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Summary

Systems for Internet of Things (IoT) have generated new
requirements in all aspects of their development and deployment,
including expanded Quality of Service (QoS) needs, enhanced
resiliency of computing and connectivity, and the scalability to
support massive numbers of end devices in a variety of applications.
The research reported here concerns the development of a reliable
and secure IoT/cyber physical system (CPS), providing network
support for smart and connected communities, to be realized by
means of distributed, secure, resilient Edge Cloud (EC) computing.
This distributed EC system will be a network of geographically
distributed EC nodes, brokering between end-devices and Backend
Cloud (BC) servers.

This paper focuses on three main aspects of the CPS: a) resource
management in mobile cloud computing; b) information
management in dynamic distributed databases; and c) biological-
inspired intrusion detection system.

Keywords: Secure, edge Cloud Network, mobile cloud computing
1. Introduction

IoT has gained popularity in recent years and has
attracted a lot of attention. Billions of smart devices
have connected to IoT due to advancement of
computer and networking technologies. With the
advancement of cloud computing, IoT can enhance
and extend its service provision capabilities. IoT can
extend its scope and service provisioning capabilities
with the integration of the cloud computing paradigm.
On the other hand, cloud computing can enhance its
services by utilizing the data collected from IoT nodes.

IoT systems have generated new requirements in all
aspects of their development and deployment,
including expanded Quality of Service (QoS) needs,
enhanced resiliency of computing and connectivity,
and the scalability to support massive numbers of end
devices in a variety of applications. This paper is
concerned with the development of a reliable and
secure IoT/cyber physical system (CPS), providing
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network support for smart and connected
communities, to be realized by means of distributed,
secure, resilient Edge Cloud (EC) computing. This
distributed EC system will be a network of
geographically distributed EC nodes, brokering
between end-devices and Backend Cloud (BC)
servers.

Performing Complex computations on-site is possible
with todays computing capacity, thus making edge
computing feasible.  Edge computing allows for
extending cloud computing capabilities by placing
services close to the network edge, thus supporting a
variety of applications and services. Demand for these
capabilities is being stimulated by mobile users who
need more diverse types of services compared with the
requirements of PC users.

The absence of centralized management dictates
policies designed to maximize the use of edge nodes
which typically have relatively modest storage and
processing power. A possible design for realizing the
benefits of non-centralized management is a system
that implements hypercube routing. Such a system
could support query optimization in a software defined
network context, creating an engineered hypercube
virtual network serving as an efficient and practical,
distributed database tool.

With the rise of cyberattacks like malware, denial of
service attacks, ransomware attacks or insider threats,
securing computer systems has become more difficult.
To improve the security of networks and computing
nodes, network/computer administrators rely on
protective mechanisms such as firewalls, access
control, and encryption system. Another protective
mechanism that can be added as a wall of protection is
an intrusion detection system (IDS). Intrusion
detection is defined as the process of intelligently
monitoring the events occurring in a computer system
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or network, analyzing them for signs of violations of
the security policy.

The contributions of this paper are;

a) Resource Management of mobile cloud
computing (MCC) in terms of efficient
partitioning and offloading processes of
mobile applications, an adaptive security-
aware resource allocation approach that can
meet the various resource requirements, and
a joint multi-resource allocation in the MCC
system with cloudlet.

b) Implementation of hypercube routing for
query optimization in a software defined
network context designed to create an
engineered hypercube virtual network as an
efficient and practical, distributed database
tool.

c) Development of a biological-
inspired intrusion detection
system (IDS) for detecting
attacks targetting [oT devices,
the edge cloud or the cloud
infrastructure.

a) Resource Management in
Mobile Cloud Computing

Mobile Cloud Computing (MCC) is a system that
introduces powerful Cloud Computing in a mobile
computing environment, where mobile devices
connect to the Internet through wireless networks and
then communicate with the remote cloud. Compared
to mobile devices, the cloud server of MCC can
provide huge storage, high computation power, as well
as reliable security [1]. By offloading subcomponents
of a mobile application to the cloud server for
execution, the performance of mobile applications can
be greatly improved and the energy consumption of
mobile devices can be significantly reduced [2].
Consequently, MCC can extend its scope to a great
variety of mobile applications such as virus scanning
that are extremely resource-intensive to execute solely
on mobile devices. The problem of offloading an
application to the cloud mainly depends on the
following factors: CPU speed of mobile device,
network performance, program features, and the
efficiency of the cloud server. In consideration of these
factors, [3] proposes offloading the whole application

to the cloud server without partitioning an application
into subcomponents. Although offloading the whole
application can usually benefit its execution, not all the
components of an application are suitable for being
offloaded to the cloud end. For example, the methods
of implementing mobile 1/O devices and user
interfaces should be executed at the mobile end. In
addition, some parts of a program, like the ones with
light computation requirements but large input data,
actually cannot take advantage of remote execution at
the cloud server. Application partition technique [4]
can support fine-grained offloading, where a mobile
application is partitioned into a number of
subcomponents, and an optimal decision is made
about which components should be offloaded to cloud
for computing and which should run locally on mobile

Figure 1 Mobile Cloud System with Cloudlet

devices.

For latency-sensitive mobile applications, such as
augmented reality with real-time constraints,
offloading to the remote cloud is insufficient, because
of the high latency of Wide Area Networks (WAN).
Cloudlet or Edge cloud is an emerging paradigm
designed to better support both latency-sensitive and
resource-intensive mobile applications [5]. It is
positioned as the middle entity of the three-tier
hierarchy: mobile device, cloudlet, and cloud with
functionalities of data routing and security guard,
similar to a proxy in cloud computing systems.
Additionally, cloudlet can speed up mobile application
executions by providing powerful computing
capabilities. A cloudlet is usually set up at a public
place, like a shopping center, theater, office building,
or assembly room to enable convenient access for
mobile devices.

Resource starvation becomes an inevitable problem in
MCC with the exponential increase of mobile services.
In addition to traditional aspects of resource



managements, many new challenges beset the problem
of resource allocation in MCC systems, such as the
application latency, resource demand, computing
security, etc. Some investigations have proposed
considering the issues in the field of

MCC resource allocation from different perspectives,
such as multimedia service, Internet games, system
throughput, security, mobile resource [6], etc.

Resource Management Framework

Partition Offloading

One of the main research approaches to MCC systems
addresses the efficiency of resource utilization in the
partitioning and offloading processes of mobile
applications. Such an approach offers to determine
which partitions of mobile applications are suitable to
be offloaded for remote computing in the cloud. The
Branch and Bound (B&B) algorithm based on Linear
Programming Solver (LP solver) is being used in
schemes proposed in [4] for calculation of offloading
decisions concerning application partitions. B&B is a
feasible approach for solving integer linear problems
when the number of partitions is not large; however,
the number of its feasible solutions grows
exponentially with the number of partitions, resulting
in a high time complexity (O(2")). That urges us to
investigate an algorithm with low computational
complexity which can improve model practicability to
support the offloading decision calculation in real-
time. The strategy of offloading only some parts of
mobile applications that can realize benefits from
remote execution has been shown to be beneficial and
is adopted by MCC [7]. Moreover, the resource
allocation of cloud computing for partitioned
application further improves the efficiency of cloud
resource utilization. Some research, such as in [8],
work on the cloud computing resource allocation for
mobile requests from application partitions, but few
are considering the impacts of the offloading sequence
of mobile application partitions to the utilization
efficiency of cloud computing resources. We model
the resource allocation problem with the
considerations of offloading the sequence of
application partitions for MCC systems to improve the
system capacity.

We proposed a Dynamic Programming based
Offloading Algorithm (DPOA) which has low time

complexity (O(n?)) in proportion to the square of the
number of subprograms in a mobile application [9].
Compared to B&B, DPOA can quickly achieve an
optimal offloading strategy, and by shortening the
strategy update period, the offloading decision by
DPOA can run in real time, which is crucial to the
efficiency of real-time applications in MCC systems.
We also model the resource allocation problem for
partitioned mobile applications as a semi-Markov
Decision Process (SMDP) [10]. A system reward
model is developed with the consideration of the
impacts of allocating computing resources to different
partitions, which are classified according to their
offloading sequence. The objective is to achieve an
optimal allocation policy of cloud computing
resources through maximizing the system reward, in
order to obtain the maximum system throughput (in
terms of request acceptance rate) and to fully utilize
the computing resource by preventing tasks being
dropped due to resource depletion. Compared with the
Greedy approach, our approach not only provides a
better allocation policy to speed up the application
execution, but also significantly increases the
acceptance ratio of service requests from application
partitions, especially when system computing
resources are limited.

Security Aware Resource Allocation.

Security issues are an inevitable challenge in resource
allocation of MCC systems [11]. While some
researchers have offered solutions for efficient cloud
resource management in MCC systems [12-13], they
lack in providing the security guarantee against
possible attacks, leading to the loss of the protection
ability of cloud. A resource allocation for security
services in MCC system has been proposed in [8].
They considered the cloud services composed of two
security categories: Critical Security (CS) service and
Normal Security (NS) service, as a coarse-grained
model. However, the varying resource requirements
from mobile users is not considered in their strategy.
Moreover, their approach cannot adjust the allocation
policy according to the security level of mobile
requests and cloud resource availability.



We proposed an adaptive security-aware resource
allocation approach that can meet the various resource
requirements [13]. The basic idea is to classify the
requests from mobile users into multiple risk degree
and then consider the resource allocation in order to
maximize the overall system benefits. Here risk

of the system resources, and the QoS guarantee of
mobile users. Based on the reward model, a multi-
resource allocation strategy is developed, which can
adaptively determine whether to accept a new mobile

Table 1 SMDP Algorithm

degree is used to model the security guarantee. For
example, a request of low risk degree (meaning low
security requirement, e.g., communication can be
over public channel and computation can be done
without considering privacy) might only need few
or no extra resources, while a request of high risk
degree demands substantial extra resources
(meaning high security requirement, e.g.,
communication should be over authenticated and
confidential channel). Management of resource
allocation is modeled as a Semi-Markov Decision
Process (SMDP) under an average reward criterion

State (s) ={Current #of VM and Bandwidth Utilization for each service
class, event}

event ={Arrival from mobile devices, Departure from Cloudlet or
Remote Cloud}

Action (a) = {Accept by Cloudlet or Remote Cloud, Reject}

Transition probabilities ={Transition probability from the state s to
the next state under action a}

Reward ={ Lumpsum income — Continuous cost}

Maximize {Sum of rewards over all s and a}
constraints={maximum # of VM and bandwidth resources}

that takes account of the request's risk degree, the
current request arrival rate, and the availability of
cloud resource. By solving the linear programming
problem, our approach can adaptively adjust the
resource allocation strategy with the objective of
resource protection and throughput maximization.

Multi-resource management for MCC with
Cloudlet.

The Cloudlet helps MCC systems meet the
requirement of real-time interactive response by
means of providing a resource-rich server/cluster in
the vicinity of the mobile users, and one-hop high-
bandwidth wireless access to the cloudlet. However,
the computing resources of the cloudlet are not as rich
as the remote cloud cluster, and the wireless
bandwidth that connects mobile devices and the
cloudlet is limited. There is a high probability that the
cloudlet will run out of resources and that no new
mobile request can be admitted, if an excessive
number of mobile users offload their applications for
execution at the cloudlet [14].

We have proposed a joint multi-resource allocation in
the MCC system with cloudlet [15]. This system is
based on a reward model for resource allocation that
takes account of wireless bandwidth, cloudlet and
distant cloud computing resources. The allocation
scheme considers the system benefits or impacts in
accepting or rejecting the new resource request
according to the current request traffic, the availability

service request for the execution at the cloudlet or the
distant cloud. Furthermore, the strategy can determine
the optimal amount of wireless bandwidth and
computing resources to allocate to the accepted
request, and thus achieve the optimal system
performance. The SMDP-based multi-resource
allocation problem is solved as a linear programming
problem using Ip solver tool. Extensive performance
simulations show that the proposed resource allocation
mechanism provides a lower request rejection rate and
latency of mobile service compared to those of greedy
policies. The proposed multi-resource allocation
algorithm can be used in practice by executing the
algorithm offline given the various request traffic
parameters, the amount of system resource, and the
resource price in the reward model. So pre-calculated
allocation decisions can be made in the form of a
search table for when the request traffic information
and availability of system resources are profiled in
real-time.

b) Information Management in Dynamic
Distributed Databases




The challenges of information management in a
Resilient Edge Cloud Designed Network derive in part
from the dynamic and distributed features of
operations in such a network. In particular, to exploit
fully computing at the edge it is necessary to take

of an n-dimensional hypercube [21]. The hypercube
DDFD is embedded in an underlying physical network
(or substrate) such as the Internet. The hypercube has
been chosen because the distance between any two
nodes in such a graph is just the number of positions

account of the effect of querying on message
traffic in the network. The absence of
centralized management dictates policies
designed to maximize the use of edge nodes
which typically have relatively modest
storage and processing power. Edge nodes
must thus work together in information
processing tasks, and this occasions the
movement of data between nodes. To
minimize the message traffic thus generated
requires innovative strategies. One such
strategy detailed here is the development of
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Research undertaken in that project | Figure 2 Decision Process for Resource Allocation

demonstrated the feasibility of using
hypercube routing for query optimization in a
Dynamic Distributed Federated Database (the GAIAN
DB) built by IBM-UK [16,22]. The current strategy is
to implement hypercube routing for query
optimization in a software defined network context
designed to make the engineered hypercube into an
efficient and practical distributed database tool.

Slaying the Network Distance Dragon in Query
Optimization

Querying in a Dynamic Distributed Federated
Database (DDFD) can add significantly to message
traffic [16]. Typically, several nodes have information
that must be consolidated to satisfy a query. Clearly,
data has to be moved over the network to perform
operations such as union and join. One critical
measure of message traffic is the amount of data (x) to
be moved multiplied by the distance (y) moved
[17,19]. Thus, message traffic associated with
querying can be reduced by minimizing xy for an
operation involving several participating nodes in the
execution of a query. To do this requires distance
information, a requirement that could also add to
message traffic if querying is needed to determine
distances between nodes. Recognition of this problem
has led to the formulation of an engineered DDFD in
which inter-node distances can be determined in
constant time [5]. “Engineered” means the DDFD is
structured as a logical (or virtual) network in the form

in which their respective n-bit labels differ, and
determining this Hamming distance is a constant time
operation [27].

Hypercubes are desirable for other reasons as well
[28]. An n-dimensional hypercube Hn with 2n nodes
is regular of degree n. It is robust and resistant to attack
as a network structure in that it remains connected with
the removal of less than n nodes [18,23a]. Moreover,
there are r! distinct paths of length r between nodes
that are at distance r from each other, and these paths
can be determined from the node labels alone. In
addition, the diameter (maximum distance between
any two nodes) of Hn is n (= log 2n), and the average
length of a path approaches n/2 as n increases. Even
with nearly half of the nodes missing, messages can be
routed through all the paths of the engineered
hypercube [26].

Nothing is truly free in life, and the engineered
hypercube network is no exception. At any point in the
evolution of a DDFD, an engineered, n-dimensional
hypercube structure is not likely to be complete, i.e.,
not all 2n nodes needed to form the hypercube will be
present [26]. This means that some nodes must act for
missing ones to ensure the existence of the expected
paths in the hypercube. As nodes enter and leave the
DDFD, several adjustments must be made in the
incomplete hypercube, including assignments for the
missing nodes [26]. The operations involved in




maintaining the integrity of the hypercube constitute
overhead costs. Studies have shown, however, that
under conditions of relatively stability (i.e., the rate at
which nodes appear and disappear is modest) the
reduction in message traffic given by the engineered
hypercube more than offsets the costs of maintaining
the structure [26]. Figure 3 shows the tradeoff between
the random network (PA) and the engineered
hypercube network (HC) for different values of query
volume (QC) and rate of network change (RC) [26].
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Figure 3 Bandwidth Utilization for Hypercube
Networks

Query Optimization in an Engineered
DDFD.

The engineered hypercube DDFD allows for
determining inter-node distances cheaply, but
query performance is dependent on the number
of participating nodes, and the sequence of
operations required [17]. Relational joins are
particularly demanding. For example, if 3 nodes
a,b,c are participating in a join, it is necessary to
examine all 3! sequences of the forma ™ b X ¢
(= denoting a join) to determine which one
gives the minimum sum of data times distance.
Clearly a brute force approach to solving this
problem is of exponential complexity. If the
number of nodes is small, say at most 6,
dynamic programming can provide a real time solution
[17]. For larger numbers of nodes, alternatives must be
sought.

One alternative is to designate a node that is relatively
central to those providing data for the query, and
sending all the data to that node to complete the
relational operation [24]. The first step in this

delegation procedure is finding the central node. The
simplest way to do this is by means of the Floyd-
Warshall algorithm [29], a dynamic programming
approach to finding the shortest paths between every
pair of vertices in the subgraph formed by the nodes
involved in the query operation. From the matrix of
shortest distances produced by this algorithm, a central
node can be chosen by comparing the sums of data
times distance for each of the nodes in the subgraph.
Floyd Warshall executes in O(N3) steps where N is the
number of nodes in the subgraph; an additional O(N2)
steps is needed to select the central node [29]. The
table in Figure 4 gives the results of the Floyd-
Warshall algorithm for the weighted graph G.

Assuming the weights shown on the edges of
G represent distance times data, the central node is
number 4.

If the number of nodes participating in a relational
operation is relatively large, say over 1000, a
suboptimal consolidation could be achieved efficiently
by partitioning the set of nodes. In particular, k-
medoids clustering (partitioning around medoids
algorithm) could be used to partition the set of nodes
into k subsets, for some value of k [30]. This clustering
method is related to k-means; it chooses nodes in the
given set as cluster centers, and can work with the
graph distance measure. The complexity of the
computation is of order O(N2). After assigning nodes

0 1 =3 2 -4
3 0 -4 1 =
7 4 0 5 3
2 -1 = 0 -2
8 5 1 6 0

Table of Lengths

Figure 4 Pairwise Shortest Path Lengths
to

clusters, the data in each subset could then be
consolidated, and the subset results integrated to yield
a response to the query. Such a solution would not
necessarily be optimal, but it would substantially
reduce message traffic. Additional savings in message
traffic can be achieved in executing join operations by
first performing semijoins to reduce the amount of



data that needs to be transferred to satisfy the query
[17].

c) Bio-Inspired Intrusion Detection System
(1DS)

Denial-of-service (DoS) or distributed denial-of-
service (DDoS) attacks are one type of aggressive and
menacing intrusive behavior to online systems such as
IoT devices and cloud-based servers [31]. This attack
causes severe damage to applications and services
running on the victim node, making it difficult for
legitimate users to access the service(s) running on
that node. On October 2016, site outages involved the
targeting of Dyn — a company that controls many of
the Domain Name Servers that service American
domains. This widely successful attack utilized the
now infamous Mirai — a nasty piece of malware that
powers an extensive botnet largely populated by IoT
devices. This illustrates the urgent need for effective
detection of DoS attacks to protect online services.

Even with the use of protective mechanisms like
encryption, authentication, and network firewalls,
hackers always find ways to compromise these
systems and attack the resources and nodes they
protect [32]. Also, existing security mechanisms have
difficulty in detecting stealthy and zero-day attacks.
Hence, an intrusion detection system (IDS) is needed
as an added wall of protection.

An intrusion detection system (IDS) is a device or
software application that scans a system or network for
malicious activities or policy violations and triggers an
alert when an incident occurs or logs these malicious
activities to a management station. A conventional
IDS system uses either a signature-based detection
technique or an anomaly based detection technique.
Both techniques have their limitations. Signature-
based IDS have low detection rates for zero-day
attacks, i.e., attacks for which there exists no known
signature, while the problem in using an anomaly
based IDS is in its high rate of false positives (when
normal behavior is flagged as abnormal behavior)
[33]. The use of common IDSs for detecting attacks
targetting IoT devices, the edge cloud or the cloud
infrastructure may not be enough because of the
difference in the processing and memory requirements
of IoT devices, and cloud-based infrastructure or
resource, and the uniqueness of attack surfaces on IoT
devices. In addition, the difficulty in finding the exact
combination of events that triggered a particular
behavior and, more importantly, to label it as
malicious is problematic. These problems call for a

more sophisticated IDS with an ability to correlate
events and accurately differentiate an attack from
normal system or network behavior.

The Human body consists of connected cells and
tissues and is constantly being attacked by pathogens.
A pathogen or infectious agent is a biological agent
that causes disease or illness to its host. Due to the
similarities that exist between the human immune
system (HIS) and a distributed system/network like the
IoT network/devices [34] [35], the complex activity
and procedures followed by the HIS to detect an attack
can be abstracted and applied to combat cyber attacks
and intrusions that may occur in an IoT, cloud and
edge cloud devices and network. To this end, we
propose an anomaly-based bio-inspired intrusion
detection system (BiolDS) that utilizes intrusion
detection approaches followed by the human body to
detect cyber-attacks targeting an IoT, cloud or edge
cloud devices/network. The artificial immune system
(AIS) is a subfield of artificial intelligence and is a
class of computationally intelligent systems inspired
by the principles and processes of the human immune
system. The algorithms that exist in the field of AIS
exploit the immune system's characteristics of learning
and memory to solve diverse problems. These
algorithms are based on HIS models taken from the
field of immunology. Two major Immunology models
that have been utilized successfully in AIS are the
Self-Nonself (SNS) model which leads to the negative
selection algorithm (NSA) [33], [36] and the Danger
Theory (DT) based model which leads to the dendritic
cell algorithm (DCA) [37] [33].

Technical Approach: A bio-inspired technique is
proposed to solve the problems of conventional IDS
systems used in IoT devices/networks. The models
stated in the preceding sections have been applied to
the areas of IDS designs. The core of our design
depends on the detector generation. The function of
the detector is to classify the incoming traffic into
normal cells and abnormal cells.

Detector generation:

The first NSA algorithm [36] which was proposed
by Forest et. al. is an exhaustive approach. The
limitation of this approach is the computational
difficulty of generating valid detectors, which grows
exponentially with the size of the self [38]. So, to solve
the problems of the exhaustive approach, we need a
technique for implementing the NSA which locates a
detector instead of selecting them at random as in the
case of the exhaustive approach. For this, we employ



Algorithm 1: NSA using Genetic Algorithm

Input: SEU (“self-set”); rs=self radius

Output: a set of detector DEU (“detector set”)

1: population « random individuals

2: for the specified number of generations do

3: for the size of the population do

4: Select two individuals, (parent1 and
parent2), with uniform probability.

5: Apply crossover with probability C, to
generate two offspring (child1 and
child2).

6: Mutate child1 and child2 with probability

Mo

7: If distance (child1,parent1) > rs and
fitness (child1) > fitness (parent1) then

8: parentl < child1

9: end if

10: If distance (child2.parent2) > r< and

an evolutionary approach using a genetic algorithm
(GA).

GAs are adaptive, heuristic search algorithms
based on the evolutionary ideas of natural selection
and genetics. As such they represent an intelligent
exploitation of a random search used to solve
optimization problems. Each generation consists of a
population of character strings that are analogous to
the chromosome that we see in our DNA. Each
individual represents a point in a search space and a
possible solution. The individuals in the population are
then made to go through a process of evolution [39].
Algorithm 1, shows the steps taken by our approach to
detector generation using GA.

A detector is defined as d = (c, rq), where ¢ = (ci, c»,
..., Cm) 1S an m-dimensional point that corresponds to
the center of a unit hypersphere with rq as its radius. In
this detector generation phase, the main task is to
generate a set of detectors, with the center of each
detector being at least (rq + 15) distance away from the
center of its nearest self element (which has raduis =

Ts).

The GA is initialized with random individuals. Two
parents; P; and P, are drawn from the initialized
samples at random with equal probability. Crossover is
performed with these two parents to create two
offspring (C; and C,) with a probability C, called the
crossover probability. The kind of crossover used here
is the one-point crossover.

To perform mutation on C; and C,, a position in the
chromosome of each is chosen at random from

[1,2...m] and flipped with a mutation probability M.
This flipping is done by replacing the value of the
attribute in the randomly selected location with a
randomly generated value that lies between [0, 1].

After mutation, the fitness of C; and C, is evaluated
using the function in (2):

fitness(individual) = e~/ (2)

Where 15 is a threshold value (allowable variation)
of a self point; in other words, a point at a distance
greater than 1, from the self sample is considered to be
abnormal. D is the distance between the individual and
the nearest self. This distance measure is calculated
using the Euclidean distance measure given by (3):

n 1,
DEX,Y) = <Z(xi - yi)2> 3)
i=1

The fitness of both parents used for the crossover
together with the resulting offspring is calculated. Also,
the distances between (C; and P;) and (C; and P») are
both calculated. P; in the population is replaced by C;
if Cy has a better fitness and the distance between its
center and that of P; is greater than r,. Similar action is
taken for replacing P,. The fittest individuals are
selected as the detectors.

IDSs that were designed based only on the self-
nonself model [37] were prone to high false positive
rates. The DT model was adopted to address this issue.
Some researchers have proposed IDS that utilizes the
model for intrusion detection. Given that zero-day
attacks and high rates of false positives are the
problems we would want to solve in conventional IoT
intrusion detection systems, our proposed IDS for IoT
devices/networks would combine the strength of both
models to form a more practical and efficient IDS for
IoT devices/networks. To fully integrate both models
to create an efficient IDS, Figure 5 shows the block
diagram of the proposed system to classify an activity
as an attack. Using these five modules of Figure 5, the
detection process can be divided into four major steps.



In Step 1, basic features are generated or extracted
from ingress network traffic to the internal network
where protected servers reside and are used to form
traffic records for a well-defined time interval. In Step
2, the signal selection process is performed. Signals
that represent abnormal activities (danger signals) and
normal activities (safe signals) are generated using the
features extracted in Step 1. Step 3 involves two
phases (i.e., the training phase and the testing phase).
In the training phase, the NSA instances that make up
the NSA module are trained using the two signals
generated in Step 2. Our system uses a weighted
majority vote technique. Hence, in Step 3, as part of
the training phase, the weights to be assigned to all
NSA and DCA instances are computed using the
training data. In the test phase, profiles for individual
observed traffic records are built. Then, the tested
profiles are handed over to the NSA and DCA modules
respectively. The NSA module compares the
individual tested profiles with the stored detectors.
The DCA samples the individual tested profiles using
a sampling technique. The decisions made by the
constituent NSA/DCA modules are weighted (using
the weights determined during the training phase) and
used by the decision-making module to distinguish
DoS attacks from legitimate traffic.

Evaluation and Experimentation

The development and evaluation of bio-inspired
intrusion detection system are performed according to
the following:

(Analysis 1): The first plan for our work involves
performing detailed analyses of IoT device/network
attack surfaces and how inherent vulnerabilities can be
exploited by malicious users.

(Analysis IT and Experimentation I): The second step
involves defining features that would identify an entity
(an activity, or process). Using the knowledge gained
in (Analysis 1), we carefully select features that will be
used to signify dangerous and safe signals
respectively. This also involves developing a
lightweight software agent that will run on IoT
devices/edge-cloud nodes, especially on those that
have constraints on memory and processing capability.
These agents will be tasked with the responsibility of
gathering data which will be sent to the nearest edge
cloud-based node running the full version of out
proposed IDS (shown in Figure 5). This data is used in
detecting both network level and device level
intrusions. Figure 6 shows how the agent could be
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Figure 5 Bio-Inspired intrusion detection system (BiolDS)
building blocks

distributed in the IoT network to aid in intrusion
detection.

(Experimentation II and Evaluation): To evaluate the
effectiveness of our solution, we use the following two
approaches. One approach will be to simulate the
proposed IDS design and architecture using the
integrated testbed prosed under this project. The
second approach involves setting up a private cloud
under the Cyber Defense Technology Experimental
Research Laboratory (DeterLab) sponsored by the
Department of Homeland Security (DHS), and using
the low capacity nodes under this testbed as the IoT
nodes.
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months. Rt '@ 7%
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traffic will l?e Figure 6 Architecture for IoT
used to train device/network security using BiolDS and
the NSA  Jlightweight

instances.

To evaluate our model’s effectiveness, we will
perform penetration testing in real-time against the IoT
devices or cloud/edge-cloud nodes wusing the
information and vulnerability analysis results obtained
from Analysis I. Our system is being assessed based
on its false positive rate (FPR), and Detection Rate
(DR). A good result will be one with very high DR and
very small FPR. To achieve this we are currently
establishing, through Intrnet2 and other networks, a
direct connection between the Kyushu Institute of



Technology in Japan and our lab at CCNY in USA to
experiment with our model in real-time traffic. We
plan also to adapt our systems to the virtual machine
environment as highlighted in [40] [41].

Conclusion

This paper addressed three main topics for secure edge
could network design; 1) resource management in
mobile cloud computing; 2) information management
in dynamic distributed databases; 3) biological-
inspired intrusion detection system. Currently our
team at the City University of New York, City College
(CCNY) and our partner at Kyushu Institute of
Technology (Kyutech), plan to continue further
investigation of secure edge cloud network and to
measure in real time, through the direct connection
between the labs at Kyutech and CCNY, the various
system parameters under investigation.
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