
Generalized Matrix Factorization Techniques
for Approximate Logic Synthesis

Soheil Hashemi
School of Engineering

Brown University
Providence, RI 02912

soheil hashemi@brown.edu

Sherief Reda
School of Engineering

Brown University
Providence, RI 02912
sherief reda@brown.edu

Abstract—Approximate computing is an emerging computing
paradigm, where computing accuracy is relaxed for improve-
ments in hardware metrics, such as design area and power profile.
In circuit design, a major challenge is to synthesize approximate
circuits automatically from input exact circuits. In this work,
we extend our previous work, BLASYS, for approximate logic
synthesis based on matrix factorization, where an arbitrary input
circuit can be approximated in a controlled fashion. Whereas our
previous approach uses a semi-ring algebra for factorization, this
work generalizes matrix-based circuit factorization to include
both semi-ring and field algebra implementations. We also
propose a new method for truth table folding to improve the
factorization quality. These new approaches significantly widen
the design space of possible approximate circuits, effectively
offering improved trade-offs in terms of quality, area and power
consumption. We evaluate our methodology on a number of
representative circuits showcasing the benefits of our proposed
methodology for approximate logic synthesis.

I. INTRODUCTION

Many applications in domains such as signal processing,
machine learning, computer vision, and computer graphics
show inherent resilience to small errors in their outputs. This
resilience can originate from different sources including, noise
in input data, inherent approximate calculations, or user toler-
ance to variations in the outputs. In such domains, approximate
computing proposes to exploit this error resilience by trading
accuracy for benefits in hardware metrics.
In circuit design, a central challenge is to devise techniques

for approximate circuit synthesis that can generate approx-
imate circuits from input exact circuits, while enabling the
designer to control the trade-off in the amount of inaccuracies
introduced in the circuit and the associated design metrics.
The last few years have seen a number of techniques that
address the need for approximate synthesis techniques [3], [4],
[8], [10], [11]. These techniques work across different design
abstractions from gate-level to higher levels [2], [7], [9].
Recently, an approach, BLASYS, for approximate logic

synthesis has been proposed based on matrix factorization
[1]. In this approach, a truth table is first generated for the
circuit. The truth table is then treated as a matrix, A, that
is factored into two smaller matrices B and C, that when
multiplied, BC, using semi-ring Boolean algebra rules, leads
to an approximate truth table. The truth table corresponding to
B is synthesized as a compressor circuit and the matrix C is
synthesized as a decompressor circuit that receives its inputs
from the compressor circuit.

In this paper, we generalize our matrix-based approach
for approximate circuit synthesis by considering both semi-
ring and field algebra implementations. In particular, the
contributions of this paper are as follows.

• We propose a generalized approach to circuit approxi-
mations using matrix factorization, where we use XOR-
based field algebra for circuit approximations alongside
the OR-based semi-ring algebra approach. In our ap-
proach, a decompressor circuit of ORs and XORs is
used to combine the outputs of the compressor circuit
to generate the final approximate circuit outputs.

• To improve the possibility of obtaining better approxi-
mations, we propose to fold the truth table to “balance”
its size. This approach reduces the complexity of the
compressor circuit at the expense of the decompressor
circuits, which can lead to better approximations.

• We incorporate OR and XOR based factorizations and the
degree of folding of the truth table into a design space
exploration method to identify a larger space of possible
approximate circuits designs.

• We evaluate our approach on a number of representative
circuits, where we quantify the trade-off between accu-
racy and design metrics such as area and power. We show
that our generalized approach improves BLASYS [1] by
3-12% depending on the target accuracy threshold.

The organization of this paper is as follows. In Section II, we
describe the proposed approach, namely the XOR field-based
circuit approximation, and truth table folding methods. Here,
we also describe the integration of our approach in a circuit
decomposition and design space exploration technique. Next,
we provide our experimental results in Section III. Finally, the
conclusions of this work are summarized in Section IV.

II. PROPOSED METHODOLOGY

Binary matrix factorization can be formulated as an opti-
mization problem solving

argminB,C|A−BC|, (1)

where the elements of A, B and C matrices are ‘0’ or ‘1’.
Here, the multiplications are carried out using the logical AND
operation, and different algebra (such as Boolean and modulo-
2) can be used for the addition [5], [6].
In our previous work, BLASYS [1], we proposed to approx-

imate a circuit by replacing the exact circuit with truth table A

1276978-3-9819263-2-3/DATE19/ c⃝2019 EDAA

!"""!"""!"""#"""!
!"""#"""#"""!"""#
!"""#"""!"""#"""!
#"""!"""#"""#"""!
#"""#"""!"""!"""!

!"""!"""#
#"""#"""!"""""
!"""#"""#
#"""!"""#
!"""#"""!

!"""#"""!"""#"""!
#"""!"""#"""#"""!
#"""#"""#"""!"""#

!"""!"""!"""#"""!
#"""#"""!"""#
!"""#"""!"""#"""!
#"""!"""#"""#"""!
! #"""!"""!"""!

!"""#"""#
!"""!"""#
!"""!"""!
#"""!"""!
#"""#"""!

!"""!"""!"""#"""#
#"""!"""!"""!"""#
#"""#"""!"""!"""!

!"""!"""!"""#"""#
!"""#"""#"""!"""#
!"""#"""!"""#"""!
#"""!"""#"""#"""!
#"""#"""!"""!"""!

!"#$%&'()$*")+%, !-#$."/)0+%1")%0&$(2%&3$24*%5+%&3$60074"&$"734-+" !/# ."/)0+%1")%0&$(2%&3$.%478$*08(7059$"734-+"

Fig. 1. Example of binary matrix factorization using different algebra. (a) input matrix, (b) factorization using Boolean algebra where addition is carried out
using logical ORs, and (c) factorization using modulo-2 algebra, where the addition is carried out using logical XORs. The errors are highlighted in red.

with a reduced circuit representing BC. While in our original
paper we utilized Boolean matrix factorization (BMF), and
hence an OR based decompressor, in this work we generalize
and expand the scope of application of matrix factorization
techniques for approximate logic synthesis.

A. Binary Matrix Factorization under Different Algebras

Binary matrix factorization can use different algebra when
optimizing the factorized matrices to better approximate the
original matrix. In the case of Boolean matrix factorization
(BMF) proposed in our previous work [1], the algebra imple-
ments a semi-ring algebra, where the addition is carried out
using logical OR, i.e., 1+1 = 1. One potential shortcoming of
using OR-based Boolean arithmetic is that ORing two bases
from B with a ‘1’ in the same location will lead to a ‘1’,
and this result will not change regardless of any additional
bases that can be further ORed with the two. In the case
of field modulo-2 algebra, however, the addition is carried
out using logical XOR, i.e., 1 + 1 = 0. Thus a ‘1’ can be
reduced back to ‘0’ and therefore combining additional bases
in modulo-2 implementation can offer more diversity in the
results. Figure 1 shows an example of an input matrix as well
as the factorized matrices using both Boolean and Modulo-
2 arithmetic. As demonstrated in the figure, using different
arithmetic can result in significantly different characteristics
in the factorized matrices. In the specific case of Figure 1,
modulo-2 algebra generates better quality of results. In this pa-
per we advocate and demonstrate the benefits of the expanded
search space offered by a modulo-2 based implementation
when compared to the Boolean-only approach as proposed in
previous work [1].
Interestingly, modulo-2 approximate logic synthesis closely

resembles that of the Boolean based approach, where the only
differences are (1) a modulo-2 approach is utilized for the
matrix factorization, and (2) the decompressor circuit needs
to be mapped to network of XOR gates instead of OR gates.
Currently there are no modulo-2 matrix factorization algo-
rithms and the complexity of the problem is unknown [6]. Note
that the Boolean counterpart is proven to be NP-Hard, and
therefore all existing algorithms are based on heuristics [5].
To enable our methodology using modulo-2 arithmetic, we
propose a simple heuristic based on the methodologies used
for the Boolean matrix factorization. More specifically, we
use Asso [5], [6], a factorization heuristic based on Boolean
algebra, for initial matrix factorization, and then we do an
exhaustive search for the decompressor matrix to minimize the
error assuming modulo-2 arithmetic. Note that this operation

incurs a timing complexity of O(m2f), where m denotes the
number of outputs (or columns of the decompressor matrix),
and f denotes the factorization degree (or the number of
rows in the decompressor matrix), as different columns of the
decompressor circuit can be identified independently.
Finally, as different columns of the decompressor matrix

represent different combinations of the compressor circuits,
one can mix the OR-based and XOR-based methodologies,
where some outputs are implemented using OR and other
outputs are implemented using XORs, i.e., the decompressor
circuit uses both OR and XOR gates. We refer to this approach
as XOR/OR, as it chooses the best outcome of OR versus XOR
results to implement. We will evaluate the XOR and OR/XOR
methodologies in the experimental results highlighting the
benefit of each in different circumstances.

B. Truth Table Folding

The number of rows in the truth table of a circuit grows
exponentially as a function of the number of circuit inputs. If
2n >> m, this results in a tall-and-skinny matrix, which can
lead to a lack of common bases between different outputs.
As a result, the binary matrix factorization algorithms can
truncate the least significant outputs, especially when the out-
puts represent a numerical value, reducing the decompressor
circuit to wires. While still providing valid approximations,
such occurrences can limit the benefits in hardware metrics.
To mitigate this issue and reduce the discrepancy between

the dimensions of the input matrix, we propose to fold a tall-
and-skinny input matrix. Specifically, as an example, one can
reduce the number of rows by half, by dividing the input
matrix into two equal sub-matrices and concatenating the two
sub-matrices in a column-wise fashion. Figure 2 demonstrates
the input matrix folding process for a folding degree of four.
Effectively, folding an input truth table with n inputs and m
outputs (therefore a truth table of size 2n rows andm columns)
by a folding degree of k generates a truth table with 2n−log2(k)

rows and mk columns for a circuit with n − log2(k) inputs
and m× k outputs.
In hardware domain, folding affects both the compressor

and decompressor circuits. The compressor circuit uses the
least significant n − log2(k) inputs, and the most significant
log2(k) bits are used as inputs to a multiplexer tree to select
the correct output from the availablemk outputs of the decom-
pressor as illustrated in Figure 3. We refer to the decompressor
circuit with the multiplexing tree as the extended decompressor
circuit. Folding essentially shifts the circuit complexity from
the compressor circuit to the decompressor circuit. At the

Design, Automation And Test in Europe (DATE 2019) 1277

!"#$%&'(')"*$ +&,+-$+".*/

!.#$0%*1/1$+&,+-$+".*/$!!"#"2#

$ %,+3,+4

$! %,+3,+4
5%
/)
+&'
/4

5%
&*%
('
!(
/)
+&'
/4

Fig. 2. The proposed truth table folding. (a) the input truth table, and (b) the
4-folded resulting truth table.

!$!$!

)"
*+
,!
'-
(".
)/
01
2

!$!$!
3
",01/012

!$!$!

!"#$%&''"%(
!)%!*)+

"

!$!$!

3
-

,&!"#$%&''"%(
!)%!*)+

!$!$!

!$!$!

!$!
$!

#41#)$#$"$#%,3/5#22,5"%.5%0.1

+,
!'
-(
".)
/0
12 !$!$!

Fig. 3. Hardware realization of approximate circuit with truth table folding.

same time, folding increases the range of possible factorization
degrees, f , by a factor of k potentially enabling a wider
range of trade-offs. Finally, folding enables the binary matrix
factorization algorithm to detect features not only among
different output signals, but also among different segments
of the same output. In Section III, we will demonstrate the
benefits of matrix folding and demonstrate how the large
design space enabled in this paper, can result in better trade-
offs between accuracy and design metrics.

C. Design Space Exploration & Large Circuit Decomposition
Similar to our previous work [1], and since the truth table

size of a circuit grows exponentially with the number of
its inputs, we decompose any large circuit into sub-circuits,
where each sub-circuit has a limited number of inputs (e.g.,
n ≤ 10) and then approximate each sub-circuit individually
using the proposed binary matrix decomposition method with
mixed OR/XOR decompressor implementation and truth table
folding. Furthermore, we utilize the same approach for design
space exploration as BLASYS. After identifying the sub-
circuits, we calculate the possible approximate realizations for
each sub-circuit using various factorization degrees, OR/XOR
implementations and folding degrees. We then greedily explore
the space of generated approximate sub-circuits to identify a
good approximation order. Due to space limits, we refer the
readers to our previous work for more details [1].

III. EXPERIMENTAL RESULTS

We evaluate the proposed generalized matrix factorization
methodology, on eight different benchmarks, as summarized

TABLE I
THE LIST OF BENCHMARKS EVALUATED USING THE PROPOSED

METHODOLOGY.
Accurate Design Metrics

Name Function I/O Area Power Delay
(um2) (uW) (ns)

b1 general logic 3/4 9 0.8 0.08
x2 general logic 10/7 41.04 3.3 0.18

Adder32 32-bit adder 64/33 320.8 81.1 3.23
Mult8 8-bit multiplier 16/16 1731.6 263.5 2.03
BUT butterfly structure 16/18 297.4 80.6 1.79
MAC multiply and accumulate

with 32-bit accumulator 48/33 6013.1 470.5 2.36
SAD sum of absolute

difference 48/33 1446.5 195.1 2.43
FIR 4-tap FIR filter 64/16 8568.0 466.3 1.56

in Table I, where we report the accurate circuit characteris-
tics. We evaluate two smaller benchmarks available in the
LGSynth91 benchsuit, namely b1 and x2, two arithmetic
circuits, as well as four larger circuits commonly used in DSP
applications. For smaller circuit, b1 and x2, we generate the
truth table and pass them to the factorization algorithm. For the
larger benchmarks, however, we first decompose the circuit as
described in Subsection II-C. For hardware metrics, all designs
are implemented in Verilog and synthesized using Synopsys
design compiler using an industrial 65 nm technology node at
the typical processing corner.
For design accuracy, we report the normalized Hamming

distance (HD), which is defined as

Normalized HD =
|A−BC|

Nm
, (2)

and average relative error (AVE) defined as

AVE =
1

N
ΣN

i=1
|Ri −R′

i|
Ri

, (3)

for logical and binary numerical outputs, respectively. Here, N
represents the size of the test data while Ri and R′

i, represent
the accurate and approximate numerical results. Furthermore,
for smaller circuits, we define the accuracy over all possible
inputs, while for larger networks, we utilize a randomly
generated N = 100, 000 instance test set. Finally, in larger
circuits, we report the total hardware cost as the summation
of the smaller subcircuits.
We first briefly present the possible benefits of the expanded

design space. For this study we focus on the smaller bench-
marks, as they eliminate the need for an exploration method-
ology and therefore better demonstrate the isolated impact
of the proposed XOR-based methodology and the proposed
folding approach. Figure 4 shows the design space offered by
the proposed methodology. Here, we plot the accuracy versus
the design area utilization for the x2 benchmark. As shown in
the figure, approximate logic synthesis using binary matrix
factorization offers a wide and smooth range of trade-offs
between design metrics and accuracy, where using OR/XOR
algebra and truth table folding further expand the possible
trade-offs. In the case of this benchmark, the new design points
enable new optimal trade-offs with significant improvement in
area savings. As shown in the figure, the design points enabled
by this paper completely dominate the OR-based approach.

1278 Design, Automation And Test in Europe (DATE 2019)

TABLE II
THE DESIGN SPACE EXPLORATION RESULTS FOR OUR EIGHT BENCHMARKS. HD STANDS FOR HAMMING DISTANCE. NOTE THAT FOR 5% AND 10%

ACCURACY THRESHOLDS SMALLER CIRCUITS (B1, AND X2) ARE EXCLUDED FROM THE AVERAGE VALUES.
Error 5% Accuracy Threshold 10% Accuracy Threshold 25% Accuracy Threshold

Benchmark Metric OR [1] OR/XOR Folding OR [1] OR/XOR Folding OR [1] OR/XOR Folding
b1 normalized HD NA NA NA 36.0% 36.0% 36.0% 36.0% 36.0% 36.0%
x2 normalized HD NA NA NA NA NA 12.3% 43.0% 48.3% 86.4%

Adder32 avg. rel. error 48.1% 48.1% 48.1% 50.6% 50.6% 50.6% 52.2% 52.2 52.2%
Mult8 avg. rel. error 21.3% 24.4% 29.0% 27.5% 38.2% 41.7% 57.4% 60.6% 65.6%
BUT avg rel. error 7.9% 7.9% 7.9% 24.7% 24.7% 24.7% 31.9% 31.9% 31.9%
MAC avg rel. error 41.4% 45.2% 45.2% 54.0% 56.7% 56.8% 60.5% 63.6% 63.6%
SAD avg rel. error 30.2% 30.2% 30.2% 33.2% 33.2% 33.2% 33.2% 33.2% 33.2%
FIR avg rel. error 13.6% 19.9% 20.1% 18.6% 23.6% 23.6% 29.0% 32.3% 35.8%
Average area savings 27.9% 29.3% 30.1% 34.8% 37.8% 38.4% 42.9% 44.8% 50.6%

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

No
rm

al
ize

d
Ha

m
m

in
g

Di
sta

nc
e

%

Area Utilization %

OR/XOR-Based
OR/XOR-Based + Folding
OR-Based
OR-Based + Folding
Original Design
XOR-Based
XOR-Based + Folding

Fig. 4. The trade-offs offered by XOR and OR/XOR algebras as well as truth
table folding for x2 benchmark.

Table II summarizes the savings offered by the proposed
methodology for three different accuracy thresholds, where we
compare our expanded approach with OR/XOR factorization,
and truth table folding versus BLASYS [1], which is an
OR-based implementation. Here, we report the best total
design area savings, computed as the sum of the smaller
subcircuits, under the specified accuracy threshold. Note that
all approximate variant of benchmarks b1 and x2, due to their
smaller size, fail to meet the tighter 5% accuracy threshold
(also for x2 in the case of OR-based and OR/XOR-based
methods for 10%) and therefore do not offer any benefits.
As evident from the table, using different algebra results in
benefits in hardware metrics for many of the benchmarks.
As an example, in the case of the mult8 benchmark circuit,
and for an accuracy threshold of 25%, enabling the OR/XOR
implementations, introduce an additional 3.2% savings in total
area. On the other hand for some benchmarks, such as b1 and
adder32, the new design space does not provide any improve-
ments, since the OR-based Boolean implementation provides
the best design points. Therefore, as previously discussed,
the introduced methodologies prominently expand the design
space exploration and therefore should be considered alongside
the Boolean design points.
Furthermore, by enabling truth table folding, additional

savings are achieved in many of the applications. Specifically,
extra savings of 5% can be offered in the case of mult8
benchmark. Similar to enabling different algebra, however, no
benefits are guaranteed and therefore a design space explo-
ration considering all the data points is necessary. Compared to

BLASYS [1], methodologies proposed, on average introduce
additional area savings of 2.2%, 5.1%, and 7.7% for 5%, 10%,
and 25% accuracy thresholds, respectively. Finally, in power
and delay, and for the case of a 5% accuracy threshold, our
proposed methodology results in average savings of 37.65%
and 25.46% across the benchmarks, respectively.

IV. CONCLUSIONS

In this paper we expand our work in approximate circuit
synthesis by generalizing matrix factorization techniques to
incorporate field (XOR) and semi-ring (OR) algebra imple-
mentations. This led to a wider range of possible approximate
circuit realizations that can be explored to identify the best
trade-offs. We also proposed a truth table folding technique
that shifts circuit complexity between the compressor and
decompressor circuits, enabling a wider range of possible
circuit approximations. We implemented and evaluated our
approach on a large range of circuits using a number of error
metrics such as numerical differences and Hamming distances,
and we have demonstrated that the expanded design space
improves upon our previous approach by 3-12% depending
on the target accuracy threshold.
Acknowledgments: This work is partially supported by NSF
grant #1814920. REFERENCES

[1] S. Hashemi et al. BLASYS: approximate logic synthesis using boolean
matrix factorization. In DAC, pages 55:1–6, 2018.

[2] S. Lee et al. High-level synthesis of approximate hardware under joint
precision and voltage scaling. In DATE, 2017.

[3] C. Li et al. Joint precision optimization and high level synthesis for
approximate computing. In DAC, pages 104:1–6, 2015.

[4] Jin Miao et al. Approximate logic synthesis under general error
magnitude and frequency constraints. In ICCAD, pages 779–786, 2013.

[5] P. Miettinen et al. Model order selection for boolean matrix factorization.
In international conference on Knowledge discovery and data mining,
pages 51–59, 2011.

[6] P. Miettinen et al. Mdl4bmf: Minimum description length for boolean
matrix factorization. ACM Transactions on Knowledge Discovery from
Data, 8(4):18:1–31, 2014.

[7] K. Nepal et al. Automated high-level generation of low-power approx-
imate computing circuits. IEEE TETC, pages 1–13, 2016.

[8] Ashish Ranjan et al. Aslan: Synthesis of approximate sequential circuits.
In DATE, pages 1–6, 2014.

[9] M. Shafique et al. Cross-layer approximate computing: from logic to
architectures. In DAC, pages 99:1–6, 2016.

[10] S. Venkataramani et al. Salsa: Systematic logic synthesis of approximate
circuits. In DAC, pages 796–801, 2012.

[11] Swagath Venkataramani et al. Substitute-and-simplify: A unified design
paradigm for approximate and quality configurable circuits. In DATE,
pages 1367–1372, 2013.

Design, Automation And Test in Europe (DATE 2019) 1279

