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Abstract—Knee osteoarthritis (OA) affects 10% of the 
population over 55 years old, and is a major cause of work 
absence, early retirement and joint replacement. The purpose of 
this study is to explore the possibility of using a recently proposed 
knee osteoarthritis biomarker and machine learning method to 
predict OA progression. The biomarker, named cartilage damage 
index (CDI), was extracted from 3D knee MR images by 
measuring representative locations. CDI measured totally 60 
locations on the whole knee cartilage, including 18 from femur, 18 
from tibia and 24 from patella. The CDI values at these 60 
locations in the baseline year were used as feature input to the 
artificial neural network (ANN). The label of each sample was OA 
or non-OA based on the severity level in two years when training 
the model for OA prediction; and the label of each sample was 
change or no-change based on the severity level change in two 
years, when training the model for OA change prediction. 
Separate ANN models were trained for three OA severity 
measures, i.e., lateral Joint Space Narrow (JSN), medial JSN and 
Kellgren and Lawrence (KL) grade. Besides using all the 60 
informative locations, we tested different combinations of CDI 
locations at sub-regions. The best prediction result achieved in this 
work was AUC = 0.912, using the whole knee CDI (all 60 locations) 
to predict lateral JSN. Experiment results showed that CDI can be 
used as a reliable cartilage quantification method and help to 
predict OA progression in two years.  

Keywords—cartilage damage index; knee osteoarthritis 
prediction; artificial neural network; feature analysis; magnetic 
resonance imaging  

I.  INTRODUCTION 
Osteoarthritis (OA), or degenerative joint disease, is the 

most common form of arthritis. It is a slowly progressing disease 
characterized by pain, deformity, enlargement of the joints, and 
limitation of motion [1]. In 2000, more than half of people over 
65 in US suffered from OA disease at one or both joints with 
radiological evidence [2]. By 2030, about 20% of the US people 
will be exposed to a high risk of OA disease, which will cause a 
heavy social economic burden [2, 3].  

The pathology of OA is still unclear, and there is no effective 
treatment can alter OA progression [4]. It is difficult to detect 

OA at its early stage because many individuals with 
radiographic evidence of OA have no symptoms, and the degree 
of radiological change varies by person. The main method to 
assess the structural progression of OA is to measure hyaline 
cartilage change, which is also used to evaluate the effectiveness 
of clinical treatments. In clinical study, medical imaging is the 
main tool to facilitate diagnosis. Traditional X-ray imaging 
provides an indirect way to measure the cartilage, which is 
estimated by measuring the distance between the tibia and femur 
bones. Therefore, X-ray cannot provide the accurate 
measurement of cartilage [5]. Magnetic resonance imaging 
(MRI) is a non-invasive technology to generate 3-dimensional 
images of intra-articular soft-tissue structures, including knee 
cartilage. Compared with X-ray, MRI can image cartilage 
directly, and provide information of other soft tissues. In 
addition, MRI has no radiation and is safer for daily use. 
However, it is burdensome and time-consuming to measure 
cartilage on 3D MR images. It may take up to six hours to 
manually segment the image sequence generated by one 3D 
knee MR scan [10]. Furthermore, it requires intensive training 
to use cartilage segmentation software which increases the time 
and effort cost [11]. 

Over the past decade, various approaches have been 
proposed to measure knee cartilage through MR images. 
Segmenting alternate MR slices and confining measurements to 
partial regions of cartilage are two primary methods [15-17]. 
Computer-aided algorithms such as active contours and B-
splines have been developed as well [12-16]. However, these 
methods have disadvantages such as low accuracy, low 
reliability, and cannot detect small cartilage changes. Given that 
OA is a lowly progressed disease with usually 2% change per 
year, these methods may easily omit the small change happened 
in the early years of knee OA. Therefore, it is still a challenging 
to develop an efficient quantification method with good 
reproducibility, validity, and sensitivity to change.  

Recently, Zhang et al. proposed a novel cartilage 
quantification method, named cartilage damage index (CDI), to 
efficiently measure cartilage volume and evaluate cartilage 
damage on MRI [18, 19]. The idea of CDI is based on the results 
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of statistical analysis, which shows that certain articular 
cartilage locations experience more OA damage through 
studying hundreds of knees. Instead of measuring cartilage on 
all MR slides, the CDI method selects certain informative 
locations on reconstructed cartilage layer to quantify cartilage 
thickness. The CDI includes totally 60 points on the cartilage 
layer (Fig. 1). The experiment results in [18, 19] showed CDI 
was closely correlated with clinically OA severity measures, 
such as joint space narrowing (JSN) grade, Kellgren-Lawrence 
(KL) grade, joint space width (JSW), and knee alignment. The 
intra-tester reliability (ICC [3, 1 model] > 0.9) and inter-tester 
reliability (ICC [2, 1 model] > 0.8) of CDI were good [19]. This 
method has been used in several federal funded clinical trials 
and the results were published in [7]. 

Our previous study showed that the CDI points can help 
classifying knee joints into OA and non-OA categories based on 
the same year data and the whole knee CDI (60 points) achieved 
the best performance than using individual femoral, tibia, or 
patella compartments [21]. Another study explored using partial 
CDI locations, i.e., the 36 points on femur and tibia, to predict 
OA progression [26]. In this study, we extended partial CDI to 
whole knee CDI to predict OA progression in two years. We 
tested machine learning models with various combinations of 
CDI locations (the CDI locations at six individual compartments) 
as feature input. Artificial neural network (ANN) was trained to 
predict OA disease in two years. We used KL grade and JSN (at 
both lateral and medial compartments) to measure OA disease 
in this study.  

The rest of the paper is organized as follows. In section II, 
we described the material and methods employed in this 
research. These included data selection, CDI definitions, CDI 
measurements, radiographic outcomes, artificial neural network, 
and evaluation metrics. In section III, we described three groups 
of experiment which tested various feature combinations. 
Experiment results were reported and analyzed. Finally, section 
IV drew conclusion and discussed future work.  

II. MATERIAL AND METHODS 

A. Data 
The MR images in this study were selected from the 

Osteoarthritis Initiative (OAI) database. The OAI is a national 
wide study initiated to improve the evaluation of OA biomarkers 
as potential surrogate endpoints [22]. The OAI owns an 
institutional review board approval (IRB) from the coordinating 
centers and four clinical centers (University of Maryland and 
John’s Hopkins comprise a single recruitment center, Brown 
University, Ohio State University, University of Pittsburgh). All 
participants provided informed consent to participate the OAI. 
Approximated 4800 people (ages 45-79) with or at risk for knee 
OA were recruited by the four OAI clinical centers. The OAI 
participants had weight-bearing posterior-anterior fixed-flexion 
knee radiographs obtained at the baseline and 24-month visits. 
We selected 200 knees with equal distribution among different 
severity levels. 100 knees were selected based on medial joint 
space narrowing (JSN), i.e., 25 knees in each medial JSN grade. 
Another 100 knees were selected based on lateral JSN grade 
which were stratified by four JSN grades with 25 knees in each 
grade as well. Among the 200 knees, seven knees were excluded 
because of missing radiographic data. 

B. Cartilage Damage Index 
Cartilage damage index (CDI) is a recently proposed 

cartilage quantification method that is much more efficient than 
the traditional manual segmentation of cartilage and it quantifies 
osteoarthritis cartilage thickness through informative locations 
on knee MR images [18-20]. These informative locations are 
selected from regions on articular surface where cartilage 
denudation frequently happen. Knee joint is the most complex 
human joint which includes femur, tibia, and patella cartilages 
and each cartilage is divided into medial and lateral 
compartments. There are totally 60 informative locations 
selected to measure CDI, including 18 locations from femur, 18 
locations from tibia, and 24 locations from patella compartment 
(Fig. 1). 

C. Radiographic Outcomes 
In this study, we used two clinical radiographic 

measurements to define OA disease: JSN and KL grade. Joint 
Space Narrowing (JSN) is an OA severity measure that is 
characterized by joint degeneration and loss of cartilage. JSN is 
used to quantify joint damage by measuring the space that exists 
between the bones of a joint in an X-ray image. A narrower or 
decreased space indicates severer OA. Because a knee joint may 
have OA disease at different compartments, JSN is separately 
measured at medial and lateral sides of a knee joint. There are 
four grades ranging from 0 to 3. Kellgren and Lawrence (KL) 
grade is another commonly used radiographic measures to 
diagnose knee OA [24]. KL is used as whole knee evaluation for 
making treatment decisions and assessing knee OA progression. 
There are five KL grades ranging from 0 to 4. 

In this study, we divided a whole knee into six compartments 
(medial femur, lateral femur, medial tibia, lateral tibia, medial 
patella, and lateral patella) and explored the predicting abilities 
of baseline CDI at each compartment for OA progression in two  
years. 

 

  
Fig. 1. Cartilage damage index (yellow dots denote CDI locations) 



D. Artificial Neural Network 
The classifier, artificial neural network (ANN) is aroused 

from the structure and functions of biological neural networks 
[23]. The structure of an ANN used in this work contained one 
input layer, one output layer, and one hidden layer. The number 
of neurons in the hidden layer was decided as (# of attributes + 
# of classes)/2. We employed backpropagation algorithm to 
update the weights of neurons.  

E. Evaluation 
We used 10-fold cross-validation for training and testing of 

ANN models. We divided data into 10 equal groups, and held 
one out as testing data, while using the remaining nine groups as 
training data. This process was repeated until all the groups had 
been used as testing data once. 

In the study, we employed several metrics to evaluate the 
performance: precision (also called positive predictive value 
(PPV)), recall (also called sensitivity), F-measure, Matthew’s 
correlation coefficient (MCC), and the area under the receiver 
operating characteristic (ROC) curve (AUC).  

F-measure indicates the overall classification accuracy with 
a weighted average of precision and recall for a specified 
confidence threshold. MCC provides a better accuracy 
evaluation than overall accuracy when the data is over 
unbalanced. ROC curves demonstrate the tradeoff between 
sensitivity and specificity as the classifier confidence threshold 
increases or decreases. The formulas of these metrics are 
provided below. 

Precision =
TP

TP+FP
   (1) 

Recall =
TP

TP+FN
     (2) 

F − Measure = 2 ∙
Precision∙Recall

Precision+Recall
  (3) 

MCC =  
TP∙TN−FP∙FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
 (4) 

In the formulas above, TP stands for the number of true 
positives, TN is the number of true negatives, FP is the number 
of false positives and FN is the number of false negatives. The 
positive class has two definitions: a) the given knee has OA 
(KL>=2 or JSN>=1) at 2-year follow up; b) the given knee has 
OA progression during the two-year period, i.e., KL or JSN is 
changed. The negative class also has two corresponding 
definitions: a) the given knee has no OA (KL<2 or JSN<1) at 2-
year follow up; b) the given knee has no OA progression during 
the two-year period (KL or JSN is not changed). We trained 
separate models for severity prediction and severity change 
prediction respectively. 

III. EXPERIMENT AND RESULTS 

A. Experiment 1: Baseline CDI Predicts Medial JSN 
Since the JSN grade is measured for medial and lateral sides 

respectively, we trained ANN models to predict medial JSN in 
experiment 1. We tried different combinations of the CDI 
locations on the medial compartments, as well as the whole knee. 
The different feature sets and corresponding performance were 

illustrated in Table 1. The medial femur, medial tibia, and 
medial tibia + femur + patella generated relatively better 
performance (all AUCs > 0.7). The best performance was 
achieved using whole knee CDI (AUC = 0.839). Fig. 2 plotted 
the ROC curves of these models with different feature sets.  

For each feature set, we also trained ANN models to predict 
the longitudinal change of medial JSN in two-year period. The 
prediction performance was lower than those in Table 1. This is 
because OA is a chronic disease with slow progression, it is 
always more difficult to study longitudinal change than cross-
sectional data. However, same as previous experiment, the best 
performance was achieved by using the whole knee CDI (AUC 
= 0.759). Table 2 showed the performance of ANN models using 
baseline CDI to predict change of medial JSN with different 
feature sets and Fig. 3 plotted the corresponding ROC curves. 

Table 1. PERFORMANCE OF ANN USING BASELINE CDI TO PREDICT 
MEDIAL JSN IN TWO YEARS 

 

Fig 2. ROC curves of ANNs using baseline CDI to predict medial  JSN in two 
years 

Table 2. PERFORMANCE OF ANN USING BASELINE CDI TO PREDICT 
THE  CHANGE OF MEDIAL JSN IN TWO YEARS 

 

 Precision Recall F-Measure MCC AUC 
Medial femur 0.71 0.71 0.709 0.418 0.736 
Medial tibia 0.689 0.689 0.688 0.376 0.717 

Medial femur 
tibia 0.7 0.699 0.698 0.397 0.783 

Medial patella 0.49 0.49 0.49 -0.023 0.475 
Medial femur 
tibia patella 0.69 0.689 0.687 0.376 0.736 

Whole knee 0.742 0.741 0.74 0.481 0.839 

 Precision Recall F-Measure MCC AUC 
Medial femur 0.723 0.746 0.732 0.197 0.606 
Medial tibia 0.655 0.689 0.67 0.003 0.514 

Medial femur 
tibia 0.689 0.699 0.694 0.103 0.517 

Medial patella 0.623 0.737 0.668 -0.068 0.394 
Medial femur 
tibia patella 0.676 0.694 0.684 0.063 0.474 

Whole knee 0.731 0.751 0.739 0.22 0.759 

 



Fig 3. ROC curves of ANNs using baseline CDI to predict the change of 
medial JSN in two years 

 

Experiment 2:Baseline CDI Predicts Lateral JSN 
 In experiment 2, we used baseline CDI to predict lateral JSN 

in two years and the change of lateral JSN over the two-year 
period. We found that the ANN models in this experiment 
achieved better performance than those in Experiment 1, 
indicating stronger patterns were detected for lateral JSN 
prediction. The best result (AUC of 0.912) was achieved using 
the whole knee. The second best (AUC = 0.855) was achieved 
using lateral tibia. Table 3 presented the results of using baseline 
CDI to predict lateral JSN in two years with different feature 
sets. The ROC curves were plotted in Fig. 4. 

For the change of lateral JSN over two years, the best result 
achieved was AUC = 0.745 using lateral femur + tibia + patella 
compartment. As mentioned before, it is more challenging to 
predict the longitudinal change since OA is a slow progression 
disease. Table 4 summarized the performance of ANNs that 
predicted the change of lateral JSN. As shown in Table 4, lateral 
tibia CDI and whole knee CDI achieved similar performance 
with AUC higher than 0.7. Corresponding ROC curves were 
plotted in Fig. 5. 

 

Table 3. PERFORMANCE OF ANN USING BASELINE CDI TO PREDICT 
LATERAL CDI IN TWO YEARS 

 

 

 

Fig 4. ROC curves of ANNs using baseline CDI to predict lateral JSN in two 
years 

 

Table 4. PERFORMANCE OF ANN USING BASELINE CDI TO PREDICT 
THE CHANGE OF LATERAL JSN IN TWO YEARS 

 

 

 
Fig 5. ROC curves of ANNs using baseline CDI to predict the change of 
lateral JSN in two years 

 

Experiment 3: Baseline CDI Predicts KL 
In experiment 3, we trained prediction models for KL grade.  

The difference with above experiments was that KL grade was 
a whole knee measurement. Therefore, we included both lateral 
and medial compartments into the feature sets. As Table 5 
showed, we tested CDI features from various compartments as 

 Precision Recall F-Measure MCC AUC 
Lateral femur 0.674 0.674 0.674 0.347 0.746 
Lateral tibia 0.787 0.788 0.788 0.574 0.855 

Lateral femur 
tibia 0.809 0.808 0.808 0.616 0.848 

Lateral patella 0.582 0.582 0.582 0.162 0.613 
Lateral femur 
tibia patella 0.795 0.793 0.792 0.586 0.829 

Whole knee 0.839 0.839 0.839 0.678 0.912 

 Precision Recall F-Measure MCC AUC 
Lateral femur 0.6 0.632 0.614 -0.086 0.518 
Lateral tibia 0.719 0.736 0.726 0.235 0.723 

Lateral femur 
tibia 0.698 0.705 0.701 0.181 0.67 

Lateral patella 0.728 0.742 0.734 0.269 0.698 
Lateral femur 
tibia patella 0.744 0.751 0.747 0.305 0.745 

Whole knee 0.719 0.731 0.724 0.237 0.708 

  



well as the whole knee. The best result was achieved by the 
lateral femur compartment with AUC = 0.855. The lateral 
compartment performed better than the medial compartment on 
prediction, and the whole knee compartment achieved the 
second best result with AUC = 0.843.  

For the change of KL grade, the best result was AUC = 0.591 
using lateral tibia compartment. Table 6 summarized the results 
of baseline CDI predicting the change of KL grade over two 
years, with different feature sets and combinations. Similar 
observation was made as in previous experiments, that 
predicting longitudinal change was more challenging than 
predicting cross-sectional data. 

The ROC curves of the above two sets of experiment were 
plotted in Figs. 6-7 respectively.  

Table 5. PERFORMANCE OF ANN USING BASELINE CDI TO PREDICT 
KL GRADE IN TWO YEARS 

 

 

 
Fig 6. ROC curves of ANNs using baseline CDI to predict KL Grade in two 
years 

Table 6.  PERFORMANCE OF ANN USING BASELINE CDI TO PREDICT 
THE CHANGE OF KL GRADE IN TWO YEARS 

 

 

 

Fig 7. ROC curves of ANNs using baseline CDI to predict the change of KL 
grade in two years 

 

DISCUSSION AND CONCLUSION 
In this study, we explored the possibility of using CDI points 

as features and training ANN to predict OA progression in two 
years. We have used 60 CDI values from informative locations 
on the cartilage layer for each knee MR scan. The processed 
feature set was served as input of the ANNs. We divided the 
whole knee feature cartilage into six compartments, i.e., medial 
femur, lateral femur, medial tibia, lateral tibia, medial patella, 
and lateral patella. We treated each compartment as a sub-
feature-set and tested the predicting ability of individual 
compartment as well as their combinations. To label the 
samples, we used medial JSN, lateral JSN, and KL grades to 
define OA disease. We trained ANN models to predict OA level 
and predict the change of OA level respectively, in a two-year 
period.  

Experiment results showed that baseline CDIs had good 
performances on predicting OA status at two years. The best 
performance (AUC = 0.912) was achieved by using the whole 
knee CDI to predict lateral JSN. The performance on predicting 

 Precision Recall F-Measure MCC AUC 
Lateral femur 0.787 0.788 0.788 0.574 0.855 
Lateral tibia 0.665 0.663 0.664 0.243 0.689 

Lateral femur 
tibia 0.67 0.663 0.666 0.255 0.685 

Lateral patella 0.529 0.572 0.544 -0.055 0.517 
Lateral femur 
tibia patella 0.617 0.617 0.617 0.135 0.655 

Medial femur 0.666 0.653 0.658 0.245 0.674 
Medial tibia 0.625 0.606 0.613 0.153 0.664 

Medial femur 
tibia 0.649 0.637 0.642 0.208 0.683 

Medial patella 0.516 0.541 0.527 -0.084 0.479 
Medial femur 
tibia patella 0.61 0.611 0.611 0.12 0.643 

Whole knee 0.782 0.777 0.779 0.508 0.834 

 Precision Recall F-Measure MCC AUC 
Lateral femur 0.538 0.56 0.547 -0.018 0.509 
Lateral tibia 0.586 0.601 0.592 0.085 0.591 

Lateral femur 
tibia 0.556 0.57 0.562 0.021 0.486 

Lateral patella 0.529 0.562 0.541 -0.04 0.514 
Lateral femur 
tibia patella 0.559 0.565 0.561 0.026 0.523 

Medial femur 0.572 0.591 0.579 0.055 0.477 
Medial tibia 0.531 0.39 0.534 -0.036 0.539 

Medial femur 
tibia 0.534 0.539 0.536 -0.028 0.504 

Medial patella 0.552 0.577 0.561 0.01 0.491 
Medial femur 
tibia patella 0.533 0.523 0.528 -0.03 0.484 

Whole knee 0.541 0.549 0.545 -0.012 0.53 



medial JSN and KL grade were also promising (AUC = 0.839 
and 0.855 respectively).  

One interesting observation was that for both lateral JSN and 
medial JSN, the best performance was achieved by the ANN 
model that utilized whole knee CDI feature set, i.e., all 60 points. 
It was interesting because lateral JSN was measured from the 
lateral side of the knee joint and medial JSN was measured from 
the medial side. An intuitive understanding of the best CDI 
features should come from lateral or medial compartment. 
However, our experiment results showed that all CDI points 
should be used to predict the compartment disease. This 
indicated that disease on one compartment may also be impacted 
by other compartments.  

On the other hand, when we tried to use CDI to predict the 
change of OA severity levels, the performances of ANN models 
were not as good as those of the models that predicted cross-
sectional data. This is consistent with findings from other OA 
studies.  

Since OA is a slow progression disease, exploring data with 
longer follow up period might lead to better results. Our future 
work will focus on improving the prediction performance of 
ANN by exploring new data with longer follow up period. 
Besides, we will increase the size of our dataset by selecting 
more cases from the OAI database to enable the discovery of 
more interesting biomarkers. 
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