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Abstract

The lack of a comprehensive decision-making approach at the community level is an important problem
that warrants immediate attention. Network-level decision-making algorithms need to solve large-scale
optimization problems that pose computational challenges. The complexity of the optimization problems
increases when various sources of uncertainty are considered. This research introduces a sequential discrete
optimization approach, as a decision-making framework at the community level for recovery management.
The proposed mathematical approach leverages approximate dynamic programming along with heuristics
for the determination of recovery actions. Our methodology overcomes the curse of dimensionality and
manages multi-state, large-scale infrastructure systems following disasters. We also provide computational
results showing that our methodology not only incorporates recovery policies of responsible public and
private entities within the community but also substantially enhances the performance of their underlying
strategies with limited resources. The methodology can be implemented efficiently to identify near-optimal
recovery decisions following a severe earthquake based on multiple objectives for an electrical power network
of a testbed community coarsely modeled after Gilroy, California, United States. The proposed optimization
method supports risk-informed community decision makers within chaotic post-hazard circumstances.

Keywords: Approximate Dynamic Programming, Combinatorial Optimization, Community Resilience,
Electrical Power Network, Rollout Algorithm

1. Introduction

In the modern era, the functionality of infras-
tructure systems is of significant importance in pro-
viding continuous services to communities and in
supporting their public health and safety. Nat-5

ural and anthropogenic hazards pose significant
challenges to infrastructure systems and cause un-
desirable system malfunctions and consequences.
Past experiences show that these malfunctions are
not always inevitable despite design strategies like10

∗Corresponding author
Email addresses: saeed.nozhati@colostate.edu

(Saeed Nozhati ), yugandhar.sarkale@colostate.edu
(Yugandhar Sarkale), bruce.ellingwood@colostate.edu
(Bruce Ellingwood), edwin.chong@colostate.edu (Edwin
K.P. Chong), hussam.mahmoud@colostate.edu (Hussam
Mahmoud)

1Contributed equally, listed alphabetically.

increasing system redundancy and reliability [1].
Therefore, a sequential rational decision-making
framework should enable malfunctioned systems to
be restored in a timely manner after the hazards.
Further, post-event stressors and chaotic circum-15

stances, time limitations, budget and resource con-
straints, and complexities in the community recov-
ery process, which are twinned with catastrophe,
highlight the necessity for a comprehensive risk-
informed decision-making framework for recovery20

management at the community level. A compre-
hensive decision-making framework must take into
account indirect and delayed consequences of deci-
sions (also called the post-effect property of deci-
sions), which requires foresight or planning. Such25

a comprehensive decision-making system must also
be able to handle large-scale scheduling problems
that encompass large combinatorial decision spaces
to make the most rational plans at the community
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level.30

Developing efficient computational methodolo-
gies for sequential decision-making problems has
been a subject of significant interest [2–5]. In the
context of civil engineering, several studies have
utilized the framework of dynamic programming35

for management of bridges and pavement main-
tenance [6–10]. Typical methodological formula-
tions employ principles of dynamic programming
that utilize state-action pairs. In this study, we de-
velop a powerful and relatively unexplored method-40

ological framework of formulating large infrastruc-
ture problems as string-actions, which will be de-
scribed in Section 5.2. Our formulation does not
require an explicit state-space model; therefore, it
is shielded against the common problem of state45

explosion when such methodologies are employed.
The sequential decision-making methodology pre-
sented here not only manages network-level infras-
tructure but also considers the interconnectedness
and cascading effects in the entire recovery process50

that have not been addressed in the past studies.
Dynamic programming formulations frequently

suffer from the curse of dimensionality. This prob-
lem is further aggravated when we have to deal with
large combinatorial decision spaces characteristic of55

community recovery. Therefore, using approxima-
tion techniques in conjunction with the dynamic
programming formalism is essential. There are sev-
eral approximation techniques available in the lit-
erature [11–14]. Here, we use a promising class of60

approximation techniques called rollout algorithms.
We show how rollout algorithms blend naturally
with our string-action formulation. Together, they
form a robust tool to overcome some of the lim-
itations faced in the application of dynamic pro-65

gramming techniques to massive real-world prob-
lems. The proposed approach is able to handle the
curse of dimensionality in its analysis and manage-
ment of multi-state, large-scale infrastructure sys-
tems and data sources. The proposed methodology70

is also able to consider and improve the current re-
covery policies of responsible public and private en-
tities within the community.
Among infrastructure systems, electrical power

networks (EPNs) are particularly critical insofar as75

the functionality of most other networks, and criti-
cal facilities depend on EPN functionality and man-
agement. Hence, the method is illustrated in an ap-
plication to recovery management of the modeled
EPN in Gilroy, California following a severe earth-80

quake. The illustrative example shows how the pro-

posed approach can be implemented efficiently to
identify near-optimal recovery decisions. The com-
puted near-optimal decisions restored the EPN of
Gilroy in a timely manner, for residential buildings85

as well as main food retailers, as an example of crit-
ical facilities that need electricity to support public
health in the aftermath of hazards.
The remainder of this study is structured as fol-

lows. In Section 2, we introduce the background90

of system resilience and the system modeling used
in this study. In Section 3, we introduce the case
study used in this paper. In Section 4, we describe
the earthquake modeling, fragility, and restoration
assessments. In Section 5, we provide a mathemat-95

ical formulation of our optimization problem. In
Section 6, we describe the solution method to solve
the optimization problem. In Section 7, we demon-
strate the performance of the rollout algorithm with
the string-action formulation through multiple sim-100

ulations. In Section 8, we present a brief conclusion
of this research.

2. System Resilience

The term resilience is defined in a variety of
ways. Generally speaking, resilience can be defined105

as “the ability to prepare for and adapt to changing
conditions and withstand and recover rapidly from
disruptions”[15]. Hence, resilience of a community
(or a system) is usually delineated with the measure
of community functionality, shown by the vertical110

axis of Fig. 1 and four attributes of robustness, ra-
pidity, redundancy, and resourcefulness [16]. Fig. 1
illustrates the concept of functionality, which can
be defined as the ability of a system to support its
planned mission, for example, by providing electric-115

ity to people and facilities. The understanding of
interdependencies among the components of a sys-
tem is essential to quantify system functionality and
resilience. These interdependencies produce cas-
cading failures where a large-scale cascade may be120

triggered by the malfunction of a single or few com-
ponents [17]. Further, they contribute to the recov-
ery rate and difficulty of the entire recovery process
of a system. Different factors affect the recovery
rate of a system, among which modification before125

disruptive events (ex-ante mitigations), different re-
covery policies (ex-post actions), and nature of the
disruption are prominent [18]. Fig. 1 also highlights
different sources of uncertainty that are associated
with community functionality assessment and have130

remarkable impacts in different stages from prior to
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Figure 1: Schematic representation of resilience concept
(adopted from [16, 20])

the event to the end of the recovery process. There-
fore, any employed model to assess the recovery pro-
cess should be able to consider the impacts of the
influencing parameters.135

In this study, the dependency of networks is mod-
eled through an adjacency matrix A = [xij ], where
xij ∈ [0, 1] indicates the magnitude of dependency
between components i and j [19]. In this gen-
eral form, the adjacency matrix A can be a time-140

dependent stochastic matrix to capture the uncer-
tainties in the dependencies and probable time-
dependent variations.
According to the literature, the resilience indexR

for each system is defined by the following equation
[16, 21]:

R =

∫ te+TLC

te

Q(t)

TLC

dt. (1)

where Q(t) is the functionality of a system at time
t, TLC is the control time of the system, and te145

is the time of occurrence of event e, as shown in
Fig. 1. We use this resilience index to define one of
the objective functions.

3. Description of Case Study

In the case study of this paper, the community150

in Gilroy, California, USA is used as an example
to illustrate the proposed approach. Gilroy is lo-
cated approximately 50 kilometers (km) south of
the city of San Jose with a population of 48,821 at
the time of the 2010 census (see Fig. 2) [22]. The155

study area is divided into 36 gridded rectangles to
define the community and encompasses 41.9 km2

area of Gilroy. In this study, we do not cover all

Figure 2: Map of Gilroy’s population over the defined grids

the characteristics of Gilroy; however, the adopted
model has a resolution that is sufficient to study the160

methodology at the community level under hazard
events.
Gilroy contains six main food retailers, each of

which has more than 100 employees, that provide
the main food requirements of Gilroy inhabitants165

[23], as shown in Fig. 3 and summarized in Table 1.
To assign the probabilities of shopping activity

to each urban grid rectangle, the gravity model [24]
is used. The gravity model identifies the shopping
location probabilistically, given the location of resi-170

dences. These probabilities are assigned to be pro-
portional to food retailers' capacities and inversely
corresponding to retailers' distances from centers of
urban grid rectangles. Consequently, distant small
locations are less likely to be selected than close175

large locations.
If the center of an urban grid is c, then food re-

tailer r is chosen according to the following distri-
bution [24]:

P (r|c) ∝ wre
bTcr . (2)

where wr is the capacity of food retailer r, deter-
mined by Table 1, b is a negative constant, and Tcr

is the travel time from urban grid rectangle c to
food retailer r. Google's Distance Matrix API was180

called from within R by using the ggmap package
[25] to provide distances and travel times for the
assumed transportation mode of driving.
Fig. 4 depicts the EPN components, located

within the defined boundary. Llagas power sub-185

station, the main source of power in the defined
boundary, is supplied by an 115 kV transmission
line. Distribution line components are positioned
at 100 m and modeled from the substation to the
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Table 1: The main food retailers of Gilroy

Food Retailer Walmart Costco Target Mi Pueblo Food Nob Hill Foods Safeway
Number of Employees 395 220 130 106 100 130

Figure 3: Gilroy’s main food retailers

urban grids centers, food retailers, and water net-190

work facilities. In this study, the modeled EPN has
327 components.

4. Hazard and Damage Assessment

4.1. Earthquake Simulation

The seismicity of the Gilroy region of Califor-
nia is mainly controlled by the San Andreas Fault
(SAF), which caused numerous destructive earth-
quakes like the Loma Prieta earthquake [26]. The
spatial estimation of ground-motion amplitudes
from earthquakes is an essential element of risk as-
sessment, typically characterized by ground-motion
prediction equations (GMPEs). GMPEs require
several parameters, such as earthquake magnitude
Mw, fault properties (Fp), soil conditions (i.e., the
average shear-wave velocity in the top 30 m of soil,
Vs30), and epicentral distances (R) to compute the
seismic intensity measure (IM) at any point. Mod-
ern GMPEs typically take the form

ln(IM) = f(Mw, R, Vs30, Fp) + ε1σ + ε2τ

ln(IM) = ln(IM) + ε1σ + ε2τ.
(3)

where σ and τ reflect the intra-event (within event)195

and inter-event (event-to-event) uncertainty respec-
tively [27]. In this study, the GMPE proposed by

Figure 4: The modeled electrical power network of Gilroy

Figure 5: The map of shear velocity at Gilroy area

Abrahamson et al. [28] is used, and a ground mo-
tion similar to the Loma Prieta earthquake, one of
the most devastating hazards that Gilroy has ex-200

perienced [26], with epicenter approximately 12 km
of Gilroy downtown on the SAF projection is sim-
ulated. Figs. 5 and 6 show the map of Vs30 and
ground motion field for Peak Ground Acceleration
(PGA), respectively.205

4.2. Fragility Function and Restoration

In the event of an earthquake, the relations be-
tween ground-motion intensities and earthquake
damage are pivotal elements in the loss estimation
and the risk analysis of a community. Fragility
curves describe the probability of experiencing or
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Figure 6: The simulation of median of peak ground acceler-
ation field

exceeding a particular level of damage as a func-
tion of hazard intensity. It is customary to model
component fragilities with lognormal distributions
[29]. The conditional probability of being in or ex-
ceeding a particular damage state (ds), conditioned
on a particular level of intensity measure IM = im,
is defined by

P (DS ≥ ds|IM = im) = Φ

(

ln(im)− λ

ξ

)

. (4)

where Φ is the standard normal distribution; λ and
ξ are the mean and standard deviation of ln(im).
The fragility curves can be obtained based on a)
post-earthquake damage evaluation data (empiri-210

cal curves) [30] b) structural modeling (analytical
curves) [31] c) expert opinions (heuristics curves)
[32]. In the present study, the seismic fragility
curves included in [33, 34] are used for illustration.
To restore a network, a number of available215

resource units, N , as a generic single number
including equipment, replacement components,
and repair crews are considered for assignment
to damaged components, and each damaged
component is assumed to require only one unit of220

resource [35]. The restoration times based on the
level of damage, used in this study, are presented
in Table 2, based on [33, 36].

5. Optimization Problem Description225

5.1. Introduction

After an earthquake event occurs, each EPN
component ends up in one of the damage states as
shown in Table 2. Let the total number of dam-
aged components be M . Note that M ≤ 327. Both230

M and N are non-negative integers. Also, in this
study, N � M . This assumption is justified by the
availability of limited resources with the planner
where large number of components are damaged in
the aftermath of a severe hazard.235

A decision maker or planner has the task of as-
signing units of resources to these damaged com-
ponents. A decision maker has a heuristic or ex-
pert policy on the basis of which he can make his
decisions to optimize multiple objectives. The pre-240

cise nature of the objective of the planner can vary,
which will be described in detail in Section 5.2. Par-
ticularly, at the first decision epoch, the decision
maker or a resource planner deploys N unit of re-
sources at N out of M damaged components. Each245

unit of resource is assigned to a distinct damaged
component. At every subsequent decision epoch,
the planner must have an option of reassigning some
or all of the resources to new locations based on his
heuristics and objectives. He must have the flexi-250

bility of such a reassignment even if the repair work
at the currently assigned locations is not complete.
At every decision epoch, it is possible to forestall
the reassignment of the units of resource that have
not completed the repair work; however, we choose255

to solve the more general problem of preemptive as-
signment, where non-preemption at few or all the
locations is a special case of our problem. The
preemptive assignment problem is a richer decision
problem than the non-preemptive case in the sense260

that the process of optimizing the decision actions
is a more complex task because the size of the de-
cision space is bigger.

In this study, we assume that the outcome of
the decisions is fully predictable [37, 38]. We are265

preparing a separate study to address the relaxation
of this assumption, i.e., when outcomes of decisions
exhibit uncertainty. The modified methods to deal
with the stochastic problem will form a part of a
separate paper [39].270

We improve upon the solutions offered by heuris-
tics of the planner by formulating our optimization
problem as a dynamic program, and solving it using
the rollout approach.

5.2. Optimization Problem Formulation275

Suppose that the decision maker starts making
decisions and assigning repair locations to differ-
ent units of resource. The number of such non-
trivial decisions to be made is less than or equal to
M − N . When M becomes less than or equal to280
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Table 2: Restoration times based on the level of damage

Damage States
Component Undamaged Minor Moderate Extensive Complete
Electric sub-station 0 1 3 7 30
Transmission line component 0 0.5 1 1 2
Distribution line component 0 0.5 1 1 1

N (because of sequential application of repair ac-
tions to the damaged components), the assignment
of units of resource becomes a trivial problem in our
setting because each unit can simply be assigned
one to one, in any order, to the damaged compo-285

nents. Consequently, a strict optimal assignment
can be achieved in the trivial case. The size of this
trivial assignment problem reduces by one for every
new decision epoch until all the remaining damaged
components are repaired. The additional units of290

resources retire because deploying more than one
unit of resource to the same location does not de-
crease the repair time associated with that damaged
component. Henceforth, we focus on the non-trivial
assignment problem.295

Let the variable t denote the decision epoch, and
let Dt be the set of all damaged components before
a repair action xt is performed. Let tend denote
the decision epoch at which repair action xtend

is
selected so that |Dtend+1| ≤ N . Note that t ∈
A := (1, 2, . . . , tend). Let X = (x1, x2, . . . , xtend

)
represent the string of actions owing to the non-
trivial assignment. We say that a repair action is
completed when at least one out of the N damaged
components is repaired. Let P(Dt) be the powerset
of Dt. Let,

PN (Dt) = {C ∈ P(Dt) : |C| = N}. (5)

so that xt ∈ PN (Dt). Let Rt be the set of all re-
paired components after the repair action xt is com-
pleted. Note that Dt+1 = Dt\Rt, ∀t ∈ A, where
1 ≤ |Dtend+1| ≤ N , and the decision-making prob-
lem moves into the trivial assignment problem pre-300

viously discussed.
We wish to calculate a string X of repair actions

that optimizes our objective functions F (X). We
deal with two objective functions in this study de-
noted by mapping F1 and F2.305

• Objective 1: Let the variable p represent the
population of Gilroy and γ represent a constant
threshold. Let X1 = (x1, . . . , xi) be the string
of repair actions that results in restoration of

electricity to γ × p number of people. Here,
xi ∈ PN (Di), where Di is the number of dam-
aged component at the ith decision epoch. Let
n represent the time required to restore elec-
tricity to γ × p number of people as a result of
repair actions X1. Formally,

F1 (X1) = n. (6)

Objective 1 is to compute the optimal solution
X∗

1 given by

X∗

1 = argmin
X1

F1(X1). (7)

We explain the precise meaning of restoration
of electricity to people in more detail in Sec-
tion 7.1. To sum up, in objective 1, our aim is
to find a string of actions that minimizes the
number of days needed to restore electricity to310

a certain fraction (γ) of the total population of
Gilroy.

• Objective 2: We define the mapping F2 in
terms of number of people who have electric-
ity per unit of time; our objective is to max-
imize this mapping over a string of repair ac-
tions. Let the variable kt denote the total time
elapsed between the completion of repair ac-
tion xt−1 and xt, ∀t ∈ A\{1}; k1 is the time
elapsed between the start and completion of
repair action x1. Let ht be the total number of
people that have benefit of EPN recovery after
the repair action xt is complete. Then,

F2(X) =
1

kttot

tend
∑

t=1

ht × kt, (8)

where kttot =
∑tend

v=1 ktv . We are interested in
the optimal solution X∗ given by

X∗ = argmax
X

F2(X). (9)

Note that our objective function in the second
case F2(X) mimics the resilience index and can be
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interpreted in terms of (1). Particularly, the inte-315

gral in (1) is replaced by a sum because of discrete
decision epochs, Q(t) is replaced by the product
ht× kt, ktend

is analogous to TLC , and the integral
limits are changed to represent the discrete decision
epochs.320

6. Optimization Problem Solution

Calculating X∗ or X∗

1 is a sequential optimiza-
tion problem. The decision maker applies the re-
pair action xt at the decision epoch t to maximize
or minimize a cumulative objective function. The325

string of actions, as represented in X or X1, are
an outcome of this sequential decision-making pro-
cess. This is particularly relevant in the context
of dynamic programming where numerous solution
techniques are available for the sequential optimiza-330

tion problem. Rollout is one such method that
originated in dynamic programming. It is possi-
ble to use the dynamic programming formalism to
describe the method of rollout, but here we accom-
plish this by starting from first principles [40]. We335

will draw comparisons between rollout with first
principles and rollout in dynamic programming at
suitable junctions. The description of the rollout
algorithm is inherently tied with the notion of ap-
proximate dynamic programming.340

6.1. Approximate Dynamic Programming

Let’s focus our attention on objective 1. The
extension of this methodology to objective 2 is
straightforward; we need to adapt notation used
for objective 2 in the methodology presented below,
and a maximization problem replaces a minimiza-
tion problem. Recall that we are interested in the
optimal solution X∗

1 given by (7). This can be cal-
culated in the following manner:
First calculate x∗

1 as follows:

x∗

1 ∈ argmin
x1

J1(x1), (10)

where the function J1 is defined by

J1(x1) = min
x2,...,xi

F1(X1). (11)

Next, calculate x∗

2 as:

x∗

2 ∈ argmin
x2

J2(x
∗

1, x2), (12)

where the function J2 is defined by

J2(x1, x2) = min
x3,...,xi

F1(X1). (13)

Similarly, we calculate the α-solution as follows:

x∗

α ∈ argmin
xα

Jα(x
∗

1, . . . , x
∗

α−1, xα), (14)

where the function Jα is defined by

Jα(x1, . . . , xα) = min
xα+1,...,xi

F1(X1). (15)

The functions Jα are called the optimal cost-to-go
functions and are defined by the following recursion:

Jα(x1, . . . , xα) = min
xα+1

Jα+1(x1, . . . , xα+1), (16)

where the boundary condition is given by:

Ji(X1) = F1(X1). (17)

Note that J is a standard notation used to represent
cost-to-go functions in the dynamic programming
literature.

The approach discussed above to calculate the
optimal solutions is typical of the dynamic pro-
gramming formulation. However, except for very
special problems, such a formulation cannot be
solved exactly because calculating and storing the
optimal cost-to-go functions Jα can be numeri-
cally intensive. Particularly, for our problem, let
|PN (Dt)| = βt; then the storage of Jα requires a
table of size

Sα =

α
∏

t=1

βt, (18)

where α ≤ i for objective 1, and α ≤ tend for objec-345

tive 2. In the dynamic programming literature, this
is called as the curse of dimensionality. If we con-
sider objective 2 and wish to calculate Jα such that
α = M−N (we assume for the sake of this example
that only a single damaged component is repaired350

at each t), then for 50 damaged components and
10 unit of resources, Sα ≈ 10280. In practice, Jα in
(14) is replaced by an approximation denoted by J̃α.
In the literature, J̃α is called as a scoring function

or approximate cost-to-go function [41]. One way to355

calculate J̃α is with the aid of a heuristic; there are
several ways to approximate Jα that do not utilize
heuristic algorithms. All such approximation meth-
ods fall under the category of approximate dynamic
programming.360

The method of rollout utilizes a heuristic in the
approximation process. We provide a more detailed
discussion on the heuristic in Section 6.2. Suppose
that a heuristic H is used to approximate the min-
imization in (15), and let Hα(x1, . . . , xα) denote
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the corresponding approximate optimal value; then
rollout yields the suboptimal solution by replacing
Jα with Hα in (14):

x̃α ∈ argmin
xα

Hα(x̃1, . . . , x̃α−1, xα). (19)

The heuristic used in the rollout algorithm is usu-
ally termed as the base heuristic. In many practical
problems, rollout results in a significant improve-
ment over the underlying base heuristic to solve the
approximate dynamic programming problem [41].365

6.2. Rollout Algorithm

It is possible to define the base heuristic H in
several ways:

(i) The current recovery policy of regionally re-
sponsible public and private entities,370

(ii) The importance analyses that prioritize the im-
portance of components based on the consid-
ered importance factors [42],

(iii) The greedy algorithm that computes the
greedy heuristic [43, 44],375

(iv) A random policy without any pre-assumption,

(v) A pre-defined empirical policy; e.g., base
heuristic based on the maximum node and link
betweenness (shortest path), as for example,
used in the studies of [35, 45].380

The rollout method described in Section 6.1, us-
ing first principles and string-action formulation,
for a discrete, deterministic, and sequential opti-
mization problem has interpretations in terms of
the policy iteration algorithm in dynamic program-385

ming. The policy iteration algorithm (see [46] for
the details of the policy iteration algorithm includ-
ing the definition of policy in the dynamic program-
ming sense) computes an improved policy (policy
improvement step), given a base policy (station-390

ary), by evaluating the performance of the base
policy. The policy evaluation step is typically per-
formed through simulations [39]. Rollout policy can
be viewed as the improved policy calculated using
the policy iteration algorithm after a single iter-395

ation of the policy improvement step. For a dis-
crete and deterministic optimization problem, the
base policy used in the policy iteration algorithm
is equivalent to the base heuristic, and the rollout
policy consists of the repeated application of this400

heuristic. This approach was used by the authors

in [41] where they provide performance guarantees
on the basic rollout approach and discuss variations
to the rollout algorithm. Henceforth, for our pur-
poses, base policy and base heuristic will be consid-405

ered indistinguishable.
On a historical note, the term rollout was first

coined by Tesauro in reference to creating computer
programs that play backgammon [47]. An approach
similar to rollout was also shown much earlier in410

[48].
Ideally, we would like the rollout method to never

perform worse than the underlying base heuristic
(guarantee performance). This is possible under
each of the following three cases [41]:415

1. The rollout method is terminating (called as
optimized rollout).

2. The rollout method utilizes a base heuristic
that is sequentially consistent (called as roll-
out).420

3. The rollout method is terminating and utilizes
a base heuristic that is sequentially improving

(extended rollout and fortified rollout).

A sequentially consistent heuristic guarantees that
the rollout method is terminating. It also guaran-425

tees that the base heuristic is sequentially improv-
ing. Therefore, 3 and 1 are the special cases of
2 with a less restrictive property imposed on the
base heuristic (that of sequential improvement or
termination). When the base heuristic is sequen-430

tially consistent, the fortified and extended rollout
method are the same as the rollout method.

A heuristic must posses the property of termina-
tion to be used as a base heuristic in the rollout
method. Even if the base heuristic is terminat-435

ing, the rollout method need not be terminating.
Apart from the sequential consistency of the base
heuristic, the rollout method is guaranteed to be
terminating if it is applied on problems that ex-
hibit special structure. Our problem exhibits such440

a structure. In particular, a finite number of dam-
aged components in our problem are equivalent to
the finite node set in [41]. Therefore, the rollout
method in this study is terminating. In such a sce-
nario, we could use the optimized rollout algorithm445

to guarantee performance without putting any re-
striction on the base heuristic to be used in the pro-
posed formulation; however, a wiser base heuristic
can potentially enhance further the computed roll-
out policy. Nevertheless, our problem does not re-450

quire any special structure on the base heuristic for
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the rollout method to be sequentially improving,
which is justified later in this section.
In the terminology of dynamic programming, a

base heuristic that admits sequential consistency is455

analogous to the Markov or stationary policy. Sim-
ilarly, the terminating rollout method defines a roll-
out policy that is stationary.
Two different base heuristics are considered in

this study. The first base heuristic is a random460

heuristic denoted by H. The idea behind consid-
eration of this heuristic is that in actuality there
are cases where there is no thought-out strategy or
the computation of such a scheme is computation-
ally expensive. We will show though simulations465

that the rollout formulation can accept a random
base policy at the community level from a decision
maker and improve it significantly. The second
base heuristic is called a smart heuristic because
it is based on the importance of components and470

expert judgment, denoted by Ĥ. The importance
factors used in prioritizing the importance of the
components can accommodate the contribution of
each component in the network. This base heuris-
tic is similar in spirit to the items (ii) and (v) listed475

above. More description on the assignment of units
of resources based on H and Ĥ is described in Sec-
tion 7.1.1. We also argue there that H and Ĥ are
sequentially consistent. Therefore, in this study,
and for our choice of heuristics, the extended, for-480

tified, and rollout method are equivalent.
LetH be any heuristic algorithm; the state of this

algorithm at the first decision epoch is j̃1, where
j̃1 = (x̃1). Similarly, the state of the algorithm at
the αth decision epoch is the α-solution given by
j̃α = (x̃1, . . . , x̃α), i.e., the algorithm generates the
path of the states (j̃1, j̃2, . . . , j̃α). Note that j̃0 is the
dummy initial state of the algorithm H. The algo-
rithm H terminates when α = i for objective 1, and
α = tend for objective 2. Henceforth, in this section,
we consider only objective 1 without any loss of gen-
erality. Let Hα(j̃α) denote the cost-to-go starting
from the α-solution, generated by applying H (i.e.,
H is used to evaluate the cost-to-go). The cost-to-
go associated with the algorithm H is equal to the
terminal reward, i.e., H̃α(j̃α) = F1(X1). Therefore,
we have: H̃1(j̃1) = H̃2(j̃2) = . . . = H̃i(j̃i). We use
this heuristic cost-to-go in (14) to find an approx-
imate solution to our problem. This approxima-
tion algorithm is termed as “Rollout on H” (RH)
owing to its structure that is similar to the ap-
proximate dynamic programming approach rollout.
The RH algorithm generates the path of the states

(j1, j2, . . . , ji) as follows:

jα = arg min
δ∈N(jα−1)

J̃(δ), α = 1, . . . , i (20)

where, jα−1 = (x1, . . . , xα−1), and

N(jα−1) = {(x1, . . . , xα−1, x)|x ∈ PN (Dα)}. (21)

The algorithm RH is sequentially improving with
respect to H and outperforms H (see [49] for the
details of the proof).
The RH algorithm described above is termed as485

one-step lookahead approach because the repair ac-
tion at any decision epoch t (current step) is opti-
mized by minimizing the cost-to-go given the repair
action at t (see (20)). It is possible to generalize
this approach to incorporate multi-step lookahead.490

Suppose that we optimize the repair actions at any
decision epoch t and t + 1 (current and the next
step combined) by minimizing the cost-to-go given
the repair actions for the current and next steps.
This can be viewed as a two-step lookahead ap-495

proach. Note the similarity of this approach with
the dynamic programming formulation from first
principles in Section 6.1, except for the difficulty
of estimating the cost-to-go values J exactly. Also,
note that a two-step lookahead approach is com-500

putationally more intensive than the one-step ap-
proach. In principle, it is possible to extend it to
step size λ, where 1 ≤ λ ≤ i. However, as λ in-
creases, the computational complexity of the algo-
rithm increases exponentially. Particularly, when λ505

is selected equal to i at the first decision epoch, the
RH algorithm finds the exact optimal solution by
exhaustively searching through all possible combi-
nations of repair action at each t, with computa-
tional complexity O(Si). Also, note that RH pro-510

vides a tighter upper bound on the optimal objec-
tive value compared to the bound obtained from
the original heuristic approach.

7. Results

7.1. Discussion515

We show simulation results for two different
cases. In Case 1, we assume that people have elec-
tricity when their household units have electricity.
Recall that the city is divided into different grid-
ded rectangles according to population heat maps520

(Fig. 2), and different components of the EPN serv-
ing these grids are depicted in Fig. 4. The entire
population living in a particular gridded rectangle
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will not have electricity until all the EPN compo-
nents serving that grid are either undamaged or525

repaired post-hazard (functional). Conversely, if
the EPN components serving a particular gridded
rectangle are functional, all household units in that
gridded rectangle are assumed to have electricity.
In Case 2, along with household units, we incor-530

porate food retailers into the analysis. We say that
people have the benefit of electric utility only when
the EPN components serving their gridded rectan-
gles are functional, and they go to a food retailer
that is functional. A food retailer is functional (in535

the electric utility sense) when all the EPN com-
ponents serving the retailer are functional. The
mapping of number of people who access a partic-
ular food retailer is done at each urban grid rect-
angle and follows the gravity model explained in540

Section 3.
In both the cases, the probability that a critical

facility like a food retailer or an urban grid rectangle
G has electricity is

P (EG) := P

(

n̂
⋂

l=1

EEl

)

. (22)

where n̂ is the minimum number of EPN compo-
nents required to supply electricity to G, EG is the
event that G has electricity, and EEl is the event
that the lth EPN component has electricity. The545

sample space is a singleton set that has the out-
come, “has electricity.”
For all the simulation results provided hence-

forth, the number of units of resource available with
the planner is fixed at 10.550

7.1.1. Case 1: Repair Action Optimization of EPN

for Household Units

The search space PN (Dt) undergoes a combina-
torial explosion for modest values of N and Dt, at
each t, until few decision epochs before moving into555

the trivial assignment problem, where the value of
βt is small. Because of the combinatorial nature of
the assignment problem, we would like to reduce
the search space for the rollout algorithm, at each
t, without sacrificing on the performance. Because560

we consider EPN for only household units in this
section, it is possible to illustrate techniques, to re-
duce the size of the search space for our rollout
algorithm, that provide a good insight into formu-
lating such methods for other similar problems. We565

present two representative methods to deal with
the combinatorial explosion of the search space,

Figure 7: Electrical Power Network of Gilroy

namely, 1-step heuristic and N-step heuristic. Note
that these heuristics are not the same as the base
heuristic H or Ĥ.570

Before we describe the 1-step and N-step heuris-
tic, we digress to discuss H and Ĥ. Both, H and
Ĥ, have a preordained method of assigning units
of resources to the damaged locations. This or-
der of assignment remains fixed at each t. In H,575

this order is decided randomly; while in Ĥ, it is de-
cided based on importance factors. Let’s illustrate
this further with the help of an example. Suppose
that we name each of the components of the EPN
with serial numbers from 1 to 327 as shown par-580

tially in Fig. 7; the assignment of these numbers to
the EPN components is based on Ĥ and remains
fixed at each t, where a damaged component with
a lower number is always assigned unit of resource
before a damaged component with a higher number,585

based on the availability of units of resource. There-
fore, the serial numbers depict the preordained pri-
ority assigned to components that is decided be-
fore decision-making starts. E.g., if the component
number 21 and 22 are both damaged, the decision590

maker will assign one unit of resource to compo-
nent 21 first and then schedule repair of component
22, contingent on availability of resources. Such a
fixed pre-decided assignment of unit of resource by
heuristic algorithm H and Ĥ matches the definition595

of a consistent path generation in [41]. Therefore,
H and Ĥ are sequentially consistent. Note that the
assignment of numbers 1 to 327 in Fig. 7 is assumed
only for illustration purposes; the rollout method
can incorporate a different preordained order de-600

fined by H and Ĥ.

We now discuss the 1-step and N-step heuristic.
In Fig. 7, note that each successive EPN compo-
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