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ABSTRACT

A wave of alternative coins that can be effectively mined without
specialized hardware, and a surge in cryptocurrencies’ market value
hasled to the development of cryptocurrency mining (cryptomining)
services, such as Coinhive, which can be easily integrated into
websites to monetize the computational power of their visitors.
While legitimate website operators are exploring these services as
an alternative to advertisements, they have also drawn the attention
of cybercriminals: drive-by mining (also known as cryptojacking)
is a new web-based attack, in which an infected website secretly
executes JavaScript code and/or a WebAssembly module in the
user’s browser to mine cryptocurrencies without her consent.

In this paper, we perform a comprehensive analysis on Alexa’s
Top 1 Million websites to shed light on the prevalence and profitabil-
ity of this attack. We study the websites affected by drive-by mining
to understand the techniques being used to evade detection, and the
latest web technologies being exploited to efficiently mine crypto-
currency. As a result of our study, which covers 28 Coinhive-like
services that are widely being used by drive-by mining websites,
we identified 20 active cryptomining campaigns.

Motivated by our findings, we investigate possible countermea-
sures against this type of attack. We discuss how current blacklisting
approaches and heuristics based on CPU usage are insufficient, and
present MINESWEEPER, a novel detection technique that is based
on the intrinsic characteristics of cryptomining code, and, thus,
is resilient to obfuscation. Our approach could be integrated into
browsers to warn users about silent cryptomining when visiting
websites that do not ask for their consent.
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1 INTRODUCTION

Ever since its introduction in 2009, Bitcoin [47] has attracted the
attention of cybercriminals due to the possibility to perform and
receive anonymous payments. In addition, the financial reward
for using computing power for mining has incentivized criminals
to experiment with silent cryptocurrency miners (cryptominers),
which gained popularity among malware authors who were, after
all, already in the business of compromising PCs and herding large
numbers of them in botnets. However, as Bitcoin mining became too
difficult for regular machines, the profits of mining botnets dwin-
dled, and Bitcoin-mining botnets declined: an analysis by McAfee
in 2014 suggested that malicious miners are not profitable on PCs
and certainly not on mobile devices [37].

Since then, a wave of alternative coins (altcoins) has been in-
troduced: the market now counts over 1,500 cryptocurrencies, out
of which more than 600 see an active trade. At the time of writ-
ing, they represent over 50% of the cryptocurrency market [24].
Unlike Bitcoin, many of them are still mineable without special-
ized hardware. Furthermore, miners can organize themselves into
mining pools, which allow members to distribute mining tasks and
share the rewards. These new currencies, and an overall surge in
market value across cryptocurrencies at the end of 2017 [26], has
renewed interest in cryptominers and led to the proliferation of
cryptomining services, such as Coinhive [5], which can easily be
integrated into a website to mine on its visitors’ devices from within
the browser.

For cybercriminals, these services provide a low-effort way to
monetize websites as part of drive-by mining (or cryptojacking)
attacks: they either compromise webservers (through exploits [15,
39, 50, 62, 65], or taking advantage of misconfigurations [49]) and
install JavaScript-based miners, distribute their miners through
advertisements (including Google’s DoubleClick on YouTube [28]
and the AOL advertising platform [41]), or compromise third-party
libraries [71] included in numerous websites. Attackers also have
come up with creative tactics to conceal their attack, for example
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by using “pop-under” windows [27] (to maximize the time a vic-
tim spends on the mining website), or by abusing Coinhive’s URL
shortening service [77]. Finally, rogue WiFi hotspots [20] and com-
promised routers [35] allow attackers to inject the mining payload
on a large scale into any website that their users visit.

However, in-browser mining is not malicious per-se: charities,
such as UNICEF [40], launched dedicated websites to mine for dona-
tions, and legitimate websites are exploring mining in an attempt to
monetize their content in the presence of ad blockers [58]. Whether
users accept cryptocurrency miners as an alternative to invasive
advertisements, which raise privacy concerns due to wide-spread
targeting and tracking [19, 43, 52], remains to be seen. For them,
in-browser mining degrades their system’s performance and in-
creases its power consumption [51]. Therefore, the key distinction
between these use cases and drive-by mining attacks is user con-
sent and whether a website discloses its mining activity or not. For
example, as a way to enforce user consent for in-browser mining,
Coinhive launched AuthedMine [6], which explicitly requires user
input. However, a related study has found that this API has not yet
found widespread adoption [60]. Related work also suggested the
introduction of a “do not mine” HTTP header [25], which, however,
websites do not necessarily need to honor.

To study the prevalence of drive-by mining attacks, i.e., in-
browser mining without requiring any user interaction or consent,
we performed a comprehensive analysis of Alexa’s Top 1 Million
websites [3]. As a result of our study, which covers 28 Coinhive-like
services, we identified 20 active cryptomining campaigns. In con-
trast to a previous study, which found cryptomining on low-value
targets, such as parked websites, and concluded that cryptomin-
ing was not very profitable [25], we find that cryptomining can
indeed make economic sense for an attacker. We identified several
video players used by popular video streaming websites that in-
clude cryptomining code and which maximize the time users spend
on a website mining for the attacker—potentially earning more
than US$ 30,000 a month. Furthermore, we found that instead of
JavaScript-based attacks, drive-by mining now largely takes advan-
tage of WebAssembly (Wasm) to efficiently mine cryptocurrencies
and maximize profits.

As a countermeasure, browsers [21, 67, 73], dedicated browser
extensions [10, 11], and ad blockers have started to use blacklists.
However, maintaining a complete blacklist is not scalable, and it
is prone to false negatives. These blacklists are often manually
compiled and are easily defeated by URL randomization [59] and
domain generation algorithms (DGAs), which are already actively
being used in the wild [74]. Other detection attempts look for high
CPU usage as an indicator that cryptocurrency mining is taking
place. This not only causes false positives for other CPU-intensive
use cases, but also causes false negatives, as cryptocurrency miners
have started to throttle their CPU usage to evade detection [25].

In this work, we focus on Wasm-based mining, the most efficient
and widespread technique for drive-by mining attacks. We propose
MINESWEEPER, a drive-by mining defense that is based on identify-
ing the intrinsic characteristics of the mining itself: the execution of
its hashing function. Our first approach is to perform static analysis
on the Wasm code and to identify the hashing code based on the
cryptographic operations it performs. Currently, attackers avoid
heavy obfuscation of the Wasm code as it comes with performance
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penalties, and hence decreases profits. To deal with future evasion
techniques, we present a second, more obfuscation-resilient detec-
tion approach: by monitoring CPU cache events at run time we can
identify cryptominers based on their memory access patterns.

As browsers are currently struggling to find a suitable alternative
to blacklists [29], the techniques used by MINESWEEPER could be
adopted as a defense mechanism against drive-by mining, for exam-
ple by warning users and enforcing their consent before allowing
mining scripts to execute or blocking mining scripts altogether.

In summary, we make the following contributions:

e We perform the first in-depth assessment of drive-by mining.

e We discuss why current defenses based on blacklisting and
CPU usage are ineffective.

e We propose MINESWEEPER, a novel detection approach based
on the identification of cryptographic functions through static
analysis and monitoring of cache events during run time.

In the spirit of open science, we make the collected datasets and the
code we developed for this work publicly available at https://
github.com/vusec/minesweeper.

2 BACKGROUND

A cryptocurrency is a medium of exchange much like the Euro
or the US Dollar, except that it uses cryptography and blockchain
technology to control the creation of monetary units and to verify
the transaction of a fund. Bitcoin [47] was the first such decentral-
ized digital currency. A cryptocurrency user can transfer money to
another user by forming a transaction record and committing it to
a distributed write-only database called blockchain. The blockchain
is maintained by a peer-to-peer network of miners. A miner collects
transaction data from the network, validates it, and inserts it into
the blockchain in the form of a block. When a miner successfully
adds a valid block to the blockchain, the network compensates the
miner with cryptocurrency (e.g., Bitcoins). In the case of Bitcoin,
this process is called Bitcoin mining, and this is how new Bitcoins
enter circulation. Bitcoin transactions are protected with crypto-
graphic techniques that ensure only the rightful owner of a Bitcoin
wallet address can transfer funds from it.

To add a block (i.e., a collection of transaction data) to the
blockchain, a miner has to solve a cryptographic puzzle based
on the block. This mechanism prevents malicious nodes from try-
ing to add bogus blocks to the blockchain and earn the reward
illegitimately. A valid block in the blockchain contains a solution
to a cryptographic puzzle that involves the hash of the previous
block, the hash of the transactions in the current block, and a wallet
address to credit with the reward.

2.1 Cryptocurrency Mining Pools

The cryptographic puzzle is designed such that the probability
of finding a solution for a miner is proportional to the miner’s
computational power. Due to the nature of the mining process, the
interval between mining events exhibits high variance from the
point of view of a single miner. Consequently, miners typically
organize themselves into mining pools. All members of a pool work
together to mine each block, and share the reward when one of
them successfully mines a block.
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The protocol used by miners to reliably and efficiently fetch jobs
from mining pool servers is known as Stratum [63]. It is a cleartext
communication protocol built over TCP/IP, using a JSON-RPC for-
mat. Stratum prescribes that miners who want to join the mining
pool first send a subscription message, describing the miner’s capa-
bility in terms of computational resources. The pool server then
responds with a subscription response message, and the miner sends
an authorization request message with its username and password.
After successful authorization, the pool sends a difficulty notifica-
tion that is proportional to the capability of the miner—ensuring
that low-end machines get easier jobs (i.e., puzzles) than high-end
ones. Finally, the pool server assigns these jobs by means of job
notifications. Once the miner finds a solution, it sends it to the pool
server in the form of a share. The pool server rewards the miner
in proportion to the number of valid shares it submitted and the
difficulty of the jobs.

2.2 In-browser Cryptomining

The idea of cryptomining by simply loading a webpage using
JavaScript in a browser exists since Bitcoin’s early days. How-
ever, with the advent of GPU- and ASIC-based mining, browser-
based Bitcoin mining, which is 1.5x slower than native CPU min-
ing [25], became unprofitable. Recently, the cause for the decline
of JavaScript-based cryptocurrency miners has subsided: due to
new CPU-mineable altcoins and increasing cryptocurrency market
value, it is now profitable to mine cryptocurrencies with regular
CPUs again. In 2017, Coinhive was the first to revisit the idea of
in-browser mining. They provide APIs to website developers for
implementing in-browser mining on their websites and to use their
visitors’ CPU resources to mine the altcoin Monero. Monero em-
ploys the CryptoNight algorithm [61] as its cryptographic puzzle,
which is optimized towards mining by regular CPUs and provides
strong anonymity; hence, it is ideal for in-browser cryptomining.!
Moreover, the development of new web technologies that have
been happening in parallel allows for more efficient—and thus
profitable—mining in the browser.

2.3 Web Technologies

Web developers continuously strive to deploy performance-critical
parts of their application in the form of native code and run it
inside the browser securely. As such, there are on-going research
and development efforts to improve the performance of native code
execution in the web browser [32, 68]. Naturally, the developers
of JavaScript-based cryptominers started exploiting these advance-
ments in web technologies to speed up drive-by mining, thus taking
advantage of two web technologies: asm.js and WebAssembly.

In 2013, Mozilla introduced asm.js, which takes C/C++ code
to generate a subset of JavaScript code with annotations that the
JavaScript engine can later compile to native code. To improve
the performance of native code in the browser even further, in
2017, the World Wide Web Consortium developed WebAssembly
(Wasm). Any C/C++/Rust-based application can be easily converted
to Wasm, a binary instruction format for a stack-based virtual

Note that Monero is not the only altcoin that uses the CryptoNight algorithm: most
CPU-mineable coins that exist today, such as Bytecoin, Bitsum, Masari, Stellite, AEON,
Graft, Haven Protocol, Intense Coin, Loki, Electroneum, BitTube, Dero, LeviarCoin,
Sumokoin, Karbo, Dinastycoin, and TurtleCoin are based on CryptoNight.
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machine, and executed in the browser at native speed by taking
advantage of standard hardware capabilities available on a wide
range of platforms. Today, all four major browsers (Firefox, Chrome,
Safari, and Edge) support Wasm.

The main difference between asm.js and Wasm is in the way in
which the code is optimized. In asm.js, the JavaScript Just-in-Time
(JIT) compiler of the browser converts the JavaScript to an Abstract
Syntax Tree (AST). Then, it compiles the AST to non-optimized
native code. Later, at run time, the JavaScript JIT engine looks
for slow code paths and tries to re-optimize this code at run time.
The detection and re-optimization of slow code paths consume a
substantial amount of CPU cycles. In contrast, Wasm performs the
optimization of the whole module only once, at compile time. As a
result, the JIT engine does not need to parse and analyze the Wasm
module to re-optimize it. Rather, it directly compiles the module to
native code and starts executing it at native speed.

2.4 Existing Defenses against Drive-by Mining

Until now, there is no reliable mechanism to detect drive-by mining.
The developers of CoinBlockerLists [4] maintain a blacklist of min-
ing pools and proxy servers that they manually collect from reports
on security blogs and Twitter. Dr. Mine [8] attempts to block drive-
by mining by means of explicitly blacklisted URLs (based on for
example CoinBlockerLists). In particular, it detects JavaScript code
that tries to connect to blacklisted mining pools. MinerBlock [10]
further combines blacklists with detecting potential mining code
inside loaded JavaScript files. Both approaches suffer from high
false negatives: as we show in our analysis, most of the drive-by
mining websites are using obfuscated JavaScript and randomized
URLSs to evade the aforementioned detection techniques.

Google engineers from the Chromium project recently acknowl-
edged that blacklisting does not work and that they are looking
for alternatives [29]. Specifically, they considered adding an extra
permission to the browser to throttle code that runs the CPU at
high load for a certain amount of time. Related studies also found
high CPU usage from the website as an indicator of drive-by min-
ing [46]. At the same time, another recent study shows that many
drive-by miners are throttling their CPU usage to around 25% [25]
and simply considering the CPU usage alone as the indicator of
drive-by mining suffers from high false negatives. Even without
taking the CPU throttling to such extremes, drive-by miners can
blend in with other browsing activity, potentially leading to false
positives for other CPU-intensive use cases, such as games [59].

Making matters worse, in-browser mining service providers,
such as Coinhive, have no incentives to disrupt drive-by mining
attacks: Coinhive keeps 30% of the cryptocurrency that is mined
with its code. In reaction to abuse complaints, they reportedly keep
all of the profits of campaigns, whose members still keep mining
cryptocurrency even after their site key (i.e., the campaign’s account
identifier with Coinhive) has been terminated [36].

3 THREAT MODEL

We consider only drive-by mining rather than legitimate browser-
based mining in our threat model, i.e., we measure only the preva-
lence of mining without users’ consent. A website may host stealthy
miners for many reasons. Some website owners knowingly include
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Figure 1: Overview of a typical drive-by mining attack.

them on their sites without informing the users to monetize their
sites on the sly. However, it is also possible that the owners are
unaware that their site is stealing CPU cycles from their visitors.
For instance, silent cryptocurrency miners may ship with advertise-
ments or third-party services. In some cases, the attackers install
the miners after they compromise a victim site. In this research, we
measure, analyze, and detect all these cases of drive-by mining.

Figure 1 illustrates a typical drive-by mining attack. A crypto-
currency mining script contains two components: the orchestrator
and the mining payload. When a user visits a drive-by mining web-
site, the website (1) serves the orchestrator script, which checks
the host environment to find out how many CPU cores are avail-
able, (2) downloads the highly-optimized cryptomining payload
(as either Wasm or asm.js) from the website or an external server,
(3) instantiates a number of web workers [70], i.e., spawns separate
threads, with the mining payload, depending on how many CPU
cores are available, (4) sets up the connection with the mining pool
server through a WebSocket proxy server, and, (5) finally, fetches
work from the mining pool and submits the hashes to the mining
pool through the WebSocket proxy server. The protocol used for
this communication with the mining pool is usually Stratum.

4 DRIVE-BY MINING IN THE WILD

The goals of our large-scale analysis of active drive-by mining cam-
paigns in the wild are two-fold: first, we investigate the prevalence
and profitability of this threat to show that it makes economic
sense for cybercriminals to invest in this type of attack—being a
low effort heist with potentially high rewards. Second, we evaluate
the effectiveness of current drive-by mining defenses, and show
that they are insufficient against attackers who are already actively
using obfuscation to evade detection. Based on our findings, we pro-
pose an obfuscation-resilient detection system for drive-by mining
websites in Section 5.

As part of our analysis, we first crawl Alexa’s Top 1 Million
websites, log and analyze all code served by each website, monitor
side effects caused by executing the code, and capture the network
traffic between the visited website and any external server. Then,
we proceed to detect cryptomining code in the logged data and the
use of the Stratum protocol for communicating with mining pool
servers in the network traffic of each website. Finally, we correlate
the results from all websites to answer the following questions:

(1) How prevalent is drive-by mining in the wild?

(2) How many different drive-by mining services exist currently?
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Table 1: Summary of our dataset and key findings.

Crawling period March 12, 2018 — March 19, 2018

# of crawled websites 991,513
# of drive-by mining websites 1,735 (0.18%)
# of drive-by mining services 28
# of drive-by mining campaigns 20
# of websites in biggest campaign 139
Estimated overall profit US$ 188,878.84

US$ 31,060.80
US$ 17,166.97

Most profitable/biggest campaign
Most profitable website

3
4
5
6

Which evasion tactics do drive-by mining services employ?
What is the modus operandi of different types of campaigns?

How much profit do these campaigns make?

(
(
(
(

NN NN

Can we find common characteristics across different drive-by
mining services that we can use for their detection?

Table 1 summarizes our dataset and key findings. We start by dis-
cussing our data collection approach in Section 4.1, explain how
we identify drive-by mining websites in Section 4.2, explore web-
sites and campaigns in-depth, as well as estimate their profit in
Section 4.3, and finally summarize characteristics that are common
across the identified drive-by mining services in Section 4.4.

4.1 Data Collection

As the basis for our analysis, we built a web crawler for visiting
Alexa’s Top 1 Million websites and collecting data related to drive-
by mining. During our preliminary analysis, we observed that many
malicious websites serve a mining payload only when the user visits
an internal webpage. Thus, in contrast to related studies [45, 51, 57]
that based their analysis only on the websites’ landing pages,?
we configured the crawler to visit three random internal pages of
each website. The crawler stayed for four seconds on each visited
page. Moreover, we configured it to passively collect data from each
visited website without simulating any user interactions. That is,
the crawler did not give any consent for cryptomining.

4.1.1 Cryptomining Code. To identify the cryptomining payloads
that the drive-by mining website serves to client browsers, the web
crawler saves the webpage, any embedded JavaScript, and all the
requests originating from and responses served to the webpage.
Then, our offline analyzer parses these logs to identify known
drive-by mining services (such as Coinhive or Mineralt). As a first
approximation, it does so using string matches, similar to existing
defenses (see Section 2.4). However, this is only the first step in our
analysis: as we show later, relying on pattern matching alone to
detect drive-by mining easily leads to false negatives.

As explained in the previous section, the mining code consists
of two components: the orchestrator and the optimized hash gener-
ation code (i.e., the mining payload), which we can both identify
independently of each other.

Identification of the orchestrator. Usually, websites embed the
orchestrator script in the main webpage, which we can detect by
looking for specific string patterns. For instance, Listing 1 shows

2PublicWWW [12] only recently started indexing internal pages: https://twitter.
com/bad_packets/status/1029553374897696768 (August 14, 2018)
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Table 2: Types of mining services in our initial dataset and their keywords.

Mining Service Keywords

www.coinimp.com/scripts | new Coinlmp.Anonymous | new Client. Anonymous | freecontent.stream | freecontent.data | freecontent.date

abc\.pema\.cl | metrika\.ron\:si | cdn\.rove\.cl | host\.dns\.ga | static\.hk\.rs | hallaert\.online | st\.kjli\.fi | minr\.pw | cnt\.statistic\.date |

Coinhive new CoinHive\.Anonymous | coinhive.com/lib/coinhive.min.js | authedmine.com/lib/
CryptoNoter minercry.pt/processor.js | \.User\(addr
NFWebMiner new NFMiner | nfwebminer.com/lib/
JSECoin load.jsecoin.com/load
Webmine webmine.cz/miner
CryptoLoot CRLT\.anonymous | webmine.pro/lib/crlt.js
CoinIlmp
DeepMiner new deepMiner.Anonymous | deepMiner.js
Monerise apin.monerise.com | monerise_builder
Coinhave minescripts\.info’
Cpufun snipli.com/[A-Za-z]+\" data-id=’
Minr
cdn\.static-cnt\.bid | ad\.g-content\.bid | cdn\.jquery-uim\.download’
Mineralt ecart\.html\?bdata= | /amo\.js\"> | mepirtedic\.com’

Listing 1: Example usage of the Coinhive mining service.

<script src="https://coinhive.com/lib/coinhive.min.js">

</script>

<script>

new CoinHive.Anonymous ('CLIENT-ID',
{throttle: 0.91});

var miner =

miner.start () ;
</script>

a website using Coinhive’s service for drive-by mining by includ-
ing the orchestrator component (coinhive.min. js) inside the
<script> HTML tag. In this case, searching for keywords such as
CoinHive.Anonymous or coinhive.min. js is enough to identify
whether a website is using this particular drive-by mining service.
We manually collected keywords for 13 well-known mining services
(see Table 2) to identify the websites that are using them.

Identification of the mining payload. The orchestrator first checks
whether the browser supports Wasm. If not, the browser loads the
optimized hash generation mining payload in the web worker using
asm.js, otherwise, the mining payload (Wasm module) is served to
the client in one of the following three ways: (i) the code is stored
in the orchestrator script in a text format, which is compiled at run
time to create the Wasm module, (ii) the orchestrator script retrieves
a pre-compiled Wasm module at run time from an external server,
or (iii) the web worker itself directly downloads a compiled Wasm
module from an external server and executes it. For all three cases,
we could have used the Chrome browser (which supports Wasm)
with the —-dump-wasm-module flag to dump the Wasm module
that the JIT engine (V8) executes. However, this flag is not officially
documented [66] and at the time of our large-scale analysis we were
not aware of this feature. Hence, we detect the Wasm-based mining
payload in the following way: First, we dump all the JavaScript
code and search for keywords, such as cryptonight_hash and
CryptonightWasmWrapper; the existence of these keywords in

the JavaScript implies the mining payload is served in text format.

We detect the second and third way of serving the payload by
logging and analyzing all the network requests and responsens
from and to the browser’s web worker.
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Code obfuscation. We noticed that many drive-by mining services
obfuscate both the strings used in the orchestrator script and in
the Wasm module to defeat such keyword-based detection. Hence,
we also look for other indicators for cryptomining and store the
Wasm module for further analysis. In this way, we can estimate the
number of drive-by mining services that employ code obfuscation
during our in-depth analysis in Section 4.3.3.

4.1.2 CPU Load as a Side Effect. A cryptominer is a CPU-intensive
program; hence, execution of the mining payload usually results in
a high CPU load. However, websites may also intentionally throttle
their CPU usage, either to evade detection or an attempt to conserve
a visitor’s resources. As part of our analysis, we investigate how
many websites keep the CPU usage lower than a certain threshold.
To this end, we configured the web crawler to log the CPU usage
of each core and aggregate the usage across cores.

4.1.3  Mining Pool Communication. Typically, a miner talks to a
mining pool to fetch the block’s headers to start computing hashes.
Stratum is the most commonly used protocol to authenticate with
the mining pool or the proxy server to receive the job that needs
to be solved, and, if the correct hash is computed, to announce the
result. Most drive-by mining websites use WebSockets for this type
of communication. As processes running in a browser sandbox are
not permitted to open system sockets, WebSockets were designed
to allow full-duplex, asynchronous communication between code
running on a webpage and servers. As a result of using WebSockets,
the operators of drive-by mining services need to set up WebSocket
servers to listen for connections from their miners, and either pro-
cess this data themselves if they also operate their own mining pool
or unwrap the traffic and forward it to a public pool.
Consequently, we log all the WebSocket frames which are sent
and received by the browser, as well as the AJAX request/response
from the webpage. Then, we analyze the logged data to detect
any mining pool communication by searching for command and
keywords that are used by the Stratum protocol (listed in Table 3).
During this analysis, we also observed that some websites are obfus-
cating the communication with the mining pool to evade detection.
Thus, if the logged data does not include any text but only binary
content, we mark the WebSocket communication as obfuscated.
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Table 3: Stratum protocol commands and their keywords.
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Table 4: Distribution of well-known cryptomining services.

Command Keywords Mining Service Number of Websites Percentage
Authentication type:auth | command:connect | Coinhive 514 59.35%
identifier:handshake | command:info Coinlmp 94 10.85%

Authentication accepted ~ type:authed | command:work Mineralt 90 10.39%
Fetch job identifier:job | type:job | command:work | JSECoin 50 5.77%
command:get_job | command:set_job CryptoLoot 39 4.50%

Submit solved hash type:submit | command:share CryptoNoter 31 3.58%
Solution accepted command:accepted Coinhave 14 1.62%
Set CPU limits command:set_cpu_load Minr 13 1.50%
Webmine 8 0.92%

DeepMiner 5 0.58%

Extraction of pools, proxies and site keys. The communication be- Cpufun 4 0.46%
tween a cryptominer and the proxy server contains two interesting Monerise 2 0.23%
pieces of information: the proxy server address and the client iden- NF WebMiner 2 0.23%
tifier (also known as the site key). We also found several drive-by Total 366 100%

mining services that include the public mining pool and associated
cryptocurrency wallet address that the proxy should use.

Clustering miners based on the proxy to which they connect
gives us insights on the number of different drive-by mining ser-
vices that are currently active. Additionally, clustering miners based
on their site key can be used to identify campaigns. Finally, we can
leverage information from public mining pool to estimate the prof-
itability of different campaigns.

We extract this information by looking for keywords in each
request sent from the cryptominer and its response. Table 3 lists
the keywords commonly associated with each request/response
pair in the Stratum protocol. For instance, if the request sent from
the miner contains keywords related to authentication, we extract
the site key from it.

4.1.4 Deployment and Dataset. We deployed our web crawler in
Docker containers running on Kubernetes in an unfiltered network.
We ran 50 Docker containers in parallel for one week mid-March
2018 to collect data from Alexa’s Top 1 Million websites (as of
February 28, 2018). Around 1% of the websites were offline or not
responding, and we managed to crawl 991,513 of them. This process
resulted in a total of 4.6 TB raw data, and a 550 MB database for the
extracted information on identified miners, CPU load, and mining
pool communication.

4.2 Data Analysis and Correlation

We first analyze the different artifacts produced by the data collec-
tion individually, i.e., the cryptomining code itself, the CPU load
as a side effect, and the mining pool communication. We discuss
how relying on each of these artifacts alone can lead to both false
positives and false negatives, and therefore correlate our results
across all three dimensions.

4.2.1 Cryptomining Code. We identified 13 well-known crypto-
mining services using the keywords listed in Table 2 and present
our results in Table 4. We detected 866 websites (0.09%) that are
using these 13 services without obfuscating the orchestrator code
in the webpage. The majority of websites (59.35%) is using the
Coinhive cryptomining service. We also found 65 websites using
multiple cryptomining services.

We revisited this analysis after our data correlation (described in
4.2.4) and manually analysed part of the mining payloads of websites
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that we detected based on other signals. In this way, we extended
our initial list of keywords for detecting unobfuscated payloads with
hash_cn, cryptonight, WASMWrapper, and crytenight, and we
were able to identify mining services that were not part of our
initial dataset, but that are using CryptoNight-based payloads. In
total, we could identify 1,627 websites based on either keywords in
the orchestrator or in the mining payload.

However, similar to current blacklist-based approaches, keyword-
based analysis alone suffers from false positives and false negatives.
In terms of false positives, this approach does not consider user
consent, i.e., whether a website waits for a user’s consent before ex-
ecuting the mining code. In terms of false negatives, this approach
cannot detect drive-by mining websites that use code obfuscation
and URL randomization, which we detected being applied in some
form or another by 82.14% of the services in our dataset (see Sec-
tion 4.3.3).

4.22 CPU Load as a Side Effect. Even though we logged the CPU
load for each website during our crawl, we ultimately do not use
these measurements to detect drive-by mining websites for the
following reasons: First, since we were running the experiments in
Docker containers, the other processes running on the same ma-
chine could affect and artificially inflate our CPU load measurement.
Second, the crawler spends only four seconds on each webpage,
thus, the page loading itself might lead to higher CPU loads.

We can, however, use these measurements to specifically look
for drive-by mining websites with low CPU usage to give a lower
bound for the pervasiveness of CPU throttling across miners and
the false negatives that a detection approach solely relying on high
CPU loads would cause.

4.2.3  Mining Pool Communication. Overall, 59,319 (5.39%) out of
Alexa’s Top 1 Million websites use WebSockets to communicate
with external servers. Out of these, we identified 1,008 websites
that are communicating with mining pool servers using the Stra-
tum protocol based on the keywords shown in Table 3. We also
found that 2,377 websites are encoding the data (as Hex code or
salted Base64) that they send and receive through the WebSocket,
in which case we could not determine whether they are mining
cryptocurrency.
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Even though we successfully identified 1,008 drive-by mining
websites using this method, this detection method suffers from
the following two drawbacks, causing false negatives: drive-by
mining services may use a custom communication protocol (that
is, different keywords than the ones presented in Table 3), or they
may be obfuscating their communication with the mining pool.

4.24 Data Correlation. In our preliminary analysis based on key-
word search, we identified 866 websites using 13 well-known cryp-
tomining services. To determine how many of these websites start
mining without waiting for a user to give her consent, for example
by clicking a button (which our web crawler was not equipped
to do), we leverage the identification of the Stratum protocol: we
identify 402 websites, based on both their cryptomining code and
the communication with external pool servers, that initiate the
mining process without requiring a user’s input. The remaining 464
websites either wait for the user’s consent, circumvent our Stratum
protocol detection, or did not initiate the Stratum communication
within the timeframe our web crawler spent on the website.

To extend our detection to miners that evade keyword-based
detection, we combine the collected information from the following
sources:

o Mining payload: Websites identified based on keywords found
in the mining payload.

Orchestrator: Websites identified based on keywords found in
the orchestrator code.

Stratum: Websites identified as using the Stratum communica-
tion protocol.

WebSocket communication: Websites that potentially use an
obfuscated communication protocol.

Number of web workers: All the in-browser cryptominers use
web worker threads to generate hashes, while only 1.6% of all
websites in our dataset use more than two web worker threads.

We identify drive-by mining websites by taking the union of all
websites for which we identified the mining payload, orchestrator,
or the Stratum protocol. We further add websites for which we
identified WebSocket communication with an external server and
more than two web worker threads.

As a result, we identify 1,735 websites as mining cryptocurrency,
out of which 1,627 (93.78%) could be identified based on keywords
in the cryptomining code, 1,008 (58.10%) use the Stratum protocol in
plaintext, 174 (10.03%) obfuscate the communication protocol, and
all the websites (100.00%) use Wasm for the cryptomining payload
and open a WebSocket. Furthermore, at least 197 (11.36%) websites
throttle their CPU usage to less than 50%, while for only 12 (0.69%)
mining websites we observed a CPU load of less than 25%. In other
words, relying on high CPU loads (e.g., >50%) for detection would
result in 11.36% false negatives in this case (in addition to potentially
causing false positives for other CPU-intensive loads, such as games
and video codecs). Similarly, relying only on pattern matching on
the payload would result in 6.23% false negatives.

Finally, in addition to the 13 well-known drive-by mining ser-
vices that we started our analysis with (see Table 4), we also dis-
covered 15 new drive-by mining services (see Section 4.3.6), for a
total of 28 drive-by mining services in our dataset.
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4.3 In-depth Analysis and Results

Based on the drive-by mining websites we detected during our data
correlation, we now answer the questions posed at the beginning
of this section.

4.3.1 User Notification and Consent. We consider cryptomining as
abuse unless a user explicitly consents, e.g., by clicking a button.
While one of the first court cases on in-browser mining suggests
a more lenient definition of consent and only requires websites
to provide a clear notification about the mining behavior to the
user [33], we find that very few websites in our dataset do so.

To locate any notifications, we searched for mining-related key-
words (such as CPU, XMR, Coinhive, Crypto and Monero) in the
identified drive-by mining website’s HTML content. In this way, we
identified 67 out of 1,735 (3.86%) websites that inform their users
about their use of cryptomining. These websites include 51 proxy
servers to the Pirate Bay, as well as 16 unrelated websites, which,
in some cases, justify the use of cryptomining as an alternative to
advertisements.> We acknowledge that our findings only represent
a lower bound of websites that notify their users, as the notifica-
tions could also be stored in other formats, for example as images,
or be part of a website’s terms of service. However, locating and
parsing these terms is out of scope for this work.

We also found a number of websites that include Coinhive’s
AuthedMine [6] in addition to drive-by mining. AuthedMine is
not part of our threat model, as it requires user opt-in, and as
such, we did not include websites using it in our analysis. Still,
at least four websites (based on a simple string search) include
the authedmine.min. js script, while starting to mine right away
with a separate mining script that does not require user input: three
of these websites include the miners on the same page, while the
fourth (cnhv. co, a proxy to Coinhive), includes AuthedMine on
the landing page, and a non-interactive miner on an internal page.

4.3.2  Mining from Internal Pages. We found 744 out of 1,735 web-
sites (42.88%) stealing the visitor’s computational power only when
she visits one of their internal pages, validating our decision to not
only crawl the landing page of a website but also some internal
pages. From the manual analysis of these websites, we found that
most of them are video streaming websites: the websites start cryp-
tomining when the visitor starts watching a video by clicking the
links displayed on the landing page.

4.3.3 Evasion Techniques. We have identified three evasion tech-
niques, which are widely used by the drive-by mining services in
our dataset.

Code obfuscation. For each of the 28 drive-by mining services
in our dataset we manually analyzed some of the corresponding
websites, which we identified as mining, but for which we could
not find any of the keywords in their cryptomining code. In this
way, we identified 23 (82.14%) of drive-by mining services using

3Examples: “If ads are blocked, a low percentage of your CPU’s idle processing power
is used to solve complex hashes, as a form of micro-payment for playing the game.”
(dogeminer2.com) and “This website uses some of your CPU resources to mine
cryptocurrency in favor of the website owner. This is a some [sic] sort of donation
to thank the website owner for the work done, as well as to reduce the amount of
advertising on the website” (crypticrock. com)


cnhv.co
dogeminer2.com
crypticrock.com
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one or more of the following obfuscation techniques in at least one
of the websites that are using them:

o Packed code: The compressed and encoded orchestrator script
is decoded using a chain of decoding functions at run time.

o CharCode: The orchestrator script is converted to charCode
and embedded in the webpage. At run time, it is converted back
to a string and executed using JavaScript’s eval () function.

e Name obfuscation: Variable names and functions names are
replaced with random strings.

e Dead code injection: Random blocks of code, which are never
executed, are added to the script to make reverse engineering
more difficult.

o Filename and URL randomization: The name of the JavaScript
file is randomized or the URL it is loaded from is shortened to
avoid detection based on pattern matching.

We mainly found these obfuscation techniques applied to the orches-
trator code and not to the mining payload. Since the performance
of the cryptomining payload is crucial to maximize the profit from
browser-based mining, the only obfuscation currently performed
on the mining payload is name obfuscation.

Obfuscated Stratum communication. We only identified the Stra-
tum protocol in plaintext (based on the keywords in Table 3) for
1,008 (58.10%) websites. We manually analyzed the WebSocket com-
munication for the remaining 727 (41.90%) websites and found the
following: (1) A common strategy to obfuscate the mining pool com-
munication found in 174 (10.03%) websites is to encode the request,
either as Hex code, or with salted Base64 encoding (i.e., adding a
layer of encryption with the use of a pre-shared passphrase), before
transmitting it through the WebSocket. (2) We could not identify
any pool communication for the remaining 553 websites, either
due to other encodings, or due to slow server connections, i.e., we
were not able to observe any pool communication during the time
our web crawler spent on a website, which could also be used by
malicious websites as a tactic to evade detection by automated tools.

Anti-debugging tricks. We found 139 websites (part of a cam-
paign targeting video streaming websites) that employ the following
anti-debugging trick (see Listing 2): The code periodically checks
whether the user is analyzing the code served by the webpage using
developer tools. If the developer tools are open in the browser, it
stops executing any further code.

4.3.4  Private vs. Public Mining Pools. All the drive-by mining web-
sites in our dataset connect to WebSocket proxy servers that listen
for connections from their miners, and either process this data
themselves (if they also operate their own mining pool), or unwrap
the traffic and forward it to a public pool. That is, the proxy server
could be connecting to a public mining or private mining pool. We
identified 159 different WebSocket proxy servers being used by the
1,735 drive-by mining websites and only six of them are sending
the public mining pool server address and the cryptocurrency wal-
let address (used by the pool administrator to reward the miner)
associated with the website to the proxy server. These six websites
use the following public mining pools: minexmr . com, supportxmr.
com, moneroocean. stream, xmrpool.eu, minemonero. pro, and
aeon.sumominer.com.
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Listing 2: Anti-debugging trick used by 139 websites.

function check () {

before = new Date().getTime();
debugger;
after = new Date().getTime();

if (after-before > minimalUserResponseInMiliseconds) {
document.write(" Dont open Developer Tools. ");
self .location.replace('https:' +
window.location.href.substring (window.
location.protocol.length));

} else {
before = null;
after = null;

delete before;
delete after;
¥
setTimeout (check,

}

100) ;

4.3.5 Drive-by Mining Campaigns. To identify drive-by mining
campaigns we rely on site keys and WebSocket proxy servers. If a
campaign uses a public web mining service, the attacker uses the
same site key and proxy server for all websites belonging to this
campaign. If the campaign uses an attacker-controlled proxy server,
the websites do not need to embed a site key, but the websites still
connect to the same proxy. Hence, we use two approaches to find
drive-by campaigns: First, we cluster websites that are using the
same site key and proxy. We discovered 11 campaigns using this
method (see Table 5). Second, we cluster the websites only based on
the proxy and then manually verified websites from each cluster to
see which mining code they are using and how they are including
it. We identified nine campaigns using this method (see Table 6). In
total, we identified 20 drive-by mining campaigns in our dataset.
These campaigns include 566 websites (32.62%), for the remaining
1,169 (67.38%) websites we could not identify any connection.

We manually analyzed websites from each campaign to study
their modus operandi. Based on this analysis, we classify the cam-
paigns into the following categories based on their infection vec-
tor: miners injected through third-party services, miner injected
through advertisement networks, and miners injected by compro-
mising vulnerable websites. We also captured proxy servers to
the Pirate Bay, which does not ask for users’ explicit consent for
mining cryptocurrency, but openly discusses this practice on its
blog [54]. For each campaign, we estimate the number of visitors
per month and their monthly profit (details on how we perform
these estimations can be found in Section 4.3.7).

Third-party campaigns. The biggest campaigns we found target
video streaming websites: we identified nine third-party services
that provide media players that are embedded in other websites
and which include a cryptomining script in their media player.

Video streaming websites usually present more than one link to
a video, also known as mirrors. A click on such a link either loads
the video in an embedded video player provided by the website,
if it is hosting the video directly, or redirects the user to another
website. We spotted suspicious requests originating from many
such embedded video players which lead us to the discovery of
eight third-party campaigns: Hqq. tv, Estream. to, Streamplay.
to, Watchers.to, bitvid.sx, Speedvid.net, FlashX.tv and
Vidzi.tv are the streaming websites that embed cryptomining


minexmr.com
supportxmr.com
supportxmr.com
moneroocean.stream
xmrpool.eu
minemonero.pro
aeon.sumominer.com
Hqq.tv
Estream.to
Streamplay.to
Streamplay.to
Watchers.to
bitvid.sx
Speedvid.net
FlashX.tv
Vidzi.tv
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Table 5: Identified campaigns based on site keys, number of participating websites (#), and estimated profit per month.

Site Key #  Main Pool Type Profit (US$)
“428347349263284” 139  weline.info Third party (video) $31,060.80
OT1CIcpkIOCO7yVMxcJigmSWoD WOri06 53  coinhive.com Torrent portals $8,343.18
ricewithchicken 32 datasecu.download Advertisement-based $1,078.27
jscustomkey2 27  207.246.88.253 Third party (counter12.com) $86.98
CryptoNoter 27  minercry.pt Advertisement-based $20.35
489djE22mdZ3[..]y4PBWLb4tc1X8ADsu 24  datasecu.download  Compromised websites $142.40
first 23  cloudflane.com Compromised websites $120.02
vBaNYz4tVYKV9IQ9tZILOBPGq8rnZEI00 20  hemnes.win Third party (video) $303.14
45CQjsiBr46U[..]o2C5u03u23p5SkMN 17  rand.com.ru Compromised websites $306.60
Tumblr 14  count.im Third party $11.31
ClmAXQqOiKXawAMBVzuc51G31uDYdJ8F 12 coinhive.com Third party (night-skin.com) $14.36

Table 6: Identified campaigns based on proxies, number of
participating websites (#), and estimated profit per month.

WebSocket Proxy # Type Profit (US$)
advisorstat.space 63 Advertisement-based $321.71
zenoviaexchange. com 37 Advertisement-based $1,516.08
stati.bid 20 Compromised websites $34.94
staticsfs.host 20 Compromised websites $384.91
webmetric.loan 17 Compromised websites $181.32
insdrbot.com 7 Third party (video) $1,689.26
192w3.website 5 Third party (video) $2,012.90
streamplay.to 5 Third party (video) $239.71
estream.to 4 Third party (video) $872.72

scripts through embedded video players. The biggest campaign in
our dataset is Hqq player, which we found on 139 websites through
the proxy weline.info. We estimate that around 2,500 streaming
websites are including the embedded video players from these eight
services, attracting more than 250 million viewers per month. An
independent study from AdGuard also reported similar campaigns
in December 2017 [44], however, we could not find any indication
that the video streaming websites they identified were still mining
at the time of our analysis.

As part of third-party campaigns unrelated to video streaming,
we found 14 pages on Tumblr under the domain tumblr[.]com
mining cryptocurrency. The mining payload was introduced in
the main page by the domain fontapis[.]com. We also found 39
websites were infected by using libraries provided by counteri12.
com and night-skin. com.

Advertisement-based campaigns. We found four advertisement-
based campaign in our dataset. In this case, attackers publish ad-
vertisements that include cryptomining scripts through legitimate
advertisement networks. If a user visits the infected website and a
malicious advertisement is displayed, the browser starts cryptomin-
ing. The ricewithchicken campaign was spreading through the AOL
advertising platform, which was recently also reported in an inde-
pendent study by TrendMicro [41]. We also identified three cam-
paigns spreading through the oxcdn. com, zenoviaexchange. com
and moradu. com advertisement networks.

Compromised websites. We also identified five campaigns that ex-
ploited web application vulnerabilities to inject miner code into the
compromised website. For all of these campaigns, the same orches-
trator code was embedded at the bottom of the main HTML page
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Table 7: Additional cryptomining services we discovered,
number of websites (#) using them, and whether they pro-
vide a private proxy and private mining pool ().

Mining Service # Main Pool Private?
CoinPot 43 coinpot.co

NeroHut 10 gnrdomimplementation.com v
Webminerpool 13 metamedia.host

CoinNebula 6 1q2w3.website v
BatMine 6 whysoserius.club v
Adless 5 adless.io v
Moneromining 5 moneromining.online v
Afminer 3 afminer.com v
AJcryptominer 4 ajplugins.com v
Crypto Webminer 4 anisearch.ru

Grindcash 2  ulnawoyyzbljc.ru

Mining.Best 1 mining.best v
WebXMR 1 webxmr.com v
CortaCoin 1 cortacoin.com v
JSminer 1 jsminer.net v

(and not loaded from any external libraries) in a similar fashion.
Moreover, we could not find any relationship between the web-
sites within the campaigns: they are hosted in different geographic
locations and registered to different organizations. One of the cam-
paigns was using the public mining pool server minexmr . com.* We
checked the status of the wallet address on the mining pool’s web-
site and found that the wallet address had already been blacklisted
for malicious activity.

Torrent portals. We found a campaign targeting 53 torrent portals,
all but two of which are proxies to the Pirate Bay. We estimate that
all together these websites attract 177 million users a month.

4.3.6  Drive-by Mining Services. We started our analysis with 13
drive-by mining services. By analyzing the clusters based on Web-
Socket proxy servers, we discovered 15 more Coinhive-like services
(see Table 7). We classify these services into two categories: the
first category only provides a private proxy; however, the client can
specify the mining pool address that the proxy server should use as
the mining pool. Grindcash, Crypto Webminer, and Webminerpool
belong to this category. The second category provides a private

4site key: 489djE22mdZ3j34vhES98tCzfVn57Wq4fA8JR6uzgHqYCfYE2nmaZxmjepwr3-
GQAZd3qc3imFyGPHBy4PBWLb4tc1X8ADsu


weline.info
coinhive.com
datasecu.download
207.246.88.253
minercry.pt
datasecu.download
cloudflane.com
hemnes.win
rand.com.ru
count.im
coinhive.com
advisorstat.space
zenoviaexchange.com
stati.bid
staticsfs.host
webmetric.loan
insdrbot.com
1q2w3.website
streamplay.to
estream.to
weline.info
tumblr[.]com
fontapis[.]com
counter12.com
counter12.com
night-skin.com
oxcdn.com
zenoviaexchange.com
moradu.com
coinpot.co
gnrdomimplementation.com
metamedia.host
1q2w3.website
whysoserius.club
adless.io
moneromining.online
afminer.com
ajplugins.com
anisearch.ru
ulnawoyyzbljc.ru
mining.best
webxmr.com
cortacoin.com
jsminer.net
minexmr.com
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Figure 2: Profit estimation and visitor numbers for the 142 drive-by mining websites earning more than US$ 250 a month.

Table 8: Hash rate (H/s) on various mobile devices and lap-
tops/desktops using Coinhive’s in-browser miner.

Device Type Hash Rate (H/s)
Nokia 3 5
iPhone 5s 5
iPhone 6 7
Wiko View 2 8
Motorola Moto G6 10
o Google Pixel 10
E OnePlus 3 12
5 Huawei P20 13
B Huawei Mate 10 Lite 13
% iPhone 6s 13
= iPhone SE 14
iPhone 7 19
OnePlus 5 21
Sony Xperia 24
Samsung Galaxy S9 Plus 28
iPhone 8 31
Mean 14.56
& & Intel Core i3-5010U 16
2%  Intel Core i7-6700K 65
S & Mean 40.50

proxy and a private mining pool. The remaining services listed in
Table 7 belong to this category, except for CoinPot, which provides
a private proxy but uses Coinhive’s private mining pool.

4.3.7  Profit Estimation. All of the 1,735 drive-by mining websites
in our dataset mine the CryptoNight-based Monero (XMR) crypto-
currency using mining pools. Almost all of them (1,729) use a site
key and a WebSocket proxy server to connect to the mining pool;
hence, we cannot determine their profit based on their wallet ad-
dress and public mining pools.

Instead, we estimate the profit per month for all 1,735 drive-by
mining websites in the following way: we first collect statistics
on monthly visitors, the type of the device the visitor uses (lap-
top/desktop or mobile) and the time each visitor spends on each
website on average from SimilarWeb [13]. We retrieved the average
of these statistics for the time period from March 1, 2018 to May
31, 2018. SimilarWeb did not provide data for 30 websites in our
dataset, hence, we consider only the remaining 1,705 websites.

We further need to estimate the average computing power, i.e.,
the hash rate per second (H/s), of each visitor. Since existing hash
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rate measurements [2] only consider native executables and are
thus higher than the hash rates of in-browser miners—Coinhive
states their Wasm-based miner achieves 65% of the performance
of their native miner [5],—we performed our own measurements.
Table 8 shows our results: According to our experiments, an Intel
Core i3 machine (laptop) is capable of at least 16 H/s, while an Intel
Core i7 machine (desktop) is capable of at least 65 H/s using the
CryptoNight-based in-browser miner from Coinhive. We use their
hash rates (40.50 H/s) as the representative hash rate for laptops and
desktops. For the mobile devices, we calculated the mean of the hash
rates (14.56 H/s) that we observed on 16 different devices. Finally,
we use the API provided by MineCryptoNight [9] to calculate the
mining reward in US$ for these hash rates and estimate the profit
based on SimilarWeb’s visitor statistics.

When looking at the profit of individual websites (see Figure 2 for
the most profitable ones), we estimate that the two most profitable
websites are earning US$ 17,166.97 and US$ 10,667.82 a month from
29.13 million visitors (tumangaonline . com, average visit of 18.12
minutes) and 47.91 million visitors (xx1.me, average visit of 7.45
minutes), respectively. However, there is a long tail of websites
with very low profits: on average, each of the 1,705 websites earned
US$ 110.77 a month, and 900, around half of the websites in our
dataset, earned less than US$ 10.

Still, drive-by mining can provide a steady income stream for
cybercriminals, especially when considering that many of these
websites are part of campaigns. We present the results, aggregated
per campaign, in Table 5 and Table 6: the most profitable campaign,
spread over 139 websites, potentially earned US$ 31,060.80 a month.
In total, we estimate the profit of all 20 campaigns at US$ 48,741.12.
However, almost 70% of websites in our dataset were not part of
any campaign, and we estimate the total profit across all websites
and campaigns at US$ 188,878.85.

Note that we only estimated the profit based on the websites and
campaigns captured by crawling Alexa’s Top 1 Million websites, and
the same campaigns could make additional profit through websites
not part of this list. As a point of reference, concurrent work [57]
calculated the total monthly profit of only the Coinhive service
and including legitimate mining, i.e., user-approved mining through
for example AuthedMine, at US$ 254,200.00 (at a market value of
US$ 200) in May 2018. We base our estimations on Monero’s market
values on May 3, 2018 (1 XMR = US$ 253) [9]. The market value of
Monero, as for any cryptocurrency, is highly volatile and fluctuated
between US$ 488.80 and US$ 45.30 in the last year [7], and, thus
profits may vary widely based on the current value of the currency.


tumangaonline.com
xx1.me
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4.4 Common Drive-by Mining Characteristics

Based on our analysis, we found the following common charac-
teristics among all the identified drive-by mining services: (1) All
services use CryptoNight-based cryptomining implementations. (2)
All identified websites use a highly-optimized Wasm implementa-
tion of the CryptoNight algorithm to execute the mining code in
the browser at native speed.> Moreover, our manual analysis of the
Wasm implementation showed that the only obfuscation performed
on Wasm modules is name obfuscation (all strings are stripped);
any further code obfuscation applied to the Wasm module would
degrade the performance (and hence negatively impact the profit).
(3) All drive-by mining websites use WebSockets to communicate
with the mining pool through a WebSocket proxy server.

We use our findings as the basis for MINESWEEPER, a detection
system for Wasm-based drive-by mining websites, which we de-
scribe in the next section.

5 DRIVE-BY MINING DETECTION

Building on the findings of our large-scale analysis, we propose
MINESWEEPER, a novel technique for drive-by mining detection,
which relies neither on blacklists nor on heuristics based on CPU
usage. In the arms race between defenses trying to detect the miners
and miners trying to evade the defenses, one of the few gainful
ways forward for the defenders is to target properties of the mining
code that would be impossible or very painful for the miners to
remove. The more fundamental the properties, the better.

To this end, we characterize the key properties of the hashing
algorithms used by miners for specific types of cryptocurrencies.
For instance, some hashing algorithms, such as CryptoNight, are
fundamentally memory-hard. Distilling the measurable properties
from these algorithms allows us to detect not just one specific
variant, but all variants, obfuscated or not. The idea is that the only
way to bypass the detector is to cripple the algorithm.

MINESWEEPER takes the URL of a website as the input. It then
employs three approaches for the detection of Wasm-based cryp-
tominers, one for miners using mild variations or obfuscations of
CryptoNight (Section 5.3.1), one for detecting cryptographic func-
tions in a generic way (Section 5.3.2), and one for more heavily
obfuscated (and performance-crippled) code (Section 5.3.3). For the
first two approaches, MINESWEEPER statically analyses the Wasm
module used by the website, for the third one it monitors the CPU
cache events during the execution of the Wasm module. During
the Wasm-based analysis, MINESWEEPER analyses the module for
the core characteristics of specific classes of the algorithm. We use
a coarse but effective measure to identify cryptographic functions
in general, by measuring the number of cryptographic operations
(as reflected by XOR, shift, and rotate operations). We focus on the
CryptoNight algorithm and its variants, since it is used by all of
the cryptominers we observed so far, but it is trivial to add other
algorithms.

SWe also identified JSEminer in our dataset, which only supports asm.js; however,
unlike the other services, the orchestrator code provided by this service always asks
for a user’s consent. For this reason, we do not classify the 50 websites using JSEminer
as drive-by mining websites.
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Figure 3: Components of the CryptoNight algorithm [61].

5.1 Cryptomining Hashing Code

The core component of drive-by miners, i.e., the hashing algorithm,
is instantiated within the web workers responsible for solving the
cryptographic puzzle. The corresponding Wasm module contains
all the corresponding computationally-intensive hashing and cryp-
tographic functions. As mentioned, all of the miners we observed
mine CryptoNight-based cryptocurrencies. In this section, we dis-
cuss the key properties of this algorithm.

The original CryptoNight algorithm [61] was released in 2013
and represents, at heart, a memory-hard hashing function. The algo-
rithm is explicitly amenable to cryptomining on ordinary CPUs, but
inefficient on today’s special purpose devices (ASICs). Figure 3 sum-
marizes the three main components of the CryptoNight algorithm,
which we describe below:

Scratchpad initialization. First, CryptoNight hashes the initial
data with the Keccak algorithm (i.e., SHA-3), with the parameters
b = 1600 and ¢ = 512. Bytes 0-31 of the final state serve as an AES-
256 key and expand to 10 round keys. Bytes 64-191 are split into
8 blocks of 16 bytes, each of which is encrypted in 10 AES rounds
with the expanded keys. The result, a 128-byte block, is used to
initialize a scratchpad placed in the L3 cache through several AES
rounds of encryption.

Memory-hard loop. Before the main loop, two variables are cre-
ated from the XORed bytes 0-31 and 32-63 of Keccak’s final state.
The main loop is repeated 524,288 times and consists of a sequence
of cryptographic and read and write operations from and to the
scratchpad.

Final result calculation. The last step begins with the expansion
of bytes 32-63 from the initial Keccak’s final state into an AES-256
key. Bytes 64-191 are used in a sequence of operations that consists
of an XOR with 128 scratchpad bytes and an AES encryption with
the expanded key. The result is hashed with Keccak-f (which stands
for Keccak permutation) with b = 1600. The lower 2 bits of the final
state are then used to select a final hashing algorithm to be applied
from the following: BLAKE-256, Groestl-256, and Skein-256.
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There exist two CryptoNight variants made by Sumokoin and
AEON, cryptonight-heavy and cryptonight-light, respectively. The
main difference between these variants and the original design is
the dimension of the scratchpad: the light version uses a scratchpad
size of 1 MB, and the heavy version a scratchpad size of 4 MB.

5.2 Wasm Analysis

To prepare a Wasm module for analysis, we use the WebAssembly
Binary Toolkit (WABT) debugger [14] to translate it into linear
assembly bytecode. We then perform the following static analysis
steps on the bytecode:

Function identification. We first identify functions and create an
internal representation of the code for each function. If the names
of the functions are stripped, as part of common name obfuscation,
we assign them an identifier with an increasing index.

Cryptographic operation count. In the second step, we inspect
the identified functions one by one in order to track the appearance
of each relevant Wasm operation. More precisely, we first deter-
mine the structure of the control flow by identifying the control
constructs and instructions. We then look for the presence of op-
erations commonly used in cryptographic operations (XOR, shift
and rotate instructions). In many cryptographic algorithms, these
operations take place in loops, so we specifically use the knowledge
of the control flow to track such operations in loops. However,
doing so is not always enough. For instance, at compile time, the
Wasm compiler unrolls some of the loops to increase the perfor-
mance. Since we aim to detect all loops, including the unrolled ones,
we identify repeated flexible-length sequences of code containing
cryptographic operations and mark them as a loop if a sequence is
repeated for more than five times.

5.3 Cryptographic Function Detection

Based on our static analysis of the Wasm modules, we now de-
tect the CryptoNight’s hashing algorithm. We describe three ap-
proaches: one for mild variations or obfuscations of CryptoNight,
one for detecting any generic cryptographic function, and one for
more heavily obfuscated code.

5.3.1 Detection Based on Primitive Identification. The CryptoNight
algorithm uses five cryptographic primitives, which are all neces-
sary for correctness: Keccak (Keccak 1600-516 and Keccak-f 1600),
AES, BLAKE-256, Groestl-256, and Skein-256. MINESWEEPER iden-
tifies whether any of these primitives are present in the Wasm
module by means of fingerprinting. It is important to note that the
CryptoNight algorithm and its two variants must use all of these
primitives in order to compute a correct hash; by detecting the use
of any of them, our approach can also detect payload implementa-
tion split across modules.

We create fingerprints of the primitives based on their specifica-
tion, as well as the manual analysis of 13 different mining services
(as presented in Table 2). The fingerprints essentially consist of the
count of cryptographic operations in functions, and more specifi-
cally within regular and unrolled loops. We then look for the closest
match of a candidate function in the bytecode to each of the primi-
tive fingerprints based on the cryptographic operation count. To
this end, we compare every function in the Wasm module one by
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one with the fingerprints and compute a “similarity score” of how
many types of cryptographic instructions that are present in the
fingerprint are also present in the function, and a “difference score”
of discrepancies between the number of each of those instructions
in the function and in the fingerprint. As an example, assume the
fingerprint for BLAKE-256 has 80 XOR, 85 left shift, and 32 right
shift instructions. Further assume, the function foo (), which is
an implementation of BLAKE-256, that we want to match against
this fingerprint, contains 86 XOR, 85 left shift, and 33 right shift
instructions. In this case, the similarity score is 3, as all three types
of instructions are present in foo (), and the difference score is 2,
because foo () contains an extra XOR and an extra shift instruction.

Together, these scores tell us how close the function is to the
fingerprint. Specifically, for a match we select the functions with
the highest similarity score. If two candidates have the same simi-
larity score, we pick the one with the lowest difference score. Based
on the similarity score and difference score we calculated for each
identified functions, we classify them in three categories: full match,
good match, or no match. For a full match, all types of instructions
from the fingerprint are also present in the function, and the dif-
ference score is 0. For a good match, we require at least 70% of
the instruction types in the fingerprint to be contained in the func-
tion, and a difference score of less than three times the number of
instruction types.

We then calculate the likelihood that the Wasm module contains
a CryptoNight hashing function based on the number of primi-
tives that successfully matched (either as a full or a good match).
The presence of even one of these primitives can be used as an
indicator for detecting potential mining payloads, but we can also
set more conservative thresholds, such as flagging a Wasm mod-
ule as a CryptoNight miner if only two or three out of the five
cryptographic primitives are fully matched. We evaluate the num-
ber of primitives that we can match across different Wasm-based
cryptominer implementations in Section 6.

5.3.2  Generic Cryptographic Function Detection. In addition to de-
tecting the cryptographic primitives specific to the CryptoNight
algorithm, our approach also detects the presence of cryptographic
functions in a Wasm module in a more generic way. This is use-
ful for detecting potential new CryptoNight variants, as well as
other hashing algorithms. To this end, we count the number of
cryptographic operations (XOR, shift, and rotate operations) inside
loops in each function of the Wasm module, and flag a function as a
cryptographic function if this number exceeds a certain threshold.

5.3.3 Detection Based on CPU Cache Events. While not yet an issue
in practice, in the future, cybercriminals may well decide to sacrifice
profits and highly obfuscate their cryptomining Wasm modules in
order to evade detection. In that case, the previous algorithm is not
sufficient. Therefore, as a last detection step, MINESWEEPER also
attempts to detect cryptomining code by monitoring CPU cache
events during the execution of a Wasm module—a fundamental
property for any reasonably efficient hashing algorithm.

In particular, we make use of how CryptoNight explicitly targets
mining on ordinary CPUs rather than on ASICs. To achieve this, it
relies on random accesses to slow memory and emphasizes latency
dependence. For efficient mining, the algorithm requires about 2 MB
of fast memory per instance.
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This is favorable for ordinary CPUs for the following reasons [61]:

(1) Evidently, 2 MB do not fit in the L1 or L2 cache of modern
processors. However, they fit in the L3 cache.

(2) 1MB of internal memory is unacceptable for today’s ASICs.

(3) Moreover, even GPUs do not help. While they may run hun-
dreds of code instances concurrently, they are limited in their
memory speeds. Specifically, their GDDR5 memory is much
slower than the CPU L3 cache. Additionally, it optimizes
pure bandwidth, but not random access speed.

MINESWEEPER uses this fundamental property of the CryptoNight
algorithm to identify it based on its CPU cache usage. Monitoring
L1 and L3 cache events using the Linux perf [1] tool during the
execution of a Wasm module, MINESWEEPER looks for load and store
events caused by random memory accesses. As our experiments
in Section 6 demonstrate, we can observe a significantly higher
load/store frequency during the execution of a cryptominer payload
compared to other use cases, including video players and games,
and thus detect cryptominers with high probability.

5.4 Deployment Considerations

While MINESWEEPER can be used for the profiling of websites as
part of large-scale studies such as ours, we envision it as a tool
that notifies users about a potential drive-by mining attack while
browsing and gives them the option to opt-out, e.g., by not loading
Wasm modules that trigger the detection of cryptographic primi-
tives, or by suspending the execution of the Wasm module as soon
as suspicious cache events are detected.

Our defense based on the identification of cryptographic primi-
tives could be easily integrated into browsers, which, so far, mainly
rely on blacklists and CPU throttling of background scripts as a last
line of defense [21, 22, 29]. As our approach is based on static anal-
ysis, browsers could use our techniques to profile Wasm modules
as they are loaded and ask the user for permission before executing
them. As an alternative and browser-agnostic deployment strategy,
SEISMIC [69] instruments Wasm modules to profile their use of
cryptographic operations during execution, although this approach
comes with considerable run-time overhead.

Integrating our defense based on monitoring cache events, unfor-
tunately, is not so straightforward: access to performance counters
requires root privileges and would need to be implemented by the
operating system itself.

6 EVALUATION

In this section, we evaluate the effectiveness of MINESWEEPER’S
components based on static analysis of the Wasm code and CPU
cache event monitoring for the detection of the cryptomining code
currently used by drive-by mining websites in the wild. We further
compare MINESWEEPER to a state-of-the-art detection approach
based on blacklisting. Finally, we discuss the penalty in terms of per-
formance, and thus profits, evasion attempts against MINESWEEPER
would incur.

Dataset. To test our Wasm-based analysis we crawled Alexa’s
Top 1 Million websites a second time over the period of one week
in the beginning of April 2018 with the sole purpose of collecting
Wasm-based mining payloads. This time we configured the crawler
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Table 9: Results of our cryptographic primitive identifica-
tion. MINESWEEPER detected at least two of CryptoNight’s
primitives in all mining samples with no false positives.

Detected Number of Number of  Missing
Primitives Wasm Samples Cryptominers Primitives
5 30 30 -
4 3 3 AES
3 - - -
2 3 3 Skein, Keccak, AES
1 - - -
0 4 0 All

to visit only the landing page of each website for a period of four
seconds. The crawl successfully captured 748 Wasm modules served
by 776 websites. For the remaining 28 modules, the crawler was
killed before it was able to dump the Wasm module completely.

Evaluation of cryptographic primitive identification. Even though
we were able to collect 748 valid Wasm modules, only 40 among
them are, in fact, unique. This is because many websites use the
same cryptomining services. We also found that some of these
cryptomining services are providing different versions of their
mining payload. Table 9 shows our results for the CryptoNight
function detection on these 40 unique Wasm samples. We were
able to identify all five cryptographic primitives of CryptoNight in
30 samples, four primitives in three samples and two primitives in
another three samples. In these last three samples, we could only
detect the Groestl and BLAKE primitives, which suggests that these
are the most reliable primitives for this detection. As part of an
in-depth analysis, we identified these samples as being part of the
mining services BatMine and Webminerpool (two of the samples are
a different version of the latter), which were not part of our dataset
of mining services that we used for the fingerprint generation, but
rather services we discovered during our large-scale analysis.

However, our approach did not produce any false positives and
the four samples in which MINESWEEPER did not detect any crypto-
graphic primitive were, in fact, benign: an online magazine reader, a
videoplayer, a node library to represent a 64-bit two’s-complement
integer value, and a library for hyphenation. Furthermore, the
generic cryptographic function detection successfully flagged all 36
mining samples as positives and all four benign cases as negatives.

Evaluation of CPU cache event monitoring. For this evaluation
we used perf to capture L1 and L3 cache events when executing
various types of web applications. We conducted all experiments on
an Intel Core i7-930 machine running Ubuntu 16.04 (baseline). We
captured the number of L1 data cache loads, L1 data cache stores,
L3 cache stores, and L3 cache loads within 10 seconds when visiting
four categories of web applications: cryptominers (Coinhive and
NFWebMiner, both with 100% CPU usage), video players, Wasm-
based games, and JavaScript (JS) games. We visited seven websites
from each category and calculated the mean and standard deviation
(stdev) of all the measurements for each category.

As Figure 4 (left) and Figure 5 (left) show, that L1 and L3 cache
events are very high for the web applications that are mining crypto-
currency, but considerably lower for the other types of web appli-
cations. Compared to the second most cache-intensive applications,
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Figure 4: Performance counter measurements for the L1
data cache for miners and other web applications on two dif-
ferent machines (# of operations per 10 seconds, M=million).

Wasm-based games, the Wasm-based miners perform on average
15.05x as many L1 data cache loads, and 6.55x as many L1 data
cache loads. The difference for the L3 cache is less severe, but still
noticeable: here on average the miners perform 5.50x and 2.93x as
many cache loads and stores, respectively, compared to the games.

We performed a second round of experiments on a different
machine (Intel Core i7-6700K), which has a slightly different cache
architecture, to verify the reliability of the CPU cache events. We
also used these experiments to investigate the effect of CPU throt-
tling on the number of cache events. Coinhive’s Wasm-based miner
allows throttling in increments of 10% intervals. We configured it
to use 100% CPU and 20% CPU and compared it against a Wasm-
based game. We executed the experiments 20 times and calculated
the mean and standard deviation (stdev). As Figure 4 (right) and
Figure 5 (right) show, on this machine L3 cache store events cannot
be used for the detection of miners: we observed only a low number
of L3 cache stores overall, and on average more stores for the game
than for the miners. However, L3 cache loads, as well as L1 data
cache loads and stores are a reliable indicator for mining. When
using only 20% of the CPU, we still observed 37.25%, 38.05%, and
37.71% of the average number of events compared to 100% CPU
usage for L1 data cache loads, L1 data cache stores, and L3 cache
loads, respectively. Compared to the game, the miner performed
13.96x and 6.29x as many L1 data cache loads and stores, and 2.46x
as many L3 cache loads even when utilizing only 20% of the CPU.

Comparison to blacklisting approaches. To compare our approach
against existing blacklisting-based defenses we evaluate MINE-
SWEEPER against Dr. Mine [8]. Dr. Mine uses CoinBlockerLists [4]
as the basis to detect mining websites. For the comparison we vis-
ited the 1,735 websites that were mining during our first crawl for
the large-scale analysis in mid-March 2018 (see Section 4) with both
tools. We made sure to use updated CoinBlockerLists and executed
Dr. Mine and MINESWEEPER in parallel to maximize the chance that
the same drive-by mining websites would be active. During this
evaluation, on May 9, 2018, Dr. Mine could only find 272 websites,
while MINESWEEPER found 785 websites that were still actively
mining cryptocurrency. Furthermore, all the 272 websites identified
by Dr. Mine are also identified by MINESWEEPER.
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Figure 5: Performance counter measurements for the L3
cache for miners and other web applications on two differ-
ent machines (# of operations per 10 seconds, M=million).

Impact of evasion techniques. In order to evade our identification
of cryptographic primitives, attackers could heavily obfuscate their
code, or implement the CryptoNight functions completely in asm.js
or JavaScript. In both cases, MINESWEEPER would still be able to
detect the cryptomining based on the CPU cache event monitoring.
To evade this type of defense, and since we are only monitoring un-
usually high cache load and stores that are typical for cryptomining
payloads, attackers would need to slow down their hash rate, for
example by interleaving their code with additional computations
that have no effect on the monitored performance counters.

In the following, we discuss the performance hit (and thus loss
of profit) that alternative implementations of the mining code in
asm.js, and an intentional sacrifice of the hash rate, in this case by
throttling the CPU usage, would incur. Table 10 show our estimation
for the potential performance and profit losses on a high-end (Intel
Core i7-6700K) and a low-end (Intel Core i3-5010U) machine. As
an illustrative example, we assume that in the best case an attacker
is able to make a profit of US$ 100 with the maximum hash rate of
65 H/s on the i7 machine. Just falling back to asm.js would cost an
attacker 40.00%-43.75% of her profits (with a CPU usage of 100%).
Moreover, throttling the CPU speed to 25% on top of falling back to
asm.js would cost her 85.00%-85.94% of her profits, leaving her with
only US$ 15.00 on a high-end and US$ 3.46 on a low-end machine.
In more concrete numbers from our large-scale analysis of drive-by
mining campaigns in the wild (see Section 4.3), the most profitable
campaign, which is potentially earning US$ 31,060.80 a month (see
Table 5), would only earn US$ 4,367.15 a month.

7 LIMITATIONS AND FUTURE WORK

Our large-scale analysis of drive-by mining in the wild likely missed
active cryptomining websites due to limitations of our crawler. We
only spend four seconds on each webpage; hence we could have
missed websites that wait for a certain amount of time before serv-
ing the mining payload. Similarly, we are not able to capture the
mining pool communication for websites that implement mining
delays, and in some cases due to slow server connections, which
exceed the timeout of our crawler. Moreover, we only visit each
webpage once, but, some cryptomining payloads, especially the



Session 9A: Web 2 CCS’18, October 15-19, 2018, Toronto, ON, Canada

Table 10: Decrease in the hash rate (H/s), and thus profit, compared to the best-case scenario (x) using Wasm with 100% CPU
utilization if asm.js is being used and the CPU is throttled on an Intel Core i7-6700K and an Intel Core i3-5010U machine.

Baseline 100% CPU 75% CPU 50% CPU 25% CPU
H/s Profit H/s H/s Profit H/s Profit H/s H/s Profit H/s Profit H/s H/s Profit H/s Profit H/s H/s Profit
Wasm US$ asm.js Loss US$ Wasm US$ asm.js Loss US$ Wasm US$ asm.js Loss US$ Wasm US$ asm.js Loss US$

i7  65% $100.00 39  40.00% $60.00  48.75 $75.00 29.25 55.00% $45.00 32.5 $50.00 19.5 70.00% $30.00 16.25 $25.00 9.75 85.00% $15.00
i3 16+«  $24.62 9  43.75% $13.85 12 $18.46 6.75 57.81% $10.38 8 $1231 45 71.88% $6.92 4 $6.15 2.25 85.94% $3.46

ones that spread through advertisement networks, are not served revenue-generating activities. In contrast, we focused our analysis
on every visit. Our crawler also did not capture the cases in which on drive-by mining attacks, which serve the cryptomining pay-
cryptominers are loaded as part of “pop-under” windows. Further- load as part of infected websites, and not malicious executables.
more, the crawler visited each website with the User Agent String The first other study in this direction was recently performed by
of the Chrome browser on a standard desktop PC. We leave the Eskandari et al. [25]. However, they based their analysis solely
study of campaigns specifically targeting other devices, such as on looking for the coinhive.min. js script within the body of
Android phones, for future work. Another avenue for future work each website indexed by Zmap and PublicWWW [45]. In this way,
is studying the longevity of the identified campaigns. We based our they were only able to identify the Coinhive service. Furthermore,
profit estimations on the assumption that they stayed active for at contrary to the observations made in their study, we found that
least a month, but they might have been disrupted earlier. attackers have found valuable targets, such as online video stream-
Our defense based on static analysis is similarly prone to obfus- ing, to maximize the time users spend online, and consequently
cation as any related static analysis approach. However, even if the revenue earned from drive-by mining. Concurrently to our
attackers decide to sacrifice performance (and profits) for evading work, Papadopoulos et al. [51] compared the potential profits from
our defense through obfuscation of the cryptomining payload, we drive-by mining to advertisement revenue by checking websites
would still be able to detect the mining based on monitoring the CPU indexed by PublicWWW against blacklists from popular browser
cache. Trying to evade this detection technique by adding additional extensions. They concluded that mining is only more profitable
computations would severely degrade the mining performance—to than advertisements when users stay on a website for longer peri-
a point that it is not profitable anymore. ods of time. In another concurrent work, Riith et al. [57] studied
Furthermore, currently all drive-by mining services use Wasm- the prevalence of drive-by miners in Alexa’s Top 1 Million web-
based cryptomining code, and hence, we implemented our defense sites based on JavaScript code patterns from a blacklist, as well as
only for this type of payload. Nevertheless, we could implement our based on signatures generated from SHA-255 hashes of the Wasm
approach also for the analysis of asm.js in future work. Finally, our code’s functions. They further calculated the Coinhive’s overall
defense is tailored for detecting cryptocurrencies using the Crypto- monthly profit, which includes legitimate mining as well. In con-
Night algorithm, as these are currently the only cryptocurrencies trast, we focus on the profit of individual campaigns that perform
that can profitably be mined using regular CPUs [9]. Even though mining without their user’s explicit consent. Furthermore, with
our generic cryptographic function detection did not produce any MINESWEEPER, we also present a defense against drive-by mining
false positives in our evaluation, we still can imagine many benign that could replace current blacklisting-based approaches.
Wasm modules using cryptographic functions for other purposes. The first part of our defense, which is based on the identification
However, Wasm is not widely adopted yet for other use cases be- of cryptographic primitives is inspired by related work on identi-
sides drive-by mining and we therefore could not evaluate our fying cryptographic functionality in desktop malware, which fre-
approach on a larger dataset of benign applications. quently uses encryption to evade detection and secure the commu-
nication with its command-and-control servers. Grobert et al. [31]
8 RELATED WORK attempt to identify cryptographic code and extract keys based on dy-

namic analysis. Aligot [38] identifies cryptographic functions based
on their input-output (I/O) characteristics. Most recently, Crypto-
Hunt [72] proposed to use symbolic execution to find cryptographic
functions in obfuscated binaries. In contrast to the heavy use of
obfuscation in binary malware, obfuscation of the cryptographic
functions in drive-by miners is much less favorable for attackers.
Should they start to sacrifice profits in favor of evading defenses in
the future, we can explore the aforementioned more sophisticated
detection techniques for detecting cryptomining code. For the time
being, relatively simple fingerprints of instructions that are com-
monly used by cryptographic operations are enough to reliably

Related work has extensively studied how and why attackers com-
promise websites through the exploitation of software vulnera-
bilities [16, 18], misconfigurations [23], inclusion of third-party
scripts [48], and advertisements [75]. Traditionally, the attackers’
goals ranged from website defacements [17, 42], over enlisting
the website’s visitors into distributed denial-of-service (DDoS) at-
tacks [53], to the installation of exploit kits for drive-by download
attacks [30, 55, 56], which infect visitors with malicious executables.
In comparison, the abuse of the visitors’ resources for cryptomining
is a relatively new trend.

Previous work on cryptomining focused on botnets that were
used to mine Bitcoin during the year 2011-2013 [34]. The authors detect cryptomining payloads, as also observed by Wang et al. [69]
found that while mining is less profitable than other malicious in concurrent work. Their approach, SEISMIC, generates signatures
activities, such as spamming or click fraud, it is attractive as a based on counting the execution of five arithmetic instructions that

secondary monetizing scheme, as it does not interfere with other are commonly used by Wasm-based miners. In contrast to profiling
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whole Wasm modules, we detect the individual cryptographic prim-
itives of the cryptominers’ hashing algorithms, and also supplement
our approach by looking for suspicious memory access patterns.

This second part of our defense, which is based on monitor-
ing CPU cache events, is related to CloudRadar [76], which uses
performance counters to detect the execution of cryptographic ap-
plications and to defend against cache-based side-channel attacks
in the cloud. Finally, the most closely related work in this regard
is MineGuard [64], also a hypervisor tool, which uses signatures
bases on performance counters to detect both CPU- and GPU-based
mining executables on cloud platforms. Similar to our work, the
authors argue that the evasion of this type of detection would make
mining unprofitable—or at least less of a nuisance to cloud operators
and users by consuming fewer resources.

9 CONCLUSION

In this paper, we examined the phenomenon of drive-by mining. The
rise of mineable alternative coins (altcoins) and the performance
boost provided to in-browser scripting code by WebAssembly, have
made such activities quite profitable to cybercriminals: rather than
being a one-time heist, this type of attack provides continuous
income to an attacker.

Detecting miners by means of blacklists, string patterns, or CPU
utilization alone is an ineffective strategy, because of both false
positives and false negatives. Already, drive-by mining solutions
are actively using obfuscation to evade detection. Instead of the
current inadequate measures, we proposed MINESWEEPER, a new
detection technique tailored to the algorithms that are fundamental
to the drive-by mining operations—the cryptographic computations
required to produce valid hashes for transactions.
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