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ABSTRACT

Approximate computing is an emerging paradigm where design
accuracy can be traded off for benefits in design metrics such as de-
sign area, power consumption or circuit complexity. In this work,
we present a novel paradigm to synthesize approximate circuits
using Boolean matrix factorization (BMF). In our methodology the
truth table of a sub-circuit of the design is approximated using
BMF to a controllable approximation degree, and the results of the
factorization are used to synthesize a less complex subcircuit. To
scale our technique to large circuits, we devise a circuit decom-
position method and a subcircuit design-space exploration tech-
nique to identify the best order for subcircuit approximations. Our
method leads to a smooth trade-off between accuracy and full cir-
cuit complexity as measured by design area and power consump-
tion. Using an industrial strength design flow, we extensively eval-
uate our methodology on a number of testcases, where we demon-
strate that the proposed methodology can achieve up to 63% in
power savings, while introducing an average relative error of 5%.
We also compare our work to previous works in Boolean circuit
synthesis and demonstrate significant improvements in design met-
rics for same accuracy targets.
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1 INTRODUCTION

Approximate computing is an emerging paradigm that trades off
accuracy with improvements in power consumption, hardware com-
plexity, or design area. Approximate computing is effective in ap-
plications that have inherent resilience to errors, such as signal pro-
cessing, machine learning, computer vision, and computer graph-
ics. As data-rich applications continue to rise, the relevance and
need for approximate computing will increase.

A key problem in approximate computing is how to generate
or synthesize an approximate circuit given as inputs an existing
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circuit, presumably accurate. There are two lines of research in ap-
proximate synthesis. The first line of research has devised custom
approximate designs for typical arithmetic building blocks (e.g.,
adders, multipliers [2-4, 15]). The second line has targeted approxi-
mation of more generic circuits either from gate-level (i.e., Boolean
descriptions) [7, 9, 14, 17, 18], higher-level descriptions, such as
RTL or behavioral descriptions [13], or even direct C to approxi-
mate hardware synthesis [6].

This paper seeks to devise a new direction for approximate boolean-

level circuit synthesis. Our inspiration comes from Boolean Matrix

Factorization (BMF) that factors a boolean matrix into two boolean

matrices [10, 11]. BMF is a derivative of non-negative matrix factor-
ization (NNMF), in which the elements of all input and output ma-
trices are limited to the non-negative space [5]. The non-negativity

constraints on the factorization arise in physical domains, such as

computer vision and document clustering [20]. Recent advances in

the mathematical community extends NNMF techniques to Boolean
matrices, where matrix operations are carried in GF(2) [10, 11].
The use of BMF as a technique for logic synthesis is a new direc-
tion in the field, and we show that it provides a solid foundation

for approximate logic synthesis. We summarize our contributions

as follows.

e We devise a new methodology for BMF-based Logic Approxi-
mate SYnthesiS (BLASYS) that is based on solid mathemati-
cal foundations, where Boolean Matrix Factorization (BMF) is
used to generate approximate circuits with controllable trade-
off between accuracy and circuit complexity.

o We modify existing BMF algorithms to incorporate the ability
to work with different quality-of-results (QoR) functions, in-
stead of the standard Ly norm.

o To scale the factorization method to large circuits, we propose
a circuit decomposition method to break down a given circuit
into manageable subcircuits with limited number of inputs and
outputs. We propose a design-space exploration heuristic to
order the subcircuits to identify a good sequence for generat-
ing their approximate variants. Our technique results in a very
smooth trade-off between accuracy and circuit complexity.

e We implement our approach and test it on a number of applica-
tion circuits that are typically used in approximate computing
domains. We show that our approach is able to trade-off ac-
curacy with circuit area and power consumption as evaluated
by an industry-strength synthesis tool. We also evaluate our
methodology against a established approach in the literature
(e.g., SALSA [18]) and show significant improvements.

The organization of this paper is as follows. First, we overview
related work in Section 2. We discuss the details of our proposed
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method in Section 3, where we describe the basic idea of using
BMF algorithms to approximate logic circuits, and then show how
to scale our proposed method to larger circuits. We provide com-
prehensive results of our method’s performance together with a
comparison against a previous technique in Section 4. Finally, we
summarize our main conclusions and directions for future work in
Section 5.

2 PREVIOUS WORK

Recent work on approximate circuit synthesis can be divided into
two general categories: Boolean or gate-level approaches and high-
level synthesis approaches.

For Boolean and gate-level synthesis, a number of approaches
have been proposed [9, 14, 16-18]. In SALSA, a systematic approach
for approximate circuit synthesis is proposed [18]. The idea is to
create a difference circuit that compares the QoR between the orig-
inal circuit and the approximated circuit. The don’t cares of the
outputs of the approximate circuit — which are internal nodes in
the difference circuit — with respect to outputs of the difference
circuit can be used to simplify the approximate circuit using reg-
ular logic synthesis techniques. This approach has been extended
in ASLAN [14] to model error arising over multiple cycles. ASLAN
also uses a circuit block exploration method that identifies the im-
pact of approximating the combinational blocks and then uses a
gradient-descent approach to find good approximations for the en-
tire circuit. In SASIMI [17], a technique is proposed to identify
similar signals, such that their values agree over a large number
of input test cases, and then substitute one for the other, simpli-
fying the logic. A logic synthesis formulation proposed by Miao
et al. uses a two-level logic synthesis approach that incorporates
constraints on error deviation, and then a heuristic is used to solve
the synthesis formulation [9]. Evolutionary techniques have been
also explored [16].

For high-level logic synthesis, ABACUS seeks to generate vari-
ants of an input high-level Verilog description file by applying a set
of possible transformations, such as bit width truncation, operand
simplification and variable-to-constant substitution, to generate a
set of mutant approximate circuit variants [13]. A multi-objective
design space exploration technique is used to identify the best set
of approximate variants. Recently, a new technique is proposed to
raise the level of abstraction by synthesizing approximate circuit
directly from C descriptions [6]. High-level synthesis in conjunc-
tion with approximations on the critical path can yield additional
savings through voltage scaling [6, 12].

3 PROPOSED METHODOLOGY

Non-negative matrix factorization (NNMF) is a factorization tech-
nique where a kXm matrix M is factored into two non-negative ma-
trices: a kX f matrix B, and an fxm matrix C, such that M ~ BC [5].
The non-negativity constraints on the factorization enables the uti-
lization of the factorization algorithm in physical domains, such as
computer vision and document clustering. NNMF essentially com-
presses the data storage in an approximate way depending on the
factorization degree (f) [20]. In the mathematical statistics commu-
nity, the factorization degree determines the number of “features”
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Figure 1: Boolean NNMF example.

that are computed [10]. Therefore, f, clearly represents a trade-
off between quality of factorization and storage amount. Recently,
NNMF has been extended to boolean matrices where elements of
all matrices are restricted to Boolean values. In this case, multipli-
cations can be performed using logical AND, and additions are per-
formed using logical OR (for Boolean semi-ring implementations)
and logical XOR (for Boolean field implementations) [10, 11]. Fig-
ure 1 provides an example of NNMF over GF(2).

3.1 Circuit Approximation using BMF

In our proposed approach, a multi-output logic circuit with k in-
puts and m outputs is first evaluated to generate its truth table.
The truth table, represented by M, is then given as input to a BMF
algorithm together with the target factorization degree 1 < f < m,
to produce the two factor matrices B and C. Matrix B is then given
as the input truth table to a logic synthesis tool to generate a k
input, f output circuit, which we refer to as the compressor cir-
cuit. Note that the compressor matrix is simply the truth table of a
circuit with the same number of inputs as the original circuit but
with fewer (f to be exact) output signals. Therefore, it can easily
be mapped to logic. These f outputs from the compressor circuit
are then combined by the decompressor circuit according to the C
matrix using a network of OR gates (for Boolean semi-ring imple-
mentations) or XOR gates (for Boolean field implementations), to
generate the approximate m outputs. More specifically, a 1 in the
(i,j) index of the decompressor matrix represents the existence of
the f; intermediate signal in the j-th output, effectively mapping
each one to a OR (or XOR) gate. Using this methodology, any ar-
bitrary circuit can be approximated by forcing the circuit to com-
press as much information as possible in f intermediate signals
and then decompress them using simple OR (or XOR) gates. Fig-
ure 2 illustrates the proposed approach.

Figure 3 provides an illustrative example of a 4-input, 4-output
arbitrary logic circuit. First, we present the original circuit with its
truth table, and we synthesize it with Synopsys Design Compiler
(DC) using 65 nm library. We then provide approximate variants

original circuit

kinputs
m outputs

Boolean NNMF + synthesis
approximate circuit

f

kinputs
m outputs

synthesis l

kinputs
m outputs

Figure 2: Generating approximate circuits using BMF.



BLASYS: Approximate Logic Synthesis Using
Boolean Matrix Factorization

approximate circuit (f= 3)

compressor decompressor

t t z z z z z z

1 3 1|2 4 1|23
1.0 1 0
10 0 1
1 0 0 0

original circuit

z z
1 4
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

AN NN NN N

OHHOOOOOOOOOOOOON
g

o N NN NN

S NN EEEE]-

|
RRRRRRRRRERROR R~ O
coocoocoocoooocoooo0
mnROOOORRRLrROORROO
comrmoOOORROOKRRO

I [¢
|
|
|
|
|
|
|
I
I
I

LHEOOOORrRLERrROOR OO
OCORrROOOORROORRRO
cooorroooorooooOO

Hamming distance 3

area = 22.3 pym? area=19.1 pm?

ompressor decompressor

t z
1 1

LM OOOORRRLRROORROO

DAC’18, June 2018, San Francisco, CA, USA

approximate circuit (f= 1)

| compressordecompressor
t z z z z
1 1 3 1 3
0 1 1

1

approximate circuit (f=2)

z |z |z z z
2 (3|4 1 3
0o 1 0
0 0 1

1
1

|
hERROORREROORMEO
coocoocoooooocooooo
mmOOOOmmEROORMOO
comrmoOOCORROORMEO

CORrRROOOORROORRRO
PR RrROORRRLrROOR KRR O
KRR RPROOKRRKRRLRROOR RO
coooooococoooooo0o0o0
RRRROORRRLRROORRRO
PR P ROORRER,ROORRRO

Hamming distance 6 - Hamming distance 13

area = 16.2 pm? area = 9.4 ym?

Figure 3: Results of proposed approximation method with various f on a simple circuit for illustration purposes. Circuits are
synthesized using Synopsys DC using 65 nm technology library. A semi-ring implementation is used for Boolean NNMF.

for the circuit with f = 1, f = 2, and f = 3. We computed the
truth tables for the compressor and decompressor using the ASSO
NNMF algorithm [10, 11]. We provide both the quality of results as
measured by the Hamming distance between the truth table of the
original circuit and the approximate circuit as well as the design
area reported by DC. For instance, when f = 3, we reduce the
area of the circuit by 14.3%, while compromising the quality of
results (QoR) by only 4.6% since the Hamming distance between
the original and the approximate truth tables is equal to 3; that is
out of the 64 entries in the truth table, only 3 entries flipped in the
approximate circuit. With f = 2 and f = 1, we can reduce the
area by 27.3% and 57.8% while compromising the QoR by 9.3% and
20.3% respectively.

Our approach leads to a new paradigm for creating approximate
logic circuits in a controlled fashion that are based on solid math-
ematical foundations. There are two main challenges:

(1) NNMF algorithms use the Ly norm to measure the quality
of factorization. For Boolean matrices, L translates to Ham-
ming distance. In addition, we need to identify methods to
factorize for other QoR metrics that are relevant for approx-
imate applications.

(2) The basic idea is limited in scalability since the complex-
ity of generating the truth table grows exponentially as a
function of the number of circuit’s inputs. Thus, we need
to create factorization methods that can scale up for large
circuits.

3.2 Factorization for Arbitrary QoR

The goal of the BMF algorithm is to minimize ||[M — BC||2, which
translates to Hamming distance in GF(2). However, not all appli-
cations or circuits necessarily use this metric to assess QoR. For
instance, in the case of circuit design, if an m bit signal is to be
interpreted as an m bit number, Hamming distance is not really
an accurate representation of the inaccuracies as mismatches in
different bit indices contribute differently to the actual error.

To take into account the non-uniform nature of bit significance,
we propose to modify the NNMF algorithms in the literature to
account for bit indices. More specifically, instead of minimizing
[IM — BC||2, we propose minimizing ||(M — BC)w]|s, where w is
a constant weight vector. For example, if numerical difference is
the target QoR, then the w vector will be based on powers-of-two
(e.g., 8, 4, 2, 1) therefore reflecting the fact that different bit posi-
tions lead to different numerical weights. In this work, we modify
the ASSO [11] algorithm as such to penalize mismatches on the
higher bit locations more than on the less significant bits. In Sec-
tion 4.1, we demonstrate how such weighting scheme can improve
the results compared to the uniformly weighted standard BMF al-
gorithms.

3.3 Scaling Up for Large Circuits

Calculating the BMF is limited by computational complexity as one
needs to generate the truth table for every possible input and state
combination. Furthermore, BMF is a NP-hard problem, and most
algorithms in the literature are heuristics [5, 10, 11]. We propose a
simple approach to scale BMF calculations for larger circuits. The
basic idea is to decompose a large circuit into a number of subcir-
cuits each with a maximum of k inputs and m outputs as afforded
by the runtime of the factorization algorithm and memory require-
ments. Note that this approach is reminiscent but yet fundamen-
tally different than FPGA mapping algorithms, where the goal is
to map a circuit into logic elements, each with limited number of
inputs [1]. Our motivation for decomposition is different because
(1) we are mapping to subcircuits purely to address computational
complexity, and (2) we apply the BMF on the truth tables of the
subcircuits, and then we synthesize the factored circuits into any
target ASIC or FPGA technology. Instead of using classical k-cut
algorithms, e.g. [1], we propose to use k X m-cut algorithms (e.g.,
KL algorithm [8]) to identify subcircuits with a maximum input of
k and maximum output of m. Note that k and m are design choices
mostly determined by the runtime and memory budgets.
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Algorithm 1: BLASYS: Boolean Level Approximate Circuit
Synthesis

Input :Accurate Circuit ACir, Error Threshold
Output: Approximate Circuit Cir

1 subcircuits=Decompose input circuit using k X m decomposition
2 // Factorization profiling Phase

3 for each subcircuit s; with m; < m outputs do

4 M-=Construct truth table of s;

5 // profile for every possible factorization degree
6 for f=1tom;-1do

7 [B, C] = BMF(M, f)

8 T, p=Construct truth table of BC

9 end

10 end

11 // Circuit Space Exploration Phase

12 Cir=ACir;

13 Let f; = m; for all subcircuits s;

14 while QoR(Cir) < threshold do

15 for each subcircuit s; with f; > 1do

16 Cir'=Cir(s; = Ts; f;-1)

17 Aerr; = QoR(Cir’) — QoR(Cir)
18 end

19 b = argmin;(Aerr;)

20 Cir = Cir(sp — st’fb’l)

21 fo=fo—1

22 end

23 Cir=Synthesize Best new Design
24 return Cir

Decomposing a large circuit into subcircuits of size k X m re-
quires changing the way we evaluate the QoR. In particular one
cannot evaluate the QoR of a subcircuit in isolation from the rest
of the circuit, since a small error in the output of the subcircuit can
propagate leading to larger errors. Thus, instead of evaluating the
QoR of an original subcircuit against its approximate version, we
have to evaluate QoR of the entire circuit Cir(s; — T, r,), where
Cir(s; — T, y,) represents the approximate circuit created by sub-
stituting an accurate subcircuit, s;, with its approximate version,
T, f;» using a f; factorization degree. As evaluating the entire cir-
cuit for all possible inputs is infeasible, we use Monte Carlo sam-
pling to estimate the QoR of the approximate version of the entire
circuit.

In addition, the order of processing the subcircuits and the tar-
get factorization degree for each subcircuit is an important consid-
eration. We devise Algorithm 1 to gradually approximate the cir-
cuit as guided by circuit accuracy. After identifying the subcircuits
(Line 1), the first stage of the algorithm (lines 3-10) calculates the
potential approximate versions for each subcircuit under various
factorization degrees. The next stage (lines 12-22) seeks to explore
the space of potential approximate subcircuits to identify a good
approximation order. Lines 15-18 assess the reduction in accuracy
of the entire circuit if the degree of factorization of each subcircuit
is decremented. The subcircuit that leads to the smallest error is
then chosen (line 19), and its more approximated version is then
substituted in the main circuit (lines 20-21). The process is then re-
peated until the error is above the set threshold or all subcircuits
are approximated to the highest degree possible.

4 EXPERIMENTAL RESULTS

In this section we evaluate our proposed BMF based approxima-
tion methodology. Similar to previous work [14, 18], we consider a
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Table 1: The list of benchmarks evaluated using the pro-
posed NNMF methodology.

Accurate Design Metrics

Name Function /0 Area | Power | Delay
(um?) | ww) (ns)

Adder32 | 32-bit Adder 64/33 320.8 81.1 3.23
Mult8 8-bit Multiplier 16/16 | 1731.6 263.5 2.03
BUT Butterfly Structure 16/18 297.4 80.6 1.79

MAC Multiply and Accumulate
with 32-bit Accumulator 48/33 | 6013.1 470.5 2.36
SAD sum of absolute
difference 48/33 | 1446.5 195.1 243
FIR 4-Tap FIR Filter 64/16 | 8568.0 466.3 1.56

number of arithmetic circuits (adder and multiplier) and a number
of application circuits that are amenable for approximate comput-
ing such as a multiply-accumulate circuit (MAC), a butterfly net-
work (BUT), a sum of absolute differences (SAD) circuit and finite
impulse response (FIR) circuit. Table 1 summarizes the character-
istics of the evaluated applications. Here we also give the number
of input and output pins, and the design metrics of the accurate
design. To evaluate design area and power consumption, we use
Synopsys design compiler with an industrial 65 nm technology li-
brary in typical processing corner.

For all our experiments, as discussed in 3.3, we first decompose
each circuit to k X m-cut subcircuits and then perform factoriza-
tion. In our experiments we chose both k = 10 and m = 10. These
numbers are simply chosen as they provide a balanced trade-off
between truth table complexity and number of subcircuits. We use
the modified ASSO algorithm for BMF [10, 11]. Further, for each
subcircuit we perform a sweep on the factorization threshold in
order to get the best accuracy. In order to evaluate the accuracy
on the evaluated applications, we use a Monte Carlo simulation
using one million randomly generated input test cases. We define
average relative error as,

A Relative E ! i IR — Rl 1
ti == —1L,
verage Relative Error N 24 R (1)
and average absolute error as,
N
1
Average Absolute Error = N Z [Ri — R;l, (2)
i=1

where N is the size of the test case, and R and R’ are accurate and
approximate results respectively.

Next, in the first subsection we show the impact of enabling ar-
bitrary QoR functions, when compared to standard Ly metric used
in Boolean matrix factorization. In the second subsection, we show
the trade-offs and Pareto Frontiers offered by our methodology for
our applications. We also compare the results of our work to pre-
vious work.

4.1 Evaluation of QoR Impact

As described in Section 3, we modify the Boolean NNMF factor-
ization algorithm, ASSO in this case, to enable weighted cost func-
tions, where a bit error on higher bit indices results in a higher
penalty compared to disparities on the lower significance bits.
Figure 4 shows the accuracy vs. design area trade-offs offered for
the approximate Mult8 design when comparing a factorization al-
gorithm using standard Ly QoR with uniform bit weighting against
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Figure 4: Comparison of the trade-offs offered using the pro-
posed weighted QoR vs. the original factorization algorithm.

the proposed weighted QoR. We provide the trends in average rel-
ative error, normalized average absolute error, and the normalized
Hamming distance. The results obtained from the weighted QoR
(WQoR) are shown with solid lines while the dashed lines show
the results for the original uniform algorithm (UQoR).

As shown in the figure, compared to the original algorithm, the
weighted scheme provides consistent benefits in accuracy for the
same design complexity for all three accuracy metrics. This result
confirms the benefit of modifying the BMF algorithm to differenti-
ate among inaccuracies in different indices. Furthermore, this fig-
ure highlights the necessity of an algorithm guiding the approxi-
mation process in the right direction as suboptimal points are com-
monly encountered. Next, we evaluate the trade-offs offered for all
of our application circuits using our heuristic design space explo-
ration and compare our results against SALSA [18].

4.2 Application Results

As previously described, for each application, first the circuit is
decomposed into subcircuits with reduced number of inputs and
outputs. Then, for each subcircuit and various values of f, each
subcircuit is approximated and the approximate characteristics are
stored. Next, the heuristic proposed in Algorithm 1 iteratively ap-
proximates the subcircuits while assessing the impact on the whole
circuit.

Figure 5 shows the trade-offs offered by BLASYS for each of our
six benchmarks. In our experiments as the inner workings of accu-
racy among different blocks is more difficult to model, we simulate
the whole circuit while modeling the design metric. More specifi-
cally, for design space exploration purposes we assume the design
metric, e.g. design area or power, of the large circuit is the sum of
design metrics of the k X m-cut subcircuits. For our experiments
in order to simplify our design metric model, we use design area
as it has less variation compared to power consumption when as-
sembling the subcircuits into the larger circuit. Furthermore, our
design area model is only a function of the subcircuits blocks being
approximated, while registers and control paths are not considered.
We plot the normalized combinational design area utilization as a
function of average relative error (black plot and using the bottom
x axis) and average normalized absolute error (red plot and using
the top x axis). In the case of average absolute error, we normalize
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Table 2: The hardware characteristics of the approximate
testcases for an accuracy threshold of 5%.

Area Power Delay

Design ‘ Savings (%) | Savings (%) ‘ Reduction (%)
Adder32 44.78 63.79 12.07
Mult8 28.77 26.87 12.32
BUT 7.87 11.25 2.23
MAC 47.55 55.58 64.41
SAD 32.80 41.47 69.14
FIR 19.52 22.26 12.18

the values to the highest output possible. Further, to better show
the trend, the average absolute error is plotted in log scale.

As shown in the figure, the proposed methodology enables the
designer to choose among a wide range of fine-grain trade-offs. In-
tuitively, our design space exploration heuristic aims to find the
lowest error possible for a specific degree of approximation where
the degree of approximation is incremented by one in each genera-
tion. This insight explains the smooth trend of trade-offs for larger
circuits while the smaller circuits can change in performance sig-
nificantly in one iteration. Furthermore, note that while reducing
the number of intermediate signals (f)) generally reduces the com-
plexity of the circuit, there are cases where the number of literals in
the logic representation for one output can increase. This phenom-
enon, explains the temporary increases in design area observed in
some of the trends.

The overall runtime of the algorithm is dominated by the accu-
racy simulation of the intermediate points. Therefore, the runtime
is dictated by the Monte Carlo sample size, the threshold set for
accuracy, and the tool chain utilized. For example, in our experi-
ments and in the case of the Adder32, the simulation takes about
11 Seconds (using 1 million samples) for each design point, while
the BMF algorithm for all the subcircuits takes 0.35 Seconds.

Table 2 summarizes all the design metrics of our 6 testcases and
for two accuracy thresholds as synthesized at the end of the de-
sign space exploration. As shown in the table, significant reduc-
tions in design metrics are possible while insignificant errors are
introduced to the circuit. Based on the application, benefits of ap-
proximately 8%-47% can be achieved for average relative errors of
5%.

We also compare our proposed methodology against the previ-
ous work SALSA [18]. Table 3 compares the results obtained using
BLASYS against SALSA for given thresholds of 5% and 25%. As it
can be seen from the table, in all cases, BLASYS delivers significant
improvements in design area. We attribute the benefits to BLASYS’
ability to approximate multiple outputs, up to m outputs, simulta-
neously, whereas SALSA approximates each output bit individu-
ally.

Table 3: The design area savings at error thresholds 5%
and 25% for the applications evaluated with comparison to
SALSA [18].

Threshold 5% Threshold 25%
Area Savings (%) Area Savings (%)
BLASYS | SALSA | BLASYS | SALSA

Adder32 44.9 20.5 48.2 23.2
Mult8 28.8 1.8 63.2 8.9
BUT 7.9 5.0 26.4 24.7
MAC 47.6 1.7 65.9 8.2
SAD 32.8 3.3 38.1 15.8
FIR 19.5 3.2 34.0 15.8
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5 CONCLUSIONS

In this paper we proposed a new direction for approximate logic 6
synthesis using boolean matrix factorization. Our proposed method-
ology, BLASYS, leads to a systematic approach to trade-off accu-
racy with circuit complexity. To scale our approach into large cir-
cuits, we proposed a circuit decomposition heuristic together with
a processing order for the subcircuits. Our algorithm results in a
very smooth way to trade-off the complexity of entire large cir-
cuits with accuracy. We also investigated ways to incorporate dif- [
ferent QoR metrics into the circuit factorization algorithm. Our ex-
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Figure 5: The trade-offs offered for each application. (a) Adder32, (b) Mult8, (c) BUT, (d) MAC, (e) SAD, and (f) FIR.
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