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ABSTRACT

Request latency is a critical metric in determining the usability of
web services. The latency of a request includes service time — the
time when the request is being actively serviced — and waiting time
— the time when the request is waiting to be served. Most existing
works aim to reduce request latency by focusing on reducing the
mean service time (that is, shortening the critical path).

In this paper, we explore an alternative approach to reducing
latency — using variability as a guiding principle when designing web
services. By tracking the service time variability of the request as it
traverses across software layers within the user and kernel space of
the web server, we identify the most critical stages of request pro-
cessing. We then determine control knobs in the OS and application,
such as thread scheduling and request batching, that regulate the
variability in these stages, and demonstrate that tuning these specific
knobs can significantly improve end-to-end request latency. Our
experimental results with Memcached and Apache web server under
different request rates, including real-world traces, show that this
alternative approach can reduce mean and tail latency by 30-50%.

1 INTRODUCTION

Web applications provide important services, such as online retail,
messaging, and search, to end-users on a daily basis [3, 5, 8, 13]. A
critical metric for determining the usability of such web applications
is the latency of user requests; different service providers employ
different measures of latency, such as mean, median, 95%ile, and
99%ile [7, 37, 47]. A delay of even a few milliseconds in request la-
tency can lead to significant revenue loss for service providers due
to user abandonment [14, 44].

Conceptually, request latency can be broken down into two dis-
tinct components, service time and waiting time [27]. Service time
is defined as the time during which the request is being actively
serviced. Waiting time is then defined as the remaining time during
which the request is waiting to be served. To maintain acceptable la-
tencies, service providers often optimize their web servers to reduce
the mean service time of requests, that is, shorten the critical path of
request processing. For example, Chronos [24] uses user-level net-
working with NIC-level request dispatch to reduce lock contention
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and lower the latency of web applications; Jose et al. [53] make Mem-
cached RDMA-capable to shorten the critical path; Liet al. [31] advo-
cate using a real-time scheduler to reduce request scheduling delay.

An alternative approach to reducing web latencies that we explore
in this paper is to minimize the variability in request processing.
Queuing models show that, in addition to mean service time, the
variability of the service time is also important when trying to reduce
latency. Surprisingly, there has been very little work on actually re-
ducing the variability in the system [7, 19, 49]. While much of the vari-
ability is intrinsic to the workload (e.g., burstiness in customer traffic),
some of the variability is due to the application and software design
(e.g., garbage collection, context switches, CPU scheduling policies,
etc.), and can be regulated by making subtle changes to the system.

In this paper, we investigate the following system design question
— “is it worth reducing variability in request processing times at the
potential expense of lengthening its critical path?”. While theoretical
analysis suggests that this is indeed the case, especially for heavy-
tailed distributions (see Section 2), evaluating this idea in practice
for web applications is challenging for several reasons:

o Web applications have a complex processing lifetime, going through
several paths of processing in the kernel, including the TCP stack,
parsing of requests, and scheduling of the request on server cores.
Identifying the most likely culprit(s) that contributes to service
time variability will require low-overhead yet accurate and fine-
grained request tracing in the user and kernel space.

o There are several control knobs within a web server that can be
tuned to reduce service time variability, such as the OS sched-
uler, page allocation strategy, etc. Prior work has also shown that
new application-specific control knobs can be dynamically gen-
erated [18]. Given the numerous choices, efficiently finding the
right control knob to mitigate variability is challenging, especially
since the choice of the optimal control knob may depend on the
server and web application configuration. Worse, employing the
wrong control knob can hurt request latency.

Most control knobs within the system that can be tuned to reduce
service time variability invariably hurt mean service time. For ex-
ample, prior work has shown that admission control can reduce
service time variability by preventing server overload [21]. But
this reduction comes at the expense of lengthening the critical
path (since requests are held back), and possibly hurting latency.
It is thus important to carefully tune the control knob to balance
the trade-off between variability and mean service time.

We address the above challenges in the context of web services and
demonstrate the benefits of using service time variability as a guiding
principle to improve request latency. We employ light-weight, fine-
grained request profiling to track service time variability; this allows
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us to identify components on the critical path of the request-response
cycle that exacerbate service time variability. Using variability as our
guiding principle, we then determine control knobs in the system
and/or application that can be tuned to mitigate service time vari-
ability in the identified components. We evaluate our approach by
investigating variability in Memcached, a popular in-memory (key-
value store) caching service used to speed up web applications [12],
and the Apache web server [45], a widely deployed http server ap-
plication. Specifically, we explore the following use cases:

(1) Request batching at the Memcached client: To reduce the network
overhead of sending short packets, the Linux kernel at the client
batches incoming requests until it gets a response back from the
server saying it has received the previous batch (Nagle’s algo-
rithm [40]). However, since network conditions can be variable,
this default batching behavior leads to bursts of processing at the
server, followed by idle times, resulting in significant service time
variability. We modify this default batching behavior to closely
regulate the time between batches, lowering the variability (by
as much as 76%) and improving tail latency by up to 40%.

(2) Redesigning the LRU management on the Memcached server: To
maintain the Least-Recently-Used (LRU) ordering of items in
the cache, the Memcached server needs to constantly reorder
items. To shorten the critical path, Memcached moves the LRU
maintenance off the request processing path and delegates this
responsibility to an LRU management thread that is run periodi-
cally. When this thread is active, it interferes with the Memcached
request processing, resulting in high service time variability. We
redesign the LRU management functionality and include it on
the critical path of Memcached request processing in the form of
fine-grained slices of LRU work. This counter-intuitive redesign
reduces variability and improves latency by about 30%.

(3) Application thread pinning for the Apache web server: The Apache
web server schedules its various worker threads and processes on
any available idle CPU core opportunistically to start serving cus-
tomer requests as soon as possible. Consequently, threads may
move between cores, resulting in context switch overheads and
state migration. We explore thread pinning to reduce this over-
head and associated variability, though at the expense of possibly
delaying request processing when the pinned core is busy. We
show that, at high load, this approach can reduce latency by 50%.

We experimentally evaluate the performance improvements for
the above three use cases under various workload scenarios, in-
cluding different levels of load, different inter-arrival time distri-
butions, and different (time-varying) arrival traces. While existing
approaches, such as exclusively focusing on reducing mean service
time or employing ad-hoc control knobs, can end up hurting request
latency, we use our alternative approach of focusing on service time
variability to substantially reduce mean and tail latency (by up to
30-50%) in all three cases. Importantly, we do so by simply chang-
ing the metric that we use to identify the critical stage of request
processing and determine the appropriate control knob.

2 MOTIVATION AND SCOPE OF OUR WORK

To motivate our approach of focusing on service time variability, we
leverage queueing theory to analyze request latency for a server as

a function of variability. Although models are only approximations
of today’s complex applications, the resulting analysis is instruc-
tive [16, 33, 36, 48], and guides our system design in later sections.

2.1 Requestlatency versus variability

Recent studies at Bing [15, 19], Google [23, 24, 43], and Facebook [3],
suggest that modern web applications often experience high vari-
ability in inter-arrival time (IAT) and service time (ST). Variability
in IAT represents workload variability, such as bursty arrivals. ST
variability represents variability in processing times due to differ-
ences in work requirements (e.g., reads vs. writes) or differences
in the request path (e.g., due to batching or TLB misses), or due to
misconfigurations at the server that lead to anomalous behavior or
“jitters” [31]. Note that ST is the amount of service required by a
request to complete processing; alternatively, ST is the minimum
possible request latency, assuming no delays.

To investigate the impact of variability on request latency, we
consider a web server with a given inter-arrival time (IAT) distri-
bution and a given service time (ST) distribution. To parameterize
variability, we use the squared coefficient of variation (C 2), defined
as the ratio of variance and square of the mean. Then, we have:

Cour Var(IAT)/E*[IAT], and (1)

Cir Var(ST)/E*[ST], )
where E[] is the mean and Var() is the variance of the random vari-
able. To examine the full range of variability ([0, c0)), we consider
the following distributions:

e D (Deterministic), with C? =0, is the ideal case of no variability.
e M (Exponential), with C? =1, represents nominal variability.

e H, (Hyper-exponential), with C? > 1 (customizable), represents
the case of high variability.

The M/G/1 queueing model, with Exponential IAT and generic
ST distributions, allows us to analyze mean request latency, E[T],
as a function of ST variability, Var(ST), and mean ST, E[ST], via the
Pollaczek-Khinchin (P-K) formula [27]:

2-p
[ST] o——., ®3)
2(1-p)
where A=1/E[IAT] is the mean request arrival rate and p=A-E[ST]
is the normalized system load [27]. Clearly, both E[T] and Var(ST)
impact request latency.

Consider the M/G/1 model where all parameters, including E[ST],
are fixed, and only Var(ST) is varied. Let the workload have a mean
ST, E[ST], of 1 millisecond, and system load of, say, 60%; thus, request
rate,A1=0.6-E[ST]=600req/s. Using Eq. (3), we find that E[T] = 1.7ms
under Deterministic ST (CgT =0). For comparison, for a system with
Deterministic IAT and ST, we get E[T] = 1ms. Thus, the added vari-
ability due to an Exponential IAT already increases mean latency
by 70%. For the M/G/1 system, if we now consider Exponential ST
(CgT =1), we get E[T]=2.5ms, a 250% increase over the baseline. If

E[T] = Var(ST)z(l—_p)+E

we further increase the variability in ST to C.ZST =2 using a Hy distri-
bution, we get E[T]=3.3ms, a 330% increase! The increase in request
latency with variability is even more pronounced at higher loads.
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Figure 1: Heatmap of mean latency as a function of mean
service time (E[ST]) and variability in service time (Var(ST)).
The black diagonal line denotes the equi-latency line of 5ms.

While the above results highlight the importance of reducing vari-
ability in ST, we note that making changes to a system to reduce vari-
ability may lead to other performance overheads, resulting in higher
E[ST]. For example, the OS scheduler may opportunistically move
threads between cores to leverage idle cores. However, this intro-
duces ST variability due to the associated state migration and context
switches. Disabling this opportunistic behavior can mitigate variabil-
ity, but may lead to scenarios where threads are waiting onabusy core
even though other cores are idle. There is thus a trade-off between
reducing Var(ST) and increasing E[ST], which is captured by Eq. (3).

Figure 1 illustrates the impact on mean request latency of the
trade-off between E[ST] and Var(ST) for the M/G/1 model. We set
A =100 req/s, and use an H; distributed ST whose variability can
be controlled. To highlight the trade-off, we show the equi-latency
line of 5ms in black. Point B on this line has a higher E[ST] but lower
Var(ST) compared to point A; nonetheless, both have the same 5ms
latency. Thus, we can afford some overhead in E[ST] when reducing
Var(ST) of a system. Finally, point C has the same E[ST] as A, but
has much lower Var(ST); as a result, the mean request latency for
C is almost 30% lower than that for A.

Key takeaways: (i) Reducing service time variability can significantly
lower request latency (by 2X or higher), and (ii) It is beneficial to reduce
variability even if doing so increases the mean service time.

2.2 Objective and scope of this work

The design of today’s web server systems is primarily driven by the
intent to shorten the critical path of requests, that is, reducing the
mean ST. However, our analytical results above suggest an alterna-
tive solution to improving request latencies in systems — reducing
variability. Variability is often assumed to be intrinsic to the hard-
ware and the workload, and thus not easily controllable. However,
this is not always true. While variability in IAT depends on customer
request behavior, variability in ST can be regulated to some extent
by modifying the application and software stack. The objective of
our work is to demonstrate that this alternative viewpoint of “focus-
ing on ST variability for designing web servers” can reveal viable
solutions to reduce latency. Note, however, that we are not arguing
against solutions that focus on reducing ST.

3 SOLUTION OVERVIEW

Given a web application, our goal is to improve its latency by tar-
geting a reduction in service time (ST) variability. However, web
applications can be complex, consisting of several processes and
threads that work asynchronously. Further, web requests typically
pass through several software layers before completing service. Thus,
we must first identify the potential software layers or components
that significantly contribute to ST variability, and then determine
control knobs that can be tuned to reduce ST variability in the iden-
tified software layers. Some control knobs are readily available, such
as OS thread scheduler, TCP congestion control, etc. However, in
some software layers, effective control knobs may not be available,
necessitating modifications to existing software.

We use the following methodology to achieve our goal:
(1) Fine-grained, unobtrusive request tracing: We employ low-over-
head tracing for the web requests. Our tracing encompasses all

layers of the software stack that a request goes through during
its processing lifetime, including the OS and network stack.

(2

~

Identifying the source(s) of service time variability: We aggregate
the tracing information across all requests using low-overhead
histograms to identify the software layers with the highest vari-
ability that are amenable to modification.

G

~

Modifying the system software to mitigate variability and reduce
request latency: We explore available control knobs in the system
that can reduce the observed ST variability in the target software
layer, even if this reduction comes at the expense of an increase in
mean ST (see Section 2.1). Once the knob is determined, we inves-
tigate its optimal setting to minimize end-to-end request latency.

Our choice of “variability of service time” as the guiding principle
in our methodology is important. We demonstrate, in Sections 6 —
8, that our methodology allows us to uncover the critical stages of
request processing for two popular web applications and guides our
selection of control knob. We show later, in Section 9, that naively
employing request tracing (for example, by using mean ST as the
metric instead of variability) or selecting control knobs in an ad-hoc
manner can actually hurt application performance.

4 REQUEST TRACING

Our request tracing works by timestamping the request through sev-
eral layers starting from when it arrives at the host from the server’s
NIC until immediately before the application transfers the response
packet back to the OS. Given our focus on variability in service times,
we only trace the request at the host server, and not the client.

To store the timestamps, we append an empty 64-byte buffer to
the original request packet, similar to prior works [31]. Then, as the
request goes through different stages of processing on the client
and the server, timestamps are recorded at appropriate offsets for
the stage of processing by writing the system clock time into the
buffer; we use the system clock with nanosecond precision to record
timestamps within the server. By appending the small buffer to the
request, we can record multiple timestamps and track the request
to which they correspond without requiring any additional post-
processing. The above tracing implementation required modification
to the Linux kernel source, network drivers, and the application pro-
tocols to write timestamps into the appended buffer at the right offset.



The overhead on request latency through all layers is low, about 5%;
this overhead is incurred by both the baseline and our approach.

To choose the timestamping locations, we consider all possible
components within the host server that may contribute to service
time variability; these are locations where significant request pro-
cessing may occur. For this study, we timestamp at the following
locations/events at the host server:

el: In the host network driver when the packet arrives at the NIC.
e2: At the end of TCP processing.

e3: When the application drains the requests from the socket.

e4: When the application starts processing an individual request.
e5: When the application hands off the response to the kernel.

e6: When the response is dispatched from the host server’s NIC.

Timestamping at these different event boundaries provides us an
opportunity to analyze the time spent by the requests at different
stages, T, for i=1,2,...6, as shown in Figure 2. However, other fine
grained events are used when required, see Section 7.3.

o driver-to-tcp: (Tez —Te1) is the time spent by the request from dri-
ver to TCP layer, representing the network stack processing delay.

o tcp-to-socket: (Te3 —Te2) is the time spent between the TCP lay-
ers and the socket, and represents the wakeup/scheduling delay.

o socket-to-parse: (Tp4—T,3) is the time between application pro-
cessing and socket, and represents the queuing delay at the appli-
cation level caused by batching of requests.

o parse-to-response: (Te5—Te4) is the user-space application pro-
cessing time.

e response-to-send: (T, — Te5) is the network stack processing
time to dispatch the response from the host server.

To efficiently compute variability at each stage, we maintain a
running sum (across requests) of X and X2, where X is the time spent
in a stage. At the end of an experiment, we compute the sample mo-
ments E[X] and E[X?] by dividing the running sums by the number
of requests. Finally, we compute Var(X) = E[X?]-(E[X])?.

In our evaluation, we find that the most significant stages, in terms
of variability, are the tcp-to-socket, socket-to-parse, and parse-to-
response. We will discuss their role in request processing in detail in
the evaluation sections. We also traced the request on the outgoing
send path (server socket to driver), but the variability on this path is
much smaller, only about 20% of the variability on the incoming path
from client to server. Unless otherwise noted, we report (Tes —Te1)
as the latency of a given request. This definition only includes the
server-side latency, which is the focus of our current work.

5 EXPERIMENTAL SETUP

Testbed: We employ two servers in our experiments, one as the
client to generate the workload and the other as the server hosting
the web application. Each server is equipped with two sockets of
Intel Xeon E5-2620 6-core (12 threads, 2.4 GHz) processors, running
Ubuntu Linux 14.04 with kernel version 3.16.7. The servers each have
64GB of DRAM (1333 MHz) divided into two 32GB NUMA nodes.
The servers each have an Intel 1210 1Gb NIC, and are connected via
a Quanta LB4M switch. Hyper-threading and power saving mech-
anisms such as DVFS and sleep states have been disabled in both
machines as they are known to cause variability [31].

Web applications: We employ two popular web applications, Mem-
cached [12] and Apache web server [45], for our evaluation.

o Memcached is a lightweight and scalable in-memory key-value
store, primarily used for accelerating dynamic web applications
by acting as a cache for the back-end database. Memcached is
employed by several web services, including Facebook [3, 42],
Twitter [46], Wikipedia [35], and YouTube [9]. Memcached main-
tains a list of least-recently-used (LRU) active items in memory
to aid the memory reclamation process when an item expires or
needs to be evicted. Memcached, from version 1.5.0, has over-
hauled its LRU maintenance mechanism by using a dedicated LRU
maintainer thread that speeds up the release of expired items and
the allocation of new items [38]. While the dedicated LRU thread is
not on the critical path of request processing, it may interference
with requests by requiring a core to run at frequent intervals.

Our Memcached server hosts six million key-value pairs, with the
key and value size for each pair set to 20 bytes and 50 bytes, respec-
tively. The workload consists of 90% get and 10% set requests. We
use Memcached version 1.5.1 and test two different throughput
configurations (Sections 6 and 7).

o Apache is a modular, process based web server used by more than
43% of the websites [34]. The Apache web server forks identical
processes and can serve a request independent of others. Apache
in its newer versions from v2.0 can run in a hybrid multi-process,
multi-threaded mode, which improves scalability. We use a newer
version (v2.3.4) in our evaluation (Section 8).

Request rate traces: We employ request rate traces in many of our
evaluations to drive the application load. Specifically, we use three
digitized Memcached traces from Facebook [3], appropriately scaled
for our setup, to mimic the load variation experienced by real-world
web services. The VAR trace has a gradual drop in request rate, fol-
lowed by a gradual rise. The APP trace has a steep rise, followed by a
relatively constant request rate, and ends with a steep drop. The ETC
trace is similar to APP, but is much more bursty. The peak-to-min
request rate ratio in all three traces is about 2.

6 EVALUATION 1: REQUEST
BATCHING AT THE MEMCACHED CLIENT

Our first evaluation focuses on the Memcached application. In our
experiments, we find that Memcached has different sources of vari-
ability under high and low throughput configurations. We thus eval-
uate these configurations separately, starting with high throughput.
All the results we report are averaged over 5 experimental runs each.
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Figure 3: Variability at various request processing stages for

Memcached under high throughput setting.

6.1 Application setup and tracing results

In the high throughput configuration, we run Memcached on the
server with six worker threads on six cores of a socket. We use a cus-
tom client load generator that sends read/write requests at control-
lable request rates. In addition to the request rate traces described in
Section 5, we also experiment with different inter-arrival time (IAT)
distributions, motivated by prior studies on web IATs [2-4, 25]: De-
terministic (C? 47 =0), Exponential (C% 47 = 1), and Bounded Pareto
(C? o7 =20, IAT range of (5us, 100ms)). The load generator emulates
multiple clients by opening several connections sequentially for
each worker thread, and sends multiple requests on each connection
with the configured IAT. The load generator also supports different
popularity distributions for the requested data (keys); unless stated
otherwise, we use the random (discrete uniform) distribution.

Figure 3 shows the results of our request tracing for the three
stages with the highest variability under Memcached. We see that
the socket-to-parse stage has the highest variability, by far, compared
to others. The socket-to-parse stage at the server involves parsing
the drained batch of requests from the socket one request at a time
(see Section 4). The time taken in this stage is thus proportional to
the size of the batch being served by the application. Consequently,
the variability in this stage suggests that there is variability in the
request batch sizes as observed by the application at the host server.

6.2 Determining the control knob

To reduce variability in socket-to-parse stage due to request batch-
ing, we need to consider the source of batching. Requests at the client
are batched by the Linux kernel before being sent out so as to avoid
the network processing overhead required for each request that is
sent (“small-packet problem”). This batching is regulated by Nagle’s
algorithm [40]. While there are various conditions in the algorithm
that trigger the sending of the next batch, we find that it is the condi-
tion of getting a response back from the server (kernel) saying it has
received the previous batch that triggers the sending of a new batch
in our experiments with Memcached. Since network conditions can
be variable, the request batch sizes may be variable as well.

The solid lines in Figure 4 show our empirical observations for
batch sizes under 600K request rate for different IAT distributions.
We see that the batch sizes vary from 5 to about 50, with the distri-
bution being more variable for Bounded Pareto IAT. This variance in
batch sizes leads to instances where the application is overwhelmed
by alarge batch of requests, resulting in high tail latencies. Note that
once the application finishes serving a large batch of requests and
returns to the socket, multiple client-side batches of requests may
be waiting in the socket to be drained, resulting in the application
finding (server-side) batches as large as 50 requests.

\
) —

1 T

= = <

Vi I Vi / Vi ]

(o} (o} (o}

N N N

205 205 205

L2 1 L2 L2

® ® ©

e 1 g ! e

= —— Default = ) [——Default I ! [—Default

w I |= =Modified - = =Modified - 7 = =Modified

g 0 g 0° g 0

o 0 25 50 o 0 25 50 g 0 25 50
Batch size — Batch size — Batch size —

(a) Deterministic IAT.

Figure 4: CDF of batch sizes for default and modified Nagle’s
algorithm under different IAT distributions for 600K req/s.

(b) Exponential IAT. (c) Bounded Pareto IAT.

1 . =0k 20 ?
S 301 e Q- =X = 400K =
= e Zat-Cin @ ==K |+ 500K c g
g 20 HWrrngg, | == 600K g &0 7 X
£ X, = e

> .
3 .7 £ 4@ e vy
5 10 fg , =B~ Deterministic
E = A =>¢{= Exponential
2 o0 T oo B. Pareto
5,53 20 40 60 80 100 120 140 g 300K 400K 500K 600K
s Batching interval (us) — & Request rate (req/s) —

(b) Optimal batch size for different
IAT distributions.

(a) Impact of batch size on request latency
improvement under Deterministic IAT.

Figure 5: Optimizing the batch size for modified Nagle’s.

We modify Nagle’s algorithm on the client OS to force batches to be
sent out at regular intervals. This will result in less variable units of
work received by the server, indirectly benefiting request latency.
Rather than controlling the batch size, we instead control the time
between batches, which is easier to implement. When a new request
arrives at the client TCP, we append it to the existing batch and check
whether the specified batching interval time has passed since the pre-
vious batch was sent. If yes, then we dispatch the current batch; else,
we wait for the next request. This modification to Nagle’s algorithm
reduces the variability in batch sizes, as shown by the dashed lines in
Figure 4 that represent the CDF of batch sizes after applying our modi-
fication and setting specific batching intervals for 600K req/s. For less
variable IAT distributions, such as Deterministic, our modification
eliminates almost all variability in batch sizes, as represented by the
near-vertical CDF (dashed line) in Figure 4(a). Note that we still batch
requests, and so preserve the Nagle’s algorithm’s functionality of
preventing small packets from overwhelming the TCP/IP stack [40].

The “batching interval” length that we specify for sending out
batches is a parameter that can be tuned. A large batching interval
will result in numerous requests being sent simultaneously in a batch,
overwhelming the server. On the other hand, a small interval can
overwhelm the network stack with frequent packets. The batching
interval must thus be carefully chosen, as we discuss next.

6.3 Evaluation results

Figure 5(a) shows the improvement in mean latency (over default
Nagle’s batching) for different batching intervals in our experiments
under Deterministic IAT. We see that the batching interval does have
a significant impact on latency. The optimal batching interval, indi-
cated by the solid circles on each line, improves mean request latency
by about 27%, on average, compared to the default Nagle’s algorithm.

Figure 5(b) shows the optimal batching interval as a function of
request rate for different IAT distributions. In general, the optimal
batching interval length increases with request rate. An increase in
batching interval leads to larger batch sizes being dispatched to the
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server, but also results in the server having longer to service each
batch. With increasing load, it is likely that the server benefits more
from having a longer duration of time to ensure that all requests
in the batch are served before taking on a new batch. We find that,
compared to the default Nagle’s algorithm, our optimal batching
leads to more frequent but smaller batches of requests being sent
out at predictable intervals.

Figure 6 shows the CDF of request latency under the default and
our modified Nagle’s algorithm (using the optimal batching interval)
for fixed request rates, but with different IAT distributions. Solid
lines show the latency for default Nagle’s and dashed lines show the
latency for our modified algorithm. Given our focus on tail laten-
cies, we intentionally show higher latencies in the CDF figures. For
illustration, we show results for the smallest and largest request rate
settings in our experiments; results are qualitatively similar for other
request rates. We see that the latency reduction is higher for larger
request rates. This is because the variable batch sizes overwhelm
the server more under high load, and thus our modified batching
algorithm has greater opportunity for improvement. The reduction
in tail latency (80'#-99!" percentile) for all distributions ranges from
34-40% for 600K req/s, and from 14-35% for 300K req/s. The improve-
ment in mean request latency likewise ranges from 24-26% for 600K
req/s, and from 17-25% for 300K req/s. In general, the improvement is
largest for Bounded Pareto IAT (which also has the largest IAT vari-
ability), followed by Exponential and Deterministic. This ordering
is likely because of the relative variability in batch sizes (dictated by
the IAT distribution) for the default case under these distributions.

To validate the efficacy of our chosen control knob in reducing
variability, we analyze the socket-to-parse stage variability for the
default and modified Nagle’s algorithm in Figure 7, for Deterministic
IAT; results are similar for other IAT distributions. We see that our
modified batching algorithm maintains low variability throughout
the request rate range, while the default Nagle’s has much higher
variability. The reduction in variability in Figure 7 ranges from 34-
76%. We find a similar reduction in batch size variability as a function
of request rate as well. Note that the reduction in stage variability
in Figure 7 is correlated with the latency improvement in Figure 6.

Content popularity: The above results are for random content
(key) popularity distribution. We also experiment with the Gener-
alized Pareto distribution using similar parameters as reported by
Facebook [3]. In this case, our modified batching reduces tail latency
(80t7-99t" %ile) by about 20-24% and mean latency by about 17%.
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Figure 7: Variability of socket-to-parse stage under the de-
fault and modified Nagle’s algorithm for Deterministic IAT.

Multiple clients: We also experiment with multiple clients, with
each new client sending a fixed number of requests over a new con-
nection. Note that only requests within a connection get batched. We
vary the number of (sequential) clients per thread from 1 to 50, and the
number of requests per client from 100 to 1000. Under our modified
batching, the reduction in tail latency (80%-99!" %ile) ranges from
13-21% and that for mean latency ranges from 15-17%, across all cases.

Trace-driven: Finally, we also experiment with dynamic trace-
driven request rates (see Section 5), with the request rate ranging
from 260K-610K req/s. Our modified batching reduces tail latency by
about 26-39% and mean latency by about 14-20%, across all traces. The
improvement is more pronounced for the ETC trace, likely because
it has the highest mean request rate (500K req/s) among all traces.

Our focus on variability of service time in this section led us to re-
quest batching as the right control knob for Memcached under high
throughput. We show, in Section 9, that request batching is not effec-
tive for the Apache web server; this is because the socket-to-parse
stage variability for Apache islow (see Section 8). It is thus important
to consider variability when deciding the right control knob.

7 EVALUATION 2: REDESIGNING THE LRU
MANAGEMENT THREAD IN MEMCACHED

7.1 Application setup and tracing results

In the low throughput configuration, we run Memcached with differ-
ent worker thread and core counts, starting with two worker threads
on two cores of a socket. This configuration is representative of typ-
ical VM sizes requested by customers in public clouds [6]. We again
employ our custom Memcached load generator (see Section 6.1) to
vary the request rate (including via traces) and IAT distribution.
Unless otherwise stated, we report results for the Deterministic IAT.

Figure 8 shows the results of our request tracing; note the much
higher magnitude of variability values here (two core) when com-
pared to the six core configuration in Figure 3. We see that the
tcp-to-socket stage now has much higher variability compared to the
other stages, and the socket-to-parse stage has much lower variabil-
ity, in contrast to Figure 3. We do not employ the modified batching
algorithm here so as to preserve the default application behavior
and identify the most significant source of variability under the
low throughput configuration. We evaluate the impact of modified
batching for the low throughput configuration in Section 9.

The tcp-to-socket stage denotes the time between the TCP pro-
cessing and the application picking up requests from the socket.
Specifically, at the start of this stage, the TCP has enqueued the re-
quest(s) in socket, and the kernel now attempts to wake up/schedule
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Figure 9: tcp-to-socket variability for different Memcached
server configurations. Note the log scale on y-axis.

the application’s worker thread on a core so it can pick up the en-
queued requests from the socket. The high variability in this stage
indicates that there is variability in the time it takes the application
to be scheduled, suggesting that the application is either busy else-
where or hasbeen scheduled out for other processes. Possible sources
of this variability include the application scheduling overhead and
competing background threads, such as the dedicated Memcached
LRU thread (see Section 5).

To precisely determine the most likely source of variability, we
study the change in tcp-to-socket variability as we change the num-
ber of cores and threads assigned to Memcached, as shown in Fig-
ure 9. Note that the x-axis denotes the request rate per thread. We
see that the tcp-to-socket variability goes down as the number of
cores/Memcached threads increases, suggesting that the source of
variability is mitigated by increasing the number of cores. This sug-
gests that the dedicated LRU thread interfering with the Memcached
worker threads is the likely cause for the increased tcp-to-socket vari-
ability. If the source of variability was instead the application sched-
uling overhead, then the tcp-to-socket variability should not have
decreased with the number of threads (since we scale request rate
with number of threads), which is contrary to the findings in Figure 9.

7.2 Creating a new control knob

The dedicated LRU thread is an application-specific function and does
not expose any tunable knobs. While we can modify the application
todoless LRU maintenance work, this would impact the application’s
functionality. Instead, we wish to preserve the LRU maintenance
functionality while reducing variability by mitigating the interfer-
ence between the LRU thread and the Memcached worker threads.

Our key idea is to offload the LRU maintenance work to the Mem-
cached worker threads and disable the dedicated LRU thread entirely so
it does not cause high variability for the tcp-to-socket stage. Specif-
ically, at the end of each request processing phase and before being
scheduled out, we leverage the worker thread itself do some control-
lable amount of LRU maintenance work. In other words, we amortize
the LRU maintenance work over all worker thread invocations. We
refer to our LRU maintenance approach as the amortized LRU.
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Figure 10: Optimizing the budget for our amortized LRU.

While it may appear that the LRU maintenance work is now on the
critical path, thisis not entirely true. By scheduling LRU maintenance
only after a batch of requests is processed, we are leveraging the idle
time between batches to do LRU work. Of course, it is possible that a
new batch of requests arrives before our LRU work is completed. To
minimize this overstepping, we regulate the amount of LRUwork done
by each worker thread before being scheduled out. We refer to this
controllable amount of work as the “budget” of our amortized LRU.

The budget for our amortized LRU must be carefully chosen so as
to (i) ensure that the same amount of LRU maintenance work is being
done as the dedicated LRU thread, and (ii) minimize the overlap with
future request arrivals. While the former constraint implies a larger
budget, the latter concern suggests a smaller budget.

7.3 Evaluation results

To determine the optimal budget for our amortized LRU, we analyze
the idle time at the server between processing of successive request
batches by the application. We timestamp two additional events—
e7: When a batch of requests has finished processing (or event e5
for the last request in a batch, see Section 4), and e8: When a new
batch of requests has completed its TCP processing and is ready to
be serviced (or event e2 for a new batch). Figure 10(a) shows the
CDF of inter-batch arrival times, (T,g —Te7), for 300K req/s request
rate under different IAT distributions; we intentionally focus on a
small region of the CDF. We see that almost 90% of the batches have
an inter-batch arrival time of at least 30us. The percentage is even
higher for smaller request rates. This suggests that as long as the
LRU work is scheduled for no more than 30us, the negative impact
on latency should be small. We thus consider budget values smaller
than 30us to investigate the benefits of amortizing LRU.

We find that the exact value of the budget does not significantly
impact request latency. As a result, we seek the smallest budget that
can still provide an equivalent amount of LRU maintenance as the de-
fault dedicated LRU thread. Figure 10(b) shows the optimal budget for
different request rates under different IAT distributions. We see that
the optimal budget increases with load, as expected, since the amount
of LRU maintenance required for items (even in case of the default
LRU thread) is proportional to the rate at which they are accessed.

Figure 11 shows the CDF of request latency for the default LRU
and our amortized LRU mechanism (using the optimal budget for
each request rate) for different IAT distributions and for the smallest
and largest request rate setting. Solid lines show the latency for
default LRU and dashed lines show the latency for our amortized



o o
< =
V1 0.95 V1 0.95
g g
S 09 —defau!i, Det o 09 e default, Det
© ====amortized, Det © === amortized, Det
= —defaul_t, Exp = === default, Exp
o 085 — - -amortized, Exp 0 0.85 — == amortized, Exp
LDL —defaal_t, E(ijPBP w =—default, BP
= ==amortized, [a)] ===amortized, BP

O 08 O 08 -

50 100 150 50 100 150

Request latency (us) — Request latency (us) —

(a) Request rate: 160K req/s. (b) Request rate: 300K req/s.

Figure 11: CDF of request latency for the default and our
amortized LRU mechanisms for different IAT distributions.

o
o

100 1 core, 1 thread ‘

== =2 cores, 2 threads
====3 cores, 3 threads
..... 4 cores, 4 threads

=& Default LRU
=O- Amortized LRU

3
S

4]
=]

0606006 -66—-—9
150K 200K 250K 300K
Request rate (req/s) —

90K 100K 110K 120K
Request rate per thread (req/s) —

tcp-to-socket var. (*1 03/152)
Latency improvement (%)

(a) Variability of tcp-to-socket stage under  (b) Improvement in mean latency under

the default LRU and our amortized LRU.  amortized LRU for different configurations.

Figure 12: Reduction in variability and sensitivity analysis.

LRU. The difference in latencies is more pronounced for the higher
percentiles, and so we focus on this region in the figures. We see that
the latency improvement afforded by our amortized LRU is slightly
higher for larger request rates. This is because the default LRU thread
interferes with more requests per second when the request rate is
higher, and also because the LRU thread has to run for a longer time
(to do more maintenance) when the request rate is high; thus, there
is more opportunity for improvement at high request rates.

The reduction in tail latency (80'#-99!% percentile) for all IAT
distributions ranges from 4-32% for 300K req/s, and from 6-31% for
160K req/s, with the improvement being slightly higher for Bounded
Pareto IAT in general. The improvement in mean request latency
across all experiments is about 28%. We also experiment with the
Generalized Pareto content popularity distribution. In this case, our
amortized LRU reduces tail latency by about 6-23% and mean latency
by about 7%. Finally, we also experiment with request rate traces,
with the request rate ranging from 90K-200K req/s. Under our amor-
tized LRU, the reduction in tail and mean latency ranges from 7-42%
and 22-31%, respectively, across all traces.

Figure 12(a) shows the variability of the target tcp-to-socket stage
for the default and amortized LRU mechanisms, for Deterministic IAT.
Our amortized LRU significantly reduces the stage variability, with
the reduction being more prominent at higher request rates. This
is in agreement with the latency improvement trends in Figure 11.

The above results are for the Memcached configuration of 2 cores
and 2 threads. We now investigate the results under different config-
urations of cores and threads, since the impact of interference by the
default LRU thread depends on these settings. Figure 12(b) shows
the mean latency improvement under Deterministic IAT using our
amortized LRU for n cores and n threads, where n=1,2,3,4. The im-
provement decreases with the number of cores/worker threads; this
isbecause the interference caused by the default LRU thread is shared
among all cores, so higher the number of cores, lesser is the impact.
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Figure 13: Variability at various stages for Apache web server.

In this section, we demonstrated how non-trivial control knobs
can be developed to reduce variability in the critical stages of request
processing. By only adding tens of lines of code to change LRU main-
tenance, we are able to reduce Memcached request latency by about
30%, a significant performance benefit. The evaluations in this and
the previous section also highlight the need for request profiling, as
different configurations of an application can have different sources
of variability and thus different control knobs and solution strategies.

8 EVALUATION 3: APPLICATION THREAD
PINNING FOR THE APACHE WEB SERVER

8.1 Application setup and tracing results

We use Apache v2.3.4 with mpm-event module configured to use
6 child processes, running on 6 CPU cores of a socket. We vary the
number of threads per process from 5 to 25; unless otherwise stated,
we use 25 threads/process. The server hosts a static web page, result-
ing in a response of 280 bytes. We use httperf [39] as our client driver
to experiment with different request rates, including traces. We vary
the load by changing the rate at which connections are opened; each
connection issues 75 requests using Deterministic IAT. We report
load in terms of the total request rate (across all connections).

Figure 13 shows the results of our request tracing for the three
stages with the highest variability. We see that the parse-to-response
and tcp-to-socket stages have the highest variability; further, the
variability increases rapidly with request rate. The parse-to-response
stage represents the time taken by the application to process the re-
quest, and the tcp-to-socket stage represents the application thread
scheduling latency. The high variability in these stages suggests that
the worker threads are experiencing unpredictable delays which is
affecting their ability to complete the application processing on time
(thus the high variability in parse-to-response), and is also delaying
their return to pick up requests from the socket. Given that Apache
does not have a dedicated maintenance thread like the LRU thread
in Memcached, we instead focus on application thread scheduling as
a possible source of variability. The increase in stage variability with
request rate in Figure 13 strengthens our hypothesis since we expect
scheduling overhead to increase with load.

8.2 Determining the control knob

By default, the Apache worker threads are not pinned to the cores,
and can thus be migrated between cores by the OS scheduler. The OS
scheduler (CFS, in our case) decides on thread migration based on
core availability, cache placement, NUMA affinity, etc. While not pin-
ning the threads has the advantage of leveraging idle cores to reduce
mean service time, there is the potential overhead of context switch-
ing and associated state migration when migrating threads across
cores. This overhead may hinder the progress of worker threads,
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Figure 14: CDF of request latency when threads are unpinned
(default) and when threads are pinned.

resulting in unpredictable delays. To reduce variability, we thus pin
the Apache application threads to cores to prevent thread migration.
Specifically, we pin all threads of a process on one core each; thus,
each of the six cores handles threads from a specific process.

8.3 Evaluation results

Figure 14 shows the CDF of request latency under the default un-
pinned case and under the pinned case for the smallest and largest
request rate settings in our experiments. We see that pinning threads
significantly improves latency over the default case when threads are
unpinned (i.e., can run on any of the 6 cores of the socket). The reduc-
tion in median and 90%ile latency for 37.5K request rate is 19% and
52%, respectively; the corresponding reduction for 22.5K request rate
is 20% and 9%, respectively. The mean latency improvement varies
from 15% at low request rates to 50% at high request rates. The higher
improvement at high request rates stems from the larger potential
in reducing variability (as discussed later). We also experiment with
request rate traces, with the request rate ranging from 18K-37K req/s.
Pinning threads improves tail latency by about 36-62% and mean la-
tency by about 27-49%; the improvement is highest for the ETC trace.
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Figure 15: Reduction in variability and sensitivity analysis.

Figure 15(a) shows the variability of the target parse-to-response
and tcp-to-socket stages for the unpinned and pinned cases. We
see that pinning threads significantly reduces the stage variabilities.
This is because pinning reduces the context switching and thread mi-
gration penalty, resulting in more predictable delays for the worker
threads. For example, pinning reduces the dTLB and L1-dcache load
misses by about 87% and 22%, respectively, compared to the default
unpinned case. The reduction is more pronounced at higher request
rates. This is likely because the impact of context switching and
thread migration penalty under the default unpinned case increases
with load. Note the correlation between stage variability reduction
in Figure 15(a) and improvement in latency in Figure 14.

The above results for Apache are for the high-throughput case
with 25 worker threads/process. We now study the sensitivity of the
configuration — number of threads/process — to the improvement in

mean latency. Figure 15(b) shows our evaluation results as a function
of request rate; we intentionally focus on lower number of threads.
We clearly see that the thread configuration has a significant im-
pact on the benefits of pinning over not pinning. For the case of 5
threads/process, pinning does not help for any of the request rates
we experiment with, and can lead to a significant increase in latency;
this is in contrast to the case of 25 threads/process where pinning
is always beneficial. As we increase the number of worker threads,
pinning starts outperforming the unpinned case for low request
rates. The inflection point occurs at 10 threads, where pinning al-
ways helps. This is because the penalty of thread migration under
unpinning is higher when there are more threads being scheduled
in and out across cores, resulting in cache contents being constantly
disrupted; pinning avoids this penalty.

The results in this section highlight the importance of analyzing
the sensitivity of the control knob to the application configuration
to understand when the control knob should be employed, since the
benefits (50% latency reduction) and consequences (150% latency
increase) of the choice can be significant, as shown in Figures 14 and
15(b). In the next section, we discuss the consequences of selecting
the wrong control knob for a given application.

9 SIGNIFICANCE OF USING VARIABILITY
IN SERVICE TIME AS GUIDING PRINCIPLE

The two key components of our approach, identifying the critical
stage and determining the control knob, both rely on using “variabil-
ity in service time (ST)” as the guiding principle. We now discuss the
importance of this metric by comparing with alternative approaches.

Using variability to identify the critical stage:

A natural question to consider in our request profiling approach is
- what if we employ “mean ST” as the metric when identifying the
target stage instead of “variability of ST”? Consider the Memcached
application under low throughput configuration, from Section 7.
When employing mean ST as the metric for request profiling, we
find that the socket-to-parse stage has the highest ST. Using the argu-
ments from Section 6, we then employ batching as our control knob.
However, the impact on request latency when using batching is in-
consistent. For low request rates, the optimal batching does improve
mean latency by about 28%. However, for higher request rates, even
the optimal batching ends up hurting meanlatency by as much as 32%.
By contrast, when using variability of ST as the guiding metric, we
consistently reduce mean latency by 26-61% by employing amortized
LRU to mitigate variability in the tcp-to-socket stage. This shows that
exclusively focusing on reducing mean ST may not always improve
latency; a more robust approach is to also consider ST variability.

Using variability to determine the control knob:

Selecting control knobs in an ad-hoc manner is an alternative and
sometimes easier approach. Thus, an obvious question is how im-
portant is it to select the right control knob?

Consider the Memcached application; an alternative control knob
is to pin application threads. Figure 16 shows the resulting mean
latency when using the incorrect knob (pinning) and our chosen
control knob under Deterministic IAT. For the high throughput con-
figuration, the incorrect knob hurts mean latency by about 11.5%,
whereas our chosen control knob (batching) improves latency by
about 20.9%. Likewise, for the low throughput configuration, the
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Figure 16: Using the wrong control knob can hurt latency.

incorrect knob hurts latency by about 51.1%, whereas our chosen
control knob (amortized LRU) improves latency by about 35.4%.

Similarly, for the Apache web server, another option is to batch re-
quests by modifying the Nagle’s algorithm, as in Section 6. However,
even under the optimal batching interval for Apache, the improve-
ment in mean request latency is only about 2.7%, whereas that under
our chosen control knob (pinning) is about 21.1%.

10 RELATED WORK

Reducing the variability of end-to-end request latency

Dean et al. [7] analyze tail latencies in a production data center that
supports their Google search system. The authors acknowledge that
latency variability is a problem, and propose application-specific
solutions, such as differentiating service classes and reducing head-
of-line blocking. While this seminal work established the importance
of variability and tail latency in production systems, it focuses on
variability in request latency as a whole, and not on specific stages.

Li et al. [31] study sources of tail latency in interactive services
by instrumenting applications and the kernel. While our request
profiling approach is inspired by the authors’ work, we focus on
variability at individual stages of request processing whereas the
above work focuses on end-to-end latency. Focusing on per-stage
variability can reveal system design opportunities that may other-
wise be overlooked. In particular, while the above work also studies
the Memcached application, they do not uncover request batching
or LRU maintenance as potential optimizations.

Jalapartietal. [19] focus on the tail latency of Bing web search, and
propose application-specific strategies such as reissuing stragglers
and speeding up stragglers. Each of these strategies applies to a dif-
ferent “stage”, where the concept of stage here refers to a step in the
application’s workflow and may span thousands of servers; this is
in contrast to our definition of “stage” which refers to a fine-grained
section of the request’s processing path within a single server.

Reducing the latency variability for specific components
Hockoetal. [17] show that making the physical page allocation cache-
aware reduces performance non-determinism without significantly
increasing mean latency. Pusukuri et al. [30] show that changing
the scheduling and migration policies to be aware of cache misses
and context switches simultaneously reduces performance variation
and improves performance. In addition, several techniques have
been developed for promoting fairness in multi-threaded processor
cores, shared caches [20, 26, 52], and memory controllers [10, 41],
for improving performance by minimizing resource interference.

The above works focus on reducing variability in specific com-
ponents (such as the OS scheduler), which are known a priori to be
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the performance bottlenecks. In our work, we profile the request
processing path to first determine the potential bottlenecks. Thus,
the above works can be employed as control knobs by our approach
to reduce the variability at specific stages, after those stages have
been identified as the potential source of variability.

Shortening the critical path of request processing

Kanev et al. [23] perform a detailed analysis of Google’s data center
jobs and find that CPU stalls and cache misses are the main causes of
low core utilization. To improve utilization, the work calls for short-
ening the critical path of request processing by employing hardware
specialization. Kapoor et al. [24] analyze data center applications
and find that kernel overheads contribute significantly to request
latency. The authors propose Chronos, a communication framework
that bypasses the kernel by employing user-level, zero-copy network
functionality, thus shortening the critical path.

The above works are classic examples of approaches that im-
prove performance by reducing the mean ST (shortening the critical
path). Our work presents a complementary approach that improves
performance by reducing the variability of ST.

Request batching

SEDA [51] proposes a staged event-driven architecture for web ap-
plications with event batching and thread pool sizing. Yaksha [21]
is a control-theoretic admission control proxy for internet services
that prevents overload while maintaining high throughput. Elnikety
et al. [11] propose black-box admission control for internet services
by measuring execution costs and differentiating between request
types. While the above works employ batching or admission control
to avoid server overload, we precisely control when new requests
start being processed by the server to minimize ST variability.

Thread pinning

Kumar et al. [28, 29] consider thread migration to exploit power-
performance-area tradeoffs in multi-core machines. Li et al. [32]
propose OS scheduling algorithms based on predicting the thread
migration overheads. Wang et al. [50] study the interaction between
various microarchitectural resources and thread characteristics to
efficiently map threads. Thread migration has also been explored for
changing thread-level parallelism [1] and for software data spread-
ing [22]. Our work employs thread pinning to specifically reduce ST
variability by avoiding state migration across cores.

11 CONCLUSION

Latency is a critical metric for user-facing web services. Existing
work typically focuses on shortening the critical path (or mean ser-
vice time) to improve performance. This paper takes an alternative
approach to improving application performance - reducing the vari-
ability in request processing. By using “reduction in service time
variability” as the guiding principle in web server design, we reveal
control knobs that improve request latency (both mean and tail) by
up to 28-50% across different scenarios.

Our end-goal is to make the case for using service time variability
as a metric to guide system design. The three use cases presented
in this paper demonstrate the validity of this approach.
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