MMLite: A Scalable and Resource Efficient Control
Plane for Next Generation Cellular Packet Core

Vasudevan Nagendra
Stony Brook University
vnagendra@cs.stonybrook.edu

Anshul Gandhi

Stony Brook University
anshul@cs.stonybrook.edu

Abstract

With increase in cellular-enabled IoT devices having diverse
traffic characteristics and service level objectives (SLOs),
handling the control traffic in a scalable and resource-efficient
manner in the cellular packet core network is critical. The
traditional monolithic design of the cellular core adopted
by service-providers is inflexible with respect to the diverse
requirements and bursty loads of IoT devices, specifically for
properties such as elasticity, customizability, and scalability.
To address this key challenge, we focus on the most critical
control plane component of the cellular packet core network,
the Mobility Management Entity (MME). We present MMLi te,
a functionally decomposed and stateless MME design wherein
individual control procedures are implemented as microser-
vices and states are decoupled from their processing, thus
enabling elasticity and fault tolerance. For SLO compliance,
we develop a multi-level load balancing approach based on
skewed consistent hashing to efficiently distribute incoming
connections. We evaluate the performance benefits of
MMLite over existing approaches with respect to scaling,
fault tolerance, SLO compliance and resource efficiency.

CCS Concepts

« Networks — Middle boxes / network appliances;
Packet scheduling; Network performance analysis;
Keywords

Cellular Networks, EPC, NFV, MME, Functional Customiza-
tion, Microservices, Load Balancing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOSR ’19, April 3—4, 2019, San Jose, CA, USA

© 2019 Association for Computing Machinery.

ACMISBN 978-1-4503-6710-3/19/04...$15.00
https://doi.org/10.1145/3314148.3314345

Arani Bhattacharya
Stony Brook University
arbhattachar@cs.stonybrook.edu

Samir R. Das
Stony Brook University
samir@cs.stonybrook.edu

1 INTRODUCTION

One of the grand challenges in the design of future cellular
core network is its resource-efficient scaling with the projected
growth of signaling or control traffic. Much of this growth is
expected to come from the tremendous rise in IoT devices (=12
billion by 2022 [14, 17]). Compared to traditional smartphones,
IoT devices generate at least twice the volume of control mes-
sages, growing 50% faster than data traffic [3, 15, 27, 43, 63].
This represents a significant overhead as control messages
do not directly contribute to the service provider’s revenue.
Moreover, the traffic characteristics and performance
requirements of cellular-based IoT devices have much greater
diversity than traditional user equipments (UEs) like smart-
phones or laptops [21, 35, 63]. Efficiently managing resources
in the presence of this diverse traffic is challenging [41, 52].
An immediate concern now is the scalability and efficient
resource utilization in the cellular core network (also called
Evolved Packet Core or EPC in connection with LTE networks).
Our focus in this work is on the Mobility Management Entity
or MME, which is the most intensive control plane component
that handles five times more control messages than any other
entity in EPC [45, 70]. Designing an efficient and scalable MME
requires addressing at least the following key challenges:

(1) Elasticity: IoT applications create bursty traffic [29, 63],
necessitating dynamic capacity provisioning. Insufficient
capacity at MME may lead to connection failures and
rejections, triggering retry messages and further increasing
the load on the MME [21]. Worse, UEs and all entities inside
the EPC maintain stateful contextual information (static
bindings), making it difficult to migrate connections to other
MMEs in case of scale-out or scale-in. Not surprisingly,
the current practice is to simply over-provision the MME,
resulting in an expensive and wasteful design [54, 65].

(2) Flexibility: IoT devices can have very different control
and data traffic characteristics and performance require-
ments [21, 35, 52, 63, 68]. For example, IoT devices in smart
cars require stringent Service Level Objectives or SLOs to
react to changing traffic conditions, while smarthome IoT de-
vices may simply require IP connectivity. Unfortunately, to-
day’s cellular networks make use of monolithic MME devices
which are rigid and do not offer any functional or perfor-
mance flexibility. Even recently proposed network function

virtualization (NFV) based EPC architectures [8, 11, 41, 54,
55] lack the capabilities to handle differentiated SLO goals.

(3) Scalability: A key bottleneck for large-scale networks
is the centralized load balancing mechanism that must
immediately assign incoming connections to an MME.
Given the heterogeneity in the entire ecosystem, traditional
approaches such as round-robin or least-used servers
is no longer effective [32]. While recent approaches
based on consistent hashing (CH) distribute connections
uniformly [4], they are unable to quickly scale resources
in response to bursty IoT traffic (i.e., unaware of the actual
trafficload conditions at the MME), making them vulnerable
to “hot spots", where a few MME hosts are overloaded
(discussed in §8). Meeting user-specified SLOs while being
scalable and resource efficient thus requires a careful
reconsideration of load balancing decisions in the network.

To address the above challenges, we propose MMLite, an
agile MME architecture that exploits recent advances in NFV.
The key enabler of MMLite is its stateless and functionally
decomposed design. The statelessness is achieved by exter-
nalizing each UE-specific state in shared memory inside the
MME host, thus decoupling the MME from the UE contextual
information. This stateless design enables fault tolerance and
dynamic provisioning of MMEs responsive to traffic changes,
without incurring the overhead of state migration.

To address customizability, we decompose the MME
functionality into a set of microservices (or NFs) based on the
specific control procedure they handle, such as attach, service,
handover, migrate, etc. This control procedure-specific
decomposition, facilitated by our stateless design, allows
us to cater to specific functional and SLO requirements
of individual UEs in a resource-efficient manner. This
is in contrast to existing protocol-based decomposition
approaches [36, 61] that allow flexibility but fail to provide
fine-grained (UE-specific) SLO control.

To address elasticity and scalability, we re-architect the
MME into a multi-stage forwarding engine that divides the
MME functionality into MME-load balancer, MME-forwarder
and stateless MME processing entity. Specifically, we
introduce a multi-level, SLO-aware MME load balancer and
MME forwarder that optimizes the resource utilization within
and across MME hosts. Unlike existing approaches that aim to
balance connections across MMEs [4, 12, 32], we purposely un-
balance load to meet SLO requirements and facilitate dynamic
scaling. We evaluate the benefits of our SLO-aware load bal-
ancer in the context of stateless and functionally decomposed
MMEs, and contrast it with traditional stateful models.

We implement MMLite using the DPDK [24] and Open-
NetVM [48] frameworks that provide high performance
and low latency packet processing capabilities. We exploit
the zero copy capabilities of DPDK to build stateless MME
microservices (by externalizing their states from processing)
and fast path components such as MME load balancer and
MME forwarder. Our MMLi te architecture is compatible with

Control . __.
UEs / loT Data

Devi e‘ ‘

TAU. Handover,
tRestormlon

S
2
;

Attoch Reques
_ PugeUE [

ancel locatiol
o"e

&

G7X

Se es l/r
RO
o~

Detcch Q’/o

(a) LTE architecture with key components. (b) MME state machlne.
Figure 1: Overview of LTE architecture and MME states.

3GPP protocols, making it incrementally deployable in the
existing cellular packet core network.

Our experimental results show that MMLite provides
much higher throughput compared to existing open-source
frameworks, including OAI [13, 47] and OpenEPC [69].
Further, while MMLite provides a raw throughput at par
with the stateful design (implemented on DPDK platform)
under stable traffic conditions, we outperform the stateful
design by about 18.4% under bursty traffic. Importantly,
MMLite can satisfy stringent SLO requirements, provides
near-optimal load balancing (within 1%), and results in better
resource utilization (by about 30-50%) compared to existing
approaches, all without adding significant overhead.

In summary, we make the following contributions:

e We demonstrate the performance limitations of the current
generation monolithic, stateful MME design (§2.2).

e We present the design of a stateless and functionally
customizable MME that provides service differentiation
while handling the diverse traffic of cellular IoT devices (§4).

e We develop a multi-level load balancing approach based
on skewed consistent hashing that meets SLO requirements
and facilitates dynamic scaling of MME (§5).

e We build a prototype of our MME using DPDK and Open-
NetVM (§6), and demonstrate our performance benefits
over existing and recently proposed frameworks (§7).

2 BACKGROUND & MOTIVATION

This section provides a brief primer on the current generation
LTE architecture and highlights the key challenges involved.

2.1 Overview of LTE Architecture

Present day LTE network has two main components: Radio
Access Network (RAN) and Evolved Packet Core (EPC); see
Figure 1a. The User Equipment! (UE) communicates with
Internet through eNodeB (another name for the Base Station)
of RAN via EPC. The Serving Gateway (SGW) is responsible
for forwarding the packets between the eNodeB and Packet
data network Gateway (PGW). PGW provides packet data ser-
vices to UE such as QoS (Quality of Service), packet filtering
services, and billing. The Mobility Management Entity (MME)
acts as the centralized controller module providing control
plane functionality, such as establish and release data sessions,
verifies the subscription details of a user and maintains the
control channel with eNodeB for exchanging the information.

!We use User Equipment and Cellular-enabled IoT device interchangeably.

10° P P 1.0 — 1.0 104
—— Smartphone = Switc| 1 r .
©10° =—— Dropcam —— Smoke Alarm [—
3 0.8 I r! 0.8 B0 A
P £
a 0.6 J 1 W 0.6 © 102 Background Control
“5 103 - ! 1 c - Restore and Attach
a] = A £ \ .
8 10 Ooa Coa ——. Attach (Mixed) =
£ 1 I za - i i @
5 ‘\‘ \ ‘ }\ ‘“h h“ | i\ Service (Mixed) w
= 1\ JR— c
10 W \‘ \}‘\” H “‘ vU \ |l “‘ 0.2 ,’ / == = Moderate Load 0.2 Attaclh (Alone) i
10 \ VHH | ‘ Il = ot~ — = Overload [—— Service (Alone)
R 1 R RBBR 0.0] 0.0 0
A3 c,.a e,’oc)o go‘;\o\@ko«o\w\ﬂe R . 10 100 1000 0 20 40 60 80 100 0 0 20 30 20
Day and Time Latency (ms) Latency (ms) Time (sec)

(a) Diversity in cellular-enabled

IoT and UE traffic characteristics. tiation during MME overload.

(b) Delays in data transfer instan-

(d) MME failure & snowball effect
during session restoration.

(c) Interference among LTE con-
trol procedures at line rate traffic.

Figure 2: IoT traffic characteristics and experiments demonstrating the limitations of existing stateful MME design on

DPDK-based industrial-grade prototype.

MME Control Procedures and Bindings: Figure 1b shows
the key MME states and the control procedures associated
with each state. The Attach requestisissued by UE to register it-
self with EPC for Internet connectivity, which is an infrequent
procedure that is invoked a few times per day per UE. The
Service request procedure is performed when an inactive UE in
Idle state wishes to send or receive data. This is a frequent pro-
cedure in LTE [34]), especially for IoT devices [15, 27, 63]. The
Handover procedure handles the mobility and TAU (Tracking
Area Updates) procedure is responsible for migrating each
device’s associated states to other MMEs, and MME scaling
(inresponse to overload or failures). In an ideal scenario, these
procedures on an average takes few hundred milliseconds to
complete; in case of overload or failures, these procedures can
take seconds or at times even minutes to complete [5, 30, 42].
The UE and MME retain these association details (called
static bindings or associations) until the UE is completely
detached from the core network. In this association, each UE
maintains identifiers such as GUTI (Globally Unique Tem-
porary UE Identifier), which contains: (i) TMSI (Temporary
Mobile Subscriber Identification) for temporarily identifying
the current UE session until it is detached from the network,
and (ii) MME identifier (i.e., MMEID-UE-S1AP). Similarly, the
MME maintains the necessary contextual state information
specific to that connection (such as authentication and
security keys), TMSI, and other session details. The TMSI and
MMEID information is used by MME to subsequently identify
the UE connection. These static bindings hinder elastic
scaling. This is because only the MME host that has the state
for a specific UE can handle all control signaling for the UE.

2.2 Challenges and Motivation

Several characteristics of 10T devices pose a challenge for
MME design: (i) the diverse nature of IoT traffic, including
traffic that is sporadic, periodic, high-frequency, and
bursty [63, 68]; Figure 2a illustrates this diversity in control
traffic for specific IoT devices obtained from real data [25]
in comparison with UE traffic [38], (ii) the different SLO
requirements of [oT devices depending on their functionality,
and (iii) scale — a large number of IoT devices must be
supported by the MME at low per-unit cost. We now discuss
the key performance challenges that must be addressed by
MME, thus motivating our work.

To evaluate the limitations of cellular core, we build a
DPDK-based traditional stateful MME architecture. We
generate IoT-based cellular control traffic by replaying
real-world packet capture traces from publicly available
data sets and LTE control procedures following specific
traffic distributions [25, 38] in our local testbed using LTE
UE emulator [37] (details in §6 & §7). While prior work has
analyzed data plane performance issues using DPDK-based
EPC implementation [55, 57], our work focuses on control
plane performance issues, as discussed below.

Overload Protection: The bursty nature of IoT traffic [29,
63] can lead to frequent MME overload. Current overload
protection methods [7, 9] include: 1) Migrating connections
from an overloaded MME to other lightly loaded MMEs, and 2)
Rate throttling at the overloaded MME by dropping or reject-
ing control messages beyond a certain limit. Unfortunately,
both approaches incur significant overhead due to the stateful
static bindings in MME. Figure 2b highlights the significant
increase (by almost 50x) in data transfer instantiation times
when an overloaded MME operating at 80% CPU utilization
attempts to migrate some of its connections to another MME
(experimental setup detailed in §7); note the log scale on the
x-axis. This is because of the large number of control mes-
sages that are needed to reestablish the UE’s context following
a connection migration request. We observe similar results
using the rate-throttling approach due to the reconnection at-
tempts made by the UEs following dropped messages. Similar
issues also arise in the case of scale-in, in response to low load.

Functional Decomposition and Isolation: Control
procedures from one device can interfere with the processing
of control procedures from other devices, resulting in
unpredictable SLO violations. Figure 2c illustrates the
impact of this interference. Here, the heavier Attach Request
increases the latency of the lighter Service Request by over 50%
(compared to isolated execution). Thus, an IoT device with
frequent Service Request messages can affect the performance
of other IoT devices or UEs that share the same MME. The
need for performance isolation between device traffic is
particularly important for use cases such as virtual reality
(VR) or smart-transportation networks, where latency
requirements are in the 1-10 millisecond range [71].

SLO-aware Load Balancing: Common approaches for
distributing UE connections among MMEs to improve per-
formance include round robin and consistent hashing [4, 32].
Due to the diversity in IoT traffic, however, the load on
individual connections can be vastly different, resulting in
hot spots and SLO violations. We show, in §7, that the above
approaches can lead to more than 20% SLO violations in the
presence of UE and diverse IoT traffic loads.

Fault Tolerance: MME failures may cause service outages
of up to tens of minutes [42]. Current LTE networks address
fault tolerance in two ways [23, 33]: (i) Active-Passive High
Availability via N + 1 (N Active, 1 Passive) resiliency, and
(ii) session restoration procedures. The N + 1 resiliency
approach requires additional hardware and cannot scalably
handle multiple MME failures. In the second approach, a
session restoration server maintains UE session information
of each of the MMEs [33]. In case of MME failures, the
session restoration server redistributes the UE session
information pertaining to the failed MME servers among
other active MMEs. The active MMEs trigger the affected
UEs to re-associate with new MME servers through session
restoration procedures, resulting in the flooding of the core
network with a large number of control procedures. Any
session restoration procedure that fails to complete within
5s will retry with reattach procedures, resulting in additional
attach floods (snowball effect [21]). Figure 2d illustrates this
effect, showing that UEs can take seconds, and even minutes,
to reattach to the network; note the log-scale on the y-axis.

3 SYSTEM OVERVIEW

From above description, it is apparent that there are two
core issues: (1) the stateful nature of MME and the static
binding it engenders significantly impact performance
when moving UE connections across MMEs, and (2) the
current monolithic design of MME is contrary to the need
for functional decomposition and performance isolation.
Our MML1ite architecture thus fundamentally uses two core
design principles - (i) Statelessness, and (ii) use of functionally
decomposed microservices. These principles are used in
conjunction with slicing - a unit of physical resource that
procedures needing specific SLO requirements are mapped to.

The MMLite architecture introduces the following
functional components, as shown in Figure 3:

o Stateless MME Microservices: We decompose the MME func-
tionality into individual network functions (NFs) that handle
specific LTE control procedures; these NFs are implemented
as microservices. The state is maintained externally making
these microservices stateless (see §4).

e Slices: The microservices are bundled into ‘slices’, with each
slice hosting a given number of microservices for different
control procedures. Slices are units of physical resources,
such as a fraction of a logical execution unit of a processor
(Icore [58] in DPDK-speak). Multiple slices can run on a
single MME host machine, and many such hosts may exist
within the carrier’s datacenter.

UEs / loT HSS/SGW

Devices

MME Cluster

ro-----—-----5 Clusters

MME Load
Balancer

BVIPto PIP PIPN
Mappings

UE-LBVIP- UE-eNB-
STAPID LBVIP-STAPID

Figure 3: MMLite: LTE cellular EPC system architecture.

e Load Balancing: The load balancer leverages the above com-
ponents to enforce SLO compliance in a resource-efficient
manner. It has two functional components: (i) MME Load-
Balancer: An external entity that distributes control mes-
sages from UEs across multiple MME hosts on the basis
of their resource and SLO requirements; and (ii) MME For-
warder: An NF-based forwarding entity on each MME host
that distributes control messages to NFs in a slice-aware
manner and on the basis of the SLO requirements of UE’s
control connections. The details of our inter-host and intra-
host load balancing are presented in §5.

For providing the necessary logic and infrastructure
support for the above mentioned components, MMLite
supports two different controllers: (i) NF Controller: A
controller local to each MME host to manage the externalized
states, state migration, and NF scaling; and (ii) EPS Controller:
A centralized controller that manages the MME hosts scaling
on the basis of SLO violations and resource requirements.

Overview of Operation: All control procedures are imple-
mented as independent microservices with states externalized
in the shared memory inside the MME hosts. The load bal-
ancer steers all control packets to the right MME host. The EPS
controller then helps the MML1ite architecture to evaluate the
performance of the control messages served at different hosts
and scale accordingly. Inside each MME host, a dedicated
forwarder and a set of NFs are assigned to each slice. Control
messages for the same invocation of a control procedure are
processed in the same slice; this is tracked using s1iceID by
the forwarder. The NF controller manages the NF scaling and
uses NF prioritization for SLO compliance. We discuss the
key components of MMLi te in detail in the following sections.

4 STATELESS MME MICROSERVICES

In this section, we describe the core of our MME design that
provides the key functionalities of functional decomposition
and elasticity. These are achieved by decomposing the MME
NFs into dedicated control procedure-specific microservices
and by decoupling the states from the NFs to make the MME
stateless. We also discuss our design for state migration and
fault tolerance, which makes MML ite more robust in practice.
The description below refers to Figure 4 that describes our
architectural components.

4.1 Functional Decomposition

As discussed in Section 2.2, the bursty IoT traffic results in
NFs inducing interference among control procedures and
possibly impacting critical messages. A popular approach
to mitigate this issue is protocol-level decomposition, that

"State Migration to | _)| Migration / _ 4| Shared Memory
__________ r Replication NF State Datastore

A
tate Lookup / Update:
Dedicated Icores NF Controller Vssnce 1

for handling packets, Rx, |
Tx ring buffers :RX Handover NFs | |
PKT Service NFs__ X! PKT
é Pkt, |
In sese Detach NFs

Handler entry = foun ,_____E_Sjc_e_N__
PRigesc : Handover NFs
Pqacket R -
lescriptor with MME Rx|__Service NFs_ |y,
Packets| Refgrence Forwarder-N : Mobility NFs

(PRtpese) | Detach NFs

Shared Memory | [—————
forPackets | MME Host on DPDK Platform

Figure 4: Internal system architecture of MMLite
components running on a single MME host.

is, decomposing MME on the basis of the functional modules
(i.e., code blocks) and protocol layers. For example, MME
could be decomposed and pipelined as NAS security module,
authentication modules, and S1AP layers separately with
this technique. On the other hand, the devices have control
traffic characteristics distributed over time with no two types
of control procedures from a UE overlapping or arriving at
the same time at MME. Therefore, decomposing the MME
into microservices specific to control procedures (i.e., vertical
decomposition) allows us to scale MME in fine-grained and
resource efficient fashion in accordance with the control
procedure inter-arrival time.

Our functional decomposition targets two issues. First, the
control procedures that need to be invoked are temporally
distributed in an unpredictable fashion. Some procedures
such as Attach are infrequent, while Service procedures
could be more frequent. The latter may even exhibit periodic,
synchronous or semi-synchronous behavior (e.g., IoT
sensors) [2]. Second, some IoT devices have limited functional
needs and do not require certain types of control functions
such as Handover, TAU-based state migration, and QoS
procedures (e.g., stationary IoT sensors). Other IoT devices
may be very dependent on certain types of control functions
(e.g., IoT devices on smart transport platforms may invoke
significant mobility related control functions). Mapping of
individual control procedures to microservices (procedure-level
decomposition) allows for specific microservices to be
instantiated and independently provisioned depending on
the load conditions and SLO requirements.

Thus, MMLite decomposes the traditional monolithic
MME into following set of microservices targeted to handle
specific control procedures: a) Attach request, b) Service
request, ¢) Detach request, d) Handover request, and e) State
management microservice-based NFs; we plan to support
other control procedures as part of future work. This
functional decomposition also enables seamless scaling and
load balancing features by making it easy to place/move
specific microservices, as discussed in §5.

4.2 Statelessness

MML i te externalizes the states of all MME NFs inside a host, i.e,
the states are maintained outside the NF, in the shared memory
of the MME host. We choose to store the states within each

MME host, as opposed to a centralized data-store [59], because
of frequent state updates triggered by control procedures.
The state replication and migration procedure facilitates the
necessary fault tolerance and scaling capabilities required for
our architecture (see §4.3). We illustrate the benefits of this
design choice in §7.1. We use NF Controller to allocate two
shared memory pools - one for storing packets for zero-copy
architectural support, and another for storing the UEs’ states.
These memory pools are later used by the MME NFs to store
the packets and to get the UE context information.

When a control packet arrives at the NIC of the MME
host: (i) The NF Packet Handler interfaces with the DPDK
platform’s poll mode driver to bypass the operating system
to DMA, which can be readily accessed by all the NFs. (ii)
The other NF Packet Handler threads access the packets
stored in the shared memory to create a packet descriptor
for each packet, which includes the handler to the packet
in the shared memory and details on how the packet needs
to be handled inside the host by different services. The
packet descriptors are then placed onto the RX queues of the
MME-forwarders for distributing the packets further across
MME NFs depending on the slice the packet belongs to. This
is facilitated by a set of hash tables maintained in the host
that maps sliceIDs to forwarders, control message types
to SLOs, and UEs (identified by TMSI) to their state.

4.3 State Migration

We invoke state migration across hosts, facilitated by the state
migration utility, in the event of host failures or host scaling.
The migration utility helps maintain up-to-date copies of
the states on other hosts (replica hosts). Replication of states
and number of replicas may be limited to those with tighter
SLO requirements or other priorities in order to conserve
resources. We leverage existing work [28, 48, 56] to develop
a partitioning of the state space, and enhance this state
partitioning specifically for our functionally decomposed
and stateless NFs. In particular, we partition the state specific
to each UE on the basis of the type of the control procedure
and the lifetime of the state into: (i) perpetual (i.e., does
not change during the lifetime of each control procedure),
and (ii) ephemeral (i.e., state information that changes with
each message exchanged within a control procedure). Upon
completion of a control procedure, we discard obsolete state
information (e.g., tunnel information, timers) and only retain
necessary state that might be required for the next set of con-
trol procedures. This allows us to optimize and consolidate
the state space, in contrast to existing approaches [4, 55].

The perpetual state is only migrated (across hosts) when
the UE attaches or detaches to the network; this includes
failures and scaling events. The ephemeral state is migrated
more frequently via one of the following approaches:

(i) Cold Migration: The UE contextual information from
within a MME host is migrated to other replica hosts
only upon completion of the entire control procedure.
Upon completing the procedure, the MME marks each UE

MME Load Balancer Consistent hash ring CH(TMSI) Primary Host

for each slice
NEIDA] Slices (5.} =5

1t Packet of

. Co”go' Slices {5, S, S5}
rocequre q .
> g,%%&]% Replica
{) B
Consecutive) CAEA IS 2

Packets of
Control
Procedure

SHces,SO)
ﬁ’g’ﬁg‘% getviableHost (primary, replicas,
Peass! slicelD, CPUye QueueSize,)

Figure 5: MMLite slice and SLO-aware MME LB architecture.

contextual information for migration. The state migration
utility consolidates the states belonging to the same slice
together and sends it to the other replica hosts.

(if) Hot Migration: In case of hot migration, each time a
message is handled by MME, the specific context (this is just
a part of the state) is marked for migration because it could
be updated. The state migration utility continuously polls
and migrates only those parts of the state that are marked
for migration. This approach provides better fault tolerance
compared to cold migration while increasing the volume of
migration traffic inside the core network.

4.4 Fault Tolerance and Scaling

As mentioned in §2.2, in case of conventional stateful MME
failure, the UEs that are already attached to the failed MME
host are redistributed to new MME hosts. This triggers an
avalanche of restoration and reattach procedures to change
UEs’ MME associations, significantly affecting performance.
MMLite avoids this with the following FT mechanisms.

(i) Host Failure: EPS Controller continuously monitors the
MME hosts (i.e., with heartbeat messages) for failures and per-
forms following tasks: (1) updates the load balancer about such
MME host failures, and (2) provisions each slice of the failed
MME host by adding the same amount of resources from exist-
ing MME hosts to the consistent hash ring of that slice. If exist-
ing set of hosts does not have sufficient resources, new MME
hosts are brought up from an idle pool. If state replicas are
available corresponding to the slices of the failed hosts, then
these replicas are migrated to the appropriate (slice-aware)
newly added hosts. Otherwise, the UEs must invoke reattach.

(ii) NF Failure: The NF controller helps to instantiate new
MME NFs from an idle pool of NFs. The NF controller invokes
the NF Packet Handler thread that is dedicated to handle the
failure scenario. This handler registers an MME NF in the idle
MME pool with the NF controller and reassigns the packets
already in the RX queue of the failed NF to that of the new
NF (note that the packets themselves are in shared memory).

5 LOAD BALANCING

To improve resource efficiency, we design an inter-host load
balancer that determines the slice- and resource-aware MME
host for the incoming packets. We then present our intra-host
forwarder that selects the SLO-aware MME NF within the
host for serving the packets.

ALGORITHM 1: Inter-Host Load Balancing.

pkt — sliceID, mmelD, GUTL.TMSI, msgID;
msgType « getProcedureType(msgID);
track_entry « Hash database of (LTMSI, hostID) ;
4 if track_entry[LTMSI] exists then

mmeHostID « track_entry[LTMSI] ;

-

N

W

¢ elseif TMSI+# 0then

7 if msgType+ “attach” then

8 key « pkt. GUTLTMSI;

9 sliceCHRef « getSliceCH(sliceID);
10 hostReplicas « lookupHosts(key, slicecCHRef);
1 hostMMEID « getViableHost(hostReplicas, sliceID);
12 track_entry[LTMSI] = mmeHostID ;

13 else

/* First message of Attach Procedure. */;

14 LTMSI « rand();

15 mmeHostID «— CHGetHost(LTMSI);
16 track_entry[LTMSI] = mmeHostID ;
17 mmeHost « getHost(mmeHostID);

18 send packet to mmeHost;

5.1 Inter-Host MME Load Balancer

Our inter-host load balancer uses a skewed consistent hashing
(SK-CH) mechanism to distribute incoming connections to
hosts. For fine-grained (slice-level) resource management,
we maintain a separate consistent hashing ring for each slice
based on its slicelID (see Figure 5). Thus, each slice can be
served by a subset of all hosts; however, multiple slices can be
served by a single host. Within the slice, we assign a subset
of hosts (depending on number of replicas needed) to each
UE, based on their TMSI. To serve the connection, a specific
host is chosen from this subset based on its load conditions
and the required SLO.

Our Algorithm: Algorithm 1 details our slice-aware
inter-host load balancing. The first procedure for any UE is
the attach procedure. For the first packet of attach (for which
the TMSI, mmeID, and slicelD values are not assigned), the
load balancer assigns a TMS, i.e., LTMSI. The LTMSI is used
to calculate the MME host, say host, to which this message
will be sent for service using the hashing ring reserved for
sliceID=0. After service, host, assigns the mmeID to this
connection as part of the reply. The load balancer uses this
mmeID to directly send subsequent packets of attach to hosty.

After successful completion of the attach procedure, the
slicelD of the UE is resolved. This slicelD is then used to
select the specific slice-aware hash ring. Within the hash ring,
the hash of the TMSI value (same as LTMSI) is used to select
the primary host and replica hosts, as shown in Figure 5. The
number of replicas can be decided based on the expected
load for each UE; in our experiments, we initially assign 2
replicas for each UE. host, then migrates the UE context to
the primary and replica hosts so they can serve subsequent
procedures from the UE based on the TMSI.

For subsequent procedures (after attach), from among the
primary and replica hosts, we derive the set of viable hosts,
i.e, hosts that satisfy the procedure’s SLO requirements.

Calculation of viable MME hosts: At a high-level, we say
that a host is viable if it contains at least one NF that meets the
SLO requirements of the procedure, say Tsyo. To obtain the
set of viable MME hosts, we compute the total estimated time
required by a (primary or replica) host to handle the incoming
control procedure. This, in turn, requires the current load
statistics at each host. Each MME host propagates the
CPU utilization and queue sizes of their NFs to the load
balancer. To minimize the overhead of communication, hosts
periodically send the moving average of CPU utilization and
NF queue sizes. In our implementation, this period is set to
a few hundred milliseconds, resulting in only a few hundred
kilobytes of data overhead on the network.

Let t be the type (e.g., service) of the incoming control
procedure. Let T; be the total completion time required
for a type t procedure when handled in isolation on a core
(obtained via profiling). Let m be the total number of NFs
that handle type t procedures across all primary and replica
hosts of TMSI. For each NF i, the load balancer is aware of the
moving average of queue sizes, q;, and CPU assigned, c;. The
waiting time for the procedure at NF i is then estimated as:

Wi=(q;i-T;)/ci Vi=1,...m (1)

Assuming that the moving average is stable, every message
of the procedure assigned to NF i will see a backlog of g;. If
there are p, messages in a type ¢ procedure, the total backlog
experienced by the procedure is p; X g;. Since T; is the time
for a procedure when run in isolation (on a full core), we can
approximate the time per message as T; /(c; -p;), and thus the
wait time is p; X q; X T; /(c; - p+) = qi X Tt /¢;. The completion
time is then computed as T; = W; + T, = (Z—f +1)XT;.

We now find the viable hosts as those that contain at least
one NF i for which T; < Ts1 0. If no viable hosts exist, then the
messages are sent to the host that has the NF with the least
qi/c; ratio. Such violations are reported to the EPS Controller,
which can then add hosts to the slice (see §5.3).

Selection of final host from viable hosts: From among the
set of viable hosts, we select the host that is most loaded, i.e,
the host that has the highest CPU usage. While this may seem
counter-intuitive, recall that we are only picking from among
viable hosts, each of which has at least one NF that can satisfy
the SLO. We prefer the most loaded host to maintain lighter
load on other hosts, which can then be scaled down during low
cluster usage. Instead, if we select the least loaded host, over
time we will have balanced hosts, making it difficult to identify
less loaded hosts to drain connections from in case of a scale
down. Prior works have shown this load unbalancing tech-
nique to facilitate server scaling in web clusters [6, 16], while
we explore this in the context of stateless MME architectures
with states distributed across multiple MME hosts (see §7.2).

Once the final host is selected for a control procedure, we
maintain the connection tracking information for this TMSI
to forward subsequent messages of this procedure to the
same host without having to recalculate the viable hosts. This

ALGORITHM 2: Intra-Host Load Balancing.

sliceID, mmelD, GUTL.TMSI, msgType « pkt;
sID « getServicelD(msgType);
nflDs « getNFInstances(sID, sliceID) ;
track_entry « Hash database of (TMSI, mmeNFID) ;
if track_entry[TMSI] exists then
mmeNFID « track_entry[TMSI] ;
else
if sliceID = 0 then
mmeNFResources «— getNFQueue(nfIDs) ;
mmeNFID « min{mmeNFResources} ;

I T ST T N T OO

-
=)

else
mmeNFID « getOptimalNF(mmeNFLoads) ;
track_entry[TMSI] = mmeNFID ;

14 send packet to NF [mmeNFID] ;

=
[

o
@

information is refreshed each time a new control procedure
(not message) is seen by the MME load balancer.

5.2 Intra-Host Load Balancing (Forwarder)

Each slice inside an MME host is assigned a dedicated MME
forwarder and a number of MME NFs of different service
types (e.g., attach, detach, handover). For each service type,
there can be multiple NFs depending on the load conditions
of that specific control procedure. Once a host is chosen for
handling an incoming message (inter-host load balancing),
the next task is to decide the specific NF within that host that
will serve the request. MME Forwarders provide an effective
means to load balance the control traffic across multiple
MME NFs inside each MME host.

Our intra-host load balancing algorithm is presented in
Algorithm 2. Control messages that do not have any sliceID
details (i.e, attach procedure’s messages), will be put on
the receive ring buffer of the forwarder that is dedicated to
sliceID=0. This forwarder distributes the messages to the
attach MME NF that has the least queue size. Consecutive
messages from control procedures that have a slicelD (i.e.,
procedures from UEs whose attach is successful), will be sent
to the optimal MME NF, as discussed next.

Determining the optimal MME NF: A common approach
of intra-host load balancing is round robin or consistent
hashing [4]. However, these approaches do not provide any
performance guarantees, and may create hot spots, resulting
in SLO violations (see §2.2).

Our approach, by contrast, selects the NF that provides the
lowest latency for the incoming procedure. Specifically, we
use the same latency model as in Eq. (1), except: (i) we use cur-
rent queue size at the NF, say Q;, instead of moving average,
and (ii) we use the current lcore allocation (based on updated
priorities, see §5.3), say C;, as opposed to moving average.
We use the current values (i.e., obtained from within the host
without any network overhead) to enforce SLO requirements
as they provide more accurate and timely estimates of current
load conditions at the NF. The estimated latency is then:

Tl-=(Qi/C,-+1)><Tt,Vi:1,...,r (2)

where r is the number of NFs in the host. Based on Eq. (2),
finding the optimal NF for a given procedure type, t, and a
given slice that minimizes the estimated latency is equivalent
to finding the NF opt such that:
opt= arg min Q;/C; (3)
1<i<r

If the estimated latency violates the SLO, i.e., T; > Tsr0,
then, in addition to sending the packet to the computed opt
NF, the predicted violation is reported to the NF Controller
within the MME host. The Controller then instantiates
additional MME NFs as needed (see §5.3).

In general, the number of NFs within a host for a given
procedure and for a given slice is not too large (on the order of
10’s). Thus, the optimal NF can be determined without much
overhead. However, the overhead of centrally computing the
queue and cpu statistics for NFs in the kernel is infeasible
due to the high packet arrival rate and the required polling
of NFs to obtain the necessary statistics. We reduce this
overhead by maintaining (computing) the required statistics
within each NF itself. To amortize the overhead, we maintain
the flow tracking entry for each procedure with TMSI and
MME instancelID (TMSI: : instanceID) once its optimal NF
has been determined. Subsequent packets of this procedure
bypass the forwarder and go to the opt NF.

5.3 NF Prioritization & Resource Scaling

The MME must handle heterogeneous traffic from diverse
IoT devices with a wide range of SLO requirements. We thus
employ prioritization and resource management to avoid
performance interfere and achieve SLO compliance.

Prioritization: Multiple NFs on a host may be assigned to
the same core, creating contention. To provide performance
isolation, our MMLi te architecture leverages CPU-based pri-
oritization and processor scheduling. When a core is assigned
to n MME NFs with different priority levels, P;, we compute,
for each NF i, the CPU core allocation fraction, C;, as:

P;
Ci=

n
j=1Pj

Vi=1,...,n (4)

P; ranges from 0 to 1, with higher values representing
higher priority. If only one active NF exists on a core, it will
be allocated the entire core. Idle NFs are not considered in
the C; calculation. To enforce the C; allocation, we schedule
the core’s time slices across resident NFs in proportion to
their C; values in a round robin manner. The priorities are
recalculated every time an NF becomes idle or when an NF
is added to the core for packet processing.

To assign priorities, we first note the minimum SLO value
across users, say SLOy,i,. We then set the priorities for each
NF inversely proportional to their respective SLO values,
normalized by SLO,y;,,. Thus, for an NF with SLO value SLO;,
we set P; = SLO,,i, /SLO;. For example, consider two NFs a
and b that share a core with SLO, = 5ms and SLO}, = 10ms.
If SLOpin = 1ms, we set P, = 1/5 and Py = 1/10. This gives
us, from Eq. (4), C, =2/3 and Cp, = 1/3. Prior work on shared
storage workloads has shown that priorities that are set

inversely proportional to performance requirements work
well in practice [75]. We evaluate the impact of our priority
assignment on performance in §7.2.

Lower and upper limits on C; may be predefined for
specific slices. If SLO violations occur for an NF, we reactively
increment its priority by a small fraction (e.g., 0.01). If viola-
tions continue to persist, we inform the NF Controller, which
may then instantiate additional NFs, as discussed below.

Scaling: Hosts or NFs can be dynamically added for each
slice (or user) reactively in response to overload or failures.
On the other hand, resources (NFs or hosts) can be removed
in response to low utilization. NF-level scaling is carried out
by the NF controller within a host (see Figure 4), whereas
host-level scaling is carried out at the EPS controller.

We add NFs at a host (or at other hosts if the CPU is sat-
urated) in response to persistent SLO violations that are re-
ported to the NF controller. To minimize the impact of waking
up MME NFs, we maintain a pool of idle NFs that can be
quickly instantiated, as needed; the overhead of idle NFs is
negligible in our experiments. Likewise, we add a new MME
host in response to persistent SLO violations that cannot be
addressed by NF scaling alone. Further, we also add hosts if
the load on all existing hosts is high. For scaling down, we first
transition NFs to the idle state and return them to the pool
of idle NFs if there are no outstanding messages in the queue.
If the pool of idle NFs contains more than a threshold (say, 1,
as in our experiments) number of NFs of a given type, then
additional idle NFs of that type are turned off. We scale down
hosts (or move to sleep or idle state) if the total available CPU
across MME hosts is high, say significantly greater than 100%.

When the number of hosts changes, the EPS controller
triggers the hosts to recalculate the slice-specific consistent
hashing to determine the new set of hosts to migrate the
states. When the number of NFs change in a host due to
scaling, our viable and optimal NF selection strategies will
gradually redistribute the packets among existing NFs as
they prefer smaller queues. However, we can redistribute
the packets in the receive queues more aggressively, e.g., in
response to an NF failure.

6 IMPLEMENTATION

We use the OpenNetVM [48] integrated with DPDK plat-
form [24] to build our stateless MME microservices and
other components of MMLite. OpenNetVM provides the
ability to process packets directly from the NICs allowing
them to be DMA’d (Direct Memory Accessed) into a shared
memory region. NFs can thus directly access packets with no
additional copies (i.e, zero copy I/O). To overcome the 100%
CPU utilization with DPDK poll mode driver (PMD), we use a
hybrid polling-interrupt driven technique to achieve both per-
formance and resource efficiency [73]. We next describe the
functional components that developed in C for our prototype.

UE Emulator: The UE emulator is built as a multi-threaded
program, with each individual thread generating control
traffic of a UE. We bypass the radio to generate traffic for direct

handling by the MME. Our UEs generate control procedures
such as attach, service, handover, detach, restoration, and
TAU-based procedures. It allows the user to configure threads
to generate traffic with specific characteristics.

MME Load Balancer & Forwarder: We implement our
skewed consistent hashing along with round robin (RR),
consistent hashing (CH) and Maglev-based LB mechanisms
on DPDK. We use Jenkins hash function [26] as the baseline
hashing mechanism for CH and our skewed CH methods.

MME as Microservice: To further improve scalability, we
remove the existing network dependencies from Linux
networking stack and build it as an application-level
networking module using DPDK. We implement each control
procedures as microservices with their states externalized
to shared memory. This reduces the NF instantiation time to
the order of a few milliseconds compared to tens of seconds
using OAISIM [13] and OpenEPC NFs [69].

State Migration Utility: We implement state migration as
a standalone module interfaced with the EPS controller to
trigger bulk and device-specific state transfers. The states
marked for migration are transfered to other MME replica
hosts (§4) using separate threads assigned with dedicated
cores. These threads continuously monitor the state updates
to perform state transfers to other MME hosts. This utility
is designed to perform both hot and cold migrations.

Controller infrastructure: The EPS controller and NF con-
troller modules interface with the MME NFs, load balancer,
and forwarder modules. The controller infrastructure is built
with following key capabilities: (i) initiates state migration
across hosts, (ii) performs scaling of resources (MME NFs
and hosts) based on observed SLO violations and cpu usage,
(iii) updates load balancer with the MME failure and recovery
states, and (iv) assigns the globally unique LTMSI values to
UEs when attached to the network for the first time.

7 EVALUATION

In this section, we evaluate the performance of MMLite and
compare it with conventional MME architectures and also
with recent approaches. We use the following platforms: (i)
DPDK Compatible Intel Ethernet 10G 2P X520 NIC cards,
(if) Dell R710 servers with 48GB RAM, 12 cores (2.6GHz)
with Ubuntu 4.4.0-97-generic kernel used as MME hosts, and
(iii) Dell R710 servers with 48BG RAM, 12 cores and 10G
Mellanox InfiniBand adapter integrated with RAMCloud
infrastructure for centralized data store. The testbed has
UE emulator hosts interfaced with multiple 10Gbps NICs
to MME load balancer. The load balancer interfaces with
multiple MME hosts and EPS Controller using 10Gbps NICs.

7.1 Throughput Comparison

We compare the throughput of MMLite with the following
prototypes: (1) OpenAirInterface (OAI): OAlis the most widely
used open source EPC implementation [60]. We benchmark
the performance and scalability of OAI in the OAISIM
mode [13], where the UE and eNodeB are integrated together

10| =&+ MME-RC =*- OpenEPC
G | =&- MMLite —e- OAl
Q. /"_-‘
& 8| —a- Stateful i
Qo A=
= ,4¢—r
3 6 ’_A__-A~_
g *”z - e~
2 <
S 4 &
o »®
c ;‘
2 A7

s
“_‘,
% 2 P 3 g 10

Transmission Rate (Gbps)
Figure 6: Throughput of different MME prototypes.

into a single node, bypassing the radio interface. (2) OpenEPC:
We benchmark OpenEPC using the PhantomNet testbed [69].
(3) MME with Centralized data-store (MME-RC): We customize
our DPDK-based MME code to use the RAMCloud-based
centralized data store model. RAMCloud [59] stores all the
data in DRAM allowing the remote servers to access the
RAMCloud data objects with low latency (as little as ~ 5usec).
(4) Stateful DPDK-based MME: This prototype implementation
uses the same code base as MML1 te, but is stateful.

Figure 6 summarizes the throughput for the above ap-
proaches relative to our stateless DPDK-based approach in
MMLite as a function of load. For each load level, we generate
realistic IoT traffic, similar to Figure 2a. As shown in Figure 6,
we find that the OAI and OpenEPC/PhantomNet platforms
have limited throughput scalability, and saturate at around 1
Gbps due to MME application’s binding with the kernel, unlike
infrastructures such as DPDK which bypass it. MME-RC scales
well initially, but saturates at around 5.6 Gbps, and gradually
dropsto 5.1 Gbps due to the overhead of state storage, retrieval
and transfer to the target host. The stateful DPDK-based model
performs better than MME-RC, but still saturates around
7.2 Gbps; this is because of the combined effects of queue pro-
cessing delays induced by MME and other EPC nodes. By con-
trast, our functionally decomposed and stateless model that
is free of static bindings allows MME to scale almost linearly
with load by effectively sharing the load across stateless NFs,
thus saturating only close to the line rate. It requires further
investigation to understand the intricate component-level
benefits, which we defer to our future work. Compared to the
stateful model, our stateless design provides ~16% better per-
formance at peak load. In summary, MML i te effectively priori-
tizes and distributes control traffic load across stateless NFs to
provide higher throughput than stateful and MME-RC models.

7.2 Performance of MMLite’s Components

We first highlight the benefits of MMLite with its fault
tolerance, dynamic scaling capabilities and its ability to
effectively control the interference across control procedures.
We then end with an evaluation of SLO compliance and
resource efficiency.

We use the following traffic characteristics generated using
our UE emulator: T1, a constant rate of control procedures;
T2, a steadily increasing rate of control procedures; T3, traffic
rate from each UE using a Markov modulated (time-varying)

o
(9]
%6 - Stateful Host/NF Failure S\C:GG —e- Stateful Session Restoration
= e Stateless Host Fajlure #50] — stateless Cold Migration
= I‘m —— Stateless NF Failure 5 —m- Stateless Hot Migration
c 4 ft ‘ = 40 2
'S WWW 2 30 /’,,
ol [s 5 -
2 L 20 P
£ M m g -
S i My R P P
U’G VAT S} PORPYY LT L cEEET il
2 0 5 10 15 20 25 30 © “10k 20k 30k 40k 50k

Time (sec) # Control Procedures/Second
(a) Latency of control proce- (b) % Connection drops while

dures after failure. handling failure.

Figure 7: Demonstrating fault tolerance.

Poisson process; and T4, a sporadic traffic pattern (Pareto
distributed [49]), representative of traffic surges.

Fault Tolerance: Figure 7a demonstrates our MME failure
handling with three MME hosts using T1 traffic. We suspend
one of the MME host’s NFs at about the 2 second mark to
emulate MME failure. The traditional stateful MME uses the
same state restoration procedure for NF or host failures. We
thus observe the same performance in case of NF and host
failure for stateful MME. We see that the control procedure
latency shoots up to 5s (which is the maximum UE retry
time) in response to failures for the stateful MME. This is
because during failures, the UE retries for the connection
every second. If the UE fails to get a response to its retries
within 5s, it generates reattach procedure and drops existing
data connections associated with it.

Unlike stateful MME, MML 1 te handles host and NF failures
differently as discussed in §4. MML i te needs state migration in
case of host failures, but this does not involve UEs. Figure 7a
shows thatMMLi te is far more responsive after failures and re-
covers quickly. The average latency of the control procedure is
< 0.5 s with NF failure and up to 2.5 s with host failure. Clearly,
the performance recovery is significantly better for MMLite.

To further analyze performance, Figure 7b shows the
number of connection failures after the fault; we perform
multiple experiments at different loads to generate data
for this figure. With stateful MME, we see numerous
connection drops. At 50K connections/s load, we observe ~
40% connection drops; this is due to congestion that occurs
at MME, eNodeB and UE during MME failure. By contrast,
MMLite significantly reduces the number of failures in all
cases, for both cold and hot migration approaches (§5).

Scaling: To evaluate scaling, we use T2 traffic to steadily
increase traffic until a maximum point (from 2.5 Gbps to about
line rate) and then reduce it gradually. We note that our state-
less MML1i te seamlessly scales the number of NFs and hosts, as
needed, in response to the changing traffic (Figure 8). Further,
the resulting latency is much lower for stateless compared
to stateful; note that the latency is shown on a log scale. The
latency specifically spikes for stateful MME when the number
of hosts is scaled up (around the 90 s mark) or scaled down
(around the 260 s mark). This is due to the (resource intensive)
TAU-based load rebalancing and state migration across hosts

—-—- Latency - stateless ---- #NF
——- Latency - stateful ---- #host
R 103
@ f T =
210 | i A 107 £
+* o N “-1 | -
s AP Y >
5 MZE—"“—"’“ \%’"’&L&!&kﬁk\\i\ 10t 2
541 Loy 9]
z - 2
H T -
® o e e Bt sty i e
% 50 100 150 200 250 300 0
Time (sec)

Figure 8: Demonstrating scaling: Average latency of control
procedures with scaling of NFs and hosts.

that is required for stateful MME. During these periods,
the latency for stateful MME is about 50-100x higher than
stateless MME. Empirically, we found that while handling
failures at line rates, MME-RC resulted in higher connection
drops and higher latency to complete the control procedures
compared to MMLite. Similar observations are made in scal-
ing MME hosts and NFs due to the saturation effect observed
with MME-RC at higher throughputs, as discussed in §7.1.

Functional Decomposition & NF Prioritization: In
this experiment, we illustrate the benefits of functional
decomposition with two different types of control procedures
i.e., handover request and service request. The average latency
for handling the service request, in isolation, is a lot smaller
(< 10ms) compared to handover (~ 20 ms). We use the T1
traffic pattern with a rate of 1000requests/s.

Handover Procedure (H)

AlOO I Service Procedure (S)

g 80

& 60

c

[0}

© 40

-

20 i ﬁ
B

Unified Naive Prioritize Prioritize
MME Decompose(H over S) (S over H)

Figure 9: Functional decomposition and prioritization of
control procedures at line rate.

Figure 9 shows the latency of the two control procedures
in different scenarios. First, without any decomposition
(default, unified stateful MME), we get a similar latency for
handling each procedure (~ 35ms). This is because, under
the unified architecture, the handling of the two procedures
creates contention and significantly increases the latency of
the smaller service request. With our naive decomposition,
the interference induced by handover over the service request
procedure is alleviated. The service request procedure latency
is brought back to the ideal case of < 10ms. However, the
handover latency increases since the service request NF stays
idle after finishing the control procedures assigned to it,
wasting resources.

The latency can be further optimized by effectively setting
the NF priorities when sharing CPU resources. Figure 9
(H over S) shows that the handover procedure latency can

50% Skew
Without Skew

50% Skew
Without Skew

Violations (%)
N
o

B
] é 4 2 zﬁ
RR PEPC CH MaglevMMLite

LB schemes with MME

7

Std. Dev of Load Dist. (%)
o
AT
ARy
AR
REHRREE

/) I zaem
PEPC CH MaglevMMLite ILP

LB schemes with MME

A
ILP

(a) Standard deviation of load (b) SLO violations under all LB

distribution among MME hosts. schemes for different skews.

—e= RR -+ Maglev 8 mmE Std. Dev of Load Dist
?25 N cH Cae MMLIt 2 wa# SLO Violations B
ézo RN e 520 202
0 A S\ -=- ILP -e- PEPC] 5
SI5™0 e 3 B
© N 5 °
5 10p N > 10 10>
< * 7] o
> K 9
A——] 7
AL S 2.4 10 1] o |
3 4 RR+ RR+ SK-CH+ SK-CH +

Number of Hosts RR OnotimalNF RR ObtimalNF

(c) SLO violations for different (d) Performance of MME with
number of hosts.

different inter- and intra-host LB.

Figure 10: Evaluation results showing load distribution and SLO violations for different load balancing schemes.

be brought down to ~ 20 ms while sacrificing the service
latency by ~ 10ms. Alternatively, we can prioritize the service
procedure NF to get much lower latency, though at the
expense of increased handover latency (S over H). These
results showcase how tighter SLOs can be obtained by ap-
propriately allocating resources (differentiated service) in the
decomposed implementation in MMLi te. Such prioritization
is not possible for the default, unified MME design.

Load Distribution and SLOs: To evaluate our load balanc-
ing schemes from §5, we use all traffic patterns (T1 — T4),
and skew the load among UE connections. We compare the
performance of traditional cellular control plane architecture
that uses (i) RR (round robin), (ii) CH (consistent hashing),
and (iii) Maglev [12], with our skewed-CH inter-host load
balancer. Maglev aims to better balance the keys in CH to
achieve balanced number of connections across hosts (as
verified in our experiments), but it does not take into account
the load on each connection or session. We also compare
our approach with the PEPC cellular core architecture that
we built, which employs the Maglev-based LB scheme, as
discussed in [55]. Note that PEPC uses consolidated data and
control plane cellular core elements.

We also compare with an unrealistic yet optimal Integer
Linear Programming (ILP) solution that solves the load balanc-
ing problem, though at a significant computational overhead.
The ILP finds the placement of NFs on hosts that satisfies the
SLO constraints for incoming procedures (expressed similar
to Eq. (2)), with the objective of minimizing the number of
hosts. We omit the ILP formulation due to lack of space.

Figures10a and 10b show the standard deviation of CPU
utilization across hosts and the resulting SLO violations for
different balancers when using 3 MME hosts. For uniform
load across UEs (no skew), all schemes perform well, though
CH, Maglev and PEPC (enabled with Magle-based LB) do
have slightly higher deviation. However, for skewed load
(wherein the load for 50% of the connections was increased
significantly), RR, PEPC, CH, and Maglev have high deviation
(above 15%) in CPU load across hosts. This is because these
schemes only try to balance the number of connections
per host (i.e., UEs in our case), which is insufficient as the
connections themselves have different load. This also results
in significant SLO violations (~18-28%) for these schemes.
By contrast, MMLi te results in about <4% standard deviation

and only about 3-4% SLO violations. These numbers are
almost a factor 3-7x lower compared to other schemes.
Compared to the optimal ILP, skewed-CH is within 1% of the
SLO violations and within 5% of the CPU deviation.

Figure 10c further analyzes the SLO violations when the
number of hosts is increased (under skewed load). While
the violations decrease with number of hosts for all schemes,
we see that Maglev, CH, RR, and PEPC, continue to have
significantly higher SLO violations, when compared to
MMLite . PEPC has the highest SLO violations because of the
interference between control and data place traffic, which
are consolidated under the design of PEPC. As the number
of hosts increase, MML1i te starts to approach ILP; we believe
this is because MML1i te has more opportunities to find viable
hosts with larger cluster sizes.

While the ILP outperforms MMLite in the above experi-
ments, it must be noted that the ILP’s optimal decisions were
calculated offline based on collected workload traces. This is
because the ILP takes on the order of seconds to converge to
the solution for our testbed parameters, making it infeasible
in practice (as the ILP is run for each arriving procedure).

Inter and Intra-host LB Schemes: Finally, Figure 10d evaluates
the performance under different combinations of inter- and
intra-host load balancing using 3 MME hosts and the skewed
load to illustrate the importance of each component. We
focus on RR as the alternative scheme to limit the state space.
We see that our load balancing scheme (Skewed-CH for
inter LB + OptimalNF for intra LB) provides the least SLO
violations and deviation in CPU utilization. When we replace
our inter-host balancer with RR, the violations increase
from 4.25% to 9.92%, but when we replace our intra-host
balancer with RR, the violations increase to 16.35%. However,
the deviation of CPU usage shows the opposite trend. This
is because the inter-host balancer is primarily responsible
for resource efficiency, whereas the intra-host balancer is
primarily responsible for SLO compliance. Replacing both
components with RR provides even worse performance.

Resource Utilization: In practice, a more relevant question
is to determine the number of hosts needed to meet the SLO
requirements. Figure 11 illustrates these results (showing
time-averaged number of hosts) for the requirement of < 5%
SLO violations under the Pareto traffic distribution with dif-
ferent skews (a = 1, 2 and 3). We see, from Figure 11a, MLite

10

100 = [RR

8 % cH
% 75 ’ Maglev
’ E= MMLite

ANN

50

Servers

%
f
%

@
=1
imu

AN

25

ANNNN

4
1
il
il
%

il

a=1 a=2 a=3
(a) Traffic Distributions (b) S

lation Setup

Figure 11: Hosts required for SLO compliance under differ-
ent schemes using Pareto traffic with varying skews (a).

provides about 34 — 47% reduction in resource requirements
for all traffic traces. CH performs the worst, while RR and
Maglev do marginally better than CH. This is because, unlike
other approaches, MMLi te is designed for resource efficiency
and SLO compliance (see §5). We omit results for PEPC as
it fails to meet the SLO requirements even with all the hosts
in our testbed; this is because of the additional interference
introduced by PEPC with consolidated control and data path
elements on the same host.

To evaluate the results for larger cluster sizes, we simulate
the various schemes. Figure 11b shows one such scenario
(a=1) with 100 hosts. We find that, even with larger clusters,
MML1ite continues to provide significant resource savings.

8 RELATED WORK

Functional Customization: There is a significant body
of work on decoupling control and data planes [39, 41, 42].
Recent works have demonstrated the resiliency of such
decoupled services implemented as microservices [22, 73].
CoMB [62] demonstrated the composition of NF services into
a consolidated middlebox. In the context of cellular networks,
techniques are proposed to optimize the control procedure
latency by customizing the LTE control messaging archi-
tecture [31, 41]. ECHO [42] deals with reliability of EPC in
public cloud infrastructures. PEPC [55] proposed functional
composition in the context of cellular networks for efficient
scaling and state space optimization. Similarly, Softbox [40]
proposed scalable LTE core architecture by slicing and com-
posing the core functionality as containerized per-UE EPC.
In addition, Softbox supports mobility-aware mechanism to
optimize the resource utilization of UE containers, thereby
effectively steering traffic through per-UE containers using
SDN-based rules. While inspired by the above, our work
focuses solely on the control plane and uses statelessness and
procedure-level decomposition (as opposed to protocol-level
decomposition in the above works) to minimize interference
among control procedures for fine-grained SLO compliance.

Statelessness: Recent studies have suggested the decoupling
of the static bindings of MME with other entities to allow
the MME to scale [53, 66, 67]. However, the states held by
the MME specific to each UE prevent the MME from scaling
and can create hot spots. Our approach to statelessness is
motivated by Kablan et al. [28] which proposes completely
decoupling the state and processing. We build on this concept

to develop a multi-level load balancer that seamlessly moves
load across MME hosts owing to statelessness.

SLO-aware Load Balancing: SCALE [4] proposed consis-
tent hashing (CH) based load balancing and dynamic scaling
for MME, but the scaling employs analytical approaches that
require predictable traffic patterns. However, UE and IoT
traffic can be skewed, bursty, and unpredictable [29, 63]. As
shown in our evaluation, MMLi te is able to effectively handle
skewed and bursty traffic. Further, SCALE operates at the
granularity of VMs, whereas MMLite operates at the finer
granularity of microservices, allowing control procedures to
be effectively prioritized according to their SLO requirements.
The Maglev-based load balancing [12] aims to eliminate
the skew in key distribution of CH. However, as shown
in §7, these techniques are oblivious of the load on each
connection and thus result in hot spots and unreliable SLOs.
There are also other load balancing and migration tech-
niques [1, 19, 20, 44, 46, 50, 64, 72], but they do not take SLO
requirements into consideration when handling connections.
Prioritizing connections has been explored before (e.g.,
QJump [18], PriorityMeister [76], and SNC-Meister [74]).
Building on these works, we integrate priorities into our
multi-level load balancer. Another popular approach to SLO-
aware resource provisioning is predictive modeling [10, 51].
Given the bursty and at times unpredictable IoT traffic [29, 63],
the effectiveness of these models in the IoT space is unclear.

9 CONCLUSION

With the increase of IoT devices in the cellular network,
it is now critical for the cellular core to handle diverse
devices with varying traffic characteristics and SLOs at
a low cost. Given this backdrop, we specifically focus on
handling the control traffic effectively at a critical core
network entity - the MME. The proposed design, MMLite, is
a departure from traditional inflexible approaches that use
static binding between the state and the processing. MMLite
uses stateless microservices to decouple this binding and to
enable functional customization that is more responsive to
SLO requirements and resource availability. We develop a
multi-level load balancing approach using skewed consistent
hashing to achieve SLO compliance and resource efficiency.
Our evaluations using DPDK and OpenNetVM-based
prototypes demonstrate the superior performance of MMLite
over existing approaches with respect to fault tolerance,
scalability, resource utilization, and SLO satisfaction. We will
open source the MMLi te framework to enable further work.

Acknowledgments

We greatly appreciate Z. Morley Mao (our shepherd) and
the anonymous reviewers for their insightful feedback. Our
special thanks to Vijay Gopalakrishnan from AT&T Labs for
his continuous support all along the way during our research.
This work is partially supported by NSF grants CNS-1642965,
CNS-1617046, CNS-1750109 and a grant from MSIT, Korea
under the ICTCCP Program.

References

[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan,
Navindra Yadav, George Varghese, et al. 2014. CONGA: Distributed
congestion-aware load balancing for datacenters. In ACM SIGCOMM
Computer Communication Review, Vol. 44. ACM, 503-514.
Pilar Andres-Maldonado, Pablo Ameigeiras, Jonathan Prados-Garzon,
Juan J Ramos-Munoz, and Juan M Lopez-Soler. 2017. Optimized
LTE Data Transmission Procedures for IoT: Device Side Energy
Consumption Analysis. arXiv preprint arXiv:1704.04929 (2017).
R. Archibald, D. Gupta, R. Jana, V. Gopalakrishnan, A. S. Rajan, K. B.
Ramia, D. Dahle, J. Cooper, G. Kennedy, N. Rao, S. Sonnads, and M. Mc
Donald. 2016. An IoT control plane model and its impact analysis
on a virtualized MME for connected cars. In 2016 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN). 1-6.
https://doi.org/10.1109/LANMAN.2016.7548864
Arijit Banerjee, Rajesh Mahindra, Karthik Sundaresan, Sneha Kasera,
Kobus Van der Merwe, and Sampath Rangarajan. 2015. Scaling
the LTE Control-plane for Future Mobile Access. In Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and
Technologies (CONEXT ’15). ACM, New York, NY, USA, Article 19,
13 pages. https://doi.org/10.1145/2716281.2836104
Call Failures in MME. 2017. https://en.wikipedia.org/wiki/QoS_Class_
Identifier.
Gong Chen, Wenbo He, Jie Liu, Suman Nath, Leonidas Rigas, Lin Xiao,
and Feng Zhao. 2008. Energy-aware Server Provisioning and Load
Dispatching for Connection-intensive Internet Services. In Proceedings
of the 5th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’08). USENIX Association, Berkeley, CA, USA,
337-350. http://dl.acm.org/citation.cfm?id=1387589.1387613
Cisco: ASR5x00 MME Overload Protection Features. 2015.
https://goo.gl/LV9I7b5.
Cisco leads the way to 5G networks, Microservices and Advanced
Automation. 2017. https://goo.gl/Sx2xoL.

[9] Cisco: MME Overview (Overload Protection). 2017. https:

//goo.gl/dyF3x9.

[10] S.Correa and R. Cerqueira. 2010. Statistical Approaches to Predicting
and Diagnosing Performance Problems in Component-Based Dis-
tributed Systems: An Experimental Evaluation. In 2010 Fourth IEEE
International Conference on Self-Adaptive and Self-Organizing Systems.
21-30. https://doi.org/10.1109/SAS0.2010.32
Designing and managing VNFs the right way for network functions
virtualization. 2017. https://goo.gl/Fnc7Ci.
Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney,
Wentao Shang, and Jinnah Dylan Hosein. 2016. Maglev: A Fast and
Reliable Software Network Load Balancer. In 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16). Santa
Clara, CA, 523-535. https://www.usenix.org/conference/nsdi16/
technical-sessions/presentation/eisenbud
[13] End-to-end LTE/EPC network with OpenAirInterface (OAI) simulated
eNB/UE and OAT’s EPC . 2017. https://goo.gl/kXSvBi.
Ericsson Mobility Report. 2016. http://www.ericsson.com/res/docs/
2016/ericsson-mobility-report-2016.pdf.
Lilatul Ferdouse, Alagan Anpalagan, and Sudip Misra. 2017. Congestion
and overload control techniques in massive M2M systems: A survey.
https://doi.org/10.1002/ett.2936 2936 ett.2936.
Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A.
Kozuch. 2012. AutoScale: Dynamic, Robust Capacity Management for
Multi-Tier Data Centers. ACM Trans. Comput. Syst. 30, 4, Article 14
(Nov. 2012), 26 pages. https://doi.org/10.1145/2382553.2382556
Gartner Reveals Top Predictions for IT Organizations and Users in 2017
and Beyond. 2017. http://www.gartner.com/newsroom/id/3482117.
Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M.
Watson, Andrew W. Moore, Steven Hand, and Jon Crowcroft. 2015.
Queues Don’T Matter when You Can JUMP Them!. In Proceedings

—
Do
—

—
w
=

—
S
!

— —
(=)} w
[l [

[7

—

(8

=

[11

—

[12

—

(14

=

[15

=

(16

=

(17

—

(18

[t

of the 12th USENIX Conference on Networked Systems Design and
Implementation (NSDI’15). USENIX Association, Berkeley, CA, USA,
1-14. http://dl.acm.org/citation.cfm?id=2789770.2789771

[19] Ajay Gulati, Chethan Kumar, Irfan Ahmad, and Karan Kumar. 2010.
BASIL: Automated IO Load Balancing Across Storage Devices.
In Proceedings of the 8th USENIX Conference on File and Storage
Technologies (FAST’10). USENIX Association, Berkeley, CA, USA, 13-13.
http://dl.acm.org/citation.cfm?id=1855511.1855524

[20] Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl Wald-
spurger, and Mustafa Uysal. 2011. Pesto: Online Storage Performance
Management in Virtualized Datacenters. In Proceedings of the 2Nd ACM
Symposium on Cloud Computing (SOCC '11). ACM, New York, NY, USA,
Article 19, 14 pages. https://doi.org/10.1145/2038916.2038935

[21] Handling of signaling storms in mobile networks. 2017.
https://goo.gl/fzkSGH.

[22] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar.
2016. Gremlin: Systematic Resilience Testing of Microservices. In 2016
IEEE 36th International Conference on Distributed Computing Systems
(ICDCS). 57-66. https://doi.org/10.1109/ICDCS.2016.11

[23] High Availability is more than five nines. 2017. https://goo.gl/04dV3E.

[24] Intel Data Plane Development Kit. 2017. http://dpdk.org/.

[25] Internet of Things: Network Data Traffic Collection. 2018.
http://iotanalytics.unsw.edu.au/.

[26] Jenkins hash function. 2017. https://en.wikipedia.org/wiki/Jenkins_
hash_function.

[27] Roger Piqueras Jover. 2015. Security and impact of the IoT on LTE mobile
networks.

[28] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017.
Stateless Network Functions: Breaking the Tight Coupling of State and
Processing. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA, 97—
112. https://www.usenix.org/conference/nsdil7/technical-sessions/
presentation/kablan

[29] M. Laner, P. Svoboda, N. Nikaein, and M. Rupp. 2013. Traffic Models for
Machine Type Communications. In ISWCS 2013; The Tenth International
Symposium on Wireless Communication Systems. 1-5.

[30] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. 2017. A Control-Plane
Perspective on Reducing Data Access Latency in LTE Networks. In
Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking (MobiCom ’17). ACM, New York, NY, USA,
56—69. https://doi.org/10.1145/3117811.3117838

[31] Yuanjie Li, Zengwen Yuan, and Chunyi Peng. 2017. A Control-Plane
Perspective on Reducing Data Access Latency in LTE Networks. In
Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking (MobiCom ’17). ACM, New York, NY, USA,
56—69. https://doi.org/10.1145/3117811.3117838

[32] Load Balance MME in Pool. 2017. https://goo.gl/61CqWz.

[33] LTE SUBSCRIBER SERVICE RESTORATION. 2017. https:
//goo.gl/nfmLv6.

[34] Managing LTE Core Network Signaling Traffic. 2017. https:
//insight.nokia.com/managing-lte-core-network-signaling-traffic.

[35] Matteo Pozza et al., Solving Signaling Storms in LTE Net-
works: a Software-Defined Cellular Architecture. 2017.
http://tesi.cab.unipd.it/53297/1/tesi_Pozza.pdf.

[36] Diomidis S Michalopoulos, Mark Doll, Vincenzo Sciancalepore, Dario
Bega, Peter Schneider, and Peter Rost. 2017. Network Slicing via
Function Decomposition and Flexible Network Design. (2017).

[37] MMLite: LTE UE Emulator to generate LTE control messages. 2018.
https://github.com/vasu018/LTE-UE.

[38] MobileInsight: Data Sharing. 2018. . http://www.mobileinsight.net/
data.html.

[39] Ali Mohammadkhan, K.K. Ramakrishnan, Ashok Sunder Rajan,
and Christian Maciocco. 2016. CleanG: A Clean-Slate EPC Archi-
tecture and ControlPlane Protocol for Next Generation Cellular
Networks. In Proceedings of the 2016 ACM Workshop on Cloud-
Assisted Networking (CAN 16). ACM, New York, NY, USA, 31-36.
https://doi.org/10.1145/3010079.3010084

[40] M. Moradi, Y. Lin, Z. M. Mao, S. Sen, and O. Spatscheck. 2018. SoftBox:
A Customizable, Low-Latency, and Scalable 5G Core Network
Architecture. IEEE Journal on Selected Areas in Communications 36,
3 (March 2018), 438-456. https://doi.org/10.1109/JSAC.2018.2815429
Vasudevan Nagendra, Himanshu Sharma, Ayon Chakraborty, and
Samir R. Das. 2016. LTE-Xtend: Scalable Support of M2M De-
vices in Cellular Packet Core. In Proceedings of the 5th Workshop
on All Things Cellular: Operations, Applications and Challenges
(MobiCom Workshop, ATC ’16). ACM, New York, NY, USA, 43-43.
https://doi.org/10.1145/2980055.2980062
Binh Nguyen, Tian Zhang, Bozidar Radunovic, Ryan Stutsman, Thomas
Karagiannis, Jakub Kocur, and Jacobus Van der Merwe. 2018. ECHO:
A Reliable Distributed Cellular Core Network for Hyper-scale Public
Clouds. In Proceedings of the 24th Annual International Conference on
Mobile Computing and Networking (MobiCom °18). ACM, New York,
NY, USA, 163-178. https://doi.org/10.1145/3241539.3241564
[43] Nokia Siemens Networks: Signaling is growing 50% faster than data
traffic. 2017. https://goo.gl/oTbTmM.
[44] Mohammad Noormohammadpour and Cauligi S Raghavendra. 2017.
Datacenter Traffic Control: Understanding Techniques and Tradeoffs.
IEEE Communications Surveys & Tutorials 20, 2 (2017), 1492-1525.
Sangchul Oh, Byunghan Ryu, and Yeonseung Shin. 2013. EPC signaling
load impact over S1 and X2 handover on LTE-Advanced system. In 2013
Third World Congress on Information and Communication Technologies
(WICT 2013). 183-188. https://doi.org/10.1109/WICT.2013.7113132
Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin
Raiciu. [n. d.]. Stateless datacenter load-balancing with beamer.
openair-cn: Evolved Core Network Implementation of OpenAirInter-
face. 2017. https://gitlab.eurecom.fr/oai/openair-cn.
OpenNetVM. 2017. http://sdnfv.github.io/onvm/.
Pareto Distribution. 2017. https://en.wikipedia.org/wiki/Pareto_
distribution.
Nohhyun Park, Irfan Ahmad, and David J. Lilja. 2012. Romano:
Autonomous Storage Management Using Performance Prediction in
Multi-tenant Datacenters. In Proceedings of the Third ACM Symposium
on Cloud Computing (SoCC ’12). ACM, New York, NY, USA, Article 21,
14 pages. https://doi.org/10.1145/2391229.2391250
Ilia Pietri, Gideon Juve, Ewa Deelman, and Rizos Sakellariou. 2014. A
Performance Model to Estimate Execution Time of Scientific Workflows
on the Cloud. In Proceedings of the 9th Workshop on Workflows in
Support of Large-Scale Science (WORKS ’14). IEEE Press, Piscataway,
NJ, USA, 11-19. https://doi.org/10.1109/WORKS.2014.12
T. Potsch, S. N. K. Khan Marwat, Y. Zaki, and C. Gorg. 2013. Influence
of future M2M communication on the LTE system. In 6th Joint
IFIP Wireless and Mobile Networking Conference (WMNC). 1-4.
https://doi.org/10.1109/WMNC.2013.6549000
[53] G. Premsankar, K. Ahokas, and S. Luukkainen. 2015. Design
and Implementation of a Distributed Mobility Management En-
tity on OpenStack. In 2015 IEEE 7th International Conference on
Cloud Computing Technology and Science (CloudCom). 487-490.
https://doi.org/10.1109/CloudCom.2015.54
Zafar Ayyub Qazi, Phani Krishna Penumarthi, Vyas Sekar, Vijay
Gopalakrishnan, Kaustubh Joshi, and Samir R Das. 2016. KLEIN: A
minimally disruptive design for an elastic cellular core. In Proceedings
of the Symposium on SDN Research. ACM, 2.
Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar, Sylvia
Ratnasamy, and Scott Shenker. 2017. A High Performance Packet
Core for Next Generation Cellular Networks. In Proceedings of
the Conference of the ACM Special Interest Group on Data Com-
munication (SIGCOMM ’17). ACM, New York, NY, USA, 348-361.
https://doi.org/10.1145/3098822.3098848
Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew
Warfield. [n. d.]. Split/Merge: System Support for Elastic Execution
in Virtual Middleboxes.
Ashok Sunder Rajan, Sameh Gobriel, Christian Maciocco, Kannan Babu
Ramia, Sachin Kapur, Ajaypal Singh, Jeffrey Erman, Vijay Gopalakr-
ishnan, and Rittwik Jana. 2015. Understanding the bottlenecks in

(41

—

(42

—

[45

—

[46

—

[47

—

[48

—
S
o

205

[50

=

(51

—

[52

—

[54

=

(55

=

(56

=

[57

—

virtualizing cellular core network functions. The 21st IEEE International
Workshop on Local and Metropolitan Area Networks (2015), 1-6.

[58] RAMCloud. 2017. http://dpdk.org/doc/guides-16.04/linux_gsg/nic_
perf_intel _platform. html.

[59] RAMCloud. 2017. https://ramcloud.stanford.edu/docs/doxygen/md_
README html.

[60] The OpenAirInterface repository. 2017. https://gitlab.eurecom.fr/oai/
openairinterface5g.

[61] M.R.Sama, X. An, Q. Wei, and S. Beker. 2016. Reshaping the mobile
core network via function decomposition and network slicing for
the 5G Era. In 2016 IEEE Wireless Communications and Networking
Conference. 1-7. https://doi.org/10.1109/WCNC.2016.7564652

[62] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter,
and Guangyu Shi. 2012. Design and Implementation of a
Consolidated Middlebox Architecture. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implemen-
tation (NSDI'12). USENIX Association, Berkeley, CA, USA, 24-24.
http://dl.acm.org/citation.cfm?id=2228298.2228331

[63] Muhammad Zubair Shafig, Lusheng Ji, Alex X. Liu, Jeffrey Pang, and Jia
Wang. 2012. A First Look at Cellular Machine-to-machine Traffic: Large
Scale Measurement and Characterization. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE jJoint International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS ’12). ACM,
New York, NY, USA, 65-76. https://doi.org/10.1145/2254756.2254767

[64] A. Singh, M. Korupolu, and D. Mohapatra. 2008. Server-storage
virtualization: Integration and load balancing in data centers. In 2008 SC
- International Conference for High Performance Computing, Networking,
Storage and Analysis. 1-12. https://doi.org/10.1109/SC.2008.5222625

[65] Study on provision of low-cost Machine-Type Communications
(MTC) User Equipments (UEs) based on LTE, 3GPP spec: 36.888.
2017. https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationld=2578.

[66] T. Taleb, A. Ksentini, and B. Sericola. 2016. On Service Re-
silience in Cloud-Native 5G Mobile Systems. IEEE journal on
Selected Areas in Communications 34, 3 (March 2016), 483-496.
https://doi.org/10.1109/JSAC.2016.2525342

[67] T. Taleb and K. Samdanis. 2011. Ensuring Service Resilience
in the EPS: MME Failure Restoration Case. In 2011 IEEE
Global Telecommunications Conference - GLOBECOM 2011. 1-5.
https://doi.org/10.1109/GLOCOM.2011.6133654

[68] Traffic models for machine-to-machine (M2M) communications: types
and applications. 2014. http://www.eurecom.fr/publication/4265.

[69] OpenEPC Tutorial using the classic PhantomNet portal. 2017. . https://
wiki.emulab.net/wiki/phantomnet/oepc-protected/openepc-tutorial.

[70] 1. Widjaja, P. Bosch, and H. La Roche. 2009. Comparison of
MME Signaling Loads for Long-Term-Evolution Architectures.
In 2009 IEEE 70th Vehicular Technology Conference Fall. 1-5.
https://doi.org/10.1109/VETECF.2009.5378833

[71] Heejung Yu, Howon Lee, and Hongbeom Jeon. 2017. What is
5G? Emerging 5G Mobile Services and Network Requirements.
Sustainability 9,10 (2017), 1848.

[72] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf
Chowdhury. 2017. Resilient datacenter load balancing in the wild. In
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. ACM, 253-266.

[73] Wei Zhang, Jinho Hwang, Shriram Rajagopalan, K.K. Ramakrishnan,
and Timothy Wood. 2016. Flurries: Countless Fine-Grained NFs
for Flexible Per-Flow Customization. In Proceedings of the 12th
International on Conference on Emerging Networking EXperiments
and Technologies (CoONEXT ’16). ACM, New York, NY, USA, 3-17.
https://doi.org/10.1145/2999572.2999602

[74] Timothy Zhu, Daniel S. Berger, and Mor Harchol-Balter. 2016.
SNC-Meister: Admitting More Tenants with Tail Latency SLOs. In
Proceedings of the Seventh ACM Symposium on Cloud Computing (SoCC
’16). New York, NY, USA, 374-387.

[75] Timothy Zhu, Michael A. Kozuch, and Mor Harchol-Balter. 2017. for Shared Networked Storage. In Proceedings of the ACM Symposium

WorkloadCompactor: reducing datacenter cost while providing tail on Cloud Computing (SOCC °14). New York, NY, USA, Article 29,
latency SLO guarantees. In SoCC. 29:1-29:14 pages.

[76] Timothy Zhu, Alexey Tumanov, Michael A. Kozuch, Mor Harchol-
Balter, and Gregory R. Ganger. 2014. PriorityMeister: Tail Latency QoS

