
Approximate Computing for Biometric Security
Systems: A Case Study on Iris Scanning

Soheil Hashemi∗, Hokchhay Tann∗, Francesco Buttafuoco∗† and Sherief Reda∗
∗ School of Engineering, Brown University, Providence, Rhode Island 02912

Email: {soheil hashemi,hokchhay tann,sherief reda}@brown.edu
† Polytechnic University of Turin, Turin, Italy
Email: francesco.buttafuoco@studenti.polito.it

Abstract—Exploiting the error resilience of emerging data-rich
applications, approximate computing promotes the introduction
of small amount of inaccuracy into computing systems to achieve
significant reduction in computing resources such as power,
design area, runtime or energy. Successful applications for
approximate computing have been demonstrated in the areas
of machine learning, image processing and computer vision. In
this paper we make the case for a new direction for approximate
computing in the field of biometric security with a comprehensive
case study of iris scanning. We devise an end-to-end flow from an
input camera to the final iris encoding that produces sufficiently
accurate final results despite relying on intermediate approximate
computational steps. Unlike previous methods which evaluated
approximate computing techniques on individual algorithms, our
flow consists of a complex SW/HW pipeline of four major algo-
rithms that eventually compute the iris encoding from input live
camera feeds. In our flow, we identify overall eight approximation
knobs at both the algorithmic and hardware levels to trade-off
accuracy with runtime. To identify the optimal values for these
knobs, we devise a novel design space exploration technique based
on reinforcement learning with a recurrent neural network agent.
Finally, we fully implement and test our proposed methodologies
using both benchmark dataset images and live images from a
camera using an FPGA-based SoC. We show that we are able to
reduce the runtime of the system by 48× on top of an already HW
accelerated design, while meeting industry-standard accuracy
requirements for iris scanning systems.

I. INTRODUCTION

Approximate computing is an emerging paradigm that pro-
poses the introduction of insignificant and controlled inac-
curacies, such that significant savings can be achieved in
design metrics, such as runtime, power, design area and energy.
Approximate computing is only suitable for applications where
approximate outputs do not degrade the quality of service
significantly. Recent growth in machine learning and computer
vision applications providing such applications on large scale,
has further motivated research in this area [2]. Recent approx-
imate computing methodologies have been proposed both in
software [6], [12] and hardware design [9], [14], [7], [5], and
from transistor level to cloud computing applications.

We observe that biometric security is another ideal candidate
field for the application of approximate computing techniques.
Biometric security applications include: finger printing, iris
scanners and face identifications. These applications are ideal
for two main reasons: (1) the biometrics are data rich, and (2)
the difference in biometric signatures of different individuals

are large, and as a result signatures from the same individual
are considered equivalent even if there are minor differences
in them. For instance, the industry standards for iris scanning,
e.g., ISO/IEC 19794-6, consider an iris encoding, which is
represented by 2048 bits, as high quality even if the quality
drops by 25% compared to the ideal case, because there is
1 in 13 billion chance to have a Hamming distance less than
25% between the irises of two different individuals [3].

In this work, we propose an end-to-end biometric security
system with an approximate SW/HW pipeline. Using an iris
recognition application we showcase how approximate com-
puting methodologies can be effectively implemented on an
end-to-end system that is widely deployed. More specifically,
our papers makes the following contributions.

• We propose biometric security systems as a novel di-
rection where approximate computing techniques can be
readily applied, and we showcase the benefits of such
approximations on an iris scanning system, which is a
prime method for biometric identification.

• We develop an end-to-end accurate system with approx-
imate SW/HW processing pipelining for iris scanning
systems. The complex pipeline consists of four major
algorithms, where we identified in total eight knobs
to trade-off accuracy of intermediate computations with
runtime and energy consumption. We show that while
controlled inaccuracies are added in the pipeline, the
end encoding outcomes follow the guidelines set in the
industry for guaranteed security.

• We propose a novel Recurrent Neural Network (RNN)
methodology based on reinforcement learning for Design
Space Exploration (DSE) of our SW/HW pipeline flow
and identify the best design knobs that minimize runtime
subject to accuracy constraints.

• We fully implement our methodology on an FPGA-
based SoC using a camera with infrared sensor as input.
We evaluate the performance of our system using both
standard datasets and live feeds directly from the camera.
We demonstrate that significant benefits can be achieved
on an accurate end-to-end system using approximate
pipeline. We report benefits of up to 48× in runtime while
maintaining 100% accuracy on the datasets and live feed.

The rest of the paper is organized as follows. In Section II



Focus 
Assessment

Iris 
Segmentation

Normalization 
& wavelet 

transformation

… iris encoding

(a)
(b) (c)

(d)

(e)

(f)

Fig. 1. The components of an iris recognition system.

we provide a background of iris recognition and its pipeline. In
Section III, we describe our SW/HW proposed methodology,
and our novel design space exploration (DSE) method. We
discuss our experimental setup, as well as our experimental
results in Section IV-B. Finally, Section V provides the final
discussion and concludes the paper.

II. BACKGROUND
Figure 1 shows the flowchart of commercial iris recognition

systems. These systems use a pipeline consisting of four
major components that takes input images from a camera and
produce as output the 2048 bit encoding of the iris.

1) At the front-end, a camera with an infrared sensitive
sensor captures multiple frames of an iris illuminated
with infrared LEDs as given in Figure 1.a.

2) The focus assessment stage assesses the focus of the
captured frames and picks the sharpest image for sub-
sequent processing as illustrated in Figure 1.b. The
degree of focus for each frame is computed using a
convolutional kernel that calculates the energy of the
images as described in [3].

3) Next, the iris image is segmented and the center points
for the iris and the pupil as well as their radii are
computed as illustrated in Figure 1.c. Here, solutions
based on integrodifferential algorithm [3] and circular
hough transform (CHT) [13] have been proposed. In
this work, the integrodifferential algorithm is utilized.
In integrodifferential algorithm, the whole image is first
scanned for candidate pixels, and each candidate pixel is
then evaluated using a circular differential methodology
while the radius is changed from Rmin to Rmax. Next,
the candidate pixel with the maximum value is passed
to a fine-grain search where a small window around the
candidate is evaluated in a similar manner, resulting in
the iris coordinates. Finally, and in a similar step, a small
window around the iris center point is investigated for
best match for pupil.

4) The output of the segmentation algorithm is then fed
to the normalization algorithm where the iris pixels are
subsampled and organized in a Cartesian coordination
system. This is achieved by simply spacing the angular
resolution and the radial resolution equally, based on
the segmentation results. Figure 1.d and 1.e show the
subsampling process and the resulting 2-D output of
the normalization respectively. Finally, the normalized
pixels are encoded into 2048 bits using a 2-D Gabor
demodulation [3] as shown in Figure 1.f. These 2048
bits form the signature of the iris.

Since the goal is to minimize the response time to the
user, the runtime of the system is the prime objective for iris
scanning systems.

To highlight the potentials of end-to-end approximate de-
sign in dramatically reducing the runtime, we implement a
complete SW/HW pipeline of the iris recognition algorithm.
Previous works exploring hardware design for iris recognition
systems have focused on efficient SW/HW co-design of the
algorithm using FPGAs [10], [8]. Our work integrates the
use of approximate computing within the SW/HW flow, while
performing a novel reinforcement learning based DSE of the
SW/HW design knobs to identify their optimal settings.

While many advances have been made in the approximate
computing paradigm, most of the work evaluate the quality-
energy trade-offs of a single module or algorithm in isolation.
Optimal benefits in an end-to-end system can only be explored
if the approximate computing techniques utilize all parts of the
system pipeline where trade-offs are evaluated in connection
with each other. Recently, Raha et. al. proposed a full-system
approximate design using a smart camera system as a case
study [11]. In their system, approximations are introduced
using camera resolution scaling, reducing memory refresh rate,
and computation skipping. Compared to their work, our work
(i) provides a new direction in biometric security systems;
(ii) evaluates a far more comprehensive set of trade-offs on
multiple algorithms in the pipeline; and (iii) provides a novel
reinforcement learning based DSE using an RNN agent. Next,
we provide details on our proposed methodologies.

III. METHODOLOGY

Our goal is to minimize the response time to the user from
the time of image capture to the encoding of the iris, under
the constraints that (1) the encoding is accurate by industry
standards, and (2) the resultant SoC can fit within the given
resources of our logic device.

We describe next our novel methodologies for approximate
computing for iris scanning that achieve our goal. First, in
Subsection III-A, we explain our methodology for the parti-
tioning of the pipeline flow between the hardware accelerators
and the soft processor. Next, in Subsection III-B, we sum-
marize the approximation knobs that we have identified and
explored in this work. Finally, Subsection III-C discusses the
methodologies used to explore the design space created by the
approximate knobs. Here, we discuss our novel methodology
for approximations where an RNN is utilized to find the
optimal knob settings. In this section, we also briefly discuss
our methodology for computing the runtime and the accuracy
of each design point.



44.13%

0.08%

55.57%

0.05%

0.08% 0.04%

0.06%

Focus Assessment

Resizing

Coarse Search

Iris Search

Pupil Search

Normalization

Encoding

Fig. 2. Percentage of runtime used by various algorithms in the iris scanning
pipeline.

A. Proposed SW/HW Partitioning

As an initial step, we profile the pipeline to measure the run-
time of its different algorithmic components. To minimize the
runtime, we then synthesize the most computational intensive
modules into hardware accelerators. The pie chart in Figure 2
summarizes the runtime profiling results when running the
flow in software. As shown in the graph, the overwhelming
majority of the runtime is spent in the focus assessment and
the segmentation components, while the encoding component
takes less than 1% of the total runtime. Therefore, we choose
to maps these two components into custom hardware accel-
erators. Here, for the focus assessment, we deploy a full-
fledged accelerator with complex buffering to take advantage
of data locality. On the other hand, for the iris segmentation,
we leave the control sequence in software and move the
computationally intensive integrodifferential computation to a
hardware accelerator. More specifically, candidate points are
located in software and then passed to the accelerator, along
with Rmin and Rmax, for the computation of the maximum
integrodifferential value.

The runtime speedups and the hardware utilization are
reported in Section IV-B. Once we determined the accelerators
of the system, we explore next the approximation “knobs” of
the system, whether in software or hardware.

B. Proposed Approximation Knobs

We propose eight approximation knobs in our SoC iris
scanning pipeline, where changing these knobs effectively
trades accuracy for runtime benefits. Therefore, we refrain
from introducing knobs that do not offer runtime benefits.
• Focus assessment: As the energy of each frame is com-

puted as a convolution of a kernel filter with the image,
one obvious accuracy trade-off is the kernel size of
the filter. Furthermore, instead of computing the focus
assessment on entire frames, we can only compute the
energy for a subset of the image; i.e., a region of interest
(ROI), to further reduce the runtime.

• Iris segmentation: We identify six more accuracy knobs
in iris segmentation stage. Here, Npoints in the number
of points used to compute the differential in each circle;
Scale is the resizing factor used to reduce the segmen-
tation image resolution; Thresh represents the threshold

TABLE I
THE LIST OF APPROXIMATION KNOBS EVALUATED IN THE DESIGN SPACE

EXPLORATION. VALUES IN BRACKETS SHOW THE POSSIBLE VALUES.

Pipeline Real.
Accelerator Approximation Knobs [List of values] in
Focus Kernel Size [8, 6, 4] HW
Assessment RoI [1, 0.78, 0.50, 0.33, 0.20] SW
Iris Npoints [600, 400, 200, 150, 100, 75, 50] SW
Segmentation Scale [1, 0.85, 0.75, 0.50, 0.25, 0.20] SW

Thresh [102, 90, 77, 64, 51, 35, 26] SW
Rmin [45, 55, 65, 75, 85, 95, 100] HW
Rmax [180, 170, 160, 150, 140, 130, 120] HW
Search Window Size [11× 11, 7× 7, 3× 3] SW

beyond which a point is considered to be dark enough
to be a candidate; Rmin and Rmax define the range of
radii for which the integration is performed; and Search
Window Size gives the size of the window around which
the local iris and pupil searches are performed.

• Normalization and Encoding: Lastly, in this step, as the
design knobs providing accuracy vs. runtime trade-offs
also affect the signature specification, in order to stay
consistent, we refrain from introducing any knobs.

Table I summarizes the design knobs evaluated in our design
space exploration as well as their possible value sets. Here,
we also list the component in which each of these knobs
are realized based on our SW/HW partitioning. The proposed
design knobs result in approximate design space of 648, 270
design corners. Clearly a brute force exploration of the design
space in not possible and a design space methodology is
required for effective exploration. Section III-C, shows our
work in addressing this issue.

C. Design Space Exploration Methodology

Before we can explore the design space to identify the best
settings, we need to quantify the accuracy and runtime of
different sets of design knobs.

1) Accuracy and Runtime Measurements and Modeling:
As evaluating all of the corners on hardware is infeasible,
we simulate and formulate the accuracy and the runtime
respectively. Since the accuracy performance of one com-
ponent in the pipeline greatly affects the other components
and the final results, we have to estimate the accuracy of a
set of knobs using the entire flow through simulation. Thus,
to compute the accuracy for each set of design knobs, we
run a SW/HW co-simulation of the entire flow. Since such
co-simulation can consume significant amount of time, we
describe in the experimental results section techniques to speed
it up. Unlike accuracy, the runtime of the pipeline flow can be
readily decomposed. To that end, we mathematically model the
runtime based on the input design knobs and our understanding
of the complexity of the algorithm. A summary of our runtime
models is shown in Table II. With the runtime formulated, we
profiled some training sets of design knobs to quantify the
coefficients. We then verified our formulation on another set
of knobs settings demonstrating a runtime modeling error of
less than 5%. Note that this runtime merely guides the design
space exploration and will not translate into inaccuracies.



TABLE II
THE FORMULATION USED TO MODEL THE RUNTIME BEHAVIOR AS A

FUNCTION OF THE DESIGN KNOBS. NOTE THAT AS WE DO NOT MODIFY
ANY KNOBS IN THE ENCODING COMPONENTS, WE CONSIDER ITS RUNTIME

AS A CONSTANT.

Pipeline Component Runtime Model
Focus Assessment ∝ RoI2.KernelSize2

Iris Segmentation = RCoarse +RIris +RPupil

–Coarse Search ∝ Scale3.Thresh.Npoints.(Rmax−Rmin)
–Iris Local Search ∝WindowSize2.Npoints.(Rmax−Rmin)
–Pupil Local Search ∝WindowSize2.Npoints.rIris
Total = RFocusAssessment +RResize+

RSegmentation +REncoding

2) Reinforcement Learning Based Design Space Explo-
ration: As a powerful machine learning method, reinforce-
ment learning enables an autonomous agent to make good de-
cisions in its environment through trial-and-error using reward
functions. As the agent learns, it starts to tune in on the best
set of actions that maximizes its expected reward. Recently
this approach has been used to determine the appropriate
architectures for general deep neural network classifiers with
promising performance [15]. This ability to learn and navigate
through complex environment is a perfect fit for our problem.
Our multi-objective function, which minimizes runtime and
meets encoding error rate requirement, is non-convex. In addi-
tion, the input design space contains many dimensions, which
makes it hard for traditional exploration methods such as
gradient descent. Using reinforcement learning, we direct the
agent, an RNN, to learn the best approximations for SW/HW
knobs in the exponential design space. Unlike traditional feed-
forward neural networks, RNNs have the ability to produce
arbitrary-length output sequence. In this case, we encode
SW/HW knobs to form a “sentence” [15]. The RNN is then
used to predict the best sentence to optimize the systems
metrics. During the learning process, the agent seeks to change
its predicted sentence to maximize its reward function.

The words in the predicted sentence corresponds to ap-
proximations for the knobs. Using an accuracy co-simulation
flow and runtime models, we then evaluate the impact of
the approximations as shown in Figure 3. Our proposed
reinforcement learning methodology efficiently explores the

hidden layer hidden layer hidden layer

start token

HW/SW knob 1

HW/SW knob 1

HW/SW knob 2

HW/SW knob N-1

HW/SW knob N

Reward Function

Design Flow Simulation For Error Rate, 
Runtime Model

Parameter 
UpdatesParameter Set

Policy Gradient and
Backpropagation through time

Error Rates
Runtime

Reward

Step

Fo
rw

ar
d

 P
at

h

Fig. 3. Design Space Exploration with Reinforcement Learning using RNN.

Algorithm 1: Reinforcement Learning based DSE
// Design_Knobs: List of tunable design knobs

with their possible approximations.
// Approx_Knobs: The approximations for design

knobs.
Input : Design Knobs
Output: Approx Knobs

1 Initialize(RNN);
2 for iteration = 1 to N do
3 In = START TOKEN;
4 for step = 1 to Number of Design Knobs do
5 probs = forward RNN with In as input;
6 In = convert probs to one-hot encoding;

// get design knobs choices
7 knobs[step] = argmax(probs);
8 end
9 rtcurrent = GetRuntime(knobs);

10 err rate = SimulateErr(knobs);
11 avg err = Average(err rate);
12 max err = Max(err rate);
13 reward = GetReward(rtcurrent,rtbest,avg err, max err);
14 grad = backpropagate(RNN, reward);

// Update RNN parameters using the gradients
15 Update(RNN, grad);
16 if max err < threshold AND runtime < best runtime then
17 rtbest = rtcurrent;
18 Approx Knobs = knobs;
19 end
20 end
21 return Approx Knobs

solution space by trying to maximize a multi-objective reward
function R, which is defined as:

R =


−1, if max err > 0.35

P, elif rtcurrent < rtbest

−0.1, Otherwise

where rt is the runtime and max err is the maximum
encoding error rate among all the test cases, and P ∈ [0, 1]
is a positive reward for when the candidate sample improves
the overall runtime. When a design does not meet error rate
constraints, we impose a negative reward.

We employ a two-layer RNN with 30 neurons in the
hidden layer. Algorithm 1 describes of design knobs sampling
and RNN training process. First, the network weights are
initialized according to Xavier method [4]. The activation
functions for the hidden layer is tanh, and the output is fed
through a softmax layer. Then for each time step, the output
is converted to a one-hot vector and fed as input into the
network in the next time step. Once the knobs values are
chosen, we compute the runtime using our model and error
rates through simulation. The reward signal is then determined
by the runtime improvement and error rate of the bit encoding.
Next, we discuss the details of our learning process.

We train the RNN agent using softmax policy gradient,
which aims at maximizing the expected reward:

J(θ) = EP (Arch1→K ;θ) [R] =

K∑
n=1

R · P (Archn|Archn−1; θ)

where θ is our RNN parameters, R is the reward signal, and
Arch1→K is the values for all the K knobs in the design.

The gradient of J(θ) can be computed as:



∇θJ(θ) =
K∑
n=1

E [R · ∇θ logP (Archn|Archn−1; θ)] .

Using this computed gradient, we update our RNN parameters
using the Root Mean Square Propagation optimizer.

While RNN can efficiently explores the breadth of the
design space, it can takes significant amount of time to zoom
in on local optimal point. To further improve the runtime
benefits, we propose to perform a local search (LS) step using
the best result obtained from the RNN. Here in one iteration,
we change each parameter one step as long as it does not
violate the accuracy.

IV. EXPERIMENTAL RESULTS

In this section we evaluate our methodology empirically,
considering both runtime and accuracy performance. We com-
pare our proposed methodology against a greedy and a local
search based heuristics (similar approach to methodology
proposed in recent work [11]) and report its performance.

A. Experimental Setup

For our experiments we use a Spartan6 Xilinx develop-
ment board interfaced to a 5 MP Videology camera with
infrared optical filter and infrared LEDs for illumination.
This 24B5.05USB3 camera features a unique 10 bit digital
output port, which allows a direct interface to the raw image
sensor pixel data. We also use an Agilent 34410A multime-
ter to monitor the current and measure power consumption
accordingly. Figure 4 shows our camera and FPGA setup.
We compile and synthesize all our results on the FPGA
board and confirm correct functionality. While we test and
run all our designs on the FPGA; for DSE, we co-simulate
the accuracy of the SW/HW system and model the runtime.
To speed up the computationally demanding co-simulation,
we use Verilator [1] to compile the Verilog-based hardware
accelerators into C-based simulators, and then use gcc to
compile all the components in software. For runtime, we use
the methodology described in Section III based on training
samples of runtime from the actual board. To validate our
performance and to compare against industry standards, we
use two sources: (1) images from MMU open source dataset,
and (2) live feeds captured from our camera system. Since
MMU provides still images, we bypass the focus assessment
module for their evaluation. For images captured from camera,
we explore the complete flow where the energy of 10 frames
are evaluated before the sharpest image is passed to the rest
of the pipeline.

In order to assess accuracy, we cross validate the signature
of each image in the dataset, using the approximate knob
settings, against all of the signatures of the same eye in the
repository when computed with full quality. To ensure 100%
accuracy in the design, if at any point the maximum hamming
distance error of any two images from the same eye goes above
0.35% the design is discarded. Using this threshold ensures a
false positive rate of 1 in 133,000 [3]. Next section provides
our results.

Fig. 4. Our camera and FPGA board Setup.

TABLE III
THE COMPONENTS CHOSEN FOR HARDWARE ACCELERATION, THE

CORRESPONDING SPEEDUPS, AND THE HARDWARE UTILIZATION OF EACH
ACCELERATOR.

Pipeline Component Speedup HW utilization (%)
Focus Assessment 1234× 25.71
Iris Segmentation 6.8× 13.24
System 15.42

B. Results and Discussion

We first evaluate the benefits achieved from mapping part
of the computing pipeline into custom hardware accelerators.
As discussed in Section III-A and as commonly practiced,
we map the algorithms that have the highest contribution to
the total runtime of the iris scanning pipeline to hardware.
Thus, we manually translate and map the focus assessment and
the segmentation components into hardware accelerators, and
leave the remaining parts of the flow to run as software on the
MicroBlaze processor. After mapping these two components,
the total logic utilization of our device reaches about 60%.
Table III shows the speedups when focus assessment and
segmentation are mapped to hardware accelerators, together
with the logic utilization. These results are merely the benefits
from hardware acceleration and use no approximations.

Next, we evaluate the performance of our proposed DSE
methodology. Figure 5 shows the design points evaluate using
our proposed RNN methodology. Here, the baseline point
shows the average error of the SW/HW design without ap-
proximation. Using our reinforcement learning based DSE
method, our design can achieve up to 42× speedup while still
maintaining the standard accuracy limits. Using the proposed
RNN+LS method, the algorithm achieves 48× in speedup. We
stress that these speedups are due to approximate SW/HW
processing and they are on top of the savings achieve due to
the HW acceleration.

We also compare our proposed method against a greedy
and a local search heuristics. In the greedy approach, starting
from the beginning of the pipeline we approximate each design
knob as much as possible before moving to the next one. The
process is continued until all knobs have been visited. On
the other hand, for the local search approach, we iteratively
change each quality knob individually by one in order to
generate a new design point. The design point with the highest
gradient, where the gradient is defined by the ratio of runtime



0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6

Sp
p

e
d

u
p

Average Error

Proposed RNN Proposed RNN+LS Baseline

Fig. 5. The design space explored using the proposed RNN, as well as
RNN+LS.

TABLE IV
THE COMPARISON OF THE RESULTS USING THE PROPOSED METHOD AD

COMPARED AGAINST PURE GRADIENT DESCENT AND GREEDY METHODS.

Ave. Error Design Points
Design Speedup (%) Evaluated
RNN+LS 48× 21.92 63
Greedy 37× 21.44 21
Local Search 42× 21.38 132

improvement over quality degradation, is chosen as the parent
for the next iteration. Table IV summarizes the trade-offs in
speedups and effort offered by each design space methodology.
Further, as shown in the table, the proposed method results in
the highest speedup while requiring significantly less effort
when compared to the gradient descent. On the other hand
comparing to the greedy, higher speedups are provided. Note
that here, the number of design points evaluated reported in
the table directly indicates the efficiency of the DSE algorithm.

Finally, we evaluate the output design of the our method-
ology on the board to verify the runtime and the accuracy
performance. We also compare the result of our methodology
with pure software and software/hardware codesign methods.
While for the previous experiments, we relied on the MMU
benchmark dataset, for this experiment we use our camera
system to capture iris images and run the complete flow.
Here, we highlight the immense benefits of exploring the
hardware/software codesign domain in conjugation with the
approximate design knobs exploration. Table V summarizes
the results. As shown in the table, significant benefits are
achieved in terms of both runtime, and the total energy.
Compared to a pure SW implementation, our approximate
SW/HW pipeline is able to achieve a speedup of 378× while
meeting the industry standard accuracy requirements.

V. CONCLUSIONS

In this paper we identified biometric security as a potential
application domain for approximate computing, and we

TABLE V
THE HARDWARE CHARACTERISTICS OF THE END-TO-END SYSTEM.

Runtime HW (%) Energy Memory
Design (s) Utilization (kJ) (MB)
Pure SW 2419.6 15.42 47.90 0.69
SW/HW 198.3 54.37 3.94 2.20
Approx. SW/HW 6.4 46.42 0.12 0.89

illustrated this potential through a comprehensive case study
on iris scanning system. We devised a SW/HW flow that
processes input images from a live camera to produce the
final encoding of the iris. Our pipeline flow consists of four
major algorithms, where we identified eight design knobs
that can trade-off design metrics with accuracy as measured
by the Hamming distance of the final iris encoding to the
golden encoding. We devised a novel recurrent neural network
methodology that uses reinforcement learning for design space
exploration. Using a comprehensive SoC implementation in
a FPGA-based system that receives inputs from a camera
sensor with infrared optics, we showed that we can minimize
runtime, which is the main objective of iris scanning systems,
by 48× compared to exact SW/HW while fitting in the given
FPGA resources and meeting the target accuracies of the iris
encoding as set by industry standards.

Acknowledgments: The authors would like to thank L. Cama-
cho and A. Viola from Videology Engineering for the helpful
discussion, and Prof. R. Iris Bahar for early discussions on the
project related to its SW/HW co-design aspects. This work is
partially supported by a RICC grant and NSF grant 1420864.

REFERENCES

[1] Verilator, the fastest free verilog hdl simulator [online], url =
https://www.veripool.org/wiki/verilator.

[2] V. K. Chippa, D. Mohapatra, A. Raghunathan, K. Roy, and S. T.
Chakradhar. Scalable effort hardware design: Exploiting algorithmic
resilience for energy efficiency. In Design Automation Conference, 2010.

[3] J. Daugman. How iris recognition works. In IEEE Transactions on
Circuits and Systems for Video Technology, 2004.

[4] X. Glorot and Y. Bengio. Understanding the difficulty of training deep
feedforward neural networks. International Conference on Artificial
Intelligence and Statistics, 2010.

[5] S. Hashemi, R. I. Bahar, and S. Reda. Drum: A dynamic range
unbiased multiplier for approximate applications. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, pages
418–425, 2015.

[6] M. Imani, A. Rahimi, and T. S. Rosing. Resistive configurable associa-
tive memory for approximate computing. In Design, Automation Test in
Europe, 2016.

[7] S. Lee, L. K. John, and A. Gerstlauer. High-level synthesis of approx-
imate hardware under joint precision and voltage scaling. In DATE,
pages 187–192, 2017.

[8] M. Lopez, J. Daugman, and E. Canto. Hardware-software co-design of
an iris recognition algorithm. 2011.

[9] K. Nepal, S. Hashemi, H. Tann, R. I. Bahar, and S. Reda. Automated
high-level generation of low-power approximate computing circuits.
IEEE Transactions on Emerging Topics in Computing, PP(99):1–1, 2017.

[10] H. Ngo, J. Shafer, R. Ives, R. Rakvic, and R. Broussard. Real time
iris segmentation on fpga. In International Conference on Application-
Specific Systems, Architectures and Processors, 2012.

[11] A. Raha and V. Raghunathan. Towards full-system energy-accuracy
tradeoffs: A case study of an approximate smart camera system. In
Design Automation Conference, pages 74:1–74:6. ACM, 2017.

[12] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage in
solid-state memories. ACM Trans. Comput. Syst., 32(3):9:1–9:23, 2014.

[13] Q.-C. Tian, Q. Pan, Y.-M. Cheng, and Q.-X. Gao. Fast algorithm and
application of hough transform in iris segmentation. In Proceedings of
2004 International Conference on Machine Learning and Cybernetics
(IEEE Cat. No.04EX826), volume 7, pages 3977–3980 vol.7, Aug 2004.

[14] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan. Salsa: Systematic logic synthesis of approximate circuits. In
Design Automation Conference, pages 796–801, 2012.

[15] B. Zoph and Q. Le. Neural architecture search with reinforcement
learning. International Conference on Learning Representations, 2017.


