate validation are
widely accepted. In their comprehensive analysis of the HTTP-
S/SSL trust ecosystem, Clark et al. [74] place great trust in
DANE [53], to mitigate this issue. Apart from DANE, Certifi-
cate Transparency [26, 27] is considered the ideal mitigation
for maliciously and wrongfully obtained certificates and has
received significant attention recently. The DNS certificate
authority authorization (CAA) record might reduce the impact
of IP use-after-free attacks to some degree [52], as it limits
the CAs that are allowed to issue a certificate for a specific
domain, and, thus, force an attacker to request a certificate
from these CAs. However, our analysis shows that current
domain validation in trust ecosystem is susceptible to use-after-
free attacks regardless of CAA records. In fact, the only way to
defend against use-after-free attacks through CAA is to restrict
certificate issuance in its entirety, which then raises problems
when the certificate expires while also relying on automatic
certificate renewal setups, such as those recommended by
Let’s Encrypt, in which case automatic DNS zone updates are
required (which become difficult in the presence of DNSSEC).
Overall, relying on CAA would require numerous compro-
mises in terms of certificate lifetime management and DNS
zone maintenance, while still providing a potential (small)
window of opportunity of an attacker whenever the CAA
record needs to be relaxed to allow certificate renewal. We

12

introduced a mitigation that incorporates existing trust of a
name into the validation process and can protect against these
attacks.

D. Cloud Security

Concurrent with the increasing adopting of cloud services,
cloud security has drawn more research attention. Chen et al.
provided a contemporary summary and analysis of cloud se-
curity issues [75], and indicated problems of shared resources.
Similarly, Subashini and Kavitha provided a comprehensive
analysis of security challenges in cloud scenarios [76]. Their
analysis of IaaS platforms only includes similar issues to those
approached by Ristenpart et al. [4]. Specifically, Ristenpart et
al. exploit shared resources in IaaS environments to facilitate
cross-VM side-channel attacks. However, they focus on phys-
ical computing resources and they do not investigate issues
induced by logical resource sharing, e.g., access to the same
IP address pool. Jensen et al. focus on classical web attacks,
especially in SaaS (Software-as-a-Service) scenarios [77]. Tak-
abi et al. discuss the overall issue of IP squatting that is
related to secure handling of provisioning and multi-domain
cloud platforms with shared resource pools [78]. Zhang et al.
investigate access control and trust management in the context
of multi-tentant environments [79]. Our work and mitigation
approaches are orthogonal to prior cloud security research, and
we focus on the certificate ecosystem vulnerabilities as it is
being used in combination with cloud services.

VI. CONCLUSION

In this paper, we have shown that it is practical, time-
efficient, and cost-efficient for an attacker to (temporarily)
takeover domains by exploiting so-called IP address use-after-
free vulnerabilities on, currently, the two largest Infrastructure-
as-a-Service clouds (Amazon AWS and Microsoft Azure).

In our study, we discovered that attacks are practical on
public clouds because of their instances’ ephemeral nature and
the “throw-away culture” of development operations concern-
ing immutable instances and service migration. In turn, it is not
necessary to takeover the IP address to which a domain points
to, but IP address migration occurs regularly and sometimes
is outside of the control of the cloud user (e.g., reboot or
shutdown of the hypervisor because of an update), thus freeing
the previously assigned IP address and making it available for
re-use by others. Here, a slightly incorrect DNS domain record
migration strategy can immediately render domains vulnerable
to IP address use-after-free attacks. In fact, the problem is
even further amplified for so-called “spot” instances, which are
significantly cheaper instances, but which can be terminated at
any point and without notice to the cloud user, and for which
he cannot protect himself from temporary domain takeovers.

We have examined the reasons of why and how IP address
re-use domain takeover attacks can occur in practice, and
we classify them according to what their potential impact
in practice is. Particularly, we investigated their impact on
domain-validated SSL certificate issuance, such as through
automatic certificate management environments (ACME), e.g.,
Let’s Encrypt. Based on our findings, we then developed
best practice recommendations for cloud operators as well as

domain owners and cloud users, which can reduce vulnerability
to the aforementioned attacks.

Finally, we introduced a new mitigation techniques that
addresses the issue of domain takeover attacks for trust-based
domain-validation services, focusing on the real-world case of
automatic certificate issuance. Our mitigation technique pro-
tects against IP address use-after-free attacks with negligible
operational overhead and only requires manual intervention in
disaster-recovery scenarios, thus, rendering it practical for real-
world deployment even under strict performance and usability
requirements of services like Let’s Encrypt.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their helpful sug-
gestions to improve the paper. We also thank David Choffnes
and Martina Lindorfer for their valuable feedback.

This material is based on research sponsored by the De-
fense Advanced Research Projects Agency (DARPA) under
agreement number FA8750-15-2-0084, the Office of Naval
Research (ONR) under grant N00014-17-1-2011 and N00014-
15-1-2948, the National Science Foundation (NSF) under grant
DGE-1623246 and CNS-1704253, and a Google Security,
Privacy and Anti-Abuse Award to Giovanni Vigna.

The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

Any views, opinions, findings, recommendations, or conclu-
sions contained or expressed herein are those of the authors,
and do not necessarily reflect the position, official policies, or
endorsements, either expressed or implied, the U.S. Govern-
ment, DARPA, ONR, NSF, or Google.

REFERENCES

[1] Ingrid Lunden. Amazon’s AWS Is Now A $7.3B Business As It Passes
1M Active Enterprise Customers. Oct. 2015. URL: https://techcrunch.
com/2015/10/07/amazons-aws-is-now-a-7-3b-business-as-it-passes-
1m-active-enterprise-customers/.

[2] Haje Jan Kamps.Microsoft Celebrates Strong Azure Adoption at Build
2016. Mar. 2016. URL: https : / / techcrunch .com/2016 /03 /31 /azure -
growth/.

[3] C. Public. Cisco Global Cloud Index: Forecast and Methodology,
20152020. White paper. 2016.

[4] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. “Hey, You,
Get Off of My Cloud: Exploring Information Leakage in Third-party
Compute Clouds”. In: Proc. ACM Conference on Computer and Com-
munications Security (CCS). 2009.

[5] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos.
“Flip Feng Shui: Hammering a Needle in the Software Stack”. In: Proc.
USENIX Security Symposium (SEC). 2016.

[6] G. I. Zineb Ait Bahajji. HTTPS as a ranking signal. Aug. 2014. URL:
https : / / webmasters . googleblog . com / 2014 / 08 / https - as - ranking -
signal.html.

[7] K. Basques.Why HTTPS Matters. Sept. 2017. URL: https://developers.
google.com/web/fundamentals/security/encrypt-in-transit/why-https.

[8] P. Venezia. Code injection: A new low for ISPs. May 2015. URL: http:
//www.infoworld.com/article/2925839/net-neutrality/code-injection-
new-low-isps.html.

[9] E.Mill. TheWeb Is DeprecatingHTTPAnd It’s Going To BeOkay. May
2015. URL: https://motherboard.vice.com/en_us/article/wnjyay/the-
web-is-deprecating-http-and-its-going-to-be-okay.

[10] D. Stenberg. TLS in HTTP/2. Mar. 2015. URL: https://daniel.haxx.se/
blog/2015/03/06/tls-in-http2/.

13

https://techcrunch.com/2015/10/07/amazons-aws-is-now-a-7-3b-business-as-it-passes-1m-active-enterprise-customers/
https://techcrunch.com/2015/10/07/amazons-aws-is-now-a-7-3b-business-as-it-passes-1m-active-enterprise-customers/
https://techcrunch.com/2015/10/07/amazons-aws-is-now-a-7-3b-business-as-it-passes-1m-active-enterprise-customers/
https://techcrunch.com/2016/03/31/azure-growth/
https://techcrunch.com/2016/03/31/azure-growth/
https://webmasters.googleblog.com/2014/08/https-as-ranking-signal.html
https://webmasters.googleblog.com/2014/08/https-as-ranking-signal.html
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
http://www.infoworld.com/article/2925839/net-neutrality/code-injection-new-low-isps.html
http://www.infoworld.com/article/2925839/net-neutrality/code-injection-new-low-isps.html
http://www.infoworld.com/article/2925839/net-neutrality/code-injection-new-low-isps.html
https://motherboard.vice.com/en_us/article/wnjyay/the-web-is-deprecating-http-and-its-going-to-be-okay
https://motherboard.vice.com/en_us/article/wnjyay/the-web-is-deprecating-http-and-its-going-to-be-okay
https://daniel.haxx.se/blog/2015/03/06/tls-in-http2/
https://daniel.haxx.se/blog/2015/03/06/tls-in-http2/

[11] R. Barnes, J. Hoffman-Andrews, and J. Kasten. Automatic Certifi-
cateManagementEnvironment (ACME). Internet-Draft draft-ietf-acme-
acme-latest. Work in Progress. Internet Engineering Task Force, June
2017. URL: https: / / ietf- wg- acme.github. io/acme/draft - ietf - acme-
acme.html.

[12] Josh Aas. Milestone: 100 Million Certificates Issued. June 2017. URL:
https://letsencrypt.org//2017/06/28/hundred-million-certs.html.

[13] Dan Cvrcek. Lets Encrypt in the spotlight. June 2017. URL: https://dan.
enigmabridge.com/lets-encrypt-in-the-spotlight/.

[14] K. Borgolte, C. Kruegel, and G. Vigna. “Meerkat: Detecting Web-
site Defacements through Image-based Object Recognition”. In: Proc.
USENIX Security Symposium (SEC). Vol. 24. Aug. 2015.

[15] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. V. Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna. “You Are What You Include:
Large-scale Evaluation of Remote JavaScript Inclusions”. In: Proc.
ACM Conference on Computer and Communications Security (CCS).
2012.

[16] D. Kumar, Z. Ma, Z. Durumeric, A. Mirian, J. Mason, J. A. Halderman,
and M. Bailey. “Security Challenges in an Increasingly Tangled Web”.
In: Proc. World Wide Web Conference. 2017.

[17] P. Mockapetris. Domain Names - Implementation and Specification.
RFC 1035 (Internet Standard). RFC. Updated by RFCs 1101, 1183,
1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535,
2673, 2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966, 6604,
7766. RFC Editor, Nov. 1987. URL: https: / /www.rfc- editor.org/rfc/
rfc1035.txt.

[18] S.Weiler and J. Ihren.MinimallyCoveringNSECRecords andDNSSEC
On-line Signing. RFC 4470 (Proposed Standard). RFC. RFC Editor,
Apr. 2006. URL: https://www.rfc-editor.org/rfc/rfc4470.txt.

[19] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Se-
curity Introduction and Requirements. RFC 4033 (Proposed Standard).
RFC.Updated byRFCs 6014, 6840. RFCEditor,Mar. 2005. URL: https:
//www.rfc-editor.org/rfc/rfc4033.txt.

[20] O. Kolkman, W. Mekking, and R. Gieben. DNSSEC Operational Prac-
tices, Version 2. RFC 6781 (Informational). RFC. RFC Editor, Dec.
2012. URL: https://www.rfc-editor.org/rfc/rfc6781.txt.

[21] T. Chung, R. van Rijswijk-Deij, B. Chandrasekaran, D. Choffnes, D.
Levin, B. M.Maggs, A.Mislove, and C.Wilson. “A Longitudinal, End-
to-End View of the DNSSEC Ecosystem”. In: Proc. USENIX Security
Symposium (SEC). 2017.

[22] P. Mell, T. Grance, et al. “The NIST Definition of Cloud Computing”.
In: (2011).

[23] CAcert.Welcome to CAcert. URL: http://www.cacert.org/.
[24] J. Prins and B. U. Cybercrime. DigiNotar Certificate Authority Breach

Operation Black Tulip. 2011.
[25] B. Budington. Symantec Issues Rogue EV Certificate for Google.com.

2015. URL: https : / / www. eff . org / deeplinks / 2015 / 09 / symantec -
issuesrogue-ev-certificate-googlecom.

[26] B. Laurie. “Certificate Transparency”. In:Queue 12.8 (2014).
[27] B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC

6962 (Experimental). RFC. RFC Editor, June 2013. URL: https://www.
rfc-editor.org/rfc/rfc6962.txt.

[28] J. Aas.Why ninety-day lifetimes for certificates?Nov. 2015. URL: https:
//letsencrypt.org/2015/11/09/why-90-days.html.

[29] M. Aertsen, M. Korczyski, G. Moura, S. Tajalizadehkhoob, and J.
van den Berg. “No domain left behind: is Let’s Encrypt democratiz-
ing encryption?” In: Proc. of the ACM Applied Networking Research
Workshop (ANRW). 2017.

[30] K.Borgolte, C.Kruegel, andG.Vigna. “Delta:Automatic Identification
of UnknownWeb-based Infection Campaigns”. In: Proc. ACM Confer-
ence on Computer and Communications Security (CCS). Vol. 20. Nov.
2013.

[31] M. Neugschwandtner, M. Lindorfer, and C. Platzer. “AView ToAKill:
WebView Exploitation”. In: Proceedings of the 6th USENIX Workshop
on Large-Scale Exploits and Emergent Threats (LEET). 2013.

[32] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. “Attacks on WebView
in the Android System”. In: Proc. ACM Annual Computer Security
Applications Conference (ACSAC). 2011.

[33] M. Bryant. The .io Error Taking Control of All .io Domains With a
Targeted Registration. July 2017. URL: https : / / thehackerblog . com /
the - io - error- taking- control - of - all - io - domains - with - a - targeted -
registration/.

[34] B. Krebs. FBI: $2.3 Billion Lost to CEO Email Scams. Apr. 2016. URL:
https:/ /krebsonsecurity.com/2016/04/fbi- 2- 3- billion- lost- to- ceo-
email-scams/.

[35] S. Hao, K. Borgolte, N. Nikiforakis, G. Stringhini, M. Egele, M.
Eubanks, B. Krebs, and G. Vigna. “Drops for Stuff: An Analysis of
ReshippingMule Scams”. In:Proc. ACMConference on Computer and
Communications Security (CCS). Vol. 22. Oct. 2015.

[36] A. Swinnen. Authentication Bypass on Uber’s Single Sign-On via
Subdomain Takeover. June 2017. URL: https : / / www. arneswinnen .
net /2017/06/authentication- bypass- on- ubers- sso- via- subdomain-
takeover/.

[37] J. Aas. Wildcard Certificates Coming January 2018. July 2017. URL:
https://letsencrypt.org//2017/07/06/wildcard-certificates-coming-jan-
2018.html.

[38] J. Pang, A. Akella, A. Shaikh, B. Krishnamurthy, and S. Seshan. “On
the Responsiveness of DNS-based Network Control”. In: Proc. ACM
Internet Measurement Conference (IMC). 2004.

[39] C.Coles.AWSvsAzure vsGoogleCloudMarket Share 2017. URL: https:
//www.skyhighnetworks.com/cloud- security-blog/microsoft- azure-
closes-iaas-adoption-gap-with-amazon-aws/.

[40] Amazon Web Services, Inc. Throttle API Requests for Better Through-
put. Aug. 2017. URL: http://docs.aws.amazon.com/apigateway/latest/
developerguide/api-gateway-request-throttling.html.

[41] Farsight Inc. Farsight - Security Information Exchange (SIE). URL:
https : / /www. farsightsecurity. com / solutions / security - information -
exchange/.

[42] M. Alllman and V. Paxson. “Issues and Etiquette Concerning Use
of Shared Measurement Data”. In: Proc. ACM Internet Measurement
Conference (IMC). 2007.

[43] Network Sorcery Inc. Well known SCTP, TCP and UDP ports. URL:
http://www.networksorcery.com/enp/protocol/ip/ports00000.htm.

[44] A. Gavrichenkov. “Breaking HTTPS with BGP Hijacking”. In: Black-
Hat Briefings (2015).

[45] S. Helme. Revocation is broken. June 2017. URL: https://scotthelme.co.
uk/revocation-is-broken/.

[46] A. Langley. No, don’t enable revocation checking. Apr. 2014. URL:
https://www.imperialviolet.org/2014/04/19/revchecking.html.

[47] J. Larisch, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and C.
Wilson. “CRLite: A Scalable System for Pushing All TLS Revocations
to All Browsers”. In: Proc. IEEE Security & Privacy. 2017.

[48] The Chromium Project. The Chromium Project: CRLSets. URL: https:
//dev.chromium.org/Home/chromium-security/crlsets.

[49] M.Goodwin.Revoking IntermediateCertificates: IntroducingOneCRL.
2014. URL: https://blog.mozilla.org/security/2015/03/03/revoking-
intermediate-certificates-introducing-onecrl/.

[50] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V.
Shmatikov. “The Most Dangerous Code in the World: Validating SSL
Certificates in Non-browser Software”. In: Proc. ACM Conference on
Computer and Communications Security (CCS). 2012. URL: http://doi.
acm.org/10.1145/2382196.2382204.

[51] R. Barnes, J. Hoffman-Andrews, and J. Kasten. Automatic Certifi-
cateManagementEnvironment (ACME). Internet-Draft draft-ietf-acme-
acme-07. http://www.ietf.org/internet-drafts/draft- ietf- acme-acme-
07.txt. IETF Secretariat, June 2017. URL: http://www.ietf.org/internet-
drafts/draft-ietf-acme-acme-07.txt.

[52] P. Hallam-Baker and R. Stradling. DNS Certification Authority Autho-
rization (CAA) Resource Record. RFC 6844 (Proposed Standard). RFC.
RFCEditor, Jan. 2013. URL: https://www.rfc-editor.org/rfc/rfc6844.txt.

[53] P. Hoffman and J. Schlyter. The DNS-Based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC
6698 (Proposed Standard). RFC. Updated by RFCs 7218, 7671. RFC
Editor, Aug. 2012. URL: https://www.rfc-editor.org/rfc/rfc6698.txt.

[54] PowerDNS. PowerDNS Online Signing. URL: https : / /doc .powerdns .
com/md/authoritative/dnssec/#online-signing.

[55] G.C. Team.Certificate Transparency inChrome.May 2016. URL: https:
//github.com/GoogleChrome/ct-policy/blob/master/ct_policy.md.

[56] K. Hall. [cabfpub] Results on Ballot 187 -Make CAACheckingManda-
tory. Mar. 2017. URL: https: / /cabforum.org/pipermail /public/2017-
March/009988.html.

[57] T. Fiebig, F. Lichtblau, F. Streibelt, T. Krueger, P. Lexis, R. Bush,
and A. Feldmann. “SoK: An Analysis of Protocol Design: Avoid-
ing Traps for Implementation and Deployment”. In: arXiv preprint
arXiv:1610.05531 (2016).

14

https://ietf-wg-acme.github.io/acme/draft-ietf-acme-acme.html
https://ietf-wg-acme.github.io/acme/draft-ietf-acme-acme.html
https://letsencrypt.org//2017/06/28/hundred-million-certs.html
https://dan.enigmabridge.com/lets-encrypt-in-the-spotlight/
https://dan.enigmabridge.com/lets-encrypt-in-the-spotlight/
https://www.rfc-editor.org/rfc/rfc1035.txt
https://www.rfc-editor.org/rfc/rfc1035.txt
https://www.rfc-editor.org/rfc/rfc4470.txt
https://www.rfc-editor.org/rfc/rfc4033.txt
https://www.rfc-editor.org/rfc/rfc4033.txt
https://www.rfc-editor.org/rfc/rfc6781.txt
http://www.cacert.org/
https://www.eff.org/deeplinks/2015/09/symantec-issuesrogue-ev-certificate-googlecom
https://www.eff.org/deeplinks/2015/09/symantec-issuesrogue-ev-certificate-googlecom
https://www.rfc-editor.org/rfc/rfc6962.txt
https://www.rfc-editor.org/rfc/rfc6962.txt
https://letsencrypt.org/2015/11/09/why-90-days.html
https://letsencrypt.org/2015/11/09/why-90-days.html
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/
https://thehackerblog.com/the-io-error-taking-control-of-all-io-domains-with-a-targeted-registration/
https://krebsonsecurity.com/2016/04/fbi-2-3-billion-lost-to-ceo-email-scams/
https://krebsonsecurity.com/2016/04/fbi-2-3-billion-lost-to-ceo-email-scams/
https://www.arneswinnen.net/2017/06/authentication-bypass-on-ubers-sso-via-subdomain-takeover/
https://www.arneswinnen.net/2017/06/authentication-bypass-on-ubers-sso-via-subdomain-takeover/
https://www.arneswinnen.net/2017/06/authentication-bypass-on-ubers-sso-via-subdomain-takeover/
https://letsencrypt.org//2017/07/06/wildcard-certificates-coming-jan-2018.html
https://letsencrypt.org//2017/07/06/wildcard-certificates-coming-jan-2018.html
https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/
https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/
https://www.skyhighnetworks.com/cloud-security-blog/microsoft-azure-closes-iaas-adoption-gap-with-amazon-aws/
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://www.farsightsecurity.com/solutions/security-information-exchange/
https://www.farsightsecurity.com/solutions/security-information-exchange/
http://www.networksorcery.com/enp/protocol/ip/ports00000.htm
https://scotthelme.co.uk/revocation-is-broken/
https://scotthelme.co.uk/revocation-is-broken/
https://www.imperialviolet.org/2014/04/19/revchecking.html
https://dev.chromium.org/Home/chromium-security/crlsets
https://dev.chromium.org/Home/chromium-security/crlsets
https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/
https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/
http://doi.acm.org/10.1145/2382196.2382204
http://doi.acm.org/10.1145/2382196.2382204
http://www.ietf.org/internet-drafts/draft-ietf-acme-acme-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-acme-acme-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-acme-acme-07.txt
http://www.ietf.org/internet-drafts/draft-ietf-acme-acme-07.txt
https://www.rfc-editor.org/rfc/rfc6844.txt
https://www.rfc-editor.org/rfc/rfc6698.txt
https://doc.powerdns.com/md/authoritative/dnssec/#online-signing
https://doc.powerdns.com/md/authoritative/dnssec/#online-signing
https://github.com/GoogleChrome/ct-policy/blob/master/ct_policy.md
https://github.com/GoogleChrome/ct-policy/blob/master/ct_policy.md
https://cabforum.org/pipermail/public/2017-March/009988.html
https://cabforum.org/pipermail/public/2017-March/009988.html

[58] T. Ylonen. “SSH–secure login connections over the Internet”. In: Proc.
USENIX Security Symposium (SEC). Vol. 37. 1996.

[59] Host Identity Takeover Using Virtual Internet Protocol (IP) Addressing.
[60] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan. “Detecting

Algorithmically Generated Domain-Flux Attacks with DNS Traffic
Analysis”. In: IEEE/ACM Trans. Networking (TON) 20.5 (2012).

[61] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna. “Your Botnet is My Botnet:
Analysis of a Botnet Takeover”. In: Proc. ACM Conference on Com-
puter and Communications Security (CCS). 2009.

[62] D. Liu, S. Hao, and H. Wang. “All Your DNS Records Point to Us:
Understanding the Security Threats of Dangling DNS Records”. In:
Proc. ACM Conference on Computer and Communications Security
(CCS). 2016.

[63] N. Nikiforakis, S. Van Acker, W. Meert, L. Desmet, F. Piessens, and
W. Joosen. “Bitsquatting: Exploiting Bit-flips for Fun, or Profit?” In:
World Wide Web. 2013.

[64] Y.-M. Wang, D. Beck, J. Wang, C. Verbowski, and B. Daniels. “Strider
Typo-Patrol: Discovery and Analysis of Systematic Typo-Squatting”.
In: SRUTI 6 (2006).

[65] J. Szurdi, B. Kocso, G. Cseh, J. Spring, M. Felegyhazi, and C.
Kanich. “The Long “Taile” of TyposquattingDomainNames”. In:Proc.
USENIX Security Symposium (SEC). 2014.

[66] M.T.Khan,X.Huo, Z. Li, andC.Kanich. “Every SecondCounts:Quan-
tifying theNegative Externalities of Cybercrime via Typosquatting”. In:
Proc. IEEE Security & Privacy. 2015.

[67] B. Zdrnja, N. Brownlee, and D. Wessels. “Passive Monitoring of DNS
Anomalies”. In: Proc. SIG SIDAR Conference on Detection of Intru-
sions and Malware & Vulnerability Assessment (DIMVA). Springer.
2007.

[68] H. Yan, R. Oliveira, K. Burnett, D.Matthews, L. Zhang, and D.Massey.
“BGPmon: A real-time, scalable, extensible monitoring system”. In:
Proc. IEEE Conference For Homeland Security—Cybersecurity Appli-
cations & Technology (CATCH). 2009.

[69] M.Wählisch, O.Maennel, and T. C. Schmidt. “TowardsDetecting BGP
Route Hijacking Using the RPKI”. In: ACM SIGCOMM Computer
Communication Review 42.4 (2012).

[70] H. Ballani, P. Francis, and X. Zhang. “A Study of Prefix Hijacking and
Interception in the Internet”. In: ACMSIGCOMMComputer Communi-
cation Review. Vol. 37. 4. 2007.

[71] Z. Zhang, Y. Zhang, Y. C. Hu, and Z. M. Mao. “Practical Defenses
Against BGP Prefix Hijacking”. In: Proc. ACMCoNEXT. 2007.

[72] M. Aertsen, M. Korczyski, G. Moura, S. Tajalizadehkhoob, and J. v. d.
Berg. “NoDomainLeft Behind: Is Let’s Encrypt democratizingEncryp-
tion?” In: arXiv preprint arXiv:1612.03005 (2016).

[73] A. Manousis, R. Ragsdale, B. Draffin, A. Agrawal, and V. Sekar.
“Shedding Light on the Adoption of Let’s Encrypt”. In: arXiv preprint
arXiv:1611.00469 (2016).

[74] J. Clark and P. C. vanOorschot. “SoK: SSL andHTTPS: Revisiting Past
Challenges and Evaluating Certificate Trust Model Enhancements”. In:
Proc. IEEE Security & Privacy. 2013.

[75] Y. Chen, V. Paxson, and R. H. Katz. “What’s New About Cloud
Computing Security”. In:University of California, Berkeley Report No.
UCB/EECS-2010-5 January 20.2010 (2010).

[76] S. Subashini and V. Kavitha. “A Survey on Security Issues in Service
Delivery Models of Cloud Computing”. In: Journal of Network and
Computer Applications 34.1 (2011).

[77] M. Jensen, J. Schwenk, N. Gruschka, and L. L. Iacono. “On Technical
Security Issues in Cloud Computing”. In: Proc. IEEE Conference on
Cloud Computing Technology and Science (CloudCom). 2009.

[78] H. Takabi, J. B. Joshi, and G.-J. Ahn. “Security and Privacy Challenges
in Cloud Computing Environments”. In: IEEE Security & Privacy
(2010).

[79] Y.Zhang and J. Joshi.AccessControl andTrustManagement for Emerg-
ing Multidomain Environments. Emerald Group Publishing, 2009.

APPENDIX

For our proof of concept experiment (see Section III-E),
we obtained a valid certificate for the domain “cloud-
strife.seclab.cs.ucsb.edu.” The obtained certificate is shown in
Listing 2. The respective entry in the certificate transparency
log can be found at: https://crt.sh/?id=250959196. We revoked

the certificate after the certificate has propagated to certificate
transparency logs, i.e., shortly after issuance. In face of often
ignored revocation checks, we opt not to publish the private
key. Instead, we prove ownership of the certificate by signing
a unique message (see Listing 3 and Listing 4). We did not
use the certificate for any purpose besides signing the message.
It can be verified as follows:

Copy Listing 2 to certificate.pem
Copy Listing 4 to message.txt.dgst.b64

Create message.txt
$ echo -n "Cloud Strife: Mitigating the Security Risks of Domain

⇝ Validated Certificates" > message.txt

Convert the full certificate to raw PEM:
$ openssl x509 -pubkey -noout -in certificate.pem >

⇝ certificate_raw.pem

Base64 decode the signature
$ base64 -d message.txt.dgst.b64 > message.txt.dgst

Verify the message
$ openssl dgst -sha256 -verify certificate_raw.pem -signature

⇝ message.txt.dsgt message.txt

Listing 1: Instructions to verify the signature.

-----BEGIN CERTIFICATE-----
MIIFHzCCBAegAwIBAgISA3XAEcaykugGaCy9tCoCdJWKMA0GCSqGSIb3DQEBCwUA
MEoxCzAJBgNVBAYTAlVTMRYwFAYDVQQKEw1MZXQncyBFbmNyeXB0MSMwIQYDVQQD
ExpMZXQncyBFbmNyeXB0IEF1dGhvcml0eSBYMzAeFw0xNzExMDkyMzA4NTVaFw0x
ODAyMDcyMzA4NTVaMCkxJzAlBgNVBAMTHmNsb3Vkc3RyaWZlLnNlY2xhYi5jcy51
Y3NiLmVkdTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAONF0TzeAA6N
q5Li7e9h6+Y//d8Zy2gbWN465t3MPVlz1lSLqCZvT4e3IDjuyQ/gx+yWnndtQrhs
zHt+GigQbBcAFM5YohIVrTr7M8ozZVZhu1x11xmPZYJ9hAi8NO6p2uoZMNwiHh35
XVFQs5LFG6QpPGBWoNtu1t5zwLYF01STlMS/hNn0P/KlrnAzs2tSX//OxxaY+jos
KQCl9LrXKhOXcmaZMXFe7t8uglFsjbEvM9TRFqeENROik/TLjRlyb3BM5HtKVnno
tDh6078qCgwMzZyh5YRy2uOGHCp13TdZQtOELq0qfGNjVClwRENo+AW1K8fPnw9L
S49OpBwzx2MCAwEAAaOCAh4wggIaMA4GA1UdDwEB/wQEAwIFoDAdBgNVHSUEFjAU
BggrBgEFBQcDAQYIKwYBBQUHAwIwDAYDVR0TAQH/BAIwADAdBgNVHQ4EFgQUKnFO
hVGO9fXAoSDpoRiztZhSYo4wHwYDVR0jBBgwFoAUqEpqYwR93brm0Tm3pkVl7/Oo
7KEwbwYIKwYBBQUHAQEEYzBhMC4GCCsGAQUFBzABhiJodHRwOi8vb2NzcC5pbnQt
eDMubGV0c2VuY3J5cHQub3JnMC8GCCsGAQUFBzAChiNodHRwOi8vY2VydC5pbnQt
eDMubGV0c2VuY3J5cHQub3JnLzApBgNVHREEIjAggh5jbG91ZHN0cmlmZS5zZWNs
YWIuY3MudWNzYi5lZHUwgf4GA1UdIASB9jCB8zAIBgZngQwBAgEwgeYGCysGAQQB
gt8TAQEBMIHWMCYGCCsGAQUFBwIBFhpodHRwOi8vY3BzLmxldHNlbmNyeXB0Lm9y
ZzCBqwYIKwYBBQUHAgIwgZ4MgZtUaGlzIENlcnRpZmljYXRlIG1heSBvbmx5IGJl
IHJlbGllZCB1cG9uIGJ5IFJlbHlpbmcgUGFydGllcyBhbmQgb25seSBpbiBhY2Nv
cmRhbmNlIHdpdGggdGhlIENlcnRpZmljYXRlIFBvbGljeSBmb3VuZCBhdCBodHRw
czovL2xldHNlbmNyeXB0Lm9yZy9yZXBvc2l0b3J5LzANBgkqhkiG9w0BAQsFAAOC
AQEAIj1W4ZzHlsaj6ccWccGyVahfk9JDhImMQLDUR02FYqtHLPjyM1JIIyYHP9xE
S2JZBbzMlrr2SjfxC3IQhDkUIjyPEeLv6WVT0hFbbzu3QAYjW5yigctpuggx/v7c
rhbWpmY9TJRU2QAsADF9NIeSXo+3zp15QAvrss2l+qtEK3uLgQ12+antYaI85wkc
P6MGHVV52asshcjy+v2wHxJDONmtzCHQbYXA7nhSUfspnVax8EfraGWF5XobZyLw
p91BZjOB1D+HD3ubtbk2PjlW/Eld7jgv2pCEM0iXk5suidCnG47jmZQA892iUVVf
tx4z5/ntnkiw7Gwwzm+o34fMmQ==
-----END CERTIFICATE-----

Listing 2: Proof of concept certificate, signed by Let’s Encrypt.

Cloud Strife: Mitigating the Security Risks of Domain Validated
⇝ Certificates

Listing 3: Proof of concept message (one line, no trailing new line).

Bc99Sl5FwjqYLJl/jS1gPC9fyI9XiS/ex7QVg+zIFZpJ+aPCYcsGm4fGkJxathte
w4i0p3q3lSmnkukRoRNVSvMJdfJRm5QvRQr43HsC6iT+N2xZI/QLcH0nMGUftpR2
HuEiY8LwIalNuxOOjTZJwfTTSRM+NdCjSa39RDpqQLU5LGKjBpSTT/jfg0RwrX0w
MhDnq+iqqrW0kDg08bxARWUfY7tHUAvPpiyyEhnfyThliHFkrKUjAGtH6f+6fKFe
8pZO0XJHRoMuhq4OXMjOWKJZYu7XwQXn3GDoo1bwIwykwmIpUu9wGAjlimtTY5eW
uM0tg2PkmbuZi3JaGsczuQ==

Listing 4: Signature for the proof of concept message.

15

https://crt.sh/?id=250959196

	Introduction
	Background
	Domain Name System and DNSSEC
	Cloud Models
	Domain-Validated Certificates

	Problem Analysis
	Impact
	Taxonomy
	IP Address Churn
	Affected Domain Names
	Proof of Concept Domain Takeover

	Mitigation
	General Concept and Threat Model
	Pre-Signature Certificate Consistency Checks
	Pre-Signed Domains

	Domain Takeover Resistant Identifier Validation Challenge
	Failure Cases
	Lost Access to Old Certificate or Private Key
	Expired Certificate
	Legitimate Change of Authority
	Possible Attacks

	Transitioning Techniques
	Best Practices

	Related Work
	DNS Security
	IP Address Squatting
	Certificate Validation Security
	Cloud Security

	Conclusion
	Appendix

