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Summary 

Systems for Internet of Things (IoT) have generated new 
requirements in all aspects of their development and deployment, 
including expanded Quality of Service (QoS) needs, enhanced 
resiliency of computing and connectivity, and the scalability to 
support massive numbers of end devices in a variety of applications. 
The research reported here concerns the development of a reliable 
and secure IoT/cyber physical system (CPS), providing network 
support for smart and connected communities, to be realized by 
means of distributed, secure, resilient Edge Cloud (EC) computing. 
This distributed EC system will be a network of geographically 
distributed EC nodes, brokering between end-devices and Backend 
Cloud (BC) servers.     

This paper focuses on three main aspects of the CPS: a) resource 
management in mobile cloud computing; b) information 
management in dynamic distributed databases; and c) biological-
inspired intrusion detection system. 

Keywords:  Secure, edge Cloud Network, mobile cloud computing 

1. Introduction 

IoT has gained popularity in recent years and has 
attracted a lot of attention.  Billions of smart devices 
have connected to IoT due to advancement of 
computer and networking technologies. With the 
advancement of cloud computing, IoT can enhance 
and extend its service provision capabilities. IoT can 
extend its scope and service provisioning capabilities 
with the integration of the cloud computing paradigm.  
On the other hand, cloud computing can enhance its 
services by utilizing the data collected from IoT nodes.  

IoT systems have generated new requirements in all 
aspects of their development and deployment, 
including expanded Quality of Service (QoS) needs, 
enhanced resiliency of computing and connectivity, 
and the scalability to support massive numbers of end 
devices in a variety of applications. This paper is 
concerned with the development of a reliable and 
secure IoT/cyber physical system (CPS), providing 
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network support for smart and connected 
communities, to be realized by means of distributed, 
secure, resilient Edge Cloud (EC) computing. This 
distributed EC system will be a network of 
geographically distributed EC nodes, brokering 
between end-devices and Backend Cloud (BC) 
servers.     

Performing Complex computations on-site is possible 
with todays computing capacity, thus making edge 
computing feasible.   Edge computing allows for 
extending cloud computing capabilities by placing 
services close to the network edge, thus supporting a 
variety of applications and services.  Demand for these 
capabilities is being stimulated by mobile users who 
need more diverse types of services compared with the 
requirements of PC users. 

The absence of centralized management dictates 
policies designed to maximize the use of edge nodes 
which typically have relatively modest storage and 
processing power.  A possible design for realizing the 
benefits of non-centralized management is a system 
that implements hypercube routing. Such a system 
could support query optimization in a software defined 
network context, creating an engineered hypercube 
virtual network serving as an efficient and practical, 
distributed database tool. 

With the rise of cyberattacks like malware, denial of 
service attacks, ransomware attacks or insider threats, 
securing computer systems has become more difficult. 
To improve the security of networks and computing 
nodes, network/computer administrators rely on 
protective mechanisms such as firewalls, access 
control, and encryption system. Another protective 
mechanism that can be added as a wall of protection is 
an intrusion detection system (IDS). Intrusion 
detection is defined as the process of intelligently 
monitoring the events occurring in a computer system 



or network, analyzing them for signs of violations of 
the security policy.   
 
The contributions of this paper are; 

a) Resource Management of mobile cloud 
computing (MCC) in terms of efficient 
partitioning and offloading processes of 
mobile applications, an adaptive security-
aware resource allocation approach that can 
meet the various resource requirements, and 
a joint multi-resource allocation in the MCC 
system with cloudlet. 

b) Implementation of hypercube routing for 
query optimization in a software defined 
network context designed to create an 
engineered hypercube virtual network as an 
efficient and practical, distributed database 
tool. 

c) Development of  a biological-
inspired intrusion detection 
system (IDS) for detecting 
attacks targetting IoT devices, 
the edge cloud or the cloud 
infrastructure. 

 

a) Resource Management in 
Mobile Cloud Computing 

 
Mobile Cloud Computing (MCC) is a system that 
introduces powerful Cloud Computing in a mobile 
computing environment, where mobile devices 
connect to the Internet through wireless networks and 
then communicate with the remote cloud. Compared 
to mobile devices, the cloud server of MCC can 
provide huge storage, high computation power, as well 
as reliable security [1]. By offloading subcomponents 
of a mobile application to the cloud server for 
execution, the performance of mobile applications can 
be greatly improved and the energy consumption of 
mobile devices can be significantly reduced [2]. 
Consequently, MCC can extend its scope to a great 
variety of mobile applications such as virus scanning 
that are extremely resource-intensive to execute solely 
on mobile devices. The problem of offloading an 
application to the cloud mainly depends on the 
following factors: CPU speed of mobile device, 
network performance, program features, and the 
efficiency of the cloud server. In consideration of these 
factors, [3] proposes offloading the whole application 

to the cloud server without partitioning an application 
into subcomponents. Although offloading the whole 
application can usually benefit its execution, not all the 
components of an application are suitable for being 
offloaded to the cloud end. For example, the methods 
of implementing mobile I/O devices and user 
interfaces should be executed at the mobile end. In 
addition, some parts of a program, like the ones with 
light computation requirements but large input data, 
actually cannot take advantage of remote execution at 
the cloud server. Application partition technique [4] 
can support fine-grained offloading, where a mobile 
application is partitioned into a number of 
subcomponents, and an optimal decision is made 
about which components should be offloaded to cloud 
for computing and which should run locally on mobile 

devices.  
 
For latency-sensitive mobile applications, such as 
augmented reality with real-time constraints, 
offloading to the remote cloud is insufficient, because 
of the high latency of Wide Area Networks (WAN). 
Cloudlet or Edge cloud is an emerging paradigm 
designed  to better support both latency-sensitive and 
resource-intensive mobile applications [5]. It is 
positioned as the middle entity of the three-tier 
hierarchy: mobile device, cloudlet, and cloud with 
functionalities of data routing and security guard, 
similar to a proxy in cloud computing systems. 
Additionally, cloudlet can speed up mobile application 
executions by providing powerful computing 
capabilities. A cloudlet is usually set up at a public 
place, like a shopping center, theater, office building, 
or assembly room to enable convenient access for 
mobile devices. 
 
Resource starvation becomes an inevitable problem in 
MCC with the exponential increase of mobile services. 
In addition to traditional aspects of resource 

 
 

 
 

  

Figure 1 Mobile Cloud System with Cloudlet 



managements, many new challenges beset the problem 
of resource allocation in MCC systems, such as the 
application latency, resource demand, computing 
security, etc. Some investigations have proposed 
considering the issues in the field of 
MCC resource allocation from different perspectives, 
such as multimedia service, Internet games, system 
throughput, security, mobile resource [6], etc.  
 
Resource Management Framework 

 
Partition Offloading  

One of the main research approaches to MCC systems 
addresses the efficiency of resource utilization in the 
partitioning and offloading processes of mobile 
applications. Such an approach offers to determine 
which partitions of mobile applications are suitable to 
be offloaded for remote computing in the cloud. The 
Branch and Bound (B&B) algorithm based on Linear 
Programming Solver (LP solver) is being used in 
schemes proposed in [4] for calculation of offloading 
decisions concerning application partitions. B&B is a 
feasible approach for solving integer linear problems 
when the number of partitions is not large; however, 
the number of its feasible solutions grows 
exponentially with the number of partitions, resulting 
in a high time complexity (O(2n)). That urges us to 
investigate an algorithm with low computational 
complexity which can improve  model practicability to 
support the offloading decision calculation in real-
time. The strategy of offloading only some parts of 
mobile applications that can realize benefits from 
remote execution has been shown to be beneficial and 
is adopted by MCC [7]. Moreover, the resource 
allocation of cloud computing for partitioned 
application further improves the efficiency of cloud 
resource utilization. Some research, such as in [8], 
work on the cloud computing resource allocation for 
mobile requests from application partitions, but few 
are considering the impacts of the offloading sequence 
of mobile application partitions to the utilization 
efficiency of cloud computing resources. We model 
the resource allocation problem with the 
considerations of offloading the sequence of 
application partitions for MCC systems to improve the 
system capacity. 
 
We proposed a Dynamic Programming based 
Offloading Algorithm (DPOA) which has low time 

complexity (O(n2)) in proportion to the square of the 
number of subprograms in a mobile application [9]. 
Compared to B&B, DPOA can quickly achieve an 
optimal offloading strategy, and by shortening the 
strategy update period, the offloading decision by 
DPOA can run in real time, which is crucial to the 
efficiency of real-time applications in MCC systems. 
We also model the resource allocation problem for 
partitioned mobile applications as a semi-Markov 
Decision Process (SMDP) [10]. A system reward 
model is developed with the consideration of the 
impacts of allocating computing resources to different 
partitions, which are classified according to their 
offloading sequence. The objective is to achieve an 
optimal allocation policy of cloud computing 
resources through maximizing the system reward, in 
order to obtain the maximum system throughput (in 
terms of request acceptance rate) and to fully utilize 
the computing resource by preventing tasks being 
dropped due to resource depletion. Compared with the 
Greedy approach, our approach not only provides a 
better allocation policy to speed up the application 
execution, but also significantly increases the 
acceptance ratio of service requests from application 
partitions, especially when system computing 
resources are limited.  
 
Security Aware Resource Allocation. 
Security issues are an inevitable challenge in resource 
allocation of MCC systems [11]. While some 
researchers have offered solutions for efficient cloud 
resource management in MCC systems [12-13], they 
lack in providing the security guarantee against 
possible attacks, leading to the loss of the protection 
ability of cloud. A resource allocation for security 
services in MCC system has been proposed in [8]. 
They considered the cloud services composed of two 
security categories: Critical Security (CS) service and 
Normal Security (NS) service, as a coarse-grained 
model. However, the varying resource requirements 
from mobile users is not considered in their strategy. 
Moreover, their approach cannot adjust the allocation 
policy according to the security level of mobile 
requests and cloud resource availability.  
 



We proposed an adaptive security-aware resource 
allocation approach that can meet the various resource 
requirements [13]. The basic idea is to classify the 
requests from mobile users into multiple risk degree 
and then consider the resource allocation in order to 
maximize the overall system benefits. Here risk 
degree is used to model the security guarantee. For 
example, a request of low risk degree (meaning low 
security requirement, e.g., communication can be 
over public channel and computation can be done 
without considering privacy) might only need few 
or no extra resources, while a request of high risk 
degree demands substantial extra resources 
(meaning high security requirement, e.g., 
communication should be over authenticated and 
confidential channel). Management of resource 
allocation is modeled as a Semi-Markov Decision 
Process (SMDP) under an average reward criterion 
that takes account of the request's risk degree, the 
current request arrival rate, and the availability of 
cloud resource. By solving the linear programming 
problem, our approach can adaptively adjust the 
resource allocation strategy with the objective of 
resource protection and throughput maximization.  
 
Multi-resource management for MCC with 
Cloudlet. 
The Cloudlet helps MCC systems meet the 
requirement of real-time interactive response by 
means of providing a resource-rich server/cluster in 
the vicinity of the mobile users, and one-hop high-
bandwidth wireless access to the cloudlet. However, 
the computing resources of the cloudlet are not as rich 
as the remote cloud cluster, and the wireless 
bandwidth that connects mobile devices and the 
cloudlet is limited. There is a high probability that the 
cloudlet will run out of resources and that no new 
mobile request can be admitted, if an excessive 
number of mobile users offload their applications for 
execution at the cloudlet [14].   
 
We have proposed a joint multi-resource allocation in 
the MCC system with cloudlet [15].  This system is 
based on a reward model for resource allocation that 
takes account of wireless bandwidth, cloudlet and 
distant cloud computing resources.  The allocation 
scheme considers the system benefits or impacts in 
accepting or rejecting the new resource request 
according to the current request traffic, the availability 

of the system resources, and the QoS guarantee of 
mobile users. Based on the reward model, a multi-
resource allocation strategy is developed, which can 
adaptively determine whether to accept a new mobile 

service request for the execution at the cloudlet or the 
distant cloud. Furthermore, the strategy can determine 
the optimal amount of wireless bandwidth and 
computing resources to allocate to the accepted 
request, and thus achieve the optimal system 
performance. The SMDP-based multi-resource 
allocation problem is solved as a linear programming 
problem using lp solver tool. Extensive performance 
simulations show that the proposed resource allocation 
mechanism provides a lower request rejection rate and 
latency of mobile service compared to those of greedy 
policies. The proposed multi-resource allocation 
algorithm can be used in practice by executing the 
algorithm offline given the various request traffic 
parameters, the amount of system resource, and the 
resource price in the reward model. So pre-calculated 
allocation decisions can be made in the form of a 
search table for when the request traffic information 
and availability of system resources are profiled in 
real-time.  
 

b) Information Management in Dynamic 
Distributed Databases 

State (s) ={Current #of VM and Bandwidth Utilization for each service 
class, event} 
     event ={Arrival from mobile devices, Departure from Cloudlet or 
Remote Cloud} 
 
Action (a) = {Accept by Cloudlet or Remote Cloud, Reject} 

Transition probabilities ={Transition probability from the state s to 
the next state under action a} 

Reward  ={ Lumpsum income – Continuous cost} 

 
Maximize {Sum of rewards over all s and a}  
     constraints={maximum # of VM and bandwidth resources} 

Table 1 SMDP Algorithm 



The challenges of information management in a 
Resilient Edge Cloud Designed Network derive in part 
from the dynamic and distributed features of 
operations in such a network. In particular, to exploit 
fully computing at the edge it is necessary to take 
account of the effect of querying on message 
traffic in the network. The absence of 
centralized management dictates policies 
designed to maximize the use of edge nodes 
which typically have relatively modest 
storage and processing power. Edge nodes 
must thus work together in information 
processing tasks, and this occasions the 
movement of data between nodes. To 
minimize the message traffic thus generated 
requires innovative strategies. One such 
strategy detailed here is the development of 
an engineered overlay network structured as 
a hypercube graph. This strategy was 
originally proposed in the International 
Technology Alliance project [16,23]. 
Research undertaken in that project 
demonstrated the feasibility of using 
hypercube routing for query optimization in a 
Dynamic Distributed Federated Database (the GAIAN 
DB) built by IBM-UK [16,22]. The current strategy is 
to implement hypercube routing for query 
optimization in a software defined network context 
designed to make the engineered hypercube into an 
efficient and practical distributed database tool. 

Slaying the Network Distance Dragon in Query 
Optimization 

Querying in a Dynamic Distributed Federated 
Database (DDFD) can add significantly to message 
traffic [16]. Typically, several nodes have information 
that must be consolidated to satisfy a query. Clearly, 
data has to be moved over the network to perform 
operations such as union and join. One critical 
measure of message traffic is the amount of data (x) to 
be moved multiplied by the distance (y) moved 
[17,19]. Thus, message traffic associated with 
querying can be reduced by minimizing xy for an 
operation involving several participating nodes in the 
execution of a query. To do this requires distance 
information, a requirement that could also add to 
message traffic if querying is needed to determine 
distances between nodes. Recognition of this problem 
has led to the formulation of an engineered DDFD in 
which inter-node distances can be determined in 
constant time [5].  “Engineered” means the DDFD is 
structured as a logical (or virtual) network in the form 

of an n-dimensional hypercube [21]. The hypercube 
DDFD is embedded in an underlying physical network 
(or substrate) such as the Internet. The hypercube has 
been chosen because the distance between any two 
nodes in such a graph is just the number of positions 

in which their respective n-bit labels differ, and 
determining this Hamming distance is a constant time 
operation [27].  

Hypercubes are desirable for other reasons as well 
[28]. An n-dimensional hypercube Hn with 2n nodes 
is regular of degree n. It is robust and resistant to attack 
as a network structure in that it remains connected with 
the removal of less than n nodes [18,23a]. Moreover, 
there are r! distinct paths of length r between nodes 
that are at distance r from each other, and these paths 
can be determined from the node labels alone. In 
addition, the diameter (maximum distance between 
any two nodes) of Hn is n (= log 2n), and the average 
length of a path approaches n/2 as n increases. Even 
with nearly half of the nodes missing, messages can be 
routed through all the paths of the engineered 
hypercube [26]. 

Nothing is truly free in life, and the engineered 
hypercube network is no exception. At any point in the 
evolution of a DDFD, an engineered, n-dimensional 
hypercube structure is not likely to be complete, i.e., 
not all 2n nodes needed to form the hypercube will be 
present [26]. This means that some nodes must act for 
missing ones to ensure the existence of the expected 
paths in the hypercube. As nodes enter and leave the 
DDFD, several adjustments must be made in the 
incomplete hypercube, including assignments for the 
missing nodes [26]. The operations involved in 

 

Figure 2 Decision Process for Resource Allocation 

 



maintaining the integrity of the hypercube constitute 
overhead costs. Studies have shown, however, that 
under conditions of relatively stability (i.e., the rate at 
which nodes appear and disappear is modest) the 
reduction in message traffic given by the engineered 
hypercube more than offsets the costs of maintaining 
the structure [26]. Figure 3 shows the tradeoff between 
the random network (PA) and the engineered 
hypercube network (HC) for different values of query 
volume (QC) and rate of network change (RC) [26]. 

 

 

Figure 3 Bandwidth Utilization for Hypercube 
Networks 

 
Query Optimization in an Engineered 
DDFD. 
The engineered hypercube DDFD allows for 
determining inter-node distances cheaply, but 
query performance is dependent on the number 
of participating nodes, and the sequence of 
operations required [17]. Relational joins are 
particularly demanding. For example, if 3 nodes 
a,b,c are participating in a join, it is necessary to 
examine all 3! sequences of the form a ⋈ b ⋈ c 
(⋈ denoting a join) to determine which one 
gives the minimum sum of data times distance. 
Clearly a brute force approach to solving this 
problem is of exponential complexity. If the 
number of nodes is small, say at most 6, 
dynamic programming can provide a real time solution 
[17]. For larger numbers of nodes, alternatives must be 
sought. 
 
One alternative is to designate a node that is relatively 
central to those providing data for the query, and 
sending all the data to that node to complete the 
relational operation [24]. The first step in this 

delegation procedure is finding the central node. The 
simplest way to do this is by means of the Floyd-
Warshall algorithm [29], a dynamic programming 
approach to finding the shortest paths between every 
pair of vertices in the subgraph formed by the nodes 
involved in the query operation. From the matrix of 
shortest distances produced by this algorithm, a central 
node can be chosen by comparing the sums of data 
times distance for each of the nodes in the subgraph. 
Floyd Warshall executes in O(N3) steps where N is the 
number of nodes in the subgraph; an additional O(N2) 
steps is needed to select the central node [29]. The 
table in Figure 4 gives the results of the Floyd-
Warshall algorithm for the weighted graph G. 

Assuming the weights shown on the edges of 
G represent distance times data, the central node is 
number 4.  

 
If the number of nodes participating in a relational 
operation is relatively large, say over 1000, a 
suboptimal consolidation could be achieved efficiently 
by partitioning the set of nodes. In particular, k-
medoids clustering (partitioning around medoids 
algorithm) could be used to partition the set of nodes 
into k subsets, for some value of k [30]. This clustering 
method is related to k-means; it chooses nodes in the 
given set as cluster centers, and can work with the 
graph distance measure. The complexity of the 
computation is of order O(N2). After assigning nodes 

to 
clusters, the data in each subset could then be 
consolidated, and the subset results integrated to yield 
a response to the query. Such a solution would not 
necessarily be optimal, but it would substantially 
reduce message traffic. Additional savings in message 
traffic can be achieved in executing join operations by 
first performing semijoins to reduce the amount of 

 

 

  

 

3 4 7 1 

8 

-

6 

-2 

G Table of Lengths 

Figure 4 Pairwise Shortest Path Lengths 



data that needs to be transferred to satisfy the query 
[17]. 

 

c) Bio-Inspired Intrusion Detection System 
(IDS) 

Denial-of-service (DoS) or distributed denial-of-
service (DDoS) attacks are one type of aggressive and 
menacing intrusive behavior to online systems such as 
IoT devices and cloud-based servers [31]. This attack 
causes severe damage to applications and services 
running on the victim node, making it difficult for 
legitimate users to access the service(s) running on 
that node. On October 2016, site outages involved the 
targeting of Dyn – a company that controls many of 
the Domain Name Servers that service American 
domains. This widely successful attack utilized the 
now infamous Mirai – a nasty piece of malware that 
powers an extensive botnet largely populated by IoT 
devices. This illustrates the urgent need for effective 
detection of DoS attacks to protect online services.  

Even with the use of protective mechanisms like 
encryption, authentication, and network firewalls, 
hackers always find ways to compromise these 
systems and attack the resources and nodes they 
protect [32]. Also, existing security mechanisms have 
difficulty in detecting stealthy and zero-day attacks. 
Hence, an intrusion detection system (IDS) is needed 
as an added wall of protection. 

An intrusion detection system (IDS) is a device or 
software application that scans a system or network for 
malicious activities or policy violations and triggers an 
alert when an incident occurs or logs these malicious 
activities to a management station. A conventional 
IDS system uses either a signature-based detection 
technique or an anomaly based detection technique.  
Both techniques have their limitations. Signature-
based IDS have low detection rates for zero-day 
attacks, i.e., attacks for which there exists no known 
signature, while the problem in using an anomaly 
based IDS is in its high rate of false positives (when 
normal behavior is flagged as abnormal behavior) 
[33]. The use of common IDSs for detecting attacks 
targetting IoT devices, the edge cloud or the cloud 
infrastructure may not be enough because of the 
difference in the processing and memory requirements 
of IoT devices, and cloud-based infrastructure or 
resource, and the uniqueness of attack surfaces on IoT 
devices. In addition, the difficulty in finding the exact 
combination of events that triggered a particular 
behavior and, more importantly, to label it as 
malicious is problematic. These problems call for a 

more sophisticated IDS with an ability to correlate 
events and accurately differentiate an attack from 
normal system or network behavior.  
 
The Human body consists of connected cells and 
tissues and is constantly being attacked by pathogens. 
A pathogen or infectious agent is a biological agent 
that causes disease or illness to its host. Due to the 
similarities that exist between the human immune 
system (HIS) and a distributed system/network like the 
IoT network/devices [34] [35], the complex activity 
and procedures followed by the HIS to detect an attack 
can be abstracted and applied to combat cyber attacks 
and intrusions that may occur in an IoT, cloud and 
edge cloud devices and network. To this end, we 
propose an anomaly-based bio-inspired intrusion 
detection system (BioIDS) that utilizes intrusion 
detection approaches followed by the human body to 
detect cyber-attacks targeting an IoT, cloud or edge 
cloud devices/network.  The artificial immune system 
(AIS) is a subfield of artificial intelligence and is a 
class of computationally intelligent systems inspired 
by the principles and processes of the human immune 
system. The algorithms that exist in the field of AIS 
exploit the immune system's characteristics of learning 
and memory to solve diverse problems. These 
algorithms are based on HIS models taken from the 
field of immunology. Two major Immunology models 
that have been utilized successfully in AIS are the 
Self-Nonself (SNS) model which leads to the negative 
selection algorithm (NSA) [33], [36] and the Danger 
Theory (DT) based model which leads to the dendritic 
cell algorithm (DCA) [37] [33].  

  Technical Approach: A bio-inspired technique is 
proposed to solve the problems of conventional IDS 
systems used in IoT devices/networks. The models 
stated in the preceding sections have been applied to 
the areas of IDS designs. The core of our design 
depends on the detector generation.   The function of 
the detector is to classify the incoming traffic into 
normal cells and abnormal cells. 

Detector generation: 
The first NSA algorithm [36] which was proposed 

by Forest et. al. is an exhaustive approach. The 
limitation of this approach is the computational 
difficulty of generating valid detectors, which grows 
exponentially with the size of the self [38]. So, to solve 
the problems of the exhaustive approach, we need a 
technique for implementing the NSA which locates a 
detector instead of selecting them at random as in the 
case of the exhaustive approach. For this, we employ 



an evolutionary approach using a genetic algorithm 
(GA). 

GAs are adaptive, heuristic search algorithms 
based on the evolutionary ideas of natural selection 
and genetics. As such they represent an intelligent 
exploitation of a random search used to solve 
optimization problems. Each generation consists of a 
population of character strings that are analogous to 
the chromosome that we see in our DNA. Each 
individual represents a point in a search space and a 
possible solution. The individuals in the population are 
then made to go through a process of evolution [39]. 
Algorithm 1, shows the steps taken by our approach to 
detector generation using GA. 

 A detector is defined as d = (c, rd), where c = (c1, c2, 
…, cm) is an m-dimensional point that corresponds to 
the center of a unit hypersphere with rd as its radius. In 
this detector generation phase, the main task is to 
generate a set of detectors, with the center of each 
detector being at least (rd + rs) distance away from the 
center of its nearest self element (which has raduis = 
rs).  

 The GA is initialized with random individuals. Two 
parents; P1 and P2 are drawn from the initialized 
samples at random with equal probability. Crossover is 
performed with these two parents to create two 
offspring (C1 and C2) with a probability Cp called the 
crossover probability. The kind of crossover used here 
is the one-point crossover.  

To perform mutation on C1 and C2, a position in the 
chromosome of each is chosen at random from 

[1,2…m] and flipped with a mutation probability Mp. 
This flipping is done by replacing the value of the 
attribute in the randomly selected location with a 
randomly generated value that lies between [0, 1].  

 

After mutation, the fitness of C1 and C2 is evaluated 
using the function in (2): 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 𝑒𝑒−
𝑟𝑟𝑠𝑠

𝐷𝐷�              (2) 

Where rs is a threshold value (allowable variation) 
of a self point; in other words, a point at a distance 
greater than rs from the self sample is considered to be 
abnormal. D is the distance between the individual and 
the nearest self. This distance measure is calculated 
using the Euclidean distance measure given by (3): 

𝐷𝐷(𝑋𝑋, 𝑌𝑌) = ��(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

�

1
2�

                    (3) 

The fitness of both parents used for the crossover 
together with the resulting offspring is calculated. Also, 
the distances between (C1 and P1) and (C2 and P2) are 
both calculated. P1 in the population is replaced by C1 
if C1 has a better fitness and the distance between its 
center and that of P1 is greater than rs. Similar action is 
taken for replacing P2. The fittest individuals are 
selected as the detectors.   

 

 IDSs that were designed based only on the self-
nonself model [37] were prone to high false positive 
rates. The DT model was adopted to address this issue. 
Some researchers have proposed IDS that utilizes the 
model for intrusion detection. Given that zero-day 
attacks and high rates of false positives are the 
problems we would want to solve in conventional IoT 
intrusion detection systems, our proposed IDS for IoT 
devices/networks would combine the strength of both 
models to form a more practical and efficient IDS for 
IoT devices/networks.  To fully integrate both models 
to create an efficient IDS, Figure 5 shows the block 
diagram of the proposed system to classify an activity 
as an attack. Using these five modules of Figure 5, the 
detection process can be divided into four major steps.  

Algorithm 1:  NSA using Genetic Algorithm 
 
Input: S∈U (“self-set”); rS =self radius 
Output: a set of detector D∈U (“detector set”) 
1:    population ⃪ random individuals 
2:    for the specified number of generations do 
3:        for the size of the population do 
4:             Select two individuals, (parent1 and 

parent2), with uniform probability. 
5:             Apply crossover with probability Cp to 

generate two offspring (child1 and 
child2). 

6:             Mutate child1 and child2 with probability 
Mp 

7:             If distance (child1,parent1) > rS and 
fitness (child1) > fitness (parent1) then 

8:                 parent1 ⃪ child1 
9:             end if 
10:           If  distance (child2,parent2) > rS and 

     
                  
             
        
    

 



In Step 1, basic features are generated or extracted 
from ingress network traffic to the internal network 
where protected servers reside and are used to form 
traffic records for a well-defined time interval. In Step 
2, the signal selection process is performed. Signals 
that represent abnormal activities (danger signals) and 
normal activities (safe signals) are generated using the 
features extracted in Step 1. Step 3 involves two 
phases (i.e., the training phase and the testing phase). 
In the training phase, the NSA instances that make up 
the NSA module are trained using the two signals 
generated in Step 2. Our system uses a weighted 
majority vote technique. Hence, in Step 3, as part of 
the training phase, the weights to be assigned to all 
NSA and DCA instances are computed using the 
training data. In the test phase, profiles for individual 
observed traffic records are built. Then, the tested 
profiles are handed over to the NSA and DCA modules 
respectively. The NSA module compares the 
individual tested profiles with the stored detectors. 
The DCA samples the individual tested profiles using 
a sampling technique. The decisions made by the 
constituent NSA/DCA modules are weighted (using 
the weights determined during the training phase) and 
used by the decision-making module to distinguish 
DoS attacks from legitimate traffic. 

   Evaluation and Experimentation 

The development and evaluation of bio-inspired 
intrusion detection system are performed according to 
the following: 

 (Analysis I): The first plan for our work involves 
performing detailed analyses of IoT device/network 
attack surfaces and how inherent vulnerabilities can be 
exploited by malicious users.  

(Analysis II and Experimentation I): The second step 
involves defining features that would identify an entity 
(an activity, or process). Using the knowledge gained 
in (Analysis I), we carefully select features that will be 
used to signify dangerous and safe signals 
respectively. This also involves developing a 
lightweight software agent that will run on IoT 
devices/edge-cloud nodes, especially on those that 
have constraints on memory and processing capability. 
These agents will be tasked with the responsibility of 
gathering data which will be sent to the nearest edge 
cloud-based node running the full version of out 
proposed IDS (shown in Figure 5). This data is used in 
detecting both network level and device level 
intrusions. Figure 6 shows how the agent could be 

distributed in the IoT network to aid in intrusion 
detection. 

(Experimentation II and Evaluation): To evaluate the 
effectiveness of our solution, we use the following two 
approaches. One approach will be to simulate the 
proposed IDS design and architecture using the 
integrated testbed prosed under this project. The 
second approach involves setting up a private cloud 
under the Cyber Defense Technology Experimental 
Research Laboratory (DeterLab) sponsored by the 
Department of Homeland Security (DHS), and using 
the low capacity nodes under this testbed as the IoT 
nodes. 
Once the 
testbed is 
set up, we 
will 
generate 
normal 
network 
traffic for 3 
months. 
This 
normal 
traffic will be 
used to train 
the NSA 
instances.  

To evaluate our model’s effectiveness, we will 
perform penetration testing in real-time against the IoT 
devices or cloud/edge-cloud nodes using the 
information and vulnerability analysis results obtained 
from Analysis I. Our system is being assessed based 
on its false positive rate (FPR), and Detection Rate 
(DR). A good result will be one with very high DR and 
very small FPR.   To achieve this we are currently 
establishing, through Intrnet2 and other networks, a 
direct connection between the Kyushu Institute of 

Figure 5 Bio-Inspired intrusion detection system (BioIDS) 
building blocks 

Figure 6 Architecture for IoT 
device/network security using BioIDS and 
lightweight 



Technology in Japan and our lab at CCNY in USA to 
experiment with our model in real-time traffic.  We 
plan also to adapt our systems to the virtual machine 
environment as highlighted in [40] [41]. 

Conclusion 

This paper addressed three main topics for secure edge 
could network design; 1) resource management in 
mobile cloud computing; 2) information management 
in dynamic distributed databases; 3) biological-
inspired intrusion detection system.  Currently our 
team at the City University of New York, City College 
(CCNY) and our partner at Kyushu Institute of 
Technology (Kyutech), plan to continue further 
investigation of secure edge cloud network and to 
measure in real time, through the direct connection 
between the labs at Kyutech and CCNY, the various 
system parameters under investigation.  
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