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ABSTRACT: The functioning of interdependent civil infrastructure systems in the aftermath of a disruptive event
is critical to the performance and vitality of any modern urban community. Post-event stressors and chaotic cir-
cumstances, time limitations, and complexities in the community recovery process highlight the necessity for a
comprehensive decision-making framework at the community-level for post-event recovery management. Such
a framework must be able to handle large-scale scheduling and decision processes, which involve difficult control
problems with large combinatorial decision spaces.

This study utilizes approximate dynamic programming algorithms along with heuristics for the identification
of optimal community recovery actions following the occurrence of an extreme earthquake event. The proposed
approach addresses the curse of dimensionality in its analysis and management of multi-state, large-scale infra-
structure systems. Furthermore, the proposed approach can consider the current recovery policies of responsible
public and private entities within the community and shows how their performance might be improved. A testbed
community coarsely modeled after Gilroy, California, is utilized as an illustrative example. While the illustration
provides optimal policies for the Electrical Power Network serving Gilroy following a severe earthquake, pre-
liminary work shows that the methodology is computationally well suited to other infrastructure systems and

hazards.

1 INTRODUCTION

The well-being of modern societies relies on the ability of
civil infrastructure systems to provide continuous services
that allow uninterrupted functionality of critical physical,
social, and economic systems within communities. Severe
disruptive events impose unavoidable malfunctions to crit-
ical infrastructure. Additionally, these events cause cha-
otic circumstances that make it difficult or impossible for
policymakers to make optimal decisions in the public in-
terest. Hence, there is a necessity to develop a comprehen-
sive decision-making methodology to guide risk-informed
decision makers. Such a methodology must have several
properties to be called comprehensive, among which the
most prominent ones are to be robust, accurate, efficient,
and foresightful.

In the past civil engineering studies (e.g., Ellis (1995),
Frangopol (2004), and Meidani (2015)), researchers have
utilized the framework of dynamic programming to obtain
optimal mitigation strategies for a bridge or pavement
maintenance. The dynamic programming approach is in-
tractable when the decision space is huge. Moreover, it is
impractical to calculate optimal decisions in the presence
of real-time constraints. In this study, we propose a meth-
odology with the above-mentioned qualities to compute

the near-optimal recovery decisions for large-scale inter-
connected infrastructure systems following disasters. We
use a promising class of approximation techniques called
rollout algorithms. The proposed methodology is also able
to consider and improve the current recovery policies of
responsible public and private entities within the commu-
nity.

To illustrate the efficiency and applicability of the pro-
posed methodology on real-world problems, we consider
the Electrical Power Networks (EPN) of Gilroy, CA in the
aftermath of an earthquake. Urban inhabitants and the
performance of other infrastructure systems and critical fa-
cilities are heavily dependent on the management of EPN
systems following disasters. We define two objective
functions, as our optimization criteria, that incorporate the
serviceability of the EPN to inhabitants and the main food
retailers of Gilroy. These main food retailers, which are
the critical components of food distribution networks,
must return to a level of normalcy within a reasonable time
following the earthquake to support public well-being.

2 DESCRIPTION OF CASE STUDY

Gilroy is located approximately 50 km south of the city of
San Jose and had a population of 48,821 at the time of the
2010 census. The study area is divided into 36 rectangular
regions organized as a grid to define the properties of the



community and encompasses 41.9 km? area of Gilroy, as
shown in Figure 1.

Figure 1. The map of Gilroy's population over the defined
grids.

Gilroy has six main food retailers to supply the main food
requirements of Gilroy inhabitants. Adigaa et al. (2015)
proposed the following model to compute the shopping ac-
tivity for each residence location:
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where w,is the capacity of food retailer », determined by
Harnish (2014), b is a negative constant, and 7, is the
travel time from urban grid ¢ to food retailer 7.

EPN components, located within the defined bound-
ary are shown in Figure 2. The Llagas power substation,
the main source of power, is supplied by an 115kv trans-
mission line. Nozhati et al. (2018a) provide a more de-
tailed description of the EPN.

Figure 2. The modeled Electrical Power Network

2.1 Hazard, damage, and restoration assessment

We consider an earthquake of M, = 6.9 located approxi-
mately 12 km southwest of downtown Gilroy on the San
Andreas Fault. In this study, the GMPE proposed by
Abrahamson et al. (2013) is used to compute Intensity
Measures (IM) (IM is Peak Ground Acceleration (PGA) in
this study), at specific sites in Gilroy.

We assess direct physical damage to network compo-
nents with fragility curves, which provide the conditional

probability of exceeding a prescribed performance level
for a given IM. We use fragility curves included in the
studies of HAZUS (2003) & Xie et al. (2012). To restore
the EPN, we consider the number of recovery resources,
N, as a generic single value of available resource units
(RU) that contains repair crews, vehicles, equipment so
that each damaged component is assumed to only require
one RU. The restoration times based on the level of dam-
age are adopted from HAZUS (2003) and Nozhati et al.
(2018Db).

3 OPTIMIZATION FORMULATION

Because of the availability of limited RUs, N, and a large
number of damaged components, denoted by M, following
a severe disaster N << M, the optimal assignment of RU to
damaged components is a non-trivial task for decision
makers.

Suppose that the recovery decisions are performed at
discrete times denoted by z. Let D; be the set of all dam-
aged components before a repair action x; is performed.
Let £..q denote the decision epoch at which |Dyena+|<N. Let
X={x1, X2, ..., Xwena} represent the string of actions. We say
that a repair action is completed when at least 1 out of the
N damaged components get repaired. Let Pv(D;) be the
power set order NV of D, (see Nozhati et al. (2018b)). We
wish to calculate a string of repair actions X that optimizes
our objective function F(X). We define two different ob-
jective functions in this study. The term “benefit” in the
definition of the optimization objective signifies that peo-
ple will obtain benefit of EPN recovery only when they
have electricity, and they go to (according to the gravity
model) a retailer that has electricity.

Objective 1: Let p denote the population of Gilroy and
y denote a constant threshold. The objective is to compute
the string of actions so that y x p number of people benefit
from the EPN recovery in the minimum time.

Let n represent the time required to restore the EPN to yxp,
as a result of repair actions X;, where X; = {x;, x2,..., xi}.
Let F'/(X;) = n. Thus, objective 1 is to compute the optimal
solution X, given by:

X’ :=argn)1(inF;(Xl) €))

1

Objective 2: Identify the string of actions that maxim-
izes the number of people benefiting from the EPN recov-
ery per unit of time. Let & denote the total time elapsed
between completion of repair action x..; and x; V' 1 <t<tenq;
k; is the time between start and completion of the first re-
pair action; knq is the time between start of the first repair
action and completion of the final repair action. Let 4; be
the total number of people benefiting from the EPN once
x; is implemented.

lond
F(X) =30 <k @)
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The optimal solution X" is given by:
X' :=argmax F, (X) 3



4 APPROXIMATE DYNAMIC PROGRAMMING

Henceforth, we focus on Objective 1 in this article. For the
extension of the results and other details associated with
the optimization for objective 2, see Nozhati et al. (2018b).

The calculation of X 1* is possible in dynamic programming
(DP) as follows:

First calculate X, such that:

x, € arg mrin J,(x,) (€))
where the fimction J; is defined as:

J, (xl):glll)}F;(Xl) Q)
We proceed further to calculate x; as:

x, € arg n'lin J, (x]*,xz) (6)
where J, (ch,xz) = min F; (X)) (7)

Similarly, the a solution is as follows:
x, eargminJ(x,,...,X, |,X,)

Yo
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where J o 1s defined as:

J,(%,,...,x,) = min F (X,) )

J. is called the cost-to-go function Bertsekas (1995).
There are cases in which the DP method above can be used
to obtain strict optimal actions. It, however, is not widely
used because the associated computational requirements
are often overwhelming in terms of memory and/or execu-
tion time. In most cases, DP is impossible to use to com-
pute optimal actions for even a modest real size commu-
nity or network. Therefore, approximate solution
techniques must be utilized to overcome the limitations
imposed by classical dynamic programming approach. All
such methods fall under the purview of approximate dy-
namic programming (ADP). Particularly, these techniques
employ some approximation of J, in Equation 8. Let us
denote the approximation of J, by H,. Here, we study one
such technique—rollout. Rollout uses a base heuristic to
approximate J, in Equation 8. There is no restriction to de-
fine a base heuristic. It can be the current recovery policy
of regionally responsible entities; it can be based on the
contribution of components to the overall risk, or a random
policy without any pre-assumption. If Hy(x,,..., x,) is the
corresponding approximate optimal value, rollout obtains
that near-optimal solution by replacing J, with H,in Equa-
tion 8.

10)

The rollout algorithm achieves a substantial perfor-
mance improvement over the base heuristic. The complete
descriptions of rollout algorithm and effects of different
base heuristics are elaborated in Bertsekas (1995) and
Nozhati et al. (2018b). In the study Nozhati et al. (2018b),
two different base heuristics are used, random and smart
H, computed based on the importance of each EPN ele-

X, € argmin H, (x,...X,,x,)

ment in the network. Here, we only continue with the ran-
dom H for the two objectives. The consideration of a ran-
dom base heuristic indicates that the proposed methodol-
ogy is applicable with any arbitrary base heuristic.
Combining meta-heuristics with rollout to focus on the
most promising repair actions, at each decision epoch ¢, is
also recently studied, see Nozhati et al. (2018c). In addi-
tion, there could be uncertainty in the outcome of the re-
pair actions performed. Capturing these effects in the de-
cision-making process is also being actively pursued, see
Sarkale et al. (2018).

S RESULTS

5.1 Casel: The optimization of EPN for household units

We first compute the recovery process of the EPN with
base heuristic, as shown in Figure 3, which shows the
number of residents with electricity following the earth-
quake as a function of time. Because of different sources
of uncertainties in the earthquake intensities and response
of components, the mean and standard deviation are com-
puted and shown in Figure 3.
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Figure 3. Network recovery due to actions using base heuristic
Figure 4 shows the performance of the rollout algo-

rithm for objective 2. Figure 4 highlights the remarkable
improvement of the rollout over the base heuristic (H).
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Figure 4. Comparison of base heuristic and rollout algorithm



5.2 Case2: The optimization of EPN for household units
and food retailers

Providing a proper recovery strategy for multiple objec-
tives or networks is often a challenging task for policy-
makers. It highlights the importance of a rational method-
ology at community-level by which decision makers
would be able to manage several targets and networks sim-
ultaneously. In this study, the target is to compute recovery
actions so that both household units and food retailers have
electricity in a timely manner.

Figure 5 indicates the rollout algorithm outperforms the
H algorithm significantly for objective 1. The expected
number of days to supply electricity to y=0.8 times the to-
tal number of people is about 8 days, while for H is about
30 days. Figure 6 compares the two recovery processes
based on A and rollout algorithm for objective 2.
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Figure 5. Cumulative moving average for objective 1 with base
heuristic and rollout algorithm
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Figure 6. Comparison of base heuristic and rollout algorithm

The improvement in the recovery owing to the appli-
cation of rollout algorithm on the base heuristics are sig-
nificant. This is justified by the utilization of a random
base policy without any pre-assumption as our underlying
base heuristic in the simulations. Experiments are on to
quantify the performance of rollout on other types of un-
derlying base heuristics.

6 CONCLUSIONS

We formulated a method for optimizing the recovery of
electrical power utilizing an approximate dynamic pro-
gramming algorithm, leveraging the rollout algorithm to
identify the near-optimal recovery actions at the commu-
nity-level. Different objective functions are defined to
show the flexibility and applicability of the proposed
method for the real-world problems. While the formula-
tion identifies the near-optimal actions for the EPN of Gil-
roy following a severe earthquake, we believe that it can
be adapted to any civil infrastructure and/or natural or an-
thropogenic hazard.
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